Macro Risks and Term Structure of Interest Rates

Geert Bekaert (Columbia Business School and NBER)
Eric Engstrom (Board of Governors of the Federal Reserve System)
Andrey Ermolov (Gabelli School of Business, Fordham University)

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

39th Annual NBER Summer Institute
Forecasting and Empirical Methods
July 13, 2016
Aggregate Demand and Supply Shocks

Define aggregate demand/supply shocks using minimal theoretical restrictions (Blanchard, 1989):

- Aggregate demand (AD): moves GDP growth and inflation in the same direction
- Aggregate supply (AS): moves GDP growth and inflation in opposite directions

Macro risks=second and higher order moments of AD/AS shocks

Identification of aggregate demand (AD) and aggregate supply (AS) shocks is important in many areas of economics
Macroeconomics

- Which shocks drive recessions?
- Which shocks drive long-term GDP growth?
- Our contribution:
 - A novel method to extract AD/AS shocks exploiting non-Gaussian properties of data
 - Characterizing US business cycles as AD/AS (e.g., Great Recession)
 - Supply shocks have permanent impact on real GDP, while demand shocks don’t
Explaining bond risk and term premia:

- Most of the literature uses financial factors (e.g., Campbell and Shiller, 1991)

- Most of the literature which deals with macro factors relies on level factors (e.g., Ludvigson and Ng, 2009): exceptions are Wright (2011) and Bansal and Shaliastovich (2013)

Economic insight: bond risk and term premia should be higher (lower) in aggregate supply (aggregate demand) environment

Our contribution:

- Non-Gaussian AD/AS macro risk factors drive substantial variation in bond risk-premia

- AD/AS macro risks factors affect bond risk and term premia differently
Macroeconomic Shocks

- Shocks to real GDP growth and inflation:

\[g_{t+1} = E_t[g_{t+1}] + \epsilon^g_{t+1}, \]
\[\pi_{t+1} = E_t[\pi_{t+1}] + \epsilon^\pi_{t+1}. \]

- Modeling using demand and supply shocks:

\[\epsilon^g_{t+1} = \sigma^d_g u^d_{t+1} + \sigma^s_g u^s_{t+1}, \]
\[\epsilon^\pi_{t+1} = \sigma^d_\pi u^d_{t+1} - \sigma^s_\pi u^s_{t+1}, \]

\[\text{Cov}(u^d_{t+1}, u^s_{t+1}) = 0, \text{Var}(u^d_{t+1}) = \text{Var}(u^s_{t+1}) = 1. \]
If supply and demand shocks are heteroskedastic, $\text{Cov}_t(\epsilon_{g,t+1}, \epsilon_{\pi,t+1})$ will vary over time:

$$\text{Cov}_t(\epsilon_{g,t+1}, \epsilon_{\pi,t+1}) = \sigma_g \sigma_{\pi} \text{Var}_t(u_{d,t+1}) - \sigma_g \sigma_{\pi} \text{Var}_t(u_{s,t+1})$$

- Demand shock environment: large $\text{Cov}_t(\epsilon_{g,t+1}, \epsilon_{\pi,t+1}) \Rightarrow$ nominal bonds hedge well

- Supply shock environment: small $\text{Cov}_t(\epsilon_{g,t+1}, \epsilon_{\pi,t+1}) \Rightarrow$ nominal bonds hedge poorly
Demand and supply shocks are not identified with Gaussian shocks: 4 coefficients (σ_g^d, σ_{π}^d, σ_g^s, σ_{π}^s) to identify but only 3 moments to match (2 variances and covariance)

Approach: use non-Gaussian data aspects for the identification:

- Is macroeconomic data non-Gaussian?
- How to model non-Gaussian features?
Modeling Demand and Supply Shocks

- Demand (and supply) shocks modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, JPE 2016):

\[u^d_{t+1} = \sigma^d_p \omega^d_{p,t+1} - \sigma^d_n \omega^d_{n,t+1} \]

- Shocks follow demeaned gamma distributions:

\[\omega^d_{p,t+1} \sim \Gamma(p^d_t, 1) - p^d_t, \]
\[\omega^d_{n,t+1} \sim \Gamma(n^d_t, 1) - n^d_t, \]

\(\Gamma(x, y) \)—shape parameter \(x \) and scale parameter \(y \)
Bad Environment-Good Environment

probability density function
Time-varying variances: Probability density functions

- p_t can be interpreted as good variance and n_t as bad variance.

Large p_t - Good environment: positive unscaled skewness

Large n_t - Bad environment: negative unscaled skewness

[Graphs showing the probability density functions for p_t and n_t]
Advantages of BEGE Distribution

- Fit non-Gaussian features of macroeconomic (Bekaert and Engstrom, JPE 2016) and financial data (Bekaert, Engstrom, and Ermolov, JoE 2015) well

- Theoretically tractable: unscaled moments linear functions of p_t and n_t
General Overview

- US quarterly observations 1959Q2-2015Q2
- Identify macro expectations and shocks using VARMA(1,1) on real activity and inflation data
- Filter demand and supply shocks from macro shocks using classical minimum distance (CMD)
- Estimate BEGE dynamics of demand and supply shocks using approximate MLE (Bates, 2006)
Identify Macro Expectations and Shocks

- VARMA(1,1) on 6 variables (based on AIC):
 - Real GDP growth
 - Core and aggregate inflation
 - Unemployment gap
 - 1 quarter and 10 year Treasury yields

- Extract:
 - Expectations of real GDP growth, inflation, core inflation + unemployment gap
 - Shocks to real GDP growth, inflation, core inflation and unemployment gap
Filter Demand and Supply Shocks

- Shock structure:

\[
\begin{bmatrix}
\epsilon^g_t \\
\epsilon^\pi_t \\
\epsilon^\text{core}_t \\
\epsilon^\text{unemp}_t \\
\end{bmatrix}
= \sum_{4\times2}
\begin{bmatrix}
u^d_t \\
u^s_t \\
\end{bmatrix}
+ \Omega_{4\times4}
\begin{bmatrix}
\xi^g_t \\
\xi^\pi_t \\
\xi^\text{core}_t \\
\xi^\text{unemp}_t \\
\end{bmatrix}
\]

- \(\Omega\) - diagonal with \(\xi^g_t, \xi^\pi_t, \xi^\text{core}_t, \xi^\text{unemp}_t\) \(\sim\) i.i.d. distribution with 1 variance and 0 skewness and excess kurtosis

- Percentage of variance attributed to \(\xi^g_t, \xi^\pi_t, \xi^\text{core}_t, \xi^\text{unemp}_t\) is the same across all 4 macro series

- Estimate \(\Sigma\) and \(\Omega\) via CMD: matching 36 unconditional second, third, and fourth order moments of macro shocks

- Filter \(u^d_t\) and \(u^s_t\) with a Kalman filter
12 out of 26 third and fourth order macro shock moments are individually statistically significant at least at the 10% level.

26 third and fourth order macro shock moments are jointly significant at the 1% level.
Demand vs. Supply

<table>
<thead>
<tr>
<th></th>
<th>Demand</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth</td>
<td>0.43</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.26</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Core inflation</td>
<td>0.19</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Unemployment gap</td>
<td>-0.16</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Other shocks account for 45% of macro shocks variance
Demand and Supply Shocks

Demand Shocks: Skewness = -1.07, Ex. kurtosis = 4.83, Jarque-Bera test p-value: <0.1%

Supply Shocks: Skewness=-0.35, Ex. kurtosis=1.64, Jarque-Bera test p-value: <0.1%
Estimate BEGE Dynamics

- BEGE variances p_t^d, n_t^d, p_t^s, and n_t^s follow autoregressive square-root-type processes.

Macro risk processes
Demand Variance Decomposition
Supply Variance Decomposition

![Graph showing supply variance decomposition over time]

Legend:
- Green line: Good Variance
- Red line: Bad Variance

Year:
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010

Variance values range from 0 to 4.5.

The graph illustrates the decomposition of supply variance into good and bad variance components over several decades.
Impulse Responses

Demand shock - real GDP
Cumulative impact: 0.19% (se: 0.28%)

Supply shock - real GDP
Cumulative impact: 0.67% (se: 0.25%)

Demand shock - price level
Cumulative impact: 1.02% (se: 0.54%)

Supply shock - price level
Cumulative impact: -0.88% (se: 0.44%)
Time-varying Real-Nominal Covariance
State Variables

- Macro level factors (Ludvigson and Ng, 2009, - type):
 - Expected real GDP growth
 - Expected inflation
 - Expected core inflation
 - Unemployment gap

- Second/higher order moments = macro risks:
 - p_t^d - good (positive skew) demand variance
 - n_t^d - bad (negative skew) demand variance
 - p_t^s - good (positive skew) supply variance
 - n_t^s - good (negative skew) supply variance
Explanatory Power for Yield Levels

- Predictors: 4 macro level factors + macro risks
- Confidence interval is Bauer and Hamilton (2015) bootstrap confidence interval
Explanatory Power for Excess Returns

- Predictors: 4 macro level factors + macro risks
- Confidence interval is Bauer and Hamilton (2015) bootstrap confidence interval
1 Quarter Excess Return Regressions

<table>
<thead>
<tr>
<th>Macro level factors</th>
<th>1 year bond</th>
<th>5 year bond</th>
<th>10 year bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_d^t</td>
<td>0.0006</td>
<td>0.0063</td>
<td>0.0211</td>
</tr>
<tr>
<td></td>
<td>(0.0020)</td>
<td>(0.0096)</td>
<td>(0.0208)</td>
</tr>
<tr>
<td>n_d^t</td>
<td>-9.8329</td>
<td>-44.0961</td>
<td>-69.0965</td>
</tr>
<tr>
<td></td>
<td>(2.7119)</td>
<td>(10.5535)</td>
<td>(24.7824)</td>
</tr>
<tr>
<td>p_s^t</td>
<td>0.0062</td>
<td>0.0208</td>
<td>0.0168</td>
</tr>
<tr>
<td></td>
<td>(0.0016)</td>
<td>(0.0100)</td>
<td>(0.0154)</td>
</tr>
<tr>
<td>n_s^t</td>
<td>0.0457</td>
<td>0.2028</td>
<td>0.4436</td>
</tr>
<tr>
<td></td>
<td>(0.0926)</td>
<td>(0.3440)</td>
<td>(0.5772)</td>
</tr>
</tbody>
</table>
Explanatory Power for Excess Returns Over Yield Factors

- Predictors: 4 macro level factors + 3 yield curve factors + macro risks

- Confidence interval is Bauer and Hamilton (2015) bootstrap confidence interval

Similar results for Ang-Piazzesi (2003) factors
Term Premium

- Blue Chip forecasts based 10 year term-premium: semi-annually 1986Q2-2015Q2

<table>
<thead>
<tr>
<th>macro level factors</th>
<th>p_t^d</th>
<th>n_t^d</th>
<th>p_t^s</th>
<th>n_t^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>6.84E-06</td>
<td>-1.4758</td>
<td>0.0480</td>
<td>0.1046</td>
</tr>
<tr>
<td>...</td>
<td>(2.65E-04)</td>
<td>(0.3672)</td>
<td>(0.0949)</td>
<td>(0.0925)</td>
</tr>
</tbody>
</table>

- Adjusted R^2 without macro level factors only: 0.6437 (95% confidence upper bound 0.6814)
- Adjusted R^2 with macro risks: 0.7072
Conclusions

- Novel method for extracting aggregate demand and supply shocks based on exploiting non-Gaussian features of data

- Characterizing macroeconomic dynamics via AD/AS shocks

- Demand-supply composition of macroeconomic shocks matters for bond and term premia

- Term-structure model with AD/AS macro risks (work in progress):
 - Economic intuition
 - Non-Gaussian features
 - Closed form solutions!
Appendix: BEGE Moments

\[u_t \sim \sigma_p (\Gamma(p_t, 1) - p_t) - \sigma_n (\Gamma(n_t, 1) - n_t) \]

- Variance: \(\sigma_p^2 p_t + \sigma_n^2 n_t \)
- Unscaled skewness: \(2\sigma_p^3 p_t - 2\sigma_n^3 n_t \)
- Unscaled excess kurtosis: \(6\sigma_p^4 p_t + 6\sigma_n^4 n_t \)
Macro risks are persistent and driven by the realization shocks capturing volatility clustering (Gourieroux and Jasiak, 2006):

\[p_{t+1}^d = \bar{p}^d + \rho_p^d (p_t^d - \bar{p}^d) + \sigma_{pp}^d \omega_{p,t+1}^d \]

Similar processes for \(n_t^d, p_t^s, \) and \(n_t^s \)

If \(\sigma_{pp} < \rho_p \), macro risks never hit a zero-lower bound
Appendix: Unconditional Moment Values

1/3

Scaled skewness:

<table>
<thead>
<tr>
<th></th>
<th>inflation</th>
<th>real growth</th>
<th>core inflation</th>
<th>unemployment gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>-1.2632</td>
<td>0.1275</td>
<td>0.1866</td>
<td>0.6860</td>
</tr>
<tr>
<td>standard error</td>
<td>(0.9124)</td>
<td>(0.3064)</td>
<td>(0.4598)</td>
<td>(0.2372)</td>
</tr>
<tr>
<td>fitted</td>
<td>-0.2328</td>
<td>-0.3188</td>
<td>-0.2804</td>
<td>0.3576</td>
</tr>
</tbody>
</table>

Excess kurtosis:

<table>
<thead>
<tr>
<th></th>
<th>inflation</th>
<th>real growth</th>
<th>core inflation</th>
<th>unemployment gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>10.3646</td>
<td>1.6505</td>
<td>2.3854</td>
<td>1.9179</td>
</tr>
<tr>
<td>standard error</td>
<td>(5.1438)</td>
<td>(0.7314)</td>
<td>(1.1802)</td>
<td>(0.6808)</td>
</tr>
<tr>
<td>fitted</td>
<td>0.4552</td>
<td>0.8090</td>
<td>0.6070</td>
<td>0.9314</td>
</tr>
</tbody>
</table>
Appendix: Unconditional Moment Values

2/3

Coskewness:

<table>
<thead>
<tr>
<th></th>
<th>$infl^2 \times rgrw$</th>
<th>$infl^2 \times cinfl$</th>
<th>$infl^2 \times ugap$</th>
<th>$rgrw^2 \times infl$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>-0.7728</td>
<td>-0.2339</td>
<td>0.7322</td>
<td>-0.2404</td>
</tr>
<tr>
<td>standard error</td>
<td>(0.4328)</td>
<td>(0.3097)</td>
<td>(0.4016)</td>
<td>(0.1780)</td>
</tr>
<tr>
<td>fitted</td>
<td>-0.2316</td>
<td>-0.2474</td>
<td>0.2416</td>
<td>-0.2982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$rgrw^2 \times cinfl$</th>
<th>$rgrw^2 \times ugap$</th>
<th>$cinfl^2 \times infl$</th>
<th>$cinfl^2 \times rgrw$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>-0.1860</td>
<td>0.1877</td>
<td>0.0814</td>
<td>-0.1920</td>
</tr>
<tr>
<td>standard error</td>
<td>(0.1912)</td>
<td>(0.3358)</td>
<td>(0.3184)</td>
<td>(0.1459)</td>
</tr>
<tr>
<td>fitted</td>
<td>-0.3185</td>
<td>0.3314</td>
<td>-0.2632</td>
<td>-0.2721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$cinfl^2 \times ugap$</th>
<th>$ugap^2 \times infl$</th>
<th>$ugap^2 \times rgrw$</th>
<th>$ugap^2 \times cinfl$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>0.0847</td>
<td>-0.1989</td>
<td>-0.4535</td>
<td>-0.0265</td>
</tr>
<tr>
<td>standard error</td>
<td>(0.2143)</td>
<td>(0.1384)</td>
<td>(0.3097)</td>
<td>(0.2290)</td>
</tr>
<tr>
<td>fitted</td>
<td>0.2833</td>
<td>-0.3172</td>
<td>-0.3443</td>
<td>-0.3392</td>
</tr>
</tbody>
</table>
Co-excess Kurtosis:

<table>
<thead>
<tr>
<th></th>
<th>$infl^2 - rgrw^2$</th>
<th>$infl^2 - cinfl^2$</th>
<th>$infl^2 - ugap^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1.7346</td>
<td>0.6331</td>
<td>1.2858</td>
</tr>
<tr>
<td>standard error</td>
<td>(1.0385)</td>
<td>(0.3624)</td>
<td>(0.7526)</td>
</tr>
<tr>
<td>fitted</td>
<td>0.6069</td>
<td>0.5257</td>
<td>0.6511</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$rgrw^2 - cinfl^2$</th>
<th>$rgrw^2 - ugap^2$</th>
<th>$cinfl^2 - ugap^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>0.7458</td>
<td>1.1438</td>
<td>0.7440</td>
</tr>
<tr>
<td>standard error</td>
<td>(0.3166)</td>
<td>(0.5808)</td>
<td>(0.2958)</td>
</tr>
<tr>
<td>fitted</td>
<td>0.7088</td>
<td>0.8680</td>
<td>0.7519</td>
</tr>
</tbody>
</table>
Appendix: Yield Regression Coefficients

<table>
<thead>
<tr>
<th></th>
<th>1 quarter</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.2182</td>
<td>1.2616</td>
<td>1.4215</td>
<td>1.5314</td>
</tr>
<tr>
<td></td>
<td>(0.0665)</td>
<td>(0.0712)</td>
<td>(0.0733)</td>
<td>(0.0683)</td>
</tr>
<tr>
<td>$E_t c_{t+1}$</td>
<td>1.1418</td>
<td>1.1072</td>
<td>0.9680</td>
<td>0.8605</td>
</tr>
<tr>
<td></td>
<td>(0.0827)</td>
<td>(0.0928)</td>
<td>(0.1006)</td>
<td>(0.0920)</td>
</tr>
<tr>
<td>$E_t \pi_{t+1}$</td>
<td>-1.2914</td>
<td>-1.5094</td>
<td>-1.7303</td>
<td>-1.6230</td>
</tr>
<tr>
<td></td>
<td>(0.2286)</td>
<td>(0.2420)</td>
<td>(0.2986)</td>
<td>(0.2995)</td>
</tr>
<tr>
<td>$E_t g_{t+1}$</td>
<td>0.4965</td>
<td>0.5663</td>
<td>0.6054</td>
<td>0.5486</td>
</tr>
<tr>
<td></td>
<td>(0.1144)</td>
<td>(0.1264)</td>
<td>(0.1455)</td>
<td>(0.1279)</td>
</tr>
<tr>
<td>u_t</td>
<td>-0.0684</td>
<td>-0.0638</td>
<td>0.0042</td>
<td>0.0424</td>
</tr>
<tr>
<td></td>
<td>(0.0350)</td>
<td>(0.0357)</td>
<td>(0.0329)</td>
<td>(0.0254)</td>
</tr>
<tr>
<td>p^d_t</td>
<td>-8.10E-05</td>
<td>-3.39E-05</td>
<td>5.00E-05</td>
<td>4.25E-05</td>
</tr>
<tr>
<td></td>
<td>(9.53E-05)</td>
<td>(9.31E-05)</td>
<td>(8.60E-05)</td>
<td>(9.35E-05)</td>
</tr>
<tr>
<td>n^d_t</td>
<td>0.4714</td>
<td>0.4212</td>
<td>0.3177</td>
<td>0.2864</td>
</tr>
<tr>
<td></td>
<td>(0.3179)</td>
<td>(0.3390)</td>
<td>(0.3111)</td>
<td>(0.2793)</td>
</tr>
<tr>
<td>p^s_t</td>
<td>0.0232</td>
<td>0.0240</td>
<td>0.0180</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>(0.0076)</td>
<td>(0.0072)</td>
<td>(0.0055)</td>
<td>(0.0047)</td>
</tr>
<tr>
<td>n^s_t</td>
<td>-0.1802</td>
<td>-0.1915</td>
<td>-0.1862</td>
<td>-0.1665</td>
</tr>
<tr>
<td></td>
<td>(0.0405)</td>
<td>(0.0479)</td>
<td>(0.0514)</td>
<td>(0.0483)</td>
</tr>
</tbody>
</table>
Appendix: Explanatory Power for Excess Returns over Ang-Piazzesi Factors

- Predictors: 4 macro level factors + Ang-Piazzesi (2003) factors + macro risks
- Confidence interval is Bauer and Hamilton (2015) bootstrap confidence interval