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1 Introduction

Over the last decade, there has been an increased reliance in public economics on evidence that

is based on observed �bunching� around kink points in budget sets. The key underlying idea is

simple and tractable: if rational individuals face a non-linear budget set with considerable kinks,

they should bunch around the kinks, and the extent of bunching should be informative about

relevant elasticities (or lack thereof). The existence of bunching or excess mass around kink points

of a budget set can thus provide compelling, visual evidence against the null hypothesis of no

behavioral response of individual to the incentives; likewise, the lack of such bunching suggests the

opposite.

Many of the applications of this idea have been in the context of the behavioral response to

non-linear income tax schedules (Saez 2010; Chetty et al. 2011; Chetty, Friedman, and Saez 2013a;

Kleven and Waseem 2013; Bastani and Selin 2014; Kleven et al. 2014). But similar ideas have been

widely applied in other settings that generate non-linear budget sets, including pensions (Manoli

and Weber 2011), electricity (Ito 2014), fuel economy policy (Sallee and Slemrod 2012), mortgages

(Best et al. 2015), cell phones (Grubb 2015; Grubb and Osborne 2015), broadband (Nevo, Turner,

and Williams 2015), taxes on home sales (Best and Kleven 2013), healthcare procurement (Bajari

et al. 2011), and �the subject of this current paper �health insurance contracts (Abaluck, Gruber,

and Swanson 2015; Dalton, Gowrisankaran, and Town 2015; Einav, Finkelstein, and Schrimpf

2015).

A likely key factor behind this recent popularity of bunching estimates is the seminal contri-

bution of Saez (2010), which illustrates how one may convert an observed bunching pattern to an

economic object of interest: a �structural�behavioral elasticity parameter. Using data on individ-

uals�annual earning, which bunch around concave kinks in the income tax schedule, Saez used a

stylized, static, frictionless model of labor supply to provide a simple, transparent, and easy-to-

implement mapping from the observed bunching to an estimate of the elasticity of labor supply

(or earning) with respect to the marginal tax rate. This allows one to take the compelling visual

evidence of bunching and move beyond merely rejecting the null of non-behavioral response to esti-

mating a quantitative economic object of interest that can be used to predict behavioral responses

to counterfactual scenarios. Not surprisingly, this compelling and tractable idea has been quite
in�uential, and has been frequently used to translate various bunching estimates into �structural�

elasticities (Chetty et al. 2011; Kleven et al. 2011; Kleven and Waseem 2013; Bastani and Selin

2014).
The Saez (2010) approach is very appealing. It is transparent and easy to implement. Of course,

the simplicity comes at the cost of potentially abstracting from a host of real-world features that

may be important in a particular context. An alternative to this approach would be to develop a

more complete model of a given context, which includes dynamics, uncertainty, and other relevant

frictions. Manoli and Weber (2011) provide such a model in the context of labor supply, and our

earlier work (Einav, Finkelstein, and Schrimpf 2015) provides another example in the context of

demand for prescription drugs. As the Saez approach is so much simpler and easier to implement,
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it seems useful to ask how well of an approximation to the main object of interest, a simpler, Saez-

style approach can provide. Naturally, the reasonableness of the approximation will depend on the

speci�c context.

This is precisely the goal of the current paper, where we explore this question in the context of

demand for prescription drugs under Medicare Part D, the public prescription drug insurance pro-

gram for elderly and disabled individuals in the United States. Our substantive question concerns

the spending (or �moral hazard�) e¤ects of alternative insurance contracts. This is a topic that has

attracted considerable attention both for health insurance contracts in general, and more recently

in our speci�c Part D context.

We begin in Section 2 by describing the setting and the data. An important feature of Medicare

Part D coverage is the donut hole in the basic bene�t design, which generates a large, discontinuous

increase in the marginal price. Consequently, individuals�annual drug expenditures bunch around

this kink, making it a natural context to explore the implication of di¤erent bunching estimates.

In Section 3 we present and estimate two di¤erent models of prescription drug purchasing

behavior. The �rst is our adaptation of the static, frictionless Saez (2010) model to the Medicare

Part D context; we refer to it hereafter as a Saez-style model and the resultant elasticities as

Saez-based elasticities. The second is the dynamic model we developed in our earlier work (Einav,

Finkelstein, and Schrimpf 2015); we refer to it hereafter as the dynamic model and the resultant

elasticities as the dynamics-based elasticities. Both models match the basic bunching pattern;

however, the implied elasticity from the dynamic model is an order of magnitude greater than the

Saez-based elasticity estimate. This is the key result of the paper.

There are multiple di¤erences between the two, non-nested settings. The Saez-style framework

assumes continuous spending decisions (i.e. no lumpiness in drug purchases), perfect foresight

of future health shocks (i.e. no uncertainty), and no discounting of the future. None of these

assumptions are made in the dynamic model. It is interesting to explore which features of the

model are most important for the di¤erences in implied elasticities, which is the focus of Section 4.

There we develop two modi�cations of the dynamic model, which bring it closer to the Saez-style

framework. We then re-estimate each of these versions of the model using the same data. Our main

�nding is that a static, perfect foresight version of the full dynamic model �which comes quite close

to the Saez-style model except that it allows for lumpiness in spending decisions �results in implied

elasticities that are about half way between the Saez-based estimates and the dynamics-based ones.

Interestingly, once we allow for lumpiness, allowing for uncertainty essentially allows us to recover

the magnitude of the elasticity implied by the full dynamic model; as it turns out, allowing for

discounting is not quantitatively important.

We emphasize that the results we present in this paper should be viewed as illustrative. They

are speci�c to our particular (Medicare Part D) context, as well as to the modeling choices we have

made. Nonetheless, they highlight what we believe to be an important and broader point: in-sample

bunching patterns may be rationalized by a host of modeling assumptions, and these assumptions

can, at least in some contexts, have very di¤erent quantitative implications for the out-of-sample

objects of interest. This point is closely related to the calibration exercise of Chetty (2012), which
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shows that a given underlying labor supply elasticity can generate a range of bunching estimates,

depending on the assumed degree of optimization friction.

More generally, our paper speaks to the growing interest in our profession in developing ap-

proaches to translate compelling, transparent, �reduced form� evidence of a behavioral response

into an economic object of interest. The literature following Saez (2010) is one such example.

Another in�uential example is the �su¢ cient statistics� literature popularized by Chetty (2009)

� which attempts to use simple models to directly and transparently map reduced form para-

meters into welfare analyses. But the phenomenon is more general. For example, randomized

controlled trials have the ability to deliver compelling �causal e¤ect�estimates, but translating the

experimental treatment e¤ects into economic objects that can be applied out-of-sample to make

counterfactual predictions or analyses often requires additional economic modeling assumptions

(Aron-Dine, Einav, and Finkelstein 2013). Our (modest) goal here is to illustrate in a particular

context that these modeling assumptions can be quite consequential. As we have demonstrated,

two �reasonable� (in our subjective view) alternative models can match the basic reduced form

bunching facts, while giving very di¤erent out-of-sample predictions. Su¢ cient statistics, in other

words, are su¢ cient conditional on the model (or a set of models). This is an obvious point, made

clearly by Chetty (2009), but it is sometimes forgotten in applications and interpretations.

2 Data and Setting

A. Setting The setting for the exercise in this paper is Medicare Part D, the prescription drug

coverage component of Medicare that was added in 2006. As of November 2012, 32 million people

(about 60% of Medicare bene�ciaries) were enrolled in Part D, with expenditures projected to be

$60 billion in 2013, or about 11% of total Medicare spending (Kaiser Family Foundation 2012a,

2012b). Unlike Medicare Parts A and B for hospital and doctor coverage, which provide a uniform

public insurance package for all enrollees (except those who select into the managed care option,

Medicare Advantage), private insurance companies o¤er various Medicare Part D contracts, and

are reimbursed by Medicare as a function of their enrollees�risk scores.

While the exact features of the plans o¤ered vary, they are all based around a government-

de�ned standard bene�t design, shown in Figure 1. Our main focus is on the convex kink in the

budget set, arising from the discontinuous increase in the out-of-pocket price individuals face when

they cross into the �donut hole� (or �gap�; see Figure 1). Standard economic theory suggests

that, as long as preferences are convex and smoothly distributed in the population, we should

observe individuals bunching at this convex kink point of their budget set. Saez (2010) provides a

recent, formal discussion. To see the intuition, consider a counterfactual linear budget set, i.e. the

continuation of the co-insurance arm�s cost sharing into the gap. In this case, individual spending

would be distributed smoothly through the kink. For example, as illustrated in Figure 2, the solid

and dashed indi¤erence curves represent two individuals with di¤erent healthcare needs who would

have di¤erent total drug spending under this linear contract. With the introduction of the kink,
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however, the spending of the sicker (dashed) individual will decrease and locate at the kink, as

would all individuals whose spending under the linear contract was in between the solid and dashed

individuals, thus generating �bunching.� In a frictionless world, these individuals would pile up

exactly at the kink. In practice, with real-world frictions such as the lumpiness of drug purchases

and some uncertainty about future health shocks, individuals are instead expected to cluster in a

narrow area around the kink.

B. Data We use data on a 20% random sample of all Medicare part D bene�ciaries over the years

2007-2009. The data include basic demographic information (such as age and gender), predicted risk

score, and detailed information on the cost-sharing characteristics of each bene�ciary�s prescription

drug plan. We also observe detailed, claim-level information on our bene�ciaries�Medicare part D

utilization during the same years.

We use a sub-sample of the data we used previously in Einav, Finkelstein, and Schrimpf (2015).

That data excluded various groups of bene�ciaries for whom the empirical strategy is not applicable

�such as individuals in Medicare Advantage and certain low income individuals for whom the basic

bene�t design we study does not apply �and individuals under age 65; see Einav, Finkelstein, and

Schrimpf (2015) for a complete discussion and details of the sample. In the current paper, given

the more conceptual emphasis and in order to reduce computational burden, we further restrict the

sample to a 10 percent random sample of enrollees in the �ve largest plan-years.

With these restrictions, our �nal analysis relies on a data set of 27,237 person-years (14,521

unique individuals), which are distributed fairly evenly across the �ve plans. One plan is in 2007,

two in 2008, and two in 2009. One plan is similar to the standard contract described earlier, with

approximately 20 percent cost sharing prior to the gap. The four other plans have no deductible, but

require enrollees to pay 35-40 percent (depending on the plan) prior to the gap. None of the plans

provides coverage in the gap, leading to a sharp kink as described earlier. The average age in our

sample is 76, and about two thirds of the individuals are females. Average annual, per-bene�ciary

drug spending is $1,853 dollars, out of which $834 are paid (on average) out of pocket. Spending is

very right skewed: 4.5% of bene�ciaries have no annual drug spending, median spending is about

$1,391, and the 90th percentile is about $3,689. The exact location of the kink, as a function of

total drug spending, also varies across observations in our sample depending on the year, but on

average it hits at roughly the 75th percentile of the drug spending distribution. On average, in our

sample, the out of pocket price increases from 0.35 to 0.99 at the kink.

C. Bunching Bunching at the kink is clearly evident in the raw data. Figure 3 provides the

motivation and starting point for the analysis in the rest of the paper. Because the kink location

has changed from year to year (from $2,400 in 2007, to $2,510 in 2008, and $2,700 in 2009), in

all our analysis we normalize annual spending by the kink location. We plot the distribution of

(normalized) annual spending (in $40 bins) for individuals whose spending is within $1,000 of the

kink (on either side). This constitutes 35% of our sample. The presence of signi�cant �excess mass,�

or �bunching�of annual spending levels around the convex kink in the budget set is apparent in
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Figure 3: there is a noticeable spike in the distribution of annual spending around the kink. In

Einav, Finkelstein, and Schrimpf (2015) we presented this result in greater detail, showing how the

location of the spike moves as the kink location changes from year to year and analyzing the types

of drugs that individuals appear to stop purchasing when they slow down their drug utilization and

�bunch�at the kink.

The observed bunching pattern clearly demonstrates that individuals� drug expenditure re-

sponds to the out-of-pocket price. In other words, this basic descriptive evidence provides a

compelling rejection of the null hypothesis that drug spending behavior does not respond to the

incentives created by the non-linear health insurance contract.

The remainder of the paper compares two di¤erent modeling approaches to translating the

bunching pattern in Figure 3 into an economic object of interest that could be used to construct

predictions of spending under counterfactual contracts. For concreteness, we examine the impli-

cations of the two di¤erent models for the estimate of an elasticity of spending with respect to a

uniform percentage change in the out-of-pocket price implied by the budget set illustrated in Figure

1

3 Two economic models

We consider two di¤erent economic models for mapping the bunching estimate into an elasticity.

Both are fairly �o¤ the shelf.�One is an adaptation of Saez�s (2010) model to our context. The

other is the model we developed in our earlier work, which was used to analyze how drug spending

responds to non-linear health insurance contracts (Einav, Finkelstein, and Schrimpf 2015). In this

section, we brie�y present each model, show that each matches the basic bunching pattern, and

present the (di¤erent) implications regarding the counterfactual spending response to a proportional

reduction in consumer cost sharing. In the next section we discuss �conceptually and empirically

�the reasons for the di¤erences.

3.1 A frictionless static model a-la Saez (2010)

Saez (2010) provides a static, frictionless model of labor supply, which can be used to convert

observed bunching of annual earnings around convex kinks in the income tax schedule to an estimate

of labor supply elasticities. We adapt it to our context, sticking as closely as possible to Saez�s

original model.

We assume that individual i obtains utility

ui(m; y) = gi(m) + y (1)

from (total) drug spending m and residual income y, as in Einav et al. (2013). As in Einav et

al. (2013) and Saez (2010), we assume that utility is quasi-linear. We make further parametric
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assumptions, so that

ui(m; y) =

"
2m� �i

1 + 1
�

�
m

�i

�1+ 1
�

#
| {z }+ [Ii � C(m)]| {z } :

gi(m) y

: (2)

That is, residual income y is given by the individual�s income Ii minus his (annual) out-of-pocket

cost C(m), where C(�) de�nes the function that depends on the individual�s insurance coverage and
maps total spending m to the fraction of it that is paid out of pocket as illustrated, for example,

in Figure 1.

The choice of gi(m) in equation (2) is less standard, and is motivated by our attempt to obtain

a tractable, constant elasticity form of the spending function that would be similar to Saez (2010)

despite the di¤erent context. As will be clear soon, we specify gi(m) above so that one can think of

�i as representing an individual�s health needs, which vary across individuals, and � as a parameter,

common across individuals, that a¤ects individuals�elasticity of drug spending with respect to the

out-of-pocket price.

To see the motivation for this particular parameterization, consider its implication in the context

of a linear coverage. Suppose coverage is linear and is given by C(m) = c �m with c 2 [0; 1], so that
c = 0 represents full coverage and c = 1 represents no coverage. In such a case, an individual solves

max
m

"
2m� �i

1 + 1
�

�
m

�i

�1+ 1
�

+ Ii � c �m
#
; (3)

and the optimal choice of drug expenditure is given by

m = �i(2� c)�: (4)

That is, with no insurance (c = 1) the individual spends m = �i, while with full insurance he

spends m = 2��i. Thus our speci�cation implies a constant elasticity � of spending with respect

to (2� c).
This constant elasticity form of the spending function is now very similar to Saez�s choice of

labor supply function �although with the distinction that Saez�s speci�cation implies a constant

elasticity with respect to (1 � t) ,where t is the marginal tax rate on income. For the rest of this
section we can therefore closely follow his strategy. Speci�cally, we assume that �i is distributed

in the population with cdf F (�) and pdf f(�), analogously to individual�s ability (n) in Saez�s

framework. m is analogous to income (z), and (2 � c)� is analogous to (1 � t)e in Saez�s work.
Applying these analogies, we can start with equation (2) in Saez (2010), which is identical (after

applying the analogies) to equation (4) above.

Estimation and implied elasticities Consider now H0(m) to be the cdf of spending when

the marginal price (before the gap) is c0. Denote by h0(m) = H 0
0(m) the corresponding pdf.

Because m = �i(2 � c0)� we have H0(m) = Pr(�i(2 � c0)� � m) = F (m=(2 � c0)�). So h0(m) =
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f(m=(2 � c0)�)=(2 � c0)�. Consider now the gap, where there is a kink and the marginal price

c1 >> c0 becomes much higher, so above the kink we have m = �i(2 � c1)�. H is then the

distribution of spending under the kink scenario. If the kink is at m�, then distribution of spending

up to m� is given by H0(m). That is, spending is such that

m(�i) =

8><>:
�i(2� c0)� if �i < m

�=(2� c0)�

m� if �i 2 [m�=(2� c0)�;m�=(2� c1)�]
�i(2� c1)� if �i > m

�=(2� c1)�
: (5)

Thus, for spending above the kink (m > m�) we have H(m) = F (m=(2� c1)�).
The rest continues as in Saez, using the analogies described above. For example, Saez�s equation

(3) becomes:
�m�

m� = (2� c0)� � 1 (6)

and his equation (5) becomes

B = m�
��
2� c0
2� c1

��
� 1
� h(m�)� + h(m�)+=

�
2�c0
2�c1

��
2

: (7)

Equation (7) can then be used to express � as a function of estimable objects, allowing us to convert

our bunching estimate of B to an elasticity estimate �.

Table 1 shows the results of implementing this approach. The bunching estimate B is calculated

as the number of people who are empirically around the kink (Nactual) over and above the number of

people who we (counterfactually) estimate would be in this area if the kink did not exist (Ncounter);

in other words, B = Nactual �Ncounter: The di¤erent rows of Table 1 report results under di¤erent
approaches to approximating that counterfactual distribution of spending that would exist in the

absence of the kink, and di¤erent de�nitions of what it means to be �around�the kink. The �rst

three columns describe the approach. The fourth column reports the excess mass, which is the ratio

of B to the (counterfactual) number of individuals that would be near the kink in the absence of a

kink; in other words, the excess mass is de�ned as (Nactual �Ncounter) =Ncounter.The �nal column
of Table 1 reports our elasticity estimate. We compute plan-speci�c ��s using equation 7, our

estimate of B for each plan, and plan-speci�c values for c0 and c1. As noted, our speci�cation

implies a constant elasticity � of spending with respect to (2� c). We therefore map our estimates
of � to an individual-speci�c spending elasticity with respect to the (ex-post) individual-speci�c

end-of-year coinsurance rate c; this corresponds to the relevant price the individual responds to in

the Saez-style static model with perfect foresight. We report the average elasticity estimate across

the individuals in our sample.

The �rst row of Table 1 shows our baseline speci�cation. We approximate the counterfactual

distribution of spending that would exist near the kink if there was no kink by �tting a linear

approximation to the cdf, using only individuals in $40 spending bins whose spending is below the

kink (between $2,000 and $200 from the kink), and subject to an integration constraint, which

requires the overall number of individuals within $2,000 of the kink (in both directions) to remain
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the same, as in the actual data. We then use a $200 window around the kink to produce our

bunching estimate B. The other rows of Table 1 show the sensitivity of our elasticity estimate to

�tting a cubic approximation (second row), changing the spending bin size (third row), or changing

the size of the exclusion window around the kink (bottom row). These exercises produce relatively

similar �and quite small �elasticity estimates, ranging from -0.034 to -0.049.

3.2 The dynamic model from Einav, Finkelstein, and Schrimpf (2015)

An alternative model that one could use to map the bunching pattern to an underlying elasticity

of spending with respect to the contract is the one we developed and used in our earlier work on

the topic, in Einav, Finkelstein, and Schrimpf (2015). We consider a risk-neutral, forward looking

individual who faces stochastic health shocks within the coverage period; at the beginning of the

coverage period (a year), an individual faces uncertainty regarding the distribution of health shocks

she will face, and makes prescription drug purchase decisions sequentially as information gradually

unfolds.1 These health shocks can be treated by �lling a prescription. The individual is covered

by a non-linear prescription drug insurance contract j over an annual coverage period of T = 52

weeks. A coverage contract is given by a function C(�; x), which speci�es the out-of-pocket amount

c the individual would be charged for a prescription drug that costs � dollars, given total (insurer

plus out-of-pocket) spending of x dollars up until that point in the coverage period.

The individual�s utility is linear and additive in health and residual income. Health events are

given by a pair (�; !), where � > 0 denotes the dollar cost of the prescription and ! > 0 denotes the

(monetized) health consequences of not �lling the prescription. We assume that individuals make a

binary choice whether to �ll the prescription, and a prescription that is not �lled has a cumulative,

additively separable e¤ect on health. Thus, conditional on a health event (�; !), the individual�s

�ow utility is given by

u(�; !;x) =

(
�C(�; x) if prescription �lled

�! if prescription not �lled
: (8)

When health events arrive they are drawn independently from a distribution G(�; !). It is also

convenient to de�ne G(�; !) � G2(!j�)G1(�). Health events arrive with a weekly probability �0,
which is drawn from H(�0j�) where � is the weekly arrival probability from the previous week.

We allow for serial correlation in health by assuming that �0 follows a Markov process, and that

H(�0j�) is (weakly) monotone in � in a �rst order stochastic dominance sense.
1The assumption of risk neutrality may seem odd in the context of insurance. Note however we are focused

not on insurance demand but on the demand for drugs conditional on the insurance contract. Conceptually, risk

neutrality may not be a bad approximation for week-to-week decision making, even when the utility function over

annual quantities (of income and/or health) is concave. Practically, we showed in Einav, Finkelstein and Schrimpf

(2015) that our quantitative results were robust to an alternative model which allowed for risk aversion, at the cost

of some expositional and estimation complexity.
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The only choice individuals make is whether to �ll each prescription. Optimal behavior can

be characterized by a simple �nite horizon dynamic problem. The three state variables are the

number of weeks left until the end of the coverage period, which we denote by t, the total amount

spent so far, denoted by x, and the health state, summarized by �, which denotes the event arrival

probability in the previous week.

The value function v(x; t; �) represents the present discounted value of expected utility along

the optimal path and is given by the solution to the following Bellman equation:

v(x; t; �) =

Z "
(1� �0)�v(x; t� 1; �0) + �0

Z
max

(
�C(�; x) + �v(x+ �; t� 1; �0);
�! + �v(x; t� 1; �0)

)
dG(�; !)

#
dH(�0j�):

(9)

with terminal conditions v(x; 0; �) = 0 for all x. Optimal behavior is straightforward to characterize:

if a prescription arrives, the individual �lls it if the value from doing so, �C(�; x)+�v(x+�; t�1; �0),
exceeds the value obtained from not �lling the prescription, �! + �v(x; t� 1; �0).

Estimation and implied elasticities To estimate the model, we parameterize the key objects.

We assume that G1(�) is lognormal. We assume that G2(!j�) follows a mixture distribution with
! = � with probability 1�p, and ! is drawn from a uniform distribution over [0; �] with probability
p. We allow heterogeneity across individuals assuming that they are drawn from �ve latent types,

and almost all parameters (with the main exception of �) are type-speci�c. We then estimate the

model using simulated moments, where the two key moments we use are the bunching pattern

presented in Figure 3 and the di¤erential pattern of monthly claim propensities for individuals

that are close and far from the kink. This is all, by design, identical to the model and estimation

carried in Einav, Finkelstein, and Schrimpf (2015), which provide much more details about the

parameterization and estimation. The results are also similar, but not exactly the same because of

the additional sample restrictions. Figure 4 shows the �t of the model to the bunching patterns;

by design, the �t is quite close. Appendix Table A1 present the parameter estimates.

Using the model and its estimates, we can now perform counterfactual exercises regarding

changes in the budget set. Given our focus on generating estimates that are comparable to the

Saez-based elasticity estimates obtained in the last section, our main exercise relies on applying a

uniform percentage price reduction to the budget sets (analogous to the one presented in Figure 1)

of the contracts that in our sample. We then simulate spending decisions for each individual under

his original coverage plan and under the modi�ed plans, and use these to compute elasticities.2

The results are summarized in Table 2. The implied elasticities range from -0.22 to -0.26. These

are about �ve times larger than the implied elasticities from the static model (see Table 1).

2As emphasized by Aron-Dine, Einav, and Finkelstein (2013) and Aron-Dine et al. (forthcoming), if individuals

face a non-linear budget set and take the dynamic incentives it creates into account, it is not advisable to characterize

the elasticity of spending with respect to �the price�without specifying the complete price change along the entire

non-linear budget set.
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4 Understanding the models�di¤erent implications

The previous section established the central �result� of the paper: two di¤erent, natural (in our

view!) models of spending behavior that are empirically �tted to the bunching or excess mass

pattern in Figure 3 produce quantitatively very di¤erent implications for the underlying economic

object of interest one might want to use out of sample. The models are not similar, yet they use the

same key source of variation, so one might have expected them to produce elasticity estimates of

similar magnitudes. However, comparing the results in Table 1 and Table 2 suggest that the Saez-

based elasticity estimates (Table 1) are about �ve times lower than the dynamics-based elasticity

estimates (Table 2). This raises a natural question: why?

In this section we brie�y explore �conceptually and empirically �which economic and modeling

assumptions seem to be important in creating the di¤erent quantitative implications. A simple,

clear statement of what is driving the di¤erent results will not be easy; the models are not nested

versions of each other. Nor, it is worth emphasizing, do we consider them vertically rankable in

terms of their appeal. The static, frictionless model a-la Saez (2010) has the attraction of being a

simple and transparent mapping from a descriptive fact to an economic object of interest; relatedly,

it can be implemented easily and quickly. The dynamic model is more computationally challenging

and time consuming to implement and �not unrelatedly �a bit more of a �black box�in terms of

the relationship between the underlying data objects and the economic object of interest. As we

now discuss, these disamenities are introduced in order to account for three potentially important

economic forces in our context that our adaptation of Saez�s static, frictionless model abstracts

from: lumpiness in drug purchases, uncertainty, and discounting. We sometimes refer to the latter

two under the general rubric of �dynamics,�although they are conceptually somewhat distinct.

4.1 Conceptual di¤erences

A �rst distinction between the two approaches regards frictions. The adaptation to the Saez model

assumes away any frictions (including lumpiness). This is arguably a more important restriction in

the context for which it was originally developed �labor supply decisions. As has been discussed

extensively (Chetty 2012; Chetty et al. 2011, 2013a, 2013b; Bastani and Selin 2014), labor supply

decisions are likely restricted to certain discrete choices (e.g., full time or part time), which will

by necessity limit the amount of bunching at the kink that a given underlying behavioral response

can produce. Practical implementations of Saez (2010) allow for some frictions � by measuring

bunching in some bandwidth around the kink rather than simply a spike at the kink which is the

literal implication of the frictionless model � but will still miss any behavioral response to the

kink that does not result in an outcome within that bandwidth. Such lumpiness is arguably less

important in our setting, where a typical prescription drug costs $20 (for generic drugs) or $130

(for branded drugs), which is only a small fraction of total annual spending for those individuals

whose spending is around the kink. Yet, this is still potentially a force that would reduce the

implied behavioral elasticity estimated in the Saez-style approach, since any lumpiness will work
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to push spending outside of the bandwidth used to measure excess mass. The dynamic model,

by contrast, accounts for lumpiness by modeling a discrete series of (weekly) health shocks and

purchase decisions, explicitly estimating the distribution of the cost of each drug (�), whose right

tail is not trivial.

Second, the Saez model is a static model. This seems a reasonable approximation to many

annual labor supply decisions, which was the context for which it was developed.3 However, a

static model seems poorly suited to our context. Annual spending in our setting is the result of

individuals making many sequential prescription drug purchase decisions throughout the year as

health shocks arrive (and information is revealed), and the price of treating each shock changes as

individuals move along their non-linear budget set. This is in sharp contrast to the assumption of

the static framework in which all the uncertainty is realized prior to any spending decision.

Relatedly, if individuals respond to the dynamic incentives provided by the non-linear contract,

then not only does information arrive gradually, but also early purchase decisions re�ect individuals�

expectations about future health shocks and their associated out-of-pocket price, adding yet another

important dynamic e¤ect. For example, the static analysis, by construction, limits the behavioral

response to the kink to those near the kink. Yet, the set of people �near�the kink �and therefore

�at risk�of bunching �may in fact be endogenously a¤ected by the presence of the kink; forward-

looking individuals, anticipating the increase in price if they experience a series of negative health

shocks, are likely to make purchase decisions that decrease their chance of ending up near the kink,

even if at that point they are far from reaching it.

Our prior empirical work has produced reduced form, descriptive evidence that is consistent

with such forward looking behavior � in which individuals respond to the future price of health

care �in both prescription drug purchasing in Medicare Part D and in medical spending decisions in

employer-sponsored health insurance (Aron-Dine et al., forthcoming). Speci�cally, in both settings,

we found that individuals in the same health insurance contract who face the same spot price of

healthcare but a higher expected end-of-year price of care (because they joined the non-linear

contract at di¤erent points during the year) have lower initial healthcare spending. This evidence

of a response to the future price of care, among individuals who face the same spot, or initial

price of care, is consistent with individuals taking into account the entire non-linear budget set in

making current healthcare utilization choices. Quantitatively, our prior estimates of the dynamic

model described in the previous section found a non-trivial role for such �anticipatory�behavioral

responses by people who expected to end up far below the kink; for example, we estimated that

about a quarter of the spending increase that we project will occur from ��lling the donut hole�

in Medicare Part D is associated with bene�ciaries whose spending prior to the policy change

would leave them short of reaching the donut hole (Einav, Finkelstein, and Schrimpf 2015). Any

such anticipatory response to the donut hole (or any non-linear feature of the health insurance

contract), will be mechanically missed by a Saez-style �bunching� estimator since, by de�nition,

3Although, as noted by Manoli and Weber (2011), even in the labor supply context, retirement incentives can

create important dynamic considerations, which suggest a need to adapt the static bunching model.
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this behavioral response does not happen around the kink.

Thus, qualitatively, both the assumption of a frictionless environment and the assumption

of a static environment seem likely to contribute to the lower Saez-based elasticity in Table 1

compared to the dynamics-based elasticity in Table 2. We now endeavor to explore the quantitative

importance of each factor by estimating various restricted versions of the �full� dynamic model

that shut down various features. Of course, these various modeling features are unlikely to have an

additively separable e¤ect on the estimates. so it will not be possible to do a strict accounting-style

decomposition of the contribution of frictions vs. static modeling to the di¤erences between the

two estimates.

Relatedly, an important point to keep in mind in any such exercise is that if we re-estimate the

�restricted�models, all of the parameter estimates will change in an attempt to have the restricted

models �t the various moments in the data (including the bunching at the kink) as well as possible.

In other words, this exercise is di¤erent from a theoretical comparative statics exercise. This is

because the data, and in particular the bunching pattern, is held �xed, and is being �tted by any

of the models we propose, so as we move from one speci�cation to another, the parameters are

re-estimated and change in response to modeling restrictions. As a result, a comparison of implied

elasticities from various alternative models �each separately estimated to �t the data �may not

lead to intuitive (or conceptually interesting) comparative statics.

4.2 Quantitative di¤erences

We consider two �restricted�versions of the �full�dynamic model presented earlier. These versions

are designed to shut down various features that are absent from the Saez-style model. In the �rst �

which we refer to as Restricted Model A (�no dynamics�) �we restrict the full model to shut down

dynamics. Speci�cally, we start with the full model and its parameterization, but then assume no

discounting or uncertainty as in Saez (2010). Yet, we continue to allow for frictions in the form

of lumpy spending. To do so, consider the dynamic model from the previous section, but assume

that individuals�discount factor is � = 1 and that they do not face any uncertainty regarding the

future. That is, as of the �rst week of the year individuals have complete information about the

precise set of health events that they would experience throughout the year.

These assumptions make the individual drug expenditure decision a static problem. To see

this, let H = f(�t; !t)gT=52t=1 denote the set of health events realized during the coverage year, with

(�t; !t) = (0; 0) if there was no health event at week t, and it is easy to see that the individual

optimal decision is simply a linear programming problem of choosing the subset D � H of the

prescriptions that get �lled. The individual will choose D to solve the following problem:

max
D�H

h
�C

�X
t2D

�t

�
�
X

t=2D
!t

i
; (10)

which is conceptually very similar to the individual problem of maximizing equation (2) in the Saez-

style model in Section 3. A key di¤erence between our static version of the dynamic model and the

Saez-style model is that the former allows for the lumpiness of claims, relative to the frictionless
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spending model of Saez (of course, there are also unavoidable functional form di¤erences between

the two). In particular, given 52 weeks in the year and an estimated average weekly arrival rate

of a health shock of approximately 0:4 (see the estimates of � in Appendix Table A1), the typical

individuals faces about 20 shocks, so a relatively �nite set of choices of which to make claims (some

of which will have � > ! and therefore are e¤ectively non-discretionary).

In the second restricted model �which we refer to as Restricted Model B (�no discounting�) �

we impose � = 1 on the full model, rather than allowing � to be a free estimable parameter. It thus

allows for lumpiness of spending, as in the �rst restricted model, but also allows for uncertainty in

the timing and nature of health shocks throughout the year. By imposing � = 1, all the dynamic

behavior is due to uncertainty and incomplete information about the future, rather than due to

time preferences.

Both of these restricted models use a similar basic structure to that of the full model presented

in the previous section. We thus follow the same econometric and parametric assumptions regarding

functional form, distributions, and heterogeneity, and use the same method of simulated moments

and the same set of empirical moments for estimation. We should note, however, that the com-

bination of lumpiness and complete information in Restricted Model A leads to a computational

problem: although conceptually trivial, solving the optimization problem in equation (10) is in fact

complicated as it leads to a large combinatorial choice. Therefore, to estimate Restricted Model A

we use approximation techniques, as detailed in the appendix.

In the appendix (Appendix Table A2 and Appendix Table A3), we report the underlying parame-

ter estimates that are associated with each model. Loosely, the parameter estimates are reasonably

similar across models. This is not particularly surprising given how similar the models are, and

the fact that they try to �t the same descriptive (bunching) patterns in the data. Indeed, like the

full dynamic model and the Saez-style model, these two restricted models also �t the bunching

pattern well as we show in Figure 5 and Figure 6. Yet, it is interesting to discuss the parameter

that have changed as we move from the full dynamic model to restricted models A and B. Those

changing parameters are those that �compensate� for the changes in the modeling assumptions,

and may provide some intuition for why the elasticity estimates change. For example, comparing

the estimates for model A (Appendix Table A2) with the estimates of the full model (Appendix

Table A1) reveals that imposing certainty makes us estimate health shocks that are slightly more

persistent, and most importantly make us estimate lower moral hazard parameter p for the two

high-spending types, and this latter di¤erences is presumably what drives the lower price elasticity

implied by the certainty model.

The key focus is the implications of these di¤erent models �all of which are designed to �t the

bunching pattern �for the economic object of interest: the elasticity of annual spending with respect

to the out-of-pocket price. The main results are presented in Table 3 Panel A shows the results

for Restricted Model A (�no dynamics�) and panel B for Restricted Model B (�no discounting�).

Each table reports the implied elasticities in a parallel fashion to the way Table 2 was generated

for the �full�dynamic model of Section 3. Recall that the Saez-style model predicted Saez-based

elasticity estimates in the range of -0.04 to -0.05 (Table 1) while the �full�dynamic model produced
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dynamics-based estimates of -0.22 to -0.26 (Table 2). For ease of discussion we focus on the midpoint

of this range, looking at a 15 percent reduction in price in Tables 2 and 3.

The �full�dynamic model generates an �elasticity�with respect to the 15 percent price reduction

of -0.25 (Table 2) while the �no dynamics�model in Panel A of Table 3 generates an elasticity of

-0.13. This �no dynamics�model represents our attempt to approximate �within our more richly

parametrized model �a static model a-la Saez. A key di¤erence between the �no dynamics�model

and the Saez-style model is that the latter, as discussed, is frictionless, whereas the �no dynamics�

model allows for lumpiness in drug purchases. Thus, one way to interpret these results is that

lumpiness in purchases may explain about half of the di¤erence in elasticity estimates between the

two models. Of course, there are functional form di¤erences between the �no dynamics�model and

the Saez-style model which may also impact the results.

As noted, the �no dynamics�model shuts down both discounting and uncertainty. Panel B of

Table 3 explores the importance of discounting by estimating a version of the full model that allows

for uncertainty but imposes no discounting (� = 1). As it turns out, the assumption regarding the

discount factor do not have a major e¤ect on the implied elasticity. The �no discounting�model

in Panel B of Table 3 yields an elasticity (for a 15 percent price reduction) of -0.22, which is quite

close to the �full model� estimate of -0.25 (relative to the �no dynamics� estimate of -0.13). In

other words, after lumpiness, allowing for dynamics in the form of uncertainty appears important

for the elasticity estimate, but discounting per se does not (although could be important for other

objects of interest).

We close by re-emphasizing our earlier caveat that comparisons across the �full�dynamic model

and the various restricted models are not �real�comparative statics. In each case, the model was

re-estimated and the parameters changed (see Appendix Tables A1 through A3) as the restricted

models also tried to match the (observed) bunching moments. As a result, it is hard to develop

economic intuition for �why�the restricted models deliver the results that they do relative to the

full model. In practice, in our setting we found that the �real�comparative statics generate much

smaller changes in elasticities than the re-estimated restricted models. For example, if we take

the parameter estimates from the full model (Table A1) but impose the restrictions of the �no

discounting�model (i.e. we impose � = 1), we estimate that the elasticity declines from �0:25 to
�0:23, which is only two-thirds as much as the decline if we instead re-estimate the model after
imposing no discounting (in which case, we estimate an elasticity of �0:22). Similarly, if we take the
parameter estimates from the full model but impose the restrictions of the �no dynamics�model

(i.e. assume perfect foresight of the sequence of health events, and assume � = 1), we estimate

that the elasticity declines from �0:25 to �0:20, which less than a half of the decline if we instead
re-estimate the model (in which case, we estimate an elasticity of �0:13).
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5 Conclusions

This paper documents a case in which two di¤erent models both �t well in sample, but have di¤erent

implications out of sample. We illustrated this point in the speci�c context of translating bunching

estimates �which are being increasingly used in public economics �to behavioral elasticities, and

in the speci�c setting of studying the spending (or �moral hazard�) e¤ects of health insurance con-

tracts. We showed that the translation of a descriptive bunching pattern to an elasticity estimate

using a Saez-style frictionless model could lead to �ve-fold lower counterfactual predictions relative

to those generated by a richer dynamic model. While this qualitative result �that two di¤erent

models lead to di¤erent results �by itself should be hardly surprising, we did not expect a-priori

such a large di¤erence in the magnitude of the prediction. We explored several �in-between�spec-

i�cations to help assess which modelling assumptions may be most responsible for the di¤erences

in results.

Given these results, an obvious question is how to select among the many models that could

rationalize an observed pattern. There is of course no algorithmic answer to this question, and

model selection should likely depend on the context, the data at hand, and the key counterfactual

exercise for which it is used. Additional moments and external information could help with model

selection. Other aspects that could factor into such a decision are tradeo¤s between transparency,

simplicity, and speed of communication on the one hand, and richness of the model on the other

hand. When there is enough reason (or evidence) to believe that a richer model could lead to

substantially di¤erent results, it seems more important to move away from the simpler model.

However, we should note that even when simpler models are inferior in terms of a bottom-line

counterfactual, they may still prove quite useful in other respects. For example, going back to the

speci�c application of the current paper, even though the Saez-style model delivers elasticities that

are much lower, it may generate useful qualitative results regarding elasticity di¤erences across

groups. It can provide a relatively easy and quick way for general testing and assessment before

developing and estimating more complete models.
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Appendix

In this appendix we describe the approximation we use to Restricted Model A in the paper. That is,

the version of the model that has no uncertainty (and therefore no dynamics). With full certainty,

a consumer faces a collection of potential prescriptions f�t; !tgTt=1 and must choose which ones to
�ll. Denote dt = 1 if a prescription is �lled and dt = 0 if not. The consumer�s problem is

max
dt2f0;1g

TX
t=0

��t
"
(1� dt)!t + dtC(�t;

t�1X
s=0

ds�s)

#
: (11)

It is very di¢ cult to solve this discrete optimization problem. There are 252 possible sequences of dt,

so a brute force solution is computationally intractable. The dynamic programming approach that

we used in the model with uncertainty is also not applicable here. With uncertainty, spending until

time t and the current !t and �t are the relevant state variables for a consumer. With certainty,

the consumer knows the entire sequence of �t and !t, so this entire sequence is relevant for the

consumer�s decision at time t.

To make computation tractable, we exploit the fact that the budget, C(�), is piecewise linear,
impose � = 1, and settle for an approximate solution when the exact solution lies near the convex

kink. Given that the budget is piecewise linear, we can write it as

C(x) = yg + bg(x� kg) for kg � x � kg+1 (12)

where kg are increasing with g. Once restricted to lie on a given segment of the budget set, the

consumer�s problem is an integer linear program,

max
dt2f0;1g

� yg + bgkg +
TX
t=1

� [(1� dt)!t + bgdt�t] (13)

s.t.kg �
TX
t=1

dt�t � kg+1:
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Although there are algorithms to solve integer linear programs, integer linear programs are NP

hard, so the performance of these algorithms can be poor. Using them in our context was too time

consuming; we must solve the above problem thousands of times to estimate the model. Instead,

we compute an approximate solution as follows. Consider the relaxation of (13) to a linear program

by allowing dt to take any value in the interval [0; 1] (instead of either 0 or 1, as in the original

problem):

max
dt2[0;1]

� yg + bgkg +
TX
t=1

� [(1� dt)!t + bgdt�t] (14)

s.t.kg �
TX
t=1

dt�t � kg+1:

There are three possible solutions. Two corner solutions and an interior one,

dt = 1(!t > bg�t) and kg <
TX
t=0

dt�t < kg+1: (15)

Note that the interior solution has all dt 2 f0; 1g, so if the solution is interior, then the solution
is the same with or without the integer constraint. To describe the upper corner solution, sort

prescriptions such that
!t(0)

�t(0)
�
!t(1)

�t(1)
� � � �

!t(T )

�t(T )
: (16)

Let r� = minfr :
Pr
i=0 �t(i) > kgg. Then dt(r) = 1 for r < r�, 0 for r > r� and

dt(r�) =
kg �

Pr��1
i=0 �t(i)

�t(r�)
: (17)

The solution is very intuitive and simple. We sort potential prescriptions by their relative cost of

not �lling, !� , and then �ll from most costly to least costly until we reach the corner. Unfortunately,

the corner solution violates the integer constraint. Simply rounding the solution to the not-integer-

constrained linear program does not necessarily give the solution to the integer constrained linear

program. Nonetheless, we adapt the rounded solution as an approximate optimum.

After (approximately) solving the model along each segment, we take the segment solution that

gives the highest utility as the solution. Note that the only time an approximate corner solution will

be used is if the solution is at the single convex kink. Also, in these cases, the true and approximate

solutions both have the feature that either switching a single prescription from �lled to not �lled

(or vice versa) would move total spending from above to below the convex kink. The solution is

only approximate in that there may be a better set of prescriptions to �ll with this feature.
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Figure 1: Medicare Part D standard bene�t design (in 2008)

The �gure shows the standard bene�t design in 2008. �Pre-Kink coverage� refers to coverage prior to the

Initial Coverage Limit (ICL) which is where there is a kink in the budget set and the gap, or donut hole,

begins. The level at which catastrophic coverage kicks in is de�ned in terms of out-of-pocket spending (of

$4,050), which we convert to the total expenditure amount provided in the �gure. Once catastrophic coverage

kicks in, the actual standard coverage speci�es a set of co-pays (dollar amounts) for particular types of drugs;

in the �gure we use show a 7% co-insurance rate, which is the empirical average of these co-pays in our data.
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Figure 2: Rationale for bunching

The solid line illustrates the budget set of the same standard bene�t design as in Figure 1. The dashed line considers

an alternative budget set with a linear budget (above the deductible) at the co-insurance arm�s cost sharing rate. By

contrast, the standard budget set has a kink (price increase) at $2,510 in total spending. The individual denoted by

the solid indi¤erence curve is not a¤ected by the introduction of this kink; his indi¤erence curve remains tangent to

the lower part of the budget set. The individual with the dashed indi¤erence curves consumed above the kink under

the linear budget set; with the introduction of the kink her utility is lower, and her indi¤erence curve is now tangent

to the steeper part of the budget set at the kink. With the introduction of the kink, this latter individual would

therefore decrease total spending to the level of the kink location. By extension, any individual whose indi¤erence

curve was tangent to the linear budget set at a spending level between that of the two individuals shown would

likewise decrease total spending to the level of the kink location, thereby creating �bunching�at the kink.
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Figure 3: Bunching of annual spending around the kink

Total annual prescription drug spending on the x-axis is reported relative to the (year-speci�c) location of

the kink, which is normalized to zero. Sample uses bene�ciary-years in our baseline sample whose annual

spending is within $1,000 of the (year-speci�c) kink location. The points in the �gure display the distribution

of annual spending; each point represents the set of people that spent up to $40 above the value that is on

the x-axis, so that the �rst point represents individuals who spent between -$1,000 and -$960 from the kink,

the second point represents individuals between -$960 and -$920, and so on. We normalize the frequencies

so that they add up to one for the range of annual spending shown. N = 8; 562.
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Figure 4: Observed and �tted bunching using the dynamic model

Figure shows the distribution of observed and predicted total annual drug spending, zooming in on spending within

$1,000 of the (year-speci�c) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins,

where each point represents individuals who spend within $20 above the value on the x-axis. Frequencies in the

bottom panel are normalized to sum to 1 across the displayed range.
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Figure 5: Observed and �tted bunching using restricted model A (�no dynamics�)

Figure shows the distribution of observed and predicted total annual drug spending, zooming in on spending within

$1,000 of the (year-speci�c) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins,

where each point represents individuals who spend within $20 above the value on the x-axis. Frequencies in the

bottom panel are normalized to sum to 1 across the displayed range.
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Figure 6: Observed and �tted bunching using restricted model B (�no discounting�)

Figure shows the distribution of observed and predicted total annual drug spending, zooming in on spending within

$1,000 of the (year-speci�c) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins,

where each point represents individuals who spend within $20 above the value on the x-axis. Frequencies in the

bottom panel are normalized to sum to 1 across the displayed range.
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Table 1: Elasticity estimates from Saez-style static, frictionless model

Counterfacutal
distribution

Exclusion
windowa Bin sizeb Excess massc Elasticityd

Linear 200 40 0.401 0.047
Cubic 200 40 0.314 0.037
Linear 200 60 0.418 0.049
Linear 100 40 0.586 0.034

Table reports estimates of the implied elasticities using our adaptation of the model from Saez (2010), under alternative

measurement assumptions. We limit the analysis to the approximately 80% of our baseline sample who end the year

within $2,000 of the kink. For each plan we use equation (7) plus the plan�s cost sharing rules to translate it into an

estimate of the (plan-speci�c) parameter �. We then map � to the individual-speci�c spending elasticity with respect

to the coinsurance rate c, evaluated at the individual-speci�c end-of-year coinsurance rate c. The right-most column

reports the average estimates across all individuals. The di¤erent rows report results from di¤erent approaches to

calculating the counterfactual distribution of spending that would exist in the absence of the kink. The �rst row

shows the baseline approach, in which the counterfactual distribution was calculated by �tting a linear curve to the

pdf, using only the points to the left of -$200 and using the �exclusion window� from of $200 around the kink to

estimate the response to the kink, and a spending bin size of $40. The other rows present similar results using

di¤erent parametric �t, exclusion window, and bin size, as described.
a Exclusion window refers to the distance from the kink location within which we calculate the response to the kink.

The counterfactual density is �t using points only to the left of the exclusion window.
b Bin size refers to the spending size of bins, which is used to �t the pre-kink spending distribution.
c Excess mass is computed as a ratio. The numerator is the di¤erence between the number of people whose spending

is within the exclusion window and our counterfactual estimate of the number of people who would have spent in

this window in the absence of the kink; the denominator is our counterfactual estimate of the number of people who

would have spent in this window in the absence of the kink.
d Elasticity of spending is calculated with respect to the end-of-year cost-sharing rate c of each individual and her

plan-speci�c estimate of �. We then report the average estimated elasticity across individuals.
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Table 2: Elasticity estimates from the dynamic model

(Uniform) Price Reductiona Average Annual Spending Implied "Elasticity"b

0% (Baseline) 1,838
1.0% 1,842 0.22
5.0% 1,860 0.24

10.0% 1,883 0.24
15.0% 1,906 0.25
25.0% 1,958 0.26

Table reports estimates of the implied elasticities using the dynamic model of Einav, Finkelstein, and Schrimpf.

(2015). The �rst row shows predicted average annual spending under the existing budget set in the �ve plans that

constitute the baseline sample. Other rows show predicted average annual spending (and the implied elasticities) of

various uniform price reductions to these budget sets.
a �Uniform price reduction�is achieved by reducing the price (i.e. consumer coinsurance) in every arm of each plan

by the percent shown in the table.
b The implied �elasticity� is calculated by computing the ratio of the percent change in spending (relative to the

baseline) to the percent change in price (relative to the baseline).
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Table 3: Elasticity estimates from restricted versions of the dynamic model

(Uniform) Price Reductiona Average Annual Spending Implied "Elasticity"b

0% (Baseline) 1,824
1.0% 1,826 0.11
5.0% 1,836 0.13

10.0% 1,848 0.13
15.0% 1,860 0.13
25.0% 1,887 0.14

0% (Baseline) 1,825
1.0% 1,828 0.16
5.0% 1,844 0.21

10.0% 1,863 0.21
15.0% 1,884 0.22
25.0% 1,930 0.23

Restricted Model A ("No dynamics")

Restricted Model B ("No discounting")

Table reports estimates of the implied elasticities using the restricted versions of the dynamic model (models A and

B as described in the text). The structure of each panel parallels that of Table 2.
a �Uniform price reduction�is achieved by reducing the price (i.e. consumer coinsurance) in every arm of each plan

by the percent shown in the table.
b The implied �elasticity� is calculated by computing the ratio of the percent change in spending (relative to the

baseline) to the percent change in price (relative to the baseline).
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Appendix Table A1: Parameter estimates from the dynamic model

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.60 4.02 4.37 4.39

Beta_Risk 0.00 2.44 2.81 4.09 6.17
Beta_65 0.00 0.13 1.35 0.93 1.59

δ
μ 0.013 3.96 2.93 4.38 4.35
σ 2.35 1.14 1.57 0.43 1.42
p 0.86 0.91 0.52 0.51 0.44
λlow 0.013 0.15 0.65 0.86 0.47
λhigh 0.011 0.13 0.57 0.75 0.41

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.05 0.27 0.34 0.03 0.31

For age=65 0.00 0.13 0.87 0.00 0.00
For age>65 0.05 0.27 0.32 0.03 0.33

Other implied quantities:
d(Share)/d(Risk) 0.00 0.37 0.52 0.06 0.83

E(θ) 16 101 65 87 211

Implied annual expected spending:
Full insurance 11 811 2,198 3,891 5,110

0.25 coins. Rate 8 627 1,914 3,398 4,542

 0.97 

 0.557 
 0.565 

Top panel reports parameter point estimates (standard errors are available from the authors upon request) from the

dynamic model of Einav, Finkelstein, and Schrimpf (2015). Bottom panels report implied quantities based on these

parameters.
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Appendix Table A2: Parameter estimates from restricted model A (�no dynamics�)

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.56 4.03 4.29 4.66

Beta_Risk 0.00 2.39 2.63 6.37 4.10
Beta_65 0.00 0.01 1.34 1.61 0.85

δ
μ 0.043 3.98 2.95 4.34 4.52
σ 2.29 1.08 1.64 1.42 0.51
p 0.82 0.84 0.47 0.10 0.41
λlow 0.010 0.14 0.60 0.35 0.99
λhigh 0.008 0.10 0.46 0.27 0.77

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.04 0.24 0.36 0.34 0.02

For age=65 0.00 0.14 0.85 0.00 0.00
For age>65 0.05 0.25 0.33 0.35 0.02

Other implied quantities:
d(Share)/d(Risk) 0.00 0.36 0.55 0.88 0.03

E(θ) 14 96 73 210 104

Implied annual expected spending:
Full insurance 8 674 2,257 3,850 5,377

0.25 coins. Rate 6 532 1,994 3,755 4,821

 1.00 (Imposed) 

 0.611 
 0.540 

Table reports estimation results from restricted model A (�no dynamics�), which is described in the main text. Table

structure parallels that of Appendix Table A1.
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Appendix Table A3: Parameter estimates from restricted model B (�no discounting�)

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.63 4.01 4.28 4.36

Beta_Risk 0.00 2.49 2.85 4.07 6.27
Beta_65 0.00 0.07 1.28 0.97 1.65

δ
μ 0.015 4.02 2.94 4.43 4.32
σ 2.34 1.24 1.55 0.32 1.39
p 0.86 0.96 0.46 0.49 0.39
λlow 0.012 0.14 0.63 0.90 0.49
λhigh 0.010 0.12 0.52 0.75 0.41

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.05 0.26 0.33 0.03 0.33

For age=65 0.00 0.15 0.85 0.00 0.00
For age>65 0.05 0.27 0.31 0.03 0.34

Other implied quantities:
d(Share)/d(Risk) 0.00 0.39 0.52 0.05 0.86

E(θ) 15 120 62 89 196

Implied annual expected spending:
Full insurance 9 891 2,038 4,137 5,018

0.25 coins. Rate 7 678 1,804 3,626 4,529

 1.00 (Imposed) 

 0.570 
 0.568 

Table reports estimation results from restricted model B (�no discounting�), which is described in the main text.

Table structure parallels that of Appendix Table A1.
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