Capital Obsolescence and Agricultural Productivity

JULIETA CAUNEDO
Cornell University

ELISA KELLER
Durham University

July, 2016
Introduction

• Agricultural productivity growth is key to the development process.
• There are large differences in agricultural productivity across countries

...consider an economy with 1/2 the GDP p/worker of the US

• agricultural value added p/worker is 20 times lower than in the US.
• agricultural TFP growth is 4 times lower than in the US.
Main question

What is the role of capital embodied technology adoption for agricultural productivity?
Main question

What is the role of capital embodied technology adoption for agricultural productivity?

• Capital embodied technical change is a key determinant of the price of investment goods. (Solow (1959), Grilliches (1961), Hall (1968), ...)
• We focus on tractors.
 • Detailed equipment’s price and characteristics data across high and middle-income countries.
 • Single cross-section, 2014.
Main question

What is the role of capital embodied technology adoption for agricultural productivity?

• Capital embodied technical change is a key determinant of the price of investment goods. (Solow (1959), Grilliches (1961), Hall (1968), ...)

• We focus on tractors.
 • Detailed equipment’s price and characteristics data across high and middle-income countries.
 • Single cross-section, 2014.

Challenge: Can we identify capital embodied technical change from cross-sectional equipment price data?
Identification

• Price of capital of quality q

$$p_{q,t} = \sum_{s=t}^{T} \phi^{s-t} (F(\text{efficiency units}_{q,s, \cdot}) \times \text{return per efficiency unit})$$

Key assumption: quality and quantity are separable.

Gordon (1990), Hulten (1992), Greenwood, et. al. (1997), Cummins & Violante(2002), ...

$F(.)$ is possibly a function of all other qualities.

if goods are perfect substitutes, $F(.)$ linear.
Identification

• Price of capital of quality q

$$p_{q,t} = \sum_{s=t}^{T} \phi^{s-t}(F(\text{efficiency units}_{q,s},.) \times \text{return per efficiency unit})$$

Key assumption: quality and quantity are separable.
Gordon (1990), Hulten (1992), Greenwood, et. al. (1997), Cummins & Violante(2002), ...

$F(.)$ is possibly a function of all other qualities.
if goods are perfect substitutes, $F(.)$ linear.

• Cross-sectional price profile

$$\ln\left(\frac{p_{q}}{p_{\bar{q}}}\right) \simeq \text{age}_q \times \ln\left(\frac{\text{depreciation}}{\text{technical change}}\right) + \text{constant}(\bar{q}, \phi)$$

where \bar{q} is the best adopted quality.
This paper

• **Novel dataset** on second hand prices of agricultural equipment (tractors)
 • construct age-price profiles across 13 countries at different stages of development.

• **Study the link** between equipment price and quality composition of the capital stock
 • vintage capital growth model,
 • endogenous quality adoption.

• **Quantitative exercise**
 • identify the growth and level disparities in capital quality,
 • growth and income accounting exercises (1990-2012).
Main findings

1 Empirics:

- age-price profiles are steeper in more productive countries.
- the price of a 15 years old piece of equipment is
 - 60 cents on the dollar of a new one in the US.
 - 75 cents on the dollar of a new one in Brazil.

2 Quantitative implications:

- adoption patterns ...
 - account for 1/4 of productivity growth, on average.
 - account for 1/3 of disparities in output per worker.
Overview

• Price of equipment: empirical evidence.

• Model: inferring quality from cross-sectional data.

• Growth and income accounting exercises.
Empirical evidence

Dataset

- Tractor quotes gathered by a mayor publisher of retail and auction data.
- For each tractor sold we observe:
 - price
 - age, model, horsepower, use hours, and location.
- We matched data via geolocation with controls for
 - main crops produced within a 20-mile-wide grid around the sale location (EarthStat).
 - wages of repair workers (OWW by NBER).
- 13 countries at different stages of development:
 - agricultural value added per worker relative to US
 - Brazil: 18% France: 77% Canada: 87%
Empirical evidence

Dataset
Age-price profiles

• Hedonic pricing with Box-Cox transform

\[
p_{i,c}^{\theta_1} - 1 \over \theta_1 = \gamma_c + \beta_{a,c} a_{i,c} + \frac{X_{i,c}^{\theta_2} - 1}{\theta_2} \beta + \epsilon_{i,c}
\]

- \(p_{i,c} \): price of tractor \(i \) sold in county \(c \)
- \(\gamma_c \): country-specific intercept
- \(a_{i,c} \): years since tractor introduced
- \(X_{i,c} \): tractor’s characteristics
- \(\theta_1 \): shape parameter in pricing
- \(\theta_2 \): shape parameter associated to \(X \)
- \(\beta_{a,c} \) and \(\beta \): characteristics coefficients

• Maximum likelihood estimation
Age-price profiles

(a) age-price profile

(b) estimated $\hat{\beta}_a$

normalized age-price profile,

$$\frac{\hat{p}_{a,c}}{\hat{p}_{1,c}} = \frac{(\hat{\gamma}_c + \hat{\theta}_1 \hat{\beta}_{a,c}a + \hat{\theta}_1 \frac{X}{\hat{\theta}_2} - \hat{\beta}_a + 1) \frac{1}{\hat{\theta}_1}}{\hat{p}_{1,c}}$$

Additional controls

Elasticities
Prices
Basic set up

- Continuum of homogeneous farms.
- CRS technology in land, capital and labor.

\[y_t = \left(\sum_{j \in A_t} q_j k_{j,t} \right)^{\alpha_k} l_t^{\alpha_l} n_t^{\alpha_n}. \]

- Continuum of households, consume and accumulate capital of different vintages.
- Available vintages in the world evolve at rate \(\bar{\mu} \).
Basic set up

- Continuum of homogeneous farms.
- CRS technology in land, capital and labor.

\[y_t = \left(\sum_{j \in A_t} q_j k_{j,t} \right)^{\alpha_k} l_t^{\alpha_l} n_t^{\alpha_n}. \]

- Continuum of households, consume and accumulate capital of different vintages.
- Available vintages in the world evolve at rate \(\bar{\mu} \).
- To adopt a new vintage there is a country specific cost,

\[C(q_j, q_{\bar{j}}, \mu) = \begin{cases}
\frac{q_j}{q_{\bar{j}}} \left(\frac{1+\tau}{1+\bar{\mu}} \right) & \text{if } q_j > q_{\bar{j}}, \\
1 & \text{otherwise}.
\end{cases} \]

- Households rent capital to farms in spot markets.
Prices of new and old equipment

Vintage j: (q_j, a_j), a is age

<table>
<thead>
<tr>
<th>Vintage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... 3</td>
</tr>
<tr>
<td>$(q_5, 0)$</td>
<td></td>
</tr>
<tr>
<td>$(q_4, 0)$</td>
<td>$(q_4, 1)$</td>
</tr>
<tr>
<td>$(q_3, 0)$</td>
<td>$(q_3, 1)$</td>
</tr>
<tr>
<td>$(q_2, 1)$</td>
<td>$(q_2, 2)$</td>
</tr>
<tr>
<td>$(q_1, 2)$</td>
<td></td>
</tr>
</tbody>
</table>
Prices of durables

• The price of a tractor of quality q_j

$$p_{j,t}(0) = \frac{q_j}{q_{j_t}} \frac{\hat{\Gamma}_t}{1 - \hat{\psi}}$$

• Return $p/\text{efficiency unit}$ $\sim \hat{\Gamma}_t = \alpha_k \frac{y_t}{\hat{q} \delta k}$

• Discounting $\hat{\psi} = \omega \left(\frac{1}{1+\mu}\right)^{1-\alpha_k}$

where μ is endogenous quality growth.

• Key assumptions:
 • perfect substitutability.
 • separable quality and quantity.

Prices of new and old equipment

Longitudinal age-price profiles
Prices of new and old equipment

• The price of a new tractor at time t of quality q_j

$$p_{j,t}(0) = \frac{q_j \hat{\Gamma}_t}{q_{j_t} 1 - \hat{\psi}}$$

• The price of the same tractor a years later

$$\ln(p_{j_{t+a}(a)}) = \text{age} \ln\left(\frac{1 - \delta}{(1 + \mu)^{1 - \alpha_k}} \right) + \ln(p_{j_i,t}(0))$$

inv. spec. tech. change
Prices of new and old equipment

Cross-sectional age-price profiles

<table>
<thead>
<tr>
<th>Vintage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t+</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

- (q₅, 0)
- (q₄, 0), (q₄, 1)
- (q₃, 0), (q₃, 1), (q₃, 2)
- (q₂, 1), (q₂, 2)
- (q₁, 2)
Prices of new and old equipment

- The price of a new tractor at time t of quality q_j

$$p_{j,t}(0) = \frac{q_j}{q_j^*} \frac{\hat{\Gamma}_t}{1 - \hat{\psi}}$$

- The price of the same tractor a years later

$$\ln(p_{\bar{j},t+a}(a)) = \text{age} \ln \left(\frac{(1 - \delta)}{(1 + \mu)^{1-\alpha_k}} \right) + \ln(p_{\bar{j},t}(0))$$

- Age-price profiles in a cross-section (+ BGP)

$$\ln(p_{\bar{j},t-a}(a)) = \text{age} \ln \left(\frac{(1 - \delta)}{(1 + \mu)} \right) + \ln(p_{\bar{j},t}(0))$$
Identification
Main relationship for identification

\[
\ln p_c \ (\text{age}) = \text{age} \ \ln \left(\frac{1 - \delta_c}{1 + \mu_c} \right) + \ln \left(\frac{\Gamma_c}{1 - \psi_c} \right)
\]

for: \(\psi_c = \frac{\omega}{(1 + \mu_c)^{1 - \alpha_k}} < 1, \) and \(\Gamma_c \simeq \alpha_{k_c} \frac{y(q_{jt,c})}{(\hat{q}_c \delta \hat{k}_c)} \)

- Country-specific path of capital quality: \(\mu \) and \(q_{jt} \)
Identification: adoption rate

\[
\ln p_{c,i}(\text{age}) = \text{age}_i \ln \left(\frac{1 - \delta_c}{1 + \mu_c} \right) + \ln \left(\frac{\Gamma_c}{1 - \psi_c} \right) + \gamma \frac{X_i^{\theta} - 1}{\theta_2} + \epsilon_i
\]

for: \(\psi_c = \frac{\omega}{(1 + \mu_c)^{1-\alpha_k}} < 1 \), and \(\Gamma_c \simeq \alpha_k \frac{y(q_{j_t,c})}{\hat{q}_c \hat{\delta}_c \hat{k}_c} \)

• Country-specific path of capital quality: \(\mu \) and \(q_{j_t} \)
• Identify \(\mu \) given \(\delta_c \)
 • measure \(\delta_c \) from the price decay of a synthetic piece of equipment with hours of usage
Inferred quality improvement, μ

![Graph showing inferred quality improvement](image)
Identification: average quality

\[
\ln p_{c,i}(\text{age}) = \text{age}_i \ln \left(\frac{1 - \delta_c}{1 + \mu_c} \right) + \ln \left(\frac{\Gamma_c}{1 - \psi_c} \right) + \gamma \frac{X_i^\theta - 1}{\theta_2} + \epsilon_i
\]

for: \(\psi_c = \frac{\omega}{(1 + \mu_c)^{1 - \alpha_k}} < 1 \), and \(\Gamma_c \simeq \alpha_k^c \frac{y(q_{jt,c})}{(\hat{q}_c \delta \hat{k}_c)} \)

- Country-specific path of capital quality: \(\mu \) and \(q_{jt} \)
- Identify the top quality \(q_{jt} \) given USDA-ERS data for
 - factor shares, \(\alpha_k, \alpha_l \) and \(\alpha_n \)
 - endowments of land per worker \(\tilde{l} \)
Inferred average quality, $q_{jt} \times \hat{q}$
Model predictions and the data

• Quality improvement as inferred from the equipment price time series (Krusell et.al. (2000)) for the US,

\[
\Delta \left(\frac{p_{con}}{p_{inv}} \right) \left(\frac{1}{1 - \alpha_k} \right) \simeq 1.2\%, \quad \text{if tractors only} \quad \simeq 2.5\%
\]

\[
\mu = 2.3\%
\]

• Data and model-predicted steady state capital stocks,

\[
\rho(k_{data}, k_{model}) = 0.58
\]
Accounting exercises
Accounting exercises

What is the role of capital embodied technology adoption for agricultural productivity?

1. Growth accounting exercise
 - cross-country disparities in productivity growth between 1990 and 2012.
 - on average, capital quality explains 26% of productivity growth.

2. Development accounting exercise
 - cross-country disparities in value added per worker in 2012
 - capital quality explains 38% of differences in agricultural income per worker.
Conclusion

• We use a cross-section of second-hand prices to identify adoption patterns of capital-embodied technology.

• Age-price profiles are steeper in richer countries.

• Disparities in quality adoption patterns are quantitatively relevant for the path of agricultural productivity.
Conclusion

• We use a cross-section of second-hand prices to identify adoption patterns of capital-embodied technology.

 The same methodology can be applied to other capital goods for which catalog data is available.

• Age-price profiles are steeper in richer countries.

 Characteristics of second hand markets?

• Disparities in quality adoption patterns are quantitatively relevant for the path of agricultural productivity.

 Feedbacks between human capital and capital embodied technology adoption?
Growth accounting

• Growth in TFP:

\[g_{TFP,c} = \alpha_{k,c} g_{q,c} + g_{Res,c} \]

• Fraction of \(g_{TFP} \) explained by capital quality

\[\frac{\alpha_{k,c} \mu_{q,c}}{g_{TFP,c}} \]

• Capital quality explains 26% of productivity growth
• Larger role in richer, more capital intensive, countries.
 • 1/3 in US, Canada and France
 • 1/10 in Brazil
Quality improvement, % of TFP growth

agri. productivity growth explained by capital quality, %

AUSBGR
BRA
CAN
ESP
FRA
GBR
DEU
ITA
MEX
NLD
SWE USA

agricultural VA in 2012, US=1 (data)

Back
Development accounting

• How much of the cross-country agricultural income differences are accounted for by ...?
Development accounting

• How much of the cross-country agricultural income differences are accounted for by ...?
 • Model:
 \[S^2(\tilde{y}_{2012}, \tilde{y}^d_{2012}) = 87\% \]
 \[S^2 = 1 - \frac{(x - \hat{x})'(x - \hat{x})}{x'x} \]
Development accounting

• How much of the cross-country agricultural income differences are accounted for by ...?
 • Model:
 \[S^2(\tilde{y}_{2012}, \tilde{y}^d_{2012}) = 87\% \]

• Average capital quality:
 \[S^2(\tilde{y}_{2012}, \tilde{y}^d_{2012}) - S^2(\tilde{y}_{2012}|q_j\hat{q} = 1), \tilde{y}^d_{2012} = 38\%. \]

\[S^2 = 1 - \frac{(x - \hat{x})'(x - \hat{x})}{x'x} \]
Age-price profiles
Controls for observable characteristics
• Measure of quality: R&D content in imports and local production.

\[\rho(q_j \hat{q}, q_{R&D}) = 0.52 \]

• Both measures generate analogous ranking of countries by quality.

• Disparities in quality are larger under our benchmark measure.
Age-price profiles
Price age elasticity across countries

Relative price, with (black) and without (blue) controls for characteristics
Notation and basic set up

- **CRS technology**

$$y_t = \left(\sum_{j \in A_t} q_j k_{j,t} \right)^{\alpha_k} l_t^{\alpha_l} n_t^{\alpha_n}$$

- $A_t = \left[j_t, \tilde{j}_t \right]$: set of vintages currently used in production.
- Capital services for the stock of vintage j at time t.

$$q_j k_{j,t}$$

- $k_{j,t}$ units of capital of vintage j at time t.
- q_j quality/efficiency of vintage j.
- Depreciation rate δ.
- Vintage retirement rate λ.

- Costly adoption, $C\left(\frac{q_j}{q_{j,t}}, \tau \right)$ country specific cost τ.

Along the BGP

• Effective adoption rate in each country is

$$\mu(\tau) = \frac{1 + \bar{\mu}}{1 + \tau}$$

where $\bar{\mu}$ is the frontier rate.

• Capital services in terms of the best technology adoption $q_{\tilde{j}_t}$

$$\sum_{j \in A_t} q_j k_{j,t} = q_{\tilde{j}_t} \hat{\delta}(\delta, \lambda) k $$

where $\hat{\delta}(\delta, \lambda)$ is the effective retirement rate.
Quantitative exercise
Estimated age-price profiles

Coefficients on age

Country-specific intercepts
Main relationship for identification

Table: Inferred physical depreciation

<table>
<thead>
<tr>
<th>Physical depreciation: δ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>2.35%</td>
</tr>
<tr>
<td>BGR</td>
<td>2.62%</td>
</tr>
<tr>
<td>BRA</td>
<td>2.59%</td>
</tr>
<tr>
<td>CAN</td>
<td>2.20%</td>
</tr>
<tr>
<td>ESP</td>
<td>2.40%</td>
</tr>
<tr>
<td>FRA</td>
<td>2.31%</td>
</tr>
<tr>
<td>GBR</td>
<td>2.40%</td>
</tr>
<tr>
<td>DEU</td>
<td>2.40%</td>
</tr>
<tr>
<td>ITA</td>
<td>2.28%</td>
</tr>
<tr>
<td>MEX</td>
<td>2.48%</td>
</tr>
<tr>
<td>NLD</td>
<td>2.32%</td>
</tr>
<tr>
<td>SWE</td>
<td>2.26%</td>
</tr>
<tr>
<td>USA</td>
<td>2.18%</td>
</tr>
</tbody>
</table>
Inferred quality improvement

corr: -0.31

quality growth, % (model)

agricultural TFP growth, %, 1990-2012 (data)
Model predictions and the data

Capital stock

![Graph showing model predictions and data for capital stock across different countries. The x-axis represents the number of tractors per worker, US=1 (data), and the y-axis represents steady state capital, US=1 (model). The graph includes points for various countries such as AUS, BGR, BRA, CAN, ESP, FRA, DEU, SWE, USA, MEX, NLD, GBR, and ITA. The blue line indicates the trend.]
Quantitative exercise
Production shares

<table>
<thead>
<tr>
<th>Country</th>
<th>α_n</th>
<th>α_l</th>
<th>α_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>18%</td>
<td>68%</td>
<td>14%</td>
</tr>
<tr>
<td>BGR</td>
<td>31%</td>
<td>56%</td>
<td>14%</td>
</tr>
<tr>
<td>BRA</td>
<td>57%</td>
<td>26%</td>
<td>17%</td>
</tr>
<tr>
<td>CAN</td>
<td>72%</td>
<td>4%</td>
<td>24%</td>
</tr>
<tr>
<td>ESP</td>
<td>70%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>FRA</td>
<td>61%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>GBR</td>
<td>32%</td>
<td>31%</td>
<td>37%</td>
</tr>
<tr>
<td>DEU</td>
<td>61%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>ITA</td>
<td>70%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>MEX</td>
<td>24%</td>
<td>42%</td>
<td>34%</td>
</tr>
<tr>
<td>NLD</td>
<td>61%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>SWE</td>
<td>61%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>USA</td>
<td>38%</td>
<td>37%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Inferred top quality
Age distribution

![Age distribution diagram](chart.png)
Age distribution

USA

Density

0 0.05 0.1 0.15

0 5 10 15 20

age
Age distribution

The diagram shows the age distribution for a group labeled 'BRA', with the x-axis representing age and the y-axis representing density. The distribution peaks around the age of 10.
Age distribution

![Age distribution chart](chart.png)
Age distribution