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Abstract

In environments without transfers, such as refugee resettlement, school choice, organ
transplants, course allocation, and voting, we show that random priority is the unique
mechanism that is obviously strategy-proof, Pareto efficient, and symmetric; hence
providing an explanation for the popularity of this mechanism. We also construct the
full class of obviously strategy-proof mechanisms, and explain why some of them are
more popular than others via a natural strengthening of obvious strategy-proofness.

1 Introduction

The central concerns in designing mechanisms for refugee resettlement, school choice, organ
transplantation, course allocation, voting, and other social choice problems without transfers
are participants’ incentives as well as normative goals such as efficiency and fairness.1 In
particular, assuring that agents play the games correctly is crucial for attaining the norma-
tive properties of the mechanism in actual play. Dominant-strategy incentive compatibility,
also known as strategy-proofness, assures that truth-telling is a dominant strategy in di-
rect mechanisms, but this is useful only to the extent the participants understand it. Li
(2016) proposes a refinement of strategy-proofness called obvious strategy-proofness (OSP)

∗UCLA and University of Virginia, respectively. The present work is a result of a merger of two inde-
pendent single-author papers. First presentation: April 2016. First posted draft: June 2016. We are still
polishing the exposition; updates coming soon. For their comments, we would like to thank Itai Ashlagi,
Yannai Gonczarowski, Ed Green, Shengwu Li, Giorgio Martini, Stephen Morris, Utku Unver, and the Eco
514 students at Princeton. Simon Lazarus provided excellent research assistance. Marek would also like to
acknowledge the financial support of the William S. Dietrich II Economic Theory Center at Princeton.

1See e.g. Roth (2015) and Jones and Teytelboym (2016) for resettlement, Abdulkadiroğlu and Sönmez
(2003) for school choice, Roth, Sönmez, and Ünver (2004) for transplants, Sönmez and Ünver (2010) and
Budish and Cantillon (2010) for course allocation, and Arrow (1963) for voting and social choice.
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that characterizes the extensive-form mechanisms that are easy to understand as strategy-
proof. While strong incentive properties are desirable, they can lead to tradeoffs on other
dimensions, which raises the question which social choice functions are OSP implementable.

We show that there is effectively a unique mechanism that is obviously strategy-proof,
efficient, and symmetric, and it is the well-known extensive-form Random Priority mecha-
nism. Thus, our results give an explanation for the popularity of this mechanism. We also
construct the full class of obviously strategy-proof mechanisms for social choice environments
without transfers; we call these mechanisms millipede games. While some millipede games
such as sequential dictatorships are frequently encountered and they are indeed simple to
play, others are rarely observed in market-design practice, and their strategy-proofness is not
necessarily immediately clear. To further delineate the class of mechanism that are simple
to play, we introduce a refinement of Li’s concept, which we call strong obvious strategy-
proofness (SOSP). We show that strongly obviously strategy-proof and efficient mechanisms
are almost sequential dictatorships.

An imperfect information extensive-form game is obviously strategy-proof if, whenever
an agent is called to play, there is a strategy such that even the worst possible final outcome
from following this strategy is at least as good as the best possible outcome from taking any
other action at the node in question, where what is possible may depend on the actions of
other agents in the future (and, in case of the deviation, it may also depend on how the
agent plays following the deviation). Consider, for instance, object allocation via Random
Priority, implemented as an extensive-form game in which nature draws the ordering in which
agents move, and when given the opportunity to move, each agent can choose among the
objects that remain after the earlier movers’ choices. After nature’s choice of ordering, this
game takes the extensive form of a deterministic serial dictatorship, in which players take
turns choosing their most preferred outcome. The game is hence obviously strategy-proof
because each agent moves only once and can chose their outcome from a pre-determined
set of available outcomes. While this extensive-form game is obviously strategy-proof, the
corresponding direct mechanism is not.2

Our first main result, Theorem 1, provides an explanation for the popularity of the Ran-
2The observation that the extensive-form of random priority is obviously strategy-proof is due to Li (2016).

Note also that, intuitively, describing a direct-revelation game in terms of an obviously strategy-proof game
played by proxies makes the direct-revelation game simpler to play than alternative descriptions. Another
extensive form game also called random priority is as follows: nature draws an agent uniformly at random,
this agent picks an object, then nature draws an agent who has not moved yet, this agent picks an object,
etc. These two games, while not identical, are equivalent in the following sense: for each profile of agents’
preferences, each game admits a profile of obviously dominant strategies such that the two games lead to
the same outcomes when the obviously dominant strategies are played. For simplicity, in this introduction
we ignore differences between equivalent games.
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dom Priority mechanism in allocation problems, both formal and informal, including house
allocation, school choice, and course allocation, among others. Random Priority is obviously
strategy-proof, as recognized by Li; it is also well-known to be efficient and to treat agents
symmetrically.3 Theorem 1 shows that no other mechanism satisfies these three properties:
an extensive-form game is obviously strategy-proof, efficient, and symmetric if and only if it
is random priority.4 This insight resolves positively the quest to establish random priority
as the unique mechanism with good incentive, efficiency, and fairness properties.5

The proof of Theorem 1 builds on our second main result, Theorem 2, which constructs
the full class of OSP mechanisms as the class of millipede games. In a millipede game,
first nature chooses a deterministic path, and then agents engage in a game of passing
and clinching that resembles the well-studied centipede game. To describe this deterministic
subgame, we focus for simplicity on allocation problems with agents who demand at most one
unit; the general case is similar. An agent is presented with some subset of objects that she
can ‘clinch,’ or, take immediately and leave the game; she also may be given the opportunity
to ‘pass,’ and remain in the game.6 If this agent passes, another agent is presented with an
analogous choice. Agents keep passing among themselves until one of them clinches some
object and “leaves” the game (i.e., never moves again). When an agent clinches an object,
this is her last move and she is going to be allocated this object at the end of the game.7

Common examples of millipede games include Random Priority and Serial Dictatorships,
which are millipede games in which the agent who moves can always clinch any object that
is still available. However, these are not the only mechanisms that can be implemented
as millipede games: the key restriction implied by obvious strategyproofness (and thus the
defining feature of millipede games) is, once an agent is offered some object, if she passes,
she is promised that later in the game, she will be able to clinch at least everything she
was able to clinch in the past, and possibly more. It is obvious that serial dictatorships

3For discussion of efficiency and symmetry see, e.g., Abdulkadiroğlu and Sönmez (1998), Bogomolnaia
and Moulin (2001), and Che and Kojima (2010).

4Efficiency assumes that agents play their dominant strategies, i.e., report truthfully. As noted above, if
agents fail to so efficiency may be lost; hence the importance of making allocation games simple to play.

5In single-unit demand allocation with at most three agents and three objects, Bogomolnaia and Moulin
(2001) proved that random priority is the unique mechanism that is strategy-proof, efficient, and symmetric.
In markets in which each object is represented by many copies, Liu and Pycia (2013) and Pycia (2011)
proved that random priority is the asymptotically unique mechanism that is symmetric, asymptotically
strategy-proof, asymptotically ordinally efficient (a more demanding efficiency criterion than ex post Pareto
efficiency). While these earlier results looked at either very small or very large markets, Theorem 1 is true
for any number of agents and objects.

6In general, we may allow this agent to clinch the same object in several ways; while the choice between
them has no impact on the agent’s outcome, it might affect the allocation of others.

7In a centipede game, two agents pass back and forth until one of them ‘takes’ the pot and leaves the
game. Our games have a similar take-or-pass structure, but with many more options of what to take; i.e.,
they look like centipede games with more “legs” (see Figure 4). Hence, we call these games millipede games.
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satisfy this property; however, more complex mechanisms such as Gale’s top trading cycles
will not. Other known mechanisms that can be implemented as millipede games (and hence,
will be OSP) include bi-dictatorships, see e.g. Ehlers (2002). Our construction of the class
of millipede games provides the precise characterization of the set of OSP implementable
mechanisms.

The key assumption behind these results is that outcomes an agent is not indifferent
between can be ranked in any order. This key assumption is trivially satisfied in standard
models without transfers, but it excludes environments with transfers.8 The results are
robust to how agents’ evaluate lotteries over outcomes, and they are derived in a very general
model encompassing the standard allocation and social choice environments.

While millipede games are obviously strategy-proof, their play may still require substan-
tial foresight on the part of the agents, similar to the foresight required in centipede games.
For instance, at a node in a millipede game, a player might be offered the possibility of
clinching his second-choice object, but not his top choice object even though it is still avail-
able. The obviously dominant strategy requires this agent to pass, but, if the agent passes,
he might not be given the opportunity to clinch any of his top seventeen objects in the next
one hundred moves. While this problem does not arise in the environment with transfers
focused on in Li, it arises in the settings without transfers we study, and poses the question
how to identify the extensive-form games that do not require such high degrees of future
planning in environments without transfers.

We answer this question by introducing a refinement of obvious strategy-proofness, which
we call strong obvious strategy-proofness. An extensive-form game is strongly obviously
strategyproof if, whenever an agent is called to play, there is an action such that even the
worst possible final outcome from that action is at least as good as the best possible outcome
from any other action, where what is possible may depend on all future actions, including
actions by the agent’s future-self. We show that strong obvious strategy-proofness eliminates
the complex members of the more general class of millipede games, and take the simple form
of almost sequential dictatorships (studied earlier by Pycia and Ünver (2016), in a different
context).

Our paper builds on the key contributions by Li (2016) who formalized OSP and es-
tablished its desirability as an incentive property by showing that in environments with
transfers this property differentiates between ascending auctions and sealed-bid second-price
auctions: though both are strategy-proof and revenue equivalent, ascending auctions are

8Li (2016) constructed the class of obviously strategy-proof mechanisms in bilateral choice environments
with transfers and quasilinear utilities, and he showed that in these environments the obviously strategy-proof
mechanisms resemble ascending auctions.
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more popular than sealed bid auctions, and experimental subjects play dominant strategies
in ascending formats significantly more often than in sealed-bid formats. Though his main
focus is environments with transfers, without transfers, Li also shows that the extensive-
form of random priority is obviously strategy-proof, while other standard mechanisms—top
trading cycles and the static version random priority—are not.9 We characterize the entire
class of OSP mechanisms, and provide an explanation for the popularity of random priority
over all other mechanisms, results which have no direct counterpart in his work. Finally,
our analysis of strong obvious strategyproofness furthers our understanding of why some
extensive forms of a mechanism are more often encountered in practice, despite both being
obvious strategy-proof and equivalent from the persepctive of the Myerson-Riley revelation
principle.10

Following up on Li’s work, but preceding ours, Ashlagi and Gonczarowski (2016) study
whether stable mechanisms such as Deferred Acceptance are obviously strategy-proof. They
show that the answer is generally no, except in special environments where they implement
Deferred Acceptance as an obviously strategy-proof game with a ‘clinch or pass’ structure
similar to millipede games.

More generally, this paper adds to our understanding of incentives, efficiency, and fair-
ness in settings without transfers. In addition to Gibbard (1973, 1977) and Satterthwaite
(1975), and the allocation papers mentioned above, the literature on mechanisms satisfying
these key objectives includes Pápai (2000), Ehlers (2002) and Pycia and Ünver (2009) who
characterized efficient and group strategy-proof mechanisms in settings with single-unit de-
mand, and Pápai (2001) and Hatfield (2009) who provided such characterizations for settings
with multi-unit demand.11 Liu and Pycia (2013), Pycia (2011), Morrill (2014), and Hakimov
and Kesten (2014) characterized mechanisms that satisfy incentive, efficiency, and fairness
objectives.

9Li considers the original construction of top trading cycles of Shapley and Scarf (1974) in which each
agent starts by owning exactly one object, and shows it is not obviously strategyproof. Of note is also
Loertscher and Marx (2015) who study environments with transfers and construct a prior-free obviously
strategy-proof mechanism that becomes asymptotically optimal as the number of buyers and sellers grows.

10For instance, our characterization of millipede games shows that there can be OSP mechanisms which
are rarely seen in practice because they may require complex future planning on the part of the agents. While
we think strong OSP is well-suited to differentiate between mechanisms in environments without transfers,
it is is too strong in environments with transfers. For instance, fixed-price mechanisms satisfy SOSP, but
ascending auctions in general do not.

11Pycia and Ünver (2016) characterized individually strategy-proof and Arrovian efficient mechanisms.
For an analysis of these issues under additional feasibility constraints, see also Dur and Ünver (2015).
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2 Preliminaries

2.1 Model

Let N be a set of agents, and X a finite set of outcomes.12 Each agent has a preference
ranking over outcomes. The domain of preferences of agent i ∈ N is denoted Pi, and a
generic preference ranking in Pi is denoted by ≻i. We allow for indifferences, and write
x ∼i y if neither x ≻i y nor y ≻i x. For any x ∈ X , we write I≻i

i (x) = {y ∈ X : x ∼i y} to
denote the indifference class for x under preferences ≻i. For brevity, we sometimes suppress
the dependence on ≻i and write Ii(x) to represent an indifference class. We additionally
make the following assumptions about the space of preferences.

(a) For any agent i there is a partition of X such that for every ≻i∈ Pi agent i is indifferent
between any two outcomes in the same element of the partition. In particular, each
≻i∈ Pi might be identified with a ranking on the elements of the partition.

(b) Every strict ranking of the elements of the partition from (a) is in Pi.

(c) For every subset of agents J ! N and outcome x ∈ X , if there is another outcome
y such that all agents in J weakly prefer y over x and for at least one of them the
preference is strict, then there exists a profile of preferences in ×i∈N−JPi and outcome
z such that all agents weakly prefer z over x and for at least one of them the preference
is strict.13

The set of all strict preferences and the set of all preferences both satisfy these assumptions.
They are also satisfied in allocation problems in which each agent cares only about his or her
allocation. In allocation environments, each element of the partition in (a) can be identified
with the allocation of agent i. Assumption (b) then means that each agent can strictly rank
his or her allocations in every possible way (note that weak rankings are also allowed, but
are not required). Assumption (c) is satisfied, for instance, if agents have outside options,
or if there are at least as many objects as agents collectively may demand. The above
assumptions fail in settings with transfers in which each agent always prefers having more
money to less.14

12The assumption that X is finite simplifies the exposition and it is satisfied in such examples of our
setting as voting and the no-transfer allocation environments listed in the introduction. This assumption
can be relaxed. For instance, our analysis goes through with no substantive changes if we allow infinite X
endowed with a topology such that agents’ preferences are continuous in this topology and the relevant sets
of outcomes are compact.

13This third requirement plays no role in Section 4.
14In formulating these assumptions, we balance simplicity and generality. Our results and proofs do not

require the full strength of these assumptions. For instance, Appendix D makes the point that we do can
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When dealing with lotteries, we are agnostic as to how agents evaluate them, as long as
the following property holds: an agent prefers lottery µ over ν if (i) the agent is indifferent
among all outcomes in the intersection of the supports X = supp (µ) ∩ supp (ν), and (ii)
the agent strictly prefers every outcome in supp (µ)−X to every outcome in supp (ν)−X.
This mild assumption is satisfied for expected utility agents; it is also satisfied for agents
who prefer µ to ν as soon as µ first-order stochastically dominates ν.

2.2 Obvious strategy-proofness

The standard notion of strategy-proofness is defined for normal form games, while obvious
strategy-proofness applies to extensive-form games. An imperfect-information extensive-
form game with perfect recall is defined in the standard way, as a collection of partially
ordered histories (sequences of moves), where at every history h, one agent i ∈ N has a
(finite) set of actions A(h) from which to choose (for a formal definition, see Li (2016)).
Slightly abusing notation, we write (h, a) to denote the history h followed by the move a.
We use the notation h′ ⊆ h to denote that h′ is a subhistory of h (equivalently, h is a
continuation history of h′). Each terminal history is associated with an outcome in X , and
agents receive payoffs at each terminal history that are consistent with their preferences over
outcomes ≻i. While we do not consider incomplete information, our insights remain valid
for situations in which agents’ information is incomplete: we allow imperfect information,
and the standard interpretation of incomplete information games as imperfect information
games can be used.

A strategy for a player i is a function that specifies an action for agent i at each one of her
information sets. A strategy profile S = (Si)i∈N is a list of strategies, one for each agent. In
addition, for any history at which nature makes a move, let ω(h) ∈ A(h) and ω be a function
specifying an action for nature at each history where nature is to move.15 We sometimes
write (S,ω) to denote a strategy profile that includes nature’s moves. Let z(h, S,ω) be the
terminal history reached when starting from h and proceeding according to (S,ω).

Following Li (2016), for a game Γ, a strategy Si obviously dominates another strategy
S ′
i for player i if, at any first information set at which these two strategies diverge, the

worst outcome the agent can obtain playing Si is at least as good as the best outcome the
agent can obtain playing the other strategy, ranging over all possible (S−i,ω).16 A profile

relax these assumptions when agents outside options. For the analysis of obvious dominances in quasilinear
environments with transfers, see the foundational paper of Li (2016).

15ω can be thought of as describing one particular realization of “chance moves” throughout the game at
every history at which nature is called to play.

16Li (2016) refers to such an information set as an earliest point of departure. Note that for two strategies,
there can be multiple earliest points of departure.

7



(Si (·))i∈N of strategies is obviously dominant if for any player i and type ≻i the strategy
Si (≻i) obviously dominates any other strategy. When there exists a profile of strategies
(Si(·))i∈N that is obviously dominant, we say Γ is obviously strategy-proof. An example of
an obviously strategy-proof game is the well-known random priority game (see the definition
and discussion in the introduction).17

An extensive-form mechanism, or simply a mechanism, is an extensive form game Γ

together with a profile of strategies (Si (≻i))i∈N for each preference (or type) profile ≻ over
outcomes. Following Li, we assume that Γ is pruned, that is each action is on the path
of the play of the obviously dominant strategies (Si (≻i))i∈N . A mechanism is obviously
strategy-proof if there exists a profile of strategies (Si)i∈N that are obviously dominant. A
mechanism is Pareto efficient if, for all type profiles (≻i)i∈N , when the agents follow strategies
(Si(≻i))i∈N , every possible outcome (for all possible chance moves) is Pareto efficient, i.e.,
for all possible outcomes x, there is no other y such that y ≽i x for all i, and y ≻i x for some
i.

Two obviously strategy-proof extensive-form mechanisms
(
Γ, (Si (·))i∈N

)
and

(
Γ′, (S ′

i (·))i∈N
)

are equivalent if, for every profile of types (≻i)i∈N the distribution of outcomes in Γ when
agents play (Si (≻i))i∈N is the same as in Γ′ when agents play (S ′

i (≻i))i∈N . Two games Γ

and Γ′ are equivalent when there are profiles of strategies (Si (·))i∈N and (S ′
i (·))i∈N such that

mechanisms
(
Γ, (Si (·))i∈N

)
and

(
Γ′, (S ′

i (·))i∈N
)

are obviously strategy-proof and equivalent.
Lemma 2 shows that for each obviously strategy-proof game, there is an equivalent obviously
strategy-proof game that has perfect information.18

3 Random Priority

The random priority mechanism we are interested in is widely used in allocation settings,
defined as follows. There is a set of objects O, each object o ∈ O is represented by |o|
copies, where every |o| is a positive integer.19 The set of feasible one agent’s allocations is
Q ⊆ ×o∈O {0, 1, ..., |o|}. We assume that if qi ∈ Q then Q contains all

(
q1, ..., q|O|) ̸= (0, ..., 0)

such that for each coordinate j we have qj ≤ qji . For example, in the school choice problem
each agent demands at most one object and Q =

{
q ∈ ×o∈O {0, 1, ..., |o|} |

∑
o∈O qo ≤ 1

}
.20

17We consider pure strategies, but the analysis can be extended to mixed strategies.
18The insight on the sufficiency of perfect information holds true and our proof remains valid for all

domains of preferences, not only domains of preferences studied in this paper.
19The set of objects may include a special object called the outside option, but its presence play no role

in the main-text results. Appendix D discusses how, by explicitly taking outside options into account, we
can slightly extend our results beyond the class of preference domains studied in the main text.

20Our insights remain true beyond this environment, for instance, when each agent demands exactly one
object, Q =

{
q ∈ ×o∈O {0, 1, ..., |o|} |

∑
o∈O qo = 1

}
; see the end of Appendix B for details.
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Each outcome x ∈ X consists of a profile of allocations qi ∈ Q for agents i ∈ N such that
∑

i∈N qi,o ≤ |o| for each o ∈ O. Each agent has strict preferences over allocations from Qi

and each agent’s preferences over outcomes are determined by this agent’s allocation; that
is each agent is indifferent among allocations of other agents.

Our main result in this setting is showing that the popular extended-form random priority
mechanism—described in the Introduction—is characterized by obvious strategy-proofness
together with Pareto efficiency and symmetry. A game Γ is symmetric if for all agents i and
j game Γ is isomorphic to Γ with the roles of i and j exchanged. Exchanging the roles of i
and j in game Γ creates game Γ′ such that there is a bijection σ of histories between Γ and
Γ′ satisfying the following properties: terminal histories are mapped into terminal histories;
if h is a subhistory of H in Γ then σ (h) is a subhistory of σ (H) in Γ′; and whenever i moved
at history h in Γ then j moves at history σ (h) in Γ′, and vice versa; whenever an agent
k ̸= i, j moved at h in Γ then the same agent moves at σ (h) in Γ′; and the outcome of i after
terminal history h in Γ is the same as the outcome of j after terminal history σ (h) in Γ′,
and vice versa, while payoffs of other agents at terminal history h is the same as at σ (h).21

A mechanism is symmetric if the underlying game is symmetric. Symmetry and efficiency
are well-known to be properties of random priority, and Li (2016) shows that random priority
is obviously strategy-proof.

Theorem 1. An extensive-form mechanism is obviously strategy-proof, symmetric, and
efficient if and only if it is equivalent to random priority.

This result explains why random priority is a very popular allocation mechanism: not
only it is efficient, fair, and simple to play thanks to its obvious strategy-proofness; it is the
only mechanism with these properties.

We prove this theorem in the appendix. The proof relies on our characterization of
obviously strategy-proof mechanisms, to which we turn next. Knowing the structure of
these mechanisms allows us to extend the bijective approach of Abdulkadiroğlu and Sönmez
(1998) (cf. also Pathak and Sethuraman (2010) and Carroll (2010)) to our setting.

4 Obvious Dominance and Millipede Games

In this section, we characterize the class of obviously strategy-proof mechanisms as a class
of games that we call millipede games. Intuitively, a millipede game is a take-or-pass game

21More generally, take a permutation of agents σ, and game Γ, and and define game σ (Γ) recursively as
follows: at every node at which nature moves, it has same moves in σ (Γ) as in Γ; at every history at which i
moves in Γ agent σ (i) moves in σ (Γ)and has the same moves as i in Γ, at every terminal history the outcome
of i in Γ is the same as the outcome of σ (i) in the corresponding terminal history of σ (Γ′).
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Figure 1: An example of a millipede game in the context of object allocation.

similar to a centipede game, but with more players and more actions (i.e., “legs”) at each node.
Figure 4 shows the extensive form of a millipede game in an object allocation environment,
where the agents are labeled i, j, k, . . . and the objects are labeled w, x, y, . . .. At the start of
the game, the first mover, agent i has three options: he can take x, take y, or pass to agent
j.22 If he takes an object, he effectively leaves the game, and the game continues with a new
agent. If he passes, then agent j can take x, take z, or pass back to i. If he passes back to
i, then i’s possible choices increase from his previous move (he can now take z). The game
continues in this manner until all objects have been allocated.

While Figure 4 considers an object allocation environment, millipede games can be de-
fined more generally on any preference structure that satisfies our assumptions of Section
2. Recall that we use the term payoff to refer to the indifference class in the partition on
an agent’s preference domain. In a complete-information extensive-form game, we say that
a payoff x is possible for agent i at history h if there is a strategy profile of all the agents
such that h is on the path of the game and agent i obtains payoff x. At a history h, if, by
taking some action a ∈ A(h) an agent receives payoff x for every terminal h̄ ⊇ (h, a) and
never moves again in the game, we say that a is a clinching action.23 If an action is not a
clinching action, then it is called a passing action.24

A millipede game is a finite game. Nature either moves once, at the empty history ∅, or
the game is deterministic and nature has no moves. At any history h at which an agent, say
i, moves, all but at most one action are clinching actions; the remaining action (if there is

22In the general definition of a millipede game, it will be possible that none of the actions are passing
actions and so all actions are taking actions. However, if there is a passing action, there can only be one, to
ensure obvious strategyproofness. This will be explained in detail below.

23Clinching actions are generalizations of the “taking actions” of Figure 4 to environments where the
outcomes may be different from object allocation.

24We say that a payoff x is guaranteeable for agent i at history h if there is a strategy of i such that (i)
there is a strategy of other agents such that h is on the path of the game, and (ii) for any profile of the
strategies of other agents such that h is on the path of the game, agent i obtains payoff x.
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one) is a passing action. Each clinching action is associated with a unique payoff of agent i;
if i chooses a clinching action, he does not move again, and he ultimately receives the payoff
associated with the clinching action chosen.25 Every path of the game following i’s passing
action includes another move by i.26 Furthermore, at any history h′ ⊇ (h, i passes) such that
i moves at h′ but not at any other subhistory of h′ that contains h (that is the first time i

moves along any path in the continuation game following the initial passing), the following
conditions are satisfied:

(a) If there is a payoff x that was possible for i but not clinchable at h, and that is no longer
possible at h′, then every payoff y that i could have clinched at h remains possible for
i at any continuation history h′′ ⊇ h′ such that i had no opportunity to clinch y at any
subhistory of h′′ containing h′ or clinched another outcome.

(b) If there is a payoff x that was clinchable for i at h and that is no longer possible at h′,
then every payoff y that was possible, but not clinchable, for i at h remains possible
for i at any continuation history h′′ ⊇ h′ such that i had no opportunity to clinch y at
any subhistory of h′′ containing h′ or clinched another outcome.

Notice that that millipedes have recursive structure: the continuation game that follows
any action is also a millipede game. They furthermore have a fractal-like structure: in light
of condition (a)-(b) the continuation games starting with next move of agent i following his
initial passing resemble the initial game (from i’s payoff perspective) and each other.

A simple example of a millipede game is a sequential dictatorship in which no agent ever
passes and there is only one active agent at each node.27 A more complex example is given
in Figure 4.28 We provide an alternative definition of millipede games in the appendix.

Theorem 2. A game Γ is obviously strategy-proof if and only if it is equivalent to a millipede
game.

This theorem is applicable in many environments, including allocation environments in
which agents care only about the object(s) they receive; in this case a payoff is simply the
object(s) an agent receives. In this paper we focus attention on these allocation environments.
Another environment Theorem 2 applies to is the standard social choice environment in which

25There may be several clinching moves associated with the same payoff.
26We allow games in which an agent has only one action.
27We call an agent active at history h of a millipede game if the agent moves at h, or the agent moved

prior to history h and has not yet clinched an outcome.
28The first more complex example of a millipede game we know of is due to Ashlagi and Gonczarowski

(2016), who used the passing and clinching idea to implement deferred acceptance in a way that makes it
obviously strategy-proof in some restricted preference domains.
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no agent is indifferent between any two outcomes. Theorem 2 has straightforward corollaries
for deterministic mechanisms: in deterministic environments, we just skip nature’s move,
and continue with a standard millipede game.

Notice that in voting environments in which all agents can strictly rank all outcomes,
Theorem 2 implies that each OSP game is equivalent to a game in which either there are
only two outcomes that are possible when the first agent moves (and in such case, the game
is equivalent to a game in which the first agent to move either can clinch any of them, or
can clinch one of them or pass to the other agent who can then clinch either of the two
outcomes), or the first agent to move can clinch any possible outcome and has no passing
action. The latter case is the standard dictatorship, with a possible restricted set of possible
outcomes, while the former case resembles the almost-sequential dictatorships we study in
the next section.29

One of the implications of Theorem 2 follows through straightforward recursion: every
millipede game is obviously strategy-proof when the agents play the following strategies,
which we refer to as greedy strategies: at each move at which the agent can clinch the best
still possible outcome for her, the strategy has the agent clinch this outcome; otherwise, the
agent passes. We provide the rest of the proof of Theorem 2 in the appendix, and explain
its key steps below. Note that when we say every OSP game Γ satisfies some property, what
we mean is that there is an OSP game Γ′ that satisfies this property and is equivalent to Γ.

Step 1. Every OSP game Γ is equivalent to a perfect information OSP game Γ′ in which
nature moves once, as the first mover.

This follows because if we break any information set with imperfect information to several
different information sets with perfect information, the set of outcomes that are possible
shrinks. For an action a to be obviously dominant, the worst possible outcome from a must
be (weakly) better than the best possible outcome from any other a′. If the set of possibilities
shrinks (in the set inclusion sense), then the worst case from a only improves, and the best
case from a′ worsens; thus, if a was obviously dominant in Γ, it will remain so in Γ′.30

Step 2. At every history, all actions except for possibly one are clinching actions.
Step 2 is a key step, as it allows us to greatly simplify the class of OSP games to “clinch

or pass” games. An action clinches x if for every possible history, agent i receives some y

29If the game is efficient in addition to being OSP, then the sets of outcomes the agents’ choose from are
not constrained except possibly for the case when there are two outcomes in the economy, and the first agent
can clinch one of them or pass the decision to the other agent (who can then clinch either outcome).

30That every OSP game is equivalent to an OSP game with perfect information was first pointed out in a
footnote by Ashlagi and Gonczarowski (2016). They also make the point that de-randomizing an OSP game
leads to an OSP game.
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such that y ∼i x. In addition to the clinching actions, there may be at most one action that
does not clinch an outcome for i, which we call a passing action. The main insight here is
that there cannot be more than one such action. Indeed, if there were two such actions a

and a′, then following each of a and a′ there are at least two outcomes that are possible,
but not guaranteeable. Thus, it will always be possible to find a type of agent i for which
one of the possibilities following a is at best his second choice, while one of the possibilities
following a′ is his first choice, which implies that a does not obviously dominate a′.

While step 2 shows that for almost all actions i’s outcome is completely determined, what
is perhaps more interesting is that there even can be one action such that i’s outcome is
uncertain without violating OSP. The reason for this follows from step 3.

Step 3. If agent i passes at a history h, then the payoff she ultimately receives must be
at least as good as any of the payoffs she could have clinched at h.

An agent may follow the passing action if she cannot clinch her favorite possible outcome
today, and so she passes, hoping she will be able to move again in the future and get it then.
To retain obvious strategy-proofness the game needs to promise agent i that she can never
be made worse off by passing: she will at least be able to clinch every payoff that she could
have clinched in the past, and may possibly be able to clinch even more. This is the reason
for conditions (a)-(b) in the recursive definition of millipede games.

Combining steps 1-3 imply that any OSP game Γ is equivalent to a millipede game.

5 Strong Obvious Strategy-Proofness

Even mechanisms that are OSP and efficient can still be quite complex to actually play.
The reason is that, while OSP assumes that agents do not understand how the choices of
other agents will translate into outcomes, it still presumes that they understand how their
own future actions affect outcomes. Thus, while OSP guarantees that agents do not have
to reason carefully about others, it still requires that they do so with regard to their own
“future self”. Thus, an obviously strategy-proof mechanism may not be simple enough for
agents to play correctly. Here, we introduce a strengthening that we call strong obvious
strategy-proofness (SOSP).

Definition 1. Strategy Si strongly obviously dominates strategy S ′
i for agent i with prefer-

ences θi if at the earliest point (information set) of departure I between S ′
i (θi) and Si (θi) the

best possible outcome from playing S ′
i (θi), across all strategies and types of other agents, is

at most as good for agent i of type θi as the worst outcome from playing Si (θi) at informa-
tion set I followed by by any play by other agents and any play by agent i.31 If a strategy Si

31For two strategies Si and S′
i, an information set I is called an earliest point of departure if Si(I ′) = S′

i(I
′)
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strongly obviously dominates all other S ′
i, then we say that Si is strongly obviously dominant.

Similarly to Li’s OSP, the above stronger concept corresponds to a class of agents cog-
nitive limitations. For simplicity, let us consider perfect-information games. We say that
an extensive-form game Γ is outcome-set equivalent to extensive-form game Γ′ if there is a
bijection φ between histories such that the set of possible outcomes after history h is the
same as the set of possible outcomes after φ (h). We then obtain.32

Theorem 3. A game Γ and strategy profile S are SOSP if and only if the corresponding
strategy profile S ′ is strategy-proof in any outcome-set equivalent game Γ′.

While in the environments with transfers studied by Li, the canonical obviously strategy-
proof mechanisms—ascending auctions—fail to satisfy this stronger concept, in environment
without transfers, the canonical obviously strategy-proof mechanisms—sequential dictator-
ships—do satisfy SOSP.

The SOSP requirement basically characterizes sequential dictatorships. We say that a
mechanism is a curated dictatorship if it is a perfect-information game in which nature moves
first, and then the agents move in turn, with each agent moving at most once. The ordering of
the agents and the sets of payoffs from which they choose is determined by nature’s move, and
the moves of earlier agents. As long as there are at least three payoffs possible for an agent
who moves, at his move, this agent can clinch any of the possible payoffs (while clinching
any of the payoffs the agents also picks a message from a pre-determined set of messages).
When only two payoffs are possible, the agent can be faced with either a choice between
them (including picking an accompanying message), or, he might be given a possibility to
clinch one of these objects (and picking an accompanying message) and passing (with no
message).

Theorem 2 then implies the following.33

Corollary 1. A mechanism is SOSP if and only if it is equivalent to a curated dictatorship.

for all information sets I ′ such that there are h′ ∈ I and h ∈ I such that h′ ⊂ h, but Si(I) ̸= S′
i(I).

32While Li also shows that OSP mechanisms are precisely the mechanisms that can be implemented with
bilateral commitment, this result does not extend to our setting. The reason is that bilateral commitment
presumes that agents are perfectly forward looking and do not make errors in single-agent games, and SOSP
relaxes this assumption.

33To prove this corollary it is sufficient to notice that pruned millipedes in which an agent has three or
more possible payoffs and a passing move are not SOSP. Suppose not and notice that we can assume that
the agent has at least one clinching move (clinching payoff x) and a passing move. Furthermore, among
outcomes possible after passing there is an outcome y that cannot be clinched at this move, and a third
outcome z ̸= x, y. Then, an agent with preference ranking in which y ≻ x ≻ z ≻ ... has no strongly obviously
dominant action.

14



We further say that a mechanism is an almost-sequential dictatorship if it is a perfect-
information game in which nature moves first; then the agents move in turn (the ordering
being determined by nature’s move, and the moves of earlier agents) with each agent moving
at most once. At his move, an agent picks his objects and sends a message. As long as there
are at least three objects unallocated, the moving agent can choose from all still available
objects. When there are two objects remaining, an agent can be faced with either a choice
between them, or, he might be given a choice between one of these object for sure or giving
the next agent an opportunity to allocate the remaining two objects among the two of them.34

Theorem 4. A game and strategy-profile are SOSP and efficient if and only if the game is
equivalent to an almost-sequential dictatorship.

We are in the process of planning an experiment checking whether SOSP extensive form
games are indeed simpler to play that equivalent OSP but not SOSP games. We conjecture
that the experiment will confirm the natural intuition that subjects will find it easier to play
an almost-sequential dictatorship than to play a more complex millipede game.

6 Conclusion

Obvious strategy-proofness is a highly desirable incentive property, as convincingly argued by
Li (2016). The present paper follows up on Li’s work by analyzing obvious strategy-proofness
in environments without transfers. The paper’s main insight is that random priority is the
unique obviously strategy-proof mechanism that satisfies basic efficiency and fairness prop-
erties, thus providing an explanation why random priority is popular in practical allocation
problems. We also characterize obviously strategy-proof games.35 Arguing that playing
an obviously dominant strategy might require extensive foresight in environments without
transfers, we propose and analyze the more demanding concept of strong obvious strategy-
proofness; games that are strongly obviously strategy-proof are indeed simple to play.

34Pycia and Unver (2016) use the same name for deterministic mechanisms without messages that belong
to the class we study; they show that this are exactly the deterministic mechanisms which are strategy-proof
and Arrovian efficient with respect to a complete social welfare function. We use the name their introduced
because our class is a natural extension of theirs.

35While we focus on analysis obviously strategy-proof games, our analysis can be rephrased in terms of
social choice rules. Following up on our work, Bade and Gonczarowski (2016) further characterized OSP-
implementable social choice rules that are efficient in the context of allocation with no copies and single-unit
demands, and in the voting problem with single-peaked preferences.
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A Proof of Theorem 2

The key to understanding our analysis of OSP games and the proof of Theorem 2 are the
concepts of possible, guaranteeable, and clinchable outcomes that we now introduce more
formally. In an extensive-form game, every time an agent takes an action, she shrinks the set
of outcomes (terminal histories) that can obtain. Determining whether an action is obviously
dominant at a given history requires comparing the set of possible outcomes for each action
with the set of outcomes that are not only possible, but are also guaranteeable. More
precisely, we must compare the sets of possible vs. guaranteeable payoffs (or indifference
classes) that may obtain following each action.

Formally, for a game Γ, let Xi(h, Si) = {x ∈ X : z(h, Si, S−i,ω) = x for some (S−i,ω)}
denote the set of outcomes that are possible starting from history h if i follows strategy
Si, ranging over all possible strategies of the other agents and nature. Note that the agent
acting at h may be some j ̸= i, but we can still define the set of outcomes that are possible
for i starting from this history if she follows strategy Si at all future histories.

Consider an agent i of type ≻i and an indifference class Ii(x). If there exists some Si

such that y ∈ Xi(h, Si) for some y ∼i x, then we then we say that payoff x is possible for
i at h. If, further, there exists some Si such that y ∼i x for all x, y ∈ Xi(h, Si), then we say
payoff x is guaranteeable for i at h.36 Note that we are slightly abusing notation, since
when we say x is possible for a, what we mean is some outcome in the indifference class Ii(x)
is possible for a. Similarly, when we say x is guaranteeable for i at h, we mean that there is
some strategy such that agent i can ensure some outcome in the indifference class Ii(x) will
obtain, no matter the actions of the other agents or nature.37 Let Pi(h) be the set of payoffs
that are possible for i at h, and Gi(h) be the set of payoffs that are guaranteeable for i at h.
Note that Gi(h) ⊆ Pi(h), and the set Pi(h) \Gi(h) is the set of payoffs that are possible at
h, but are not guaranteeable at h (this set will be key to many of our arguments).

Last, we define a distinction between two kinds of actions: clinching actions and passing
actions. We say an action a ∈ A(h) clinches x for i if y ∼i x for all terminal histories h̄

following action a, where y is the outcome associated with terminal history h̄.38 If, at history
h, there exists an action a that clinches x for i, we say that x is clinchable at h, and call a a
clinching action (note that there can be more than one action that clinches x). If, following

36Note the difference between an outcome being possible/guaranteeable and a payoff being possi-
ble/guaranteeable. From here on, we will mostly be concerned with the sets of possible/guaranteeable
payoffs, rather than outcomes.

37For example, in object allocation, i only cares about her allocation and is indifferent as to what others
receive. If at outcome x i receives object o, then for any other outcome y ∈ X such that i also receives o,
we say that she receives payoff x.

38Note that here, we do assume that i is the agent acting at h.
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action a, there is some payoff x that is possible at history (h, a), but is not guaranteeable at
(h,a), then a is referred to as a passing action.

Note the subtle difference between a payoff being “guaranteeable” and a payoff being
“clinchable”: x guaranteeable implies that there exists some strategy Si such that i can
guarantee x going forward from h by playing Si; x clinchable implies that for every strategy
that chooses some action a at h, i receives payoff x. In other words, following a clinching
action, i’s outcome is completely determined (modulo indifference classes), no matter what
happens in the remainder of the game. Note that x clinchable at h implies x is also guar-
anteeable at h, but not vice-versa. In principle, an action can be neither a clinching action
nor a passing action, which will happen if there are multiple possible outcomes, and each is
also guaranteeable. However, we will show below that for any OSP game, we can find an
equivalent game such that every action is either a clinching action or a passing action, and
thus, it will be without loss of generality to assume that all actions are either clinching or
passing actions; further, we will show that each history can have at most one passing action.

For clarity, the proof is organized according to the three steps described in the main
text. Each step is formalized and proved using one or more lemmas. We start by proving
the theorem for object allocation without copies and with single-unit demands, and we then
comment on how the proof applies to the general case.

Step 1: Every OSP game Γ is equivalent to a perfect information OSP game Γ′

in which nature moves once, as the first mover.

We break this result into two lemmas. The first shows that we can assume perfect informa-
tion, and the second shows that we can assume nature moves only once.

Lemma 1. (Ashlagi and Gonczarowski, 2016) Every OSP game is equivalent to an OSP
game with perfect information.

Proof. Ashlagi and Gonczarowski (2016) mention this result in a footnote; here, we provide
the straightforward proof for completeness. Denote by A (I) the set of actions available at
information set I to the agent who moves at I. Take an obviously strategy-proof game Γ

and consider its perfect-information counterpart Γ′, that is the perfect information game at
which at every history h in Γ the moving agent’s information set is {h} in Γ′, the available
actions are A (I), and the outcomes in Γ′ following any terminal history are the same as in Γ.
Notice that the support of possible outcomes at any history h in Γ′ is a subset of the support
of possible outcomes at I (h) in Γ. Hence, Γ′ is obviously strategy-proof and equivalent to
Γ′.
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Lemma 2. Every OSP game is equivalent to a perfect information OSP game in which
nature moves once, as the first mover.

Proof. This lemma can be derived from the comment in Ashlagi and Gonczarowski (2016)
that each de-randomized OSP mechanism is OSP. We provide the straightforward direct
proof. In light of the transitivity of the equivalence relationship, the above lemma tells us
that we can assume that Γ has perfect information. We can further assume that nature
moves at the empty history ∅ (possibly just having one move at this history). Let Hnature be
the set of histories h at which nature moves. Consider a modified game Γ′ in which at the
empty history nature chooses actions from ×h∈HnatureA (h) and at h ∈ Hnature − {∅} nature
chooses from a singleton set of actions that contains the choice from A (h) that nature made
at ∅. Then, the support of possible outcomes at any history h in Γ′ is a subset of the support
of possible outcomes at the corresponding history in Γ, where the corresponding histories
are defined by mapping the A (h) component of the action taken at ∅ by nature in Γ′ as an
action made by nature at h in game Γ. Hence, Γ′ is obviously strategy-proof, and Γ and Γ′

are equivalent.

Step 2: At every history, all actions except for possibly one are clinching actions.

The first lemma of this step points out some facts of OSP games that will be useful in the
proof of the second: in particular, for a given agent i, the set of possible, but not guaran-
teeable outcomes monotonically shrinks, and the set of clinchable outcomes monotonically
grows. We then use this to construct, from any OSP game Γ, a new game (and strate-
gies) that is also OSP, and such that at every history, every action except possibly one is a
clinching action.

Lemma 3. Let Γ be an obviously strategyproof game. Consider a history hi and let Pi(hi)

be the set of payoffs that are possible for i at hi and C(hi) be the payoffs that are clinchable
by i at hi.

(a) Assume that hi is on the path of play for type ≻i. A clinching action ax is obviously
dominant at hi for type ≻i if and only if x is the ≻i −most preferred object in Pi(hi).

(b) At any later history h̃i at which i is to move, Pi(h̃i) \Gi(h̃i) ⊆ Pi(hi) \Gi(hi).
(c) At any later history h̃i at which i is to move, either (i) C(hi) ⊆ C(h̃i) or (ii) (Pi(hi)\

Gi(hi)) ⊆ C(h̃i) (or both).

Proof. Part (a): The if direction is immediate. For the only if direction, since the clinching
action ax clinches x, the worst case payoff from following ax (as well as the best case) is x.
If there is some other y ∈ Pi(hi) such that y ≻i x, then there must be some other action
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a′ ̸= ax for which y is a possible payoff. The best case from a′ must be weakly better than
y, and so, ax does not obviously dominate a′.

Part (b): We show the contrapositive: x /∈ Pi(hi) \ Gi(hi) implies x /∈ Pi(h̃i) \ Gi(h̃i).
x /∈ Pi(hi) \Gi(hi) implies that either (i) x is not possible at hi or (ii) x is guaranteeable at
hi. It is clear by definition that if x is not possible at an earlier history hi, then it also cannot
be possible at a later history h̃i. On the other hand, if x is guaranteeable at hi, this means
that there exists some strategy Si such that if i follows this strategy from hi forward, she is
certain to receive x, no matter what the other agents do. Thus, if she continues to follow
this strategy at the later history h̃i, she will still be certain to receive x, which implies that
x is also guaranteeable at h̃i.39 Combining these statements, we have x /∈ Pi(h̃i) \Gi(h̃i).

Part (c): Assume that both (i) and (ii) are false, and let x be an payoff that is clinchable
at hi, but is not at h̃i and let y be an payoff that is possible, but not guaranteeable, at
hi, with y not clinchable at h̃i.40 Consider a type of agent i, ≻i, that prefers y to x.41 At
hi, this agent has no obviously dominant action. Since y is possible, but not guaranteeable
at hi, none of the clinching actions are obviously dominant. The passing action is also not
obviously dominant. To see why, note that the worst possible payoff from passing at hi

is strictly worse than x (when history h̃i is reached, neither x nor y are guaranteeable, by
assumption), while i can clinch x at hi, which is a contradiction.

Lemma 4. For each obviously strategyproof game Γ, there exists an equivalent obviously
strategyproof game Γ′ with perfect information such that at each history h, the following
hold:

(a) At least |A(h)|− 1 actions at h are clinching actions.
(b) For every payoff x ∈ Gi(h), there exists an action ax that clinches x and, if i follows

action ax, she never moves again in the game (where i is the agent who is to act at h).

Proof. The proof of this lemma relies on the following claim. To state it, consider an agent
i who is to act at history h, and consider any action a ∈ A(h). Define the set possi(a) =

Xi((h, a), Si); in words, possi(a) is the set of possible payoffs for i if she takes action a at
h.

Claim 1. Let Γ be an obviously strategyproof game. Then, for any history h, there is at most
one action a∗ such that possi(a∗) ∩ (Pi(h) \Gi(h)) ̸= ∅.

39It may be that the strategy Si is such that h̃i is off-path for agent i. However, if this is the case, upon
reaching h̃i , no type of agent i will follow a strategy for which x is a possible payoff, and so the subgames
where i receives x can be pruned, and x is not possible at h̃i.

40Such distinct x and y exist by construction, since C(hi) ∩ (Pi(hi) \Gi(hi)) = ∅.
41History hi must be on the path of play for some such type because, if it were not (if all types to reach

this history preferred x to y), then no type of agent i would follow any strategy Si for which y is a possible
outcome, and thus the subgames where i receives y can be pruned.
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Proof. The claim shows that there can be at most one action which can lead to a possible,
but not guaranteeable, payoff. Thus, for every other action that can be taken, all possible
payoffs are also guaranteeable. However, it may still be that some action a can lead to
multiple payoffs, where different payoffs are guaranteeable for i by following different actions
in the future of the game. We will construct a new obviously strategyproof game Γ′ that is
equivalent to Γ and for which every action except for at most one is a clinching action.

For any history h with acting agent i, let Si(h) = {Si : y ∼i x for all x, y ∈ Xi(h, Si)}.
In words, Si(h) is the set of strategies that guarantee some payoff x for i if i plays strategy
Si starting from history h. We create a new game Γ′ that is the same as Γ, except replace
the subgame starting from history h with a new subgame defined as follows. If there is a
passing action at h in the original game, then there is a passing action at h in the new game,
and the subgame following the passing action is exactly the same as in the original game
Γ. Additionally, there are M = |Si(h)| other actions at h, a1, . . . , aM . Each am corresponds
to one strategy Sm

i ∈ Si(h), and following each am, we replicate the original game following
the corresponding action a = Sm

i (h) in the original game, except that at any future history
h′ ⊇ h at which i is called on to act, all actions (and their subgames) are deleted except for
a′ = Sm

i (h′). In other words, at h in the new game Γ′, we are asking agent i to choose not
only her current action, but all future actions as well. By doing so, we have created a new
game in which every action (except for the passing action, if it exists) at h clinches some
payoff x, and further, agent i is never called upon to move again.42 It is clear that if there is
an obviously dominant profile of strategies for the original game, and the agents follow the
analogous strategies in the new game,43 the same terminal history will be reached, and so Γ

and Γ′ are outcome-equivalent.
We must also show that this strategy profile is obviously dominant for Γ′. This is an

obviously dominant strategy for i because if her obviously dominant strategy in the original
game was to guarantee some payoff x, she now is able to clinch x immediately; if her obvi-
ously dominant strategy was to pass at h, she is still able to pass, and the passing action
obviously dominates any of the clinching actions (because passing in the original game obvi-
ously dominated a strategy that guaranteed a payoff). In addition, the game is also obviously
strategyproof for all j ̸= i because, prior to h, the set of possible payoffs for j is unchanged,
while for any history succeeding h where j is to move, having i make all of her choices earlier

42More precisely, all of i’s future moves are trivial moves in which she has only one possible action. Note
that this only applies to the non-passing actions at h, which correspond to the guaranteeing strategies in
Si(h). It is still possible for i to follow the passing action at h and be called upon to make a non-trivial
move again later in the game.

43That is, for all j ̸= i, they continue to follow the same action at every history as they did in the original
game, and for i, at history h in the new game, she takes the action am that is associated with the strategy
Sm
i in the original game.
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in the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,
if a strategy was obviously dominant in the original game, it will continue to be so in the new
game. Repeating this process for every history h, we are left with a new game where, at each
history, there are only clinching actions plus (possibly) one passing action, and, following
any clinching action, an agent never acts again.

Proof of claim 1
First consider part (a) of the claim, and consider agent i. We prove this by induction

on histories at which i is to move. Consider any earliest history h at which i is to move,
and choose some x ∈ Pi(h) \ Gi(h). If x ∈ possi(a1) for some a1 ∈ A(h), then for any
other y that is possible but not guaranteeable at h, we must have y ∈ possi(a1) as well. To
see why, assume not: x ∈ possi(a1), but y /∈ possi(a1). There must be some a2 such that
y ∈ possi(a2). Consider the type x ≻i y ≻i · · · .44 Note that neither a1 nor a2 obviously
dominate the other, because the worst case from both is strictly worse than y (because
neither x nor y are guaranteeable at h), while the best case from a1 is x and the best case
from a2 is weakly better than y. Consider any other a′ ∈ A(h) such that a′ ̸= a1, a2. Again,
since neither x nor y are guaranteeable, the worst case from any such a′ is weakly worse than
x, and so a′ does not obviously dominate a1. Thus, this type has no obviously dominant
action, which contradicts that the game is OSP.

To finish, assume that there were two actions a∗1 and a∗2 that could lead to possible but
not guaranteeable payoffs. Consider some x ∈ Pi(h)\Gi(h), and a type of agent i that ranks
x first. By the previous paragraph, we know that x ∈ possi(a∗1) and x ∈ poss(a∗2). However,
by assumption, x is not guaranteeable at h, so, for any type who ranks x first, the worst
case payoff from any action a′ must be strictly worse than x, while the best case outcomes
from a∗1 and a∗2 are both x. Therefore, no action a′ ∈ A(h) is obviously dominant, which
contradicts that Γ is OSP.45

Thus, at the first history at which i is to move, there can be at most one passing action.
Further, any obviously dominant strategy of any type ≻i that ranks any x ∈ Pi(h) \ Gi(h)

first must select the passing action at this history (Lemma 3, part a).
Now, consider any other later history h′ for i, and assume the inductive hypothesis

that for all predecessor histories to h′ for i there is at most one passing action. Note that
44Note that, since this is the first time agent i is to move, this history is on the path of play for all types.
45Note that if there were only one such action a1, then it would still be true that there is no action that

obviously dominates a1 for this type. However, a1 itself might be obviously dominant. When there are two
such actions, a1 does not obviously dominate a2, nor does a2 obviously dominate a1, and thus there are no
obviously dominant actions.
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Pi(h′) \ Gi(h′) ⊆ Pi(h) \ Gi(h), i.e., the set of non-guaranteeable possibilities only shrinks
(Lemma 3). Consider some x′ ∈ Pi(h′)\Gi(h′). By the inductive hypothesis, history h′ must
be on the path of play for every type of agent i that ranks x′ first.46 Repeating the above
argument for history h′ and outcome x′, we conclude that at history h′, there is at most one
passing action, and the strategy of any type ≻i that ranks any x′ ∈ Pi(h′) \Gi(h′) first must
be to follow the passing action at h′.

Step 3: If agent i passes at a history h, then she must move again between h

and any terminal history, and, at this move, she will be able to clinch either: (i)
everything she could have clinched at h or (ii) everything that was possible but
not clinchable for her at h.

This step provides the key insight of why we can have a passing action while still retaining
obvious strategy-proofness, which is possible as long as whenever an agent passes at a history
h, she knows that she will do no worse in the future than anything she could have clinched
today.

Lemma 5. Let Γ be an OSP game. Consider an agent i and a history h̄i that is the first
move of agent i (i.e., i moves at no earlier history), and for j ̸= i, let hj be a subsequent
history such that (i) agent i has not clinched an outcome between h̄i and hj and (ii) at hj,
agent j has an action ajz that clinches some z ∈ Pi(h̄i). Let Hi be the set of histories between
h̄i and hj at which i is to move. Then, there is an equivalent OSP game such that i is the
mover at (hj, ajz) and:

(a) If z ∈ C(h) for some h ∈ Hi, then i can clinch any x that was possible, but not
guaranteeable at h, and at any successor history to h (and possibly more).

(b) If z ∈ Pi(h) \Gi(h) for all h ∈ Hi then i can clinch any x that was clinchable at any
h ∈ Hi (and possibly more).

Proof. Part (a): We first argue that in any OSP game, agent i must move again after hj

and before any terminal history. Consider the the immediate predecessor of hj at which i is
to move, denoted h, and let x, y ∈ Pi(h) \ Gi(h),47 and assume that there exists a terminal
history h∗ that can be reached from hj such that i does not move again. Consider the types

46All previous histories for i have had only one passing action, and x′ was not guaranteeable at those
histories, so any obviously dominant strategy for this type of agent i must select the passing action at any
history prior to h′.

47If there is only one object x that is possible, but not guaranteeable, at h, then at h̃i, it is possible that
i’s move is a “trivial” move for which receives x at any subsequent terminal history. However, the statement
still holds.
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x ≻i z ≻i · · · and y ≻i z ≻i · · · .48 At any such h∗, i cannot receive z (because j has been
assigned to it). If i is assigned to x at h∗, the type y ≻i z ≻i · · · has no obviously dominant
action at h; similarly, if she is assigned to y at h∗, the type x ≻i z ≻i · · · has no obviously
dominant action at h. If she is assigned to something other than than x or y, then neither of
these types has an obviously dominant action at h. Thus, i must move again at some later
history h̃.

We next show that if z ∈ C(h) for some h ∈ Hi, i must be able to clinch any object in
Pi(h) \Gi(h). To see this, note that since j has clinched z, we have C(h) ̸⊆ C(h̃i). Thus, by
Lemma 3, we conclude (Pi(h)\Gi(h)) ⊆ C(h̃i). Further, since Pi(h′)\Gi(h′) ⊆ Pi(h)\Gi(h)

for all histories h′ that succeed h (by Lemma 3), the same holds for all successor histories h′.
Note also that it is without loss of generality to assume that i moves at most once following
(hj, ajz), and at any history where she is to move, she has no passing action.49 Last, we argue
that any such game where this is true is equivalent to one in which i moves immediately
after j clinches z. Indeed, create a new game where i moves immediately after (hj, ajz), and
is given all of the actions she could have taken at any earliest successor history to (hj, ajz) at
which she was to move in the original game. Following each of these actions, the new game
continues as in the original game following (hj, ajz), except at the node at which i was to act
in the original game is deleted, and the game continues according to the clinching action i

chose at history (hj, ajz). This continues to be obviously strategyproof for i, because all of
her actions are clinching actions. For any predecessor history to (hj, ajz), the set of possible
outcomes is the same in both games, while for any successor history following any action of
i at (hj

z, a
j
z), the set of possible outcomes of the new game for the agent j who is to move is

a subset of the set of possible outcomes of the old game. Thus, the best case outcome from
any strategy can only get worse, while the worst case outcome can only get better, so if a
strategy was obviously dominant before, it continues to be obviously dominant in the new
game.

Part (b): Agent i must move again following (hj, ajz), using a similar argument as in part
a.50 Assume that there was some h ∈ Hi and x ∈ C(h) and some path such that i could not
clinch x subsequent to (hj, ajz). Consider the type z ≻i x ≻i · · · .51 Since it is possible that

48Note that by Lemma 3, Pi(h) \Gi(h) ⊆ Pi(h′) \Gi(h′) for all h′ ∈ Hi. This implies that every obviously
dominant strategy for these types must select the passing action at any h′ ∈ Hi, which means that history
h must be on the path of play for these types of agents.

49This is because i is able to clinch everything in Pi(h) (other than z) at either h or h̃. Thus, if there were
a passing action at h̃, no type of agent i will ever follow it, and so it can be pruned.

50If there is only one object that was previously clinchable, say x, then it is possible that i’s move is a
“trivial” move in which every possible action clinches x. However, the statement still holds.

51All h ∈ Hi must be on the path of play for this type, since z is possible but not guaranteeable, for all
h ∈ Hi.
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i might not be able to clinch x, the worst case outcome from passing at h is strictly worse
than x (since it is possible that j may clinch z, and afterwards i cannot clinch x). However,
she can clinch x at h, and so passing is not an obviously dominant action. No clinching
action is obviously dominant either, since z is possible after passing. Thus, this type has no
obviously dominant action. This implies that i must move again at some point after (hj, ajz).
Constructing an equivalent OSP game in which i moves immediately at (hj, ajz) and never
moves again can be done using the same procedure from part (a).

B Proof and Extensions of Theorem 1

Let us initially assume that each object has one copy, and each agent has single-unit demand.
We relax these assumptions below.

Step 1. Let φ by an OSP, PE, and symmetric mechanism. By Theorem 2, there is an
equivalent millipede mechanism. Since our proof of Theorem 2 gives us a constructive way
to derive the millipede representation of φ, and the construction does not depend on agents’
names, we may assume that this millipede is also symmetric. By definition mechanisms are
pruned in the sense of Li, and so the millipede is also pruned, and a mechanism. The greedy
strategy is thus the unique obviously dominant strategy.

Step 2. Notice that the symmetric millipede mechanism is a randomization over com-
ponent mechanisms such that each one is a uniform randomization over a deterministic
millipede game. It is enough to show that each such component mechanism is equivalent to
RSD.

Step 3. Notice that we can equivalently describe the component mechanism so that the
nature at its initial move only selects the moving agent and his initial choice set, and then
the nature moves after every move by an agent, and selects the next mover and the next
choice set.52 By symmetry, we can assume that the nature chooses the next mover uniformly
at random from among the eligible agents (that is either picks a particular agent who moved
already, or picks a random agent who has not moved yet), and that the agent’s choice set
does not depend on the agent drawn but only on the history of past moves. Finally, let
us represent this simple component mechanism in terms of the nature initially uniformly
randomizing over deterministic millipede games such that only one among the agents who
didn’t move yet can be the next over.

52In fact, any millipede mechanism can be equivalently described so that the nature at its initial move
only selects the moving agent and his initial choice set, and then the nature moves after every move by an
agent, and selects the next mover and the next choice set
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To define uniform randomizations, for any mechanism ψ and permutation σ : N → N

let us denote ψσ (≻) (i, a) = ψ
(
≻(σ(1),...,σ(|N |))

)
(σ (i) , a). A mechanism φ : PN → M is a

uniform randomization over ψ : PN → M if

φ
(
≻(1,...,|N |)

)
(i, a) =

∑

σ:N
1−1→ N

1

|N |!ψ
σ (≻) (i, a)

For instance, if ψ is a serial dictatorship then φ is Random Priority.
Step 4. Let us now fix a preference profile, and construct a bijection from the deterministic

millipede games of Step 3 to serial dictatorships. Let’s thus take a deterministic millipede
game ψ and construct the ordering of agents for the corresponding serial dictatorship. Let
i be the first agent who moves along the path of the game, and x the object he receives.
If x is the top choice for i, then let’s make i the first agent in the ordering. Otherwise, let
xi:1, ..., xi:ki be the unassigned objects that this agent prefers over x while clinching x. By
efficiency, these objects are assigned to other agents. Let ii:1 be the agent who is assigned
x1. If x1 is this agent’s top choice, then let’s put ii:1 at the top of the list; otherwise let
xii:1:1, ..., xii:1:kii:1

be the objects agent ii:1 prefers over xi:1. Proceeding in this way, we find
the first agent on the list. Say it was ii:1. We then look at ii:2 and repeat this procedure in
an analogous way; if an agent is already in the ordering we skip this agent. Proceeding in
this way we construct a list of agents all the way till i such that if they move in order in a
serial dictatorship, then each one of them obtains the best still available object. We then
look at the first agent i2 not yet in the order who moved and was assigned object x2, and
analogously as before we add additional agents to the ordering.

The above mapping is well-defined, and running the resulting serial dictatorship for the
fixed preference profile results in the same outcome as running the millipede game, because
in the millipede game the agent whose object is clinched obtains his most preferred object
among objects that were not clinched earlier. (To be sure: the two mechanisms might
differ when run on other preference profiles). This mapping is also injective (i.e. one-to-
one). Furthermore, because the simple component game uniformly randomizes over |I|!
deterministic millipede games, and there are also |I|! serial dictatorship, this one-to-one
mapping would then be onto, and hence a bijection.

Step 5. Given Step 4, for any fixed preference profile the outcome of the simple component
millipede game is the same as the outcome of uniformly randomizing over serial dictatorships,
that is the same as the outcome of random priority. QED

Let us now extend the proof to multiple copies and multi-unit demands. Above, we
proved Theorem 1 under additional simplifying assumptions that each object has only one
copy and each agent demands at most one object. The proof in the general case follows the
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same steps, with the following differences. To accommodate multi-object (and multi-unit)
demands, it is sufficient to change the terminology and substitute agents’ allocations q ∈ Q

for objects. To additionally accommodate multiple-copies supply, we need to take additional
care. With multiple copies it is possible that after the first several agents moved, irrespective
of their choices, the next agent to move still is able to choose any allocation in Q. In such a
case, the probabilities the relevant agents are selected for first, or second (etc.) move need
not be the same; however, we obtain an equivalent mechanism by making the probabilities
equal for all agents who did not move yet. On the other hand, if after some agents moved,
the next agent to move might be unable to choose at least one allocation in Q, then the
same argument as in Step 3 of the baseline proof suffices to say that at such a history, all
agents who are yet to move have equal chances of having the move. QED

Remark. As mentioned in footnote 20, the insight of Theorem 1 remains true in some in-
teresting environments beyond its assumptions. Suppose, for instance, that Q =

{
q ∈ ×o∈O {0, 1, ..., |o|} |

∑
o∈O qo = 1

}
.

All the steps of the proof go through unchanged, except that in Step 2 we proceed as follows.
Efficiency implies that each unassigned object is in the set of objects available to the agent
who moves first following history h. Indeed, by way of contradiction, suppose that with
positive probability i moves first after h and object o isn’t in the set of objects available. By
efficiency, all copies of object o need to be allocated to other agents; let j be one of these
agents. Let o′ be an object in agent i’s choice set. Consider the preference profile in which
agent i most prefers object o and o′ is his second-most preferred object, agents who moved
already most prefer the objects they obtained, and other agents most prefer object is o′ and
o is their second-most preferred object. Then i chooses o′, and j obtains o. But, then, the
resulting allocation is not efficient; a contradiction that proves the claim of this step, and
hence the analogue of Theorem 1 for the environment of footnote 20.

Assuming Strong Obvious Strategy-Proofness allows us to relax the symmetry assumption
in Theorem 1 to the equal treatment of equals. An allocation mechanisms satisfies equal
treatment of equals if whenever two agents have the same preference ranking, then they
obtain the same distribution over outcomes.

Theorem 5. A game is strongly obviously strategy-proof, efficient, and satisfies equal treat-
ment of equals if and only if it is equivalent to Random Priority.

Proof. For simplicity we prove the result for the classical house allocation problem in
which each object has exactly one copy, and each agent demands at most one object; the
general case is similar. Suppose a mechanism φ is strongly obviously strategy-proof, efficient,
and satisfied the equal treatment of equals. Our characterization of SOSP and efficient
mechanisms tells us that we can assume that φ can be run as follows: at each history,
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including the empty history, the nature chooses an agent from among the agents who did
not move yet, and this agent moves. If there are three or more objects or exactly one object
still unallocated, then this agent selects his most preferred still available object and sends
an additional message. If, for the first time, there are exactly two unallocated objects, then
the agent who moves either (i) selects his most preferred object and sends a message, or (ii)
has a choice of clinching one of the two objects (and sending a message) or passing. In the
latter case, another agent is then selected by nature, chooses his best object, and the agent
who passed obtains the remaining object.

The reminder of the proof is by induction on the number k of agents that already moved.
Suppose that agents’ moves before the k-th move followed the random priority pattern; this
is trivially satisfied when k = 1. Consider a history h and name agents so that along h agent
1 moved first and chose object o1, then agent 2 moved and chose object o2, etc. till agent
k− 1 who chose object ok−1. Suppose there are at least k agents (otherwise the induction is
completed) and consider the k-th agent’s move.

Suppose first that there are at least three objects left. Each agent who has not moved
yet has equal chances to move first after history h. If h is the empty history, then the claim
follows immediately from the equal treatment of equals when the agents rank objects in the
same way. If only one agent i1 moved in h and o1 is the object he chose, then consider object
o ̸= o1 and the preference profile in which i1 ranks o1 first and o second, while all other
agents rank objects in the same way and rank o first. By the equal treatment, the latter
agents obtain o with identical probabilities; this probability is the sum of being drawn the
first to move and being drawn to move after history h. The inductive assumption implies
that the first summand is identical for all these agents, and hence the probability each of
them is drawn at h is the same. In general, suppose along h agents i1, i2, ..., ik−1 moved,
in this order, and chose objects o1, o2,..., ok−1, respectively. Consider object o ̸= o1, ..., ok−1

and the preference profile in which each agent iℓ, for ℓ = 1, ..., k − 1, ranks objects so that

o1 ≻iℓ o2 ≻iℓ ... ≻iℓ oℓ ≻iℓ o

and other objects (and having no object) are ranked below o; all other agents rank objects
in the same way and rank object o first. One of these other agents obtains o if and only if
he moves after a subhistory of h. By the inductive assumption the probability of obtaining
o is the same for this agents after each proper subhistory of h, and by symmetry the total
probability is the same too; hence the probability these agents obtain o after history h—that
is move after h—is also the same, as was to be shown.

Suppose now that there are exactly two objects o and o′ left at history h. First, note
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that with two objects, Random Priority is the only strategy-proof and efficient mechanism
that satisfies equal treatment of equals. Indeed, with two objects efficient mechanisms are
ordinarily efficient, in the sense of Bogomolnaia and Moulin (2001), and the claim follows
from their work.53

Proceeding similarly to our argument above, suppose that agents i1, i2, ..., ik−1 moved
along h, in this order, and chose objects o1, o2,..., ok−1, respectively. Consider object o ̸=
o1, ..., ok−1 and the preference profile in which each agent iℓ, for ℓ = 1, ..., k−1, ranks objects
so that

o1 ≻iℓ o2 ≻iℓ ... ≻iℓ oℓ ≻iℓ o

and other objects are ranked below o; all other agents rank objects in the same way and
rank object o first. One of these other agents obtains o if and only if he moves after h or
its subhistory. By the inductive assumption the probability of obtaining o is the same for
this agents after each proper subhistory of h, and by symmetry the total probability is the
same too; hence the probability these agents obtain o after history h—that is move after
h—is also the same, as was to be shown. Thus the continuation game following h satisfies
strategy-proofness, efficiency, and equal treatment of equals, and by the argument above it
is equivalent to Random Priority.

C Proof of Theorem 4

By our previous Lemma 4, any OSP game is equivalent to one such that there is at most
one non-clinching move at each history. We show that in fact, for every history that is not
penultimate to a terminal history, all moves must be clinching moves. By strengthening OSP
to strong OSP, following any move, we need only consider the entire set of possible outcomes
for i following any action.54

We proceed by induction. Consider N = 2, and denote N = {i, j} and X = {x, y}.
Consider any game efficient and SOSP game Γ. Without loss of generality, let the first
mover be i, and note that by efficiency, both x and y must be possible for her. Again
without loss of generality, assume she can clinch x at the first move (she must be able to
clinch at least one of x or y, since there can be at most one non-clinching move). Consider

53They prove that Random Priority is the only strategy-proof and ordinarily efficient mechanism that
satisfies equal treatment of equals when there are three objects and three agents, and with two objects
Pareto efficiency and ordinal efficiency become equivalent. The two object is much simpler than the three
object problem Bogomolnaia and Moulin study, and one can easily verify the above claim without reliance
on Bogomlnaia and Moulin’s seminal analysis.

54This is slightly subtle under OSP, because the current mover may have “veto power” over some future
outcomes, but not others; however, this requires reasoning about the future, and so is eliminated by strong
OSP.
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the first agent who is offered the opportunity to clinch y (following starting the game by a
series of passes). If this agent is i, then it is equivalent to offer her the opportunity to clinch
y at her first move, and the mechanism is again a serial dictatorship. If the first person to
be able to clinch y is j, then it is equivalent to offer her the opportunity to clinch y at her
first move, and the game is an almost sequential dictatorship.

Consider now N = 3, where N = {i, j, k} and X = {x, y, z}, and let the first mover
be i. By efficiency, all items are possible for her at the initial history. Assume she had a
non-clinching move. This means for one of her actions, labeled a∗, there are (at least) two
possible outcomes, x and y, at least one of which (say x) is not clinchable at the initial
history. There are two cases, depending on whether the third outcome z is clinchable or not:

z is clinchable at the initial history : By assumption, z is clinchable and x is not. Consider
type x ≻i z ≻i y. None of her clinching actions are strongly obviously dominant, since x is
possible following a∗. In addition, a∗ is is also not strongly obviously dominant, since y is
possible, but she could have clinched z. Thus, this type of agent i has no strongly obviously
dominant strategy.

z is not clinchable at the initial history: In this case, y is clinchable, but x and z are
not (since only one passing move is allowed). Then, consider type z ≻i y ≻i x. z must be
possible (by efficiency), and so must be possible following a∗. This means that no clinching
action is strongly obviously dominant. Following the (unique) non-clinching action is also
not strongly obviously dominant, because x is possible following a∗, while y is clinchable.

Thus, the first agent to move must have only clinching actions, and, by efficiency, must
be able to clinch any object. Following any such clinching move, the game is equivalent to
a game of size N = 2, which we have already shown is equivalent to an almost-sequential
dictatorship.

Last, assume that for every market of size n = 1, . . . , N − 1 any efficient and SOSP
game is equivalent to an almost sequential dictatorship. Consider a market of size N . Let
N = {i1, . . . , iN} and X = {x1, . . . , xN}. By efficiency, all items are possible for the first
mover, i1, at the initial history. We argue that all of her actions must be clinching actions.

Assume not. Then there is exactly one action a∗ that is a passing action. By definition
of a passing action, there must be (at least) two possible outcomes, x1 and x2, at least one
of which (x1, say) is not clinchable at the initial history. There are two cases:

There exists a z ̸= x1, x2 that is clinchable at the initial history: By assumption, z is
clinchable and x1 is not. Consider type x1 ≻i1 z ≻i1 · · · . None of the clinching actions are
strongly obviously dominant, since x1 is possible following a∗, but cannot be clinched. In
addition, a∗ is not strongly obviously dominant, because x2 is possible following a∗, while z

is clinchable.
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There does not exist a z ̸= x1, x2 that is clinchable at the initial history: In this case, x2

must be clinchable, while all z ̸= x2 are not. Choose some z ̸= x1, x2, and consider the type
z ≻i1 x2 ≻i1 x1. Since z is possible (by efficiency), clinching x2 is not strongly obviously
dominant. However, since x1 is possible following a∗, while x2 is clinchable, a∗ is not strongly
obviously dominant either.

Thus, we have that the first mover, i1, must have only clinching actions, and she must
be able to clinch everything. Following any of i1’s clinching actions, we have a game of size
N − 1, which, by the inductive hypothesis, is an almost sequential dictatorship. It is then
simple to see that the overall game is also an almost sequential dictatorship.

D Extensions: Outside Options

Consider the allocation model of Section 3, and suppose that each agent has an outside
option.

D.1 Individual Rationality

We say that a game is individually rational if each agent can obtain at least his outside
option. The analogues of our results hold true for individually rational games as soon as the
domain of each agent’s preferences satisfy the domain condition from Section 2 restricted to
sets X ⊆ X that do not contain the outside option of this agent. Our proofs remain valid in
this setting.

D.2 Restricted Domains

Our results hold true also in allocation domains in which any agent prefers any object to the
outside option. Our proofs remain valid also in this setting.55
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