Comments on "Capital Obsolescence and Agricultural Productivity"

Ananth Seshadri

University of Wisconsin - Madison

July 2016
Agricultural TFP and Embodiment

- Cross-country differences in Agricultural TFP are large
 - Several advanced countries grew by dramatically increasing agricultural TFP (relative to manufacturing TFP)
- An important theme in modern research - technological change is embodied on capital
- Widely believed that national income accounts do not fully capture improvements in quality
Agricultural TFP and Embodiment

- One well-known approach is to examine the link between measured TFP and the age distribution of capital.
- If the embodiment hypothesis were true, standard growth accounting exercises will underestimate the effect of recent investments (vintages) on current productivity relative to older investment.
This paper

- Explores the role of agricultural capital quality in accounting for cross-country variation in agricultural TFP
- The key idea is to identify the average quality of agricultural capital \overline{q} and its growth rate μ in a country from the cross-sectional relationship between the price of agricultural capital P_i and its age a_i: $\log P_i = \beta + \beta_a \times a_i + \epsilon_i$
 - In a vintage capital model, it shows that β is a function of \overline{q}, and β_a is a function of μ
 - First estimate the price equation to obtain estimates of β and β_a
 - then solve for \overline{q} and μ
This paper

- Using data on second hand tractors in 13 countries, estimates the price equation and obtains \bar{q} and μ for each country
- finds that agricultural capital quality
 - tends to be higher and grow faster in countries with a higher agricultural productivity
 - explains about $1/3$ ($1/4$) of the cross-country disparities in the level (growth) of agricultural productivity
Contributions

- Theoretically, it constructs a model that
 - allows the quality of agricultural capital to grow at different speeds in different economies along the BGP
 - provides a way to identify the quality of agricultural capital and its growth rate from the cross-sectional relationship between the price of agricultural capital and their age

- Empirically, it
 - documents age-price profiles of tractors across countries
 - estimates the average quality and growth rate of agricultural capital for each country
 - evaluates the role of the quality of agricultural capital in agricultural productivity
Modeling Tractor Prices

\[p_{kt} = \frac{v(x_t)}{\gamma_{ct}} \]

\[q_{kt}(t) = p_{kt}(t) \left[1 - R_t(1)(1 - \delta_{kt})\frac{\gamma_{ct}}{\gamma_{ct+1}} \right] + (1 - \Delta_{t+1})C(t+1, T-1) \]

Forces at work in determining the rental price of a tractor:

- Price Effect: Increases in the price of a new tractor, \(p_{kt}(t) \), increase the cost of operating it

- Anticipated productivity Effect: (low values of \(\frac{\gamma_{ct}}{\gamma_{ct+1}} \)) result in increases in the rental price of tractors

- Operating Cost Effect: The term \((1 - \Delta_{t+1})C(t+1, T-1) \) captures the increase in cost per unit of tractor services associated with operating a one year old tractor, relative to a new tractor
Main concerns

- Estimates of \bar{q} and μ from the price equation could be contaminated for at least two reasons
 - The data may not be representative of all agricultural capital
 - Quality may not be the only determinants of price
- Other dimensions that capture quality
Representativeness of the data

- There are at least two potential sources of selection
 - Tractors may not be representative of all agricultural capital
 - Tractors in the data may not be representative of all tractors in an economy
- In both cases, the age-price profiles may be different from the age-quality profiles of all agricultural capital: estimates of \bar{q} and μ from the price equations are likely to be biased
Tractors vs Agricultural capital

- Tractors may not be representative of all agricultural capital
 - Tractors, although important, are only part of agricultural capital in a country
 - For example, tractors only account for 1/3 of world trade in farm machinery
 - Not clear whether the age-price profiles of other agricultural capital follow the same pattern as tractors
 - Useful to check using data on other agricultural equipment
 - No need to do it for all countries, do it for whatever data available
Tractors in the data vs all tractors

- The data only captures second hand tractors on the market
 - Due to informational problems, the sample of second hand tractors on the market may be very selective
 - The degree of selection may vary with tractor ages as the informational problem is likely to be worse for old tractors
 - The degree of selection may also vary across countries because the market for second hand tractors may not be equally well developed in all countries

- Issues may also arise from the small sample sizes
 - Number of observations is less than 100 for 7 out of the 13 countries (Table 1 in Online Appendix)
 - Some but not much improvement after imputation

- Could be addressed by comparing the characteristics of the tractors in the data with those from other sources
Price and quality

- The paper assumes a perfect market for agricultural capital so that all price differences are due to quality.
- In reality, however, we know that the same good may be sold at different prices in different markets even after adjusting for exchange rates or purchasing power.
- Informational frictions mentioned previously is one explanation. Other explanations include the cross-country differences in market structures and distribution costs.
- These frictions will invalidate both the mapping between β and \bar{q} and the mapping between β_a and μ, biasing the estimates of \bar{q} and μ from the price equation
 \[\log P_i = \beta + \beta_a \times a_i + \epsilon_i \]
Price and quality: Suggestions

- One way to evaluate the importance of factors other than quality in determining prices is to
 - focus on a particular type of tractor used for a period of time in different countries
 - and compare the age-price profiles of this tractor across countries
 - There should be no significant cross-country differences in the age-price profiles if quality is the only determinant of prices

- Essentially, the suggestion is to complement the current analysis with some evidence from longitudinal data
 - Should be easy given the longitudinal relationship between P and a in the model
 - No need for all countries: do it for whichever country with such data
Direct measures of quality

- Another approach is to look at measures of quality directly instead of prices
 - From example, use horsepower as a measure of quality and see whether the cross-country differences in age-horsepower profiles are similar to the age-price profiles
 - There are several other dimensions of tractor quality available from Nebraska Tractor Tests: Fuel Cost, Cylinders, Gears, RPM, HP, Plow Speed, Slippage, Length, Weight, Speed, Row Crop, Tires, Fuel
Other suggestions: Depreciation

- The model in the paper implies $\beta_a = \ln \frac{1-\delta}{1+\mu}$ where δ is the annual rate of depreciation.

- Given β_a estimated from the price equation, μ can be identified as long as there is an estimate of δ.

- Potentially, δ could vary across countries because tractors are used with different intensities.

- In estimating the country-specific δ, however, the paper assumes that the average yearly hours of usage is the same across all countries.

- Potentially because of this assumption, the estimated δ does not vary much across countries.

- This attributes most of the variation in β_a to μ.

- The results may be different if the average yearly hours of usage is allowed to vary across countries.
Other suggestions: Cross-State analysis

- The current analysis could be complemented with a cross-state analysis for the US.
- As countries differ from each other in many aspects not modeled in the paper, while the factors not captured in the model are more likely to be common across states,
- a similar finding from the cross-state exercise will make the results more convincing
- Such an exercise should be feasible given that majority of the data are from US
Other suggestions: Other implications of the model

- The model in this paper has implications other than the age-price profiles.
- For example, it has implications for the age structure of tractors in an economy.
- Given the estimates of model parameters from age-price profiles for each country, the paper could test other model implications against data.