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Abstract

The centralized market for the settlement of credit default swaps (CDS), which governs

more than $12 trillion’s worth of outstanding CDS contracts, has been criticized for mispricing

the defaulted bonds that underlie the contracts. I take a mechanism design approach to the

market for the settlement of CDS contracts and characterize robust settlement mechanisms

that deliver unbiased prices for the underlying assets. All robust settlement mechanisms are the

payoff equivalent of a posted price mechanism. Because forced participation in the settlement

mechanism is not possible, my approach requires the development of a new notion of the core

of games of incomplete information. This new notion can be applied to mechanism design

environments in which side trades are allowed or when joining the mechanism is a cooperative

decision.
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1 Introduction

A credit default swap (CDS) is regarded as an insurance contract against the risk of default. After

the default of a bond issuer, the corresponding CDS contracts are settled through a centralized

mechanism. This mechanism produces a price for the defaulted bond that is used to measure

the amount of loss due to the default. The mechanism underprices the asset in most cases, which

results in efficiency loss due to a lack of insurance (see Gupta and Sundaram (2013)). I characterize

the set of robust mechanisms that deliver unbiased prices in expectation. In addition, I model the

participation to this mechanism and, thus, contribute to the literature on the core of games of

incomplete information. In this new notion of the core of such games, the decision to join the

blocking mechanism precedes participation in the mechanism. Therefore, this notion can be used

to understand centralized markets in which side trades or side matches prior to or concurrent with

the centralized mechanism are allowed. Examples include dark pools1 and some centralized job

markets, such as the National Residency Matching Program (NRMP).

Each CDS contract corresponds to a reference entity’s bond. The corresponding CDS contracts

can be settled via physical settlement or cash settlement. In the case of cash settlement, the pro-

tection seller pays the face value minus the value of the defaulted bond to the protection buyer.

In the case of physical settlement, the protection buyer hands the defaulted bond to the protection

seller and receives the face value of the bond. While physical settlement has the advantages of

not requiring a price and the protection buyer’s full insurance, it is often impossible to physically

settle all contracts. First, in most cases, the number of outstanding CDS contracts is more than the

number of bonds.2 Second, even if protection buyers could purchase the defaulted bonds for phys-

1Dark pools are private platforms to trade securities.
2As stated in Summe and Mengle (2011), at the time of Delphi Corporation’s bankruptcy, it was estimated that

2



ical settlement, doing so would artificially raise the price of the defaulted bond. For these reasons,

an alternative way of settling the contracts by cash transfer has emerged. The challenge for cash

settlement is to identify a value for the defaulted bond. To determine the quantity of contracts to be

settled physically or by cash transfer, as well as a price for cash settlement, the ISDA introduced a

two-stage mechanism. In the first stage of the mechanism, only agents with CDS contracts partic-

ipate. In this first stage, the mechanism determines the number of defaulted bonds to be bought or

sold in the second stage of the mechanism and a price cap or floor. In the second stage, a uniform

price auction determines a price for the defaulted bond. As of 2009, all CDS contracts are pegged

to the value of the defaulted bond determined by this mechanism, unless both the protection buyer

and protection seller choose to opt out.3 Also, agents may sell their CDS contracts to other agents

prior to participation in the settlement mechanism. The mechanism used by the ISDA has been the

subject of criticism. Chernove et al. (2013) have observed that the defaulted bonds in this mech-

anism are underpriced in the vast majority of auctions. Due to the winner’s curse in the second

stage of the current mechanism, mispricing is inevitable. This mispricing implies that the protec-

tion buyer cannot fully insure against the risk of default by the issuer of the bond and that there is

uncertainty in regard to the future payoff of a defaulted bond.

The goal of any design should be to settle contracts with unbiased prices. A settlement mech-

anism is unbiased if the cash settlement price is equal to the value of the defaulted bond or if an

agent’s payoff is equal to the payoff from physical settlement of all contracts. In this paper, I take a

there were $28 billion in CDSs outstanding but only $2 billion in defaulted bonds. If short selling were facilitated in
this market, in a physical settlement, the protection buyer would short sell, rather than hand, the defaulted bond to the
protection seller. Because defaulted bonds are traded over the counter, short selling the defaulted bonds is difficult or
even impossible.

3The ISDA argues that requiring all parties to a CDS to be bound by the results of the mechanism ensures certainty,
consistency, enhanced transparency, and liquidity; see http://www.isda.org/press/press031209.html
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mechanism design approach and look for a settlement mechanism that is unbiased. Moreover, the

mechanism must satisfy four important properties, which I enumerate:

1. Ex-post incentive compatible, which means that the mechanism is incentive compatible for

all possible agents’ beliefs.

2. Weakly budget balanced, which means that the designer does not have to incur a cost to

execute the settlement mechanism.

3. Robustness with respect to network, which means that, in the settlement, only the net number

of CDS contracts matter.

4. Robust with respect to agents’ participation decisions.

The revelation principle implies that, without loss of generality, one can restrict attention to direct

settlement mechanisms that are incentive compatible (Myerson (1981)). The first property is a

robustness property against agents’ beliefs; see Bergemann and Morris (2005). Because there

is cash transfer in the mechanism, the second property is also standard. In the third property, a

mechanism is robust with respect to the network if the price and quantities are the same in two

networks where agents have a net equal number of contracts. The current mechanism satisfies this

property. The rationale for this property is that it lowers the systemic risk and transaction costs.

The fourth property also is important, as this contract does not compel agents to participate

in the ISDA settlement mechanism. If both parties of a CDS contract agree, they can choose to

settle some of their contracts outside of the settlement mechanism. I define participation-choice to

describe the agents’ decision about how they participate in the central mechanism as well as how

they settle contracts outside of the mechanism. Participation-choices should satisfy two important
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criteria. First, when a pair of agents make a decision about their participation, it should benefit

both of them. Second, these participation decisions should be self-confirming. This means that

when a pair of agents engage in side settlement, each agent updates his beliefs about other agents’

types, and given the updated beliefs, agents choose to exit when there is a benefit from doing so.

The robustness property listed above is a strong one and requires the mechanism to be unbiased in

all possible agent participation-choices. The main theoretical innovation of this paper is to model

how agents choose their level of participation in the mechanism. For more discussion, see Sections

2 and 5.2.1.

A mechanism that sets the cash settlement price equal to the expected value of the defaulted

bond conditional on the designer information and sets a constant cash settlement quantity is called

a posted price mechanism. I show that all mechanisms with prope rties 1-4 listed above are a

payoff equivalent to a posted price mechanism. The difficulty in designing a settlement mechanism,

when participation is voluntary, is that agents may manipulate the outcome of the mechanism

through side settlement. Because the designer faces the budget constraint, she cannot pay the

agents to participate in the mechanism. When a posted price mechanism is employed, agents can

no longer manipulate the settlement procedure through strategic choice of participation. Posted

price mechanisms are simple and widely used in practice, see Einav et al. (2012).

As discussed, participation in this mechanism is voluntary.4 Since CDS contracts are bilateral

contracts between pairs of agents, no settlement mechanism can enforce participation. Choosing

not to fully participate harms the transparency of the ISDA settlement procedure and drives away

liquidity from the auction. This is important because liquidity and transparency were among the

4Some CDS contracts are between agents in different countries, this makes enforcing participation even more
difficult.
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main reasons offered for a central mechanism to settle CDSs in the first place. I show that the

posted price mechanism is almost surely the unique mechanism that ensures that no pair of agents

would side settle their contracts.

I extend the characterization result in two ways. First, I consider the case in which agents

can sell their CDS contracts to other agents prior to the settlement mechanism but after they learn

their private signals. Therefore, they can choose their level of participation by either selling their

CDS contracts or settling their contracts outside of the mechanism. I provide a richer model for

agents’ participation. I show that the only mechanism that satisfies ex-post incentive compatibility

and robustness with respect to agents’ decisions about participation is a posted price mechanism.

Second, I generalize the notion of biasedness. I consider settlement mechanisms for which, from

an ex-ante point of view, the payoff of each agent is equal to his payoff from cash settlement with

some known price. This property ensures that an ex-ante payoff of agents is proportional to their

net number of contracts. This is relevant here because CDS contracts are homogeneous. I show

that the characterization results hold if one replaces biasedness with this property.

The results of this paper mean that there is no robust and unbiased mechanism to settle CDS

contracts whose outcome depends on the private information of agents. Therefore, all robust settle-

ments should only depend on the publicly available information. Hence, the designer must employ

other ways to generate a price for the defaulted bonds to be used for the settlement of the CDS

contracts. One possible way is using the price of a comparable asset to find a valuation for the

defaulted bond.
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2 Related literature

My study contributes more broadly to the market design literature and, more specifically, to the

nascent literature on the valuation and settlement of CDS contracts. The studies that examine the

CDS contract settlement mechanism focus exclusively on the properties and modifications of the

current mechanism in use. Gupta and Sundaram (2013) observe that there is a price bias for auc-

tions held in the 2008-2012 period. Similarly, Helwege et al. (2009) compare the mechanism price

to the pre- and post-auction prices of the defaulted bond in a sample of early ten auctions and

find no mispricing in their sample. Coudert and Gex (2010) study the settlement procedure for a

number of cases. Their empirical study also reveals a price bias in the auction. Du and Zhu (2015)

develop a theoretical model to explain why the current auction misprices the defaulted bond and

proposes a double auction to achieve efficiency. They consider the case in which a continuum of

agents could have different valuations for the defaulted bond. Therefore, in their model, allocative

efficiency becomes relevant. Motivated by the observation that the number of participants in CDS

auctions rarely exceeds 155, I consider a framework in which there is small number of participants

with private signals about the common value of the defaulted bond. Consequently, strategic be-

havior plays a much more crucial role in my analysis. Chernove et al. (2013) document the same

price bias as do Gupta and Sundaram (2013). Taking into account multiple financial frictions in

the market, they solve for equilibria of the two-stage auction, assuming that agents have no private

information about the value of the defaulted bond. Assuming no private information about the

value of the defaulted bond, they use a CDS auction to discover a price of the defaulted bond. My

paper is the only one that takes a mechanism design approach. I complement the existing literature

5See http://www.creditfixings.com/CreditEventAuctions/fixings.jsp
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by adopting an axiomatic mechanism design approach to characterize the settlement mechanisms

that satisfy the key robustness properties described earlier.

A second contribution of my paper is a new notion of the core of a game of incomplete in-

formation. The notion of unravel-proofness under incomplete information can be interpreted as a

stability condition. The set of mechanisms that satisfy the property can be interpreted as the core

of the underlying game of incomplete information. The notion of core and stability has been gen-

eralized to games of incomplete information in Wilson (1978), Dutta and Vohra (2005), Myerson

(2007), Serrano and Vohra (2007), Yenmez (2013), Liu et al. (2014), and Pomatto (2015). These

notions differ by the way that agents communicate their private signals. Wilson (1978) considers

two extreme cases: (i) all agents in a block share their private information completely (fine core)

(ii) agents share no private information. Dutta and Vohra (2005) and Myerson (2007) consider the

blocks for which the decision to join the block comes from a Bayesian Nash Equilibrium. Liu et

al. (2014) study the implications of common knowledge of stability of a two-sided match when

one side of the market has incomplete information about the other side.

In my notion a block exist if the exit game has an equilibrium in which a subset of agents

with a positive measure subset of types participate in the blocking mechanism. The exist game,

described in the paper, resembles the voting game described in Holmström and Myerson (1983).

In their setup, all agents participate in the voting game and they ask if a mechanism can be pareto

improved through reallocation by an unanimously elected alternative mechanism.

My notion of unravel-proofness differs in two important ways from notions of the core intro-

duced in the literature. First, in the prior notions of the core, the decision to join the blocking

mechanism comes after the realization of the grand mechanism’s allocation. Therefore, the block-

ing designer or members of the blocking coalition take the allocation of the grand mechanism as
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exogenous. Because, in my framework, agents have quasilinear preferences and heterogeneous

beliefs about a common value, the no-trade theorem implies that no subset of agents should agree

to a reallocation once the contracts are settled; see Milgrom and Stokey (1982). Therefore, if

one applies the notion of stability in the literature to the environment considered in this paper,

all settlements would be stable and also durable, as defined in Holmström and Myerson (1983).

In my notion of the block, agents simultaneously choose whether they want to participate in the

blocking mechanism. The second difference is that, in my setup, the blocking mechanism and the

settlement mechanism can coexist. This is because an agent may choose to partially participate

in the settlement mechanism. None of the models of stability in the literature accommodates this

possibility.

My paper is also related to a body of literature that studies the incentives of agents to participate

in some centralized clearinghouses. Ashlagi and Roth (2013) studies the incentives of hospitals to

partially enroll their patient-donor pairs in Kidney Exchange. Ekmekci and Yenmez (2015) studies

the incentives of schools to participate in the centralized school choice clearinghouse. Sonmez and

Unver (2015) proposes an incentive scheme in the Kidney Exchange. There are two main differ-

ences between my paper and this these papers, first, unlike kidney exchange, monetary transfer

is possible in the CDS settlement clearinghouse, and second participation to the CDS settlement

mechanism is the decision of (at least) two agents.

3 Leading Example

I illustrate how the CDS contracts work and the main theoretical contribution of the paper with the

following example. The reader may omit reading this example and start from Section 4.
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Agent 1

Agent 3 Agent 2

10 10

Case 1

Agent 1

Agent 2

10

Case 2

Figure 1: an arrow from agent i to j means that they have contracts and that i is a protection seller.

Agent 1

Agent 3

10

Case 3

Leading Example: There are three agents, 1, 2, and 3. There is a bond with a face value of

100. Assume that the issuer of the bond has defaulted and that the value of the defaulted bond is

v(s), where s = (s1, s2, s3) is the agents’ signal profile. Agent 1 is a protection seller and Agents 2

and 3 are protection buyers. Agents 2 and 3 each may have 10 CDS contracts with the protection

seller. These homogeneous CDS contracts are on the bond. There are three possible cases (see

Figure 1):

1. Agents 2 and 3 have 10 CDS contracts with Agent 1.

2. Agent 2 has 10 CDS contracts with Agent 1, and Agent 3 has no CDS contracts.

3. Agent 3 has 10 CDS contracts with Agent 1, and Agent 2 has no CDS contracts.

Denote the number of CDS contracts that agent i has in case j by n j
i . Assume n j

i > 0 if agent i is

a protection buyer in case j, n j
i < 0 if he is a protection seller, and n j

i = 0 if he does not have any

CDS contract. For example, n1
1 = −20 and n1

2 = n1
3 = 10.
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These contracts are settled by either physical settlement or cash settlement. In the case of

physical settlement, the protection buyer hands the defaulted bond to the protection seller and, in

return, receives $100. Therefore, the protection buyer’s payoff from the physical settlement of one

contract is 100−v(s), and the protection seller’s payoff from the physical settlement is −(100−v(s)).

In the case of cash settlement, the protection seller pays the loss to the protection buyer(s) in the

form of monetary transfer. Therefore, if p is a price for the defaulted bond, the protection seller

pays 100 − p to the protection buyer to settle one CDS contract. If q j
i is the number of agent i’s

contracts that are settled through cash settlement, and p j
i is the cash settlement price, agent i’s

payoff is as follows:

ui((n
j
i − q j

i )(100 − v(s)) + q j
i (100 − p j

i )).

where ui : R → R is agent i’s utility function. Agents’ signals about the value of the defaulted

bond is either 0 or 1, si ∈ {0, 1} for i ∈ {1, 2, 3}. Signals are independently distributed, and si = 1

with probability 1
2 . The value of the defaulted bond conditional on signals is as follows:

v(s) = 21(2s1 + s2 + s3).

Agents 1 and 2 each possess nine defaulted bonds. Therefore, some of the contracts must be

settled through cash settlement.

I describe a direct settlement mechanism. A description of a mechanism is a price and a quan-

tity function for each agent in each network. The quantity is the number of CDS contracts that are

settled by cash settlement, and the price is the cash settlement price. Let q j
i and p j

i denote the quan-
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tity of cash settlement and cash settlement price for agent i in network j, respectively. Consider

the following settlement mechanism:

q1
1(s) = −6 + 4s1 − s2 − s3, p1

1(s) = 28 − 28s1 + 8s2 + 8s3 + 20s1s2 + 20s1s3 +
13
4

s2s3 −
27
4

s1s2s3

q1
2(s) = 3 − 2s1 + s2, p1

2(s) = 28 − 28s1 −
7
4

s2 +
133
4

s1s2 + 21s3,

q1
3(s) = 3 − 2s1 + s3, p1

3(s) = 28 − 28s1 −
7
4

s3 +
133
4

s1s3 + 21s2,

q2
1(s) = −4, q2

2(s) = 4, q2
3(s) = 0, p2

1(s) = p2
2(s) = 42,

q3
1(s) = −3.5, q3

3(s) = 3.5, q3
2(s) = 42, p3

1(s) = p3
3(s) = 42.

These prices and quantities guarantee ex-post incentive compatibility. Moreover, the following

holds:

∀ s ∈ {0, 1}3 and ∀ j ∈ {1, 2, 3} :
3∑

i=1

q j
i (s) = 0, (1)

∀ s ∈ {0, 1}3 and ∀ j ∈ {1, 2, 3} :
3∑

j=1

q j
i (s)(100 − p j

i (s)) = 0. (2)

Equation (1) is a market-clearing condition. Note that q j
i (100 − p j

i ) is the cash transfer that agent

i receives in network j; therefore, equation (2) is the budget balanced condition. In addition to

these properties, if U j
i (s) is agent i’s payoff from the settlement mechanism in case j, the following

holds:

Es[q
j
i (s)(100 − p j

i (s))] = Es[n
j
i (100 − v(s))].
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This condition is called unbiased pricing. This means, from an ex-ante point of view, that all

contracts are settled by physical settlement or by cash settlement, with the price equal to the value

of the defaulted bond.

I study agents’ incentives to participate in the settlement mechanism when an arbitrary group of

agents can form coalitions and settle some of their contracts with an arbitrary blocking mechanism.

As an illustration, consider the settlement mechanism that I described above. I consider a block by

Agents 1 and 3 (see Figure 2). In this blocking mechanism, seven contracts are settled by physical

settlement, and three contracts are settled by cash settlement. The cash settlement prices for Agents

1 and 3 are 30 and 38.5, respectively. The following inequalities hold (see the appendix for the

calculations.):

Es2[U
1
1(0, s2, 0)] ≤ Es2[U

e
1(0, s2, 0)], Es2[U

1
1(1, s2, 0)] ≥ Es3[U

e
1(1, s2, 0)],

Es2[U
1
3(0, s2, 0)] ≤ Es2[U

e
3(0, s2, 0)], Es2[U

1
3(0, s2, 1)] ≥ Es2[U

e
3(0, s2, 1)].

(3)

Therefore, there exists a Bayesian Nash Equilibrium in which Agents 1 and 3 choose the exit option

when their signals are 0. In this blocking, when Agents 1 and 3 visit the blocking mechanism, i.e.,

when (s1, s3) = (0, 0), the blocking designer’s payoff is 3(38.5 − 30), which is positive. Given

this model of agents’ participation, in this paper, I answer the following two questions. First,

which settlement mechanism ensures that all agents will participate with all of their contracts and

is unbiased and budget balanced? Second, if we allow agents to settle a number of their contracts

with some blocking mechanisms and take into account agents’ payoff from blocking mechanisms,

which settlement mechanism is unbiased and budget balanced? As I will show, the answer to both

questions is a mechanism where the designer sets constant price and quantity.
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Agent 2
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Figure 2

Agent 1

Agent 3

10

Blocking Mechanism

4 Model

Without loss of generality, I assume the face value of the defaulted bond is 100. Each CDS

contract has a protection buyer and a protection seller. In the case of a default, the protection

buyer should be compensated for the loss on the reference asset (bond) by the protection seller.

These CDS contracts are homogeneous, and each corresponds to one bond. I assume that the

default has happened, and I consider the contract settlement problem. Let K be the set of all

agents. These agents may have CDS contracts on the bond between each other. A contract matrix

specifies the number of contracts of a pair of agents. In a contract matrix N = [ni, j], agents i, j ∈ K

have net ni, j contracts. Assume ni, j > 0 if j is a protection seller and i is a protection buyer, ni, j = 0

if they do not have any CDS contracts, and ni, j < 0 if i is the protection buyer.6 Throughout this

paper, I use the words network and contract matrix interchangeably. Each agent has a number of

defaulted bonds; assume agent i has bi ≥ 0 defaulted bonds. Each agent has a private signal about

the value of the defaulted bond. Agent i’s signal is drawn from S i = [0, 1]. Given s ∈ [0, 1]k, a

6Note that ni, j + n j,i = 0.
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profile of agents’ signals, the expected value of the defaulted bond is v(s). I assume v(s) is non-

decreasing and continuous in agents’ signals. If A ⊆ K is a subset of agents, set S A =
∏

i∈A S i.

Given B ⊆ A ⊆ K and s ∈ S A, let πB(s) ∈ S B be the projection of s on its B elements. For economy

of exposition, I use the notation s−i and s−i, j for πK\{i}(s) and πK\{i, j}(s) respectively.

CDS contracts are settled by either physical settlement or by cash settlement. In the case

of physical settlement, the protection buyer hands in the defaulted bond to the protection seller

and, in return, receives 100. Therefore, the protection buyer’s payoff from the physical settlement

of one contract is 100 − v(s), and the protection seller’s payoff from the physical settlement is

−(100 − v(s). In the case of cash settlement, the protection seller pays the loss to the protection

buyers. Therefore, if pi is the price of the defaulted bond, and q j
i is the number of agent i’s contracts

that are settled through cash settlement, agent’s payoff at signal profile s ∈ S K is as follows:7

ui(biv(s) + (ni − qi)(100 − v(s)) + qi(100 − pi)).

where ui : R → R is agent i’s utility function. The utility function, ui(.), is strictly increasing and

is normalized such that ui(0) = 0. Note that one can rewrite the payoff of agent i as follows:

ui(biv(s) + ni(100 − v(s)) + qi(v(s) − pi)).

where the first term inside ui(.) is his payoff if all of the contracts are physically settled or if the

price is equal to the value of the defaulted bond. The second term can be thought of as the bias.

In general, a settlement mechanism is a reallocation of the defaulted bonds and monetary transfer.

7Agent i gives/receives ni − qi of his defaulted bonds and receives/pays the face value of the bond; in addition, he
receives/pays his loss for the rest of the contracts.
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Note that combinations of physical settlement and cash settlement can generate any allocation of

the defaulted bonds and monetary transfer.

Let K(N) be the set of agents who have some CDS contracts in network N and ni be the net

number of contracts of agent i ∈ K, formally,

K(N) = {i ∈ K|ni, j , 0 for some j ∈ K} and ni =
∑

j∈K(N)

ni, j.

In this environment, a direct settlement mechanism takes the network and the profile of re-

ported signals as inputs and returns a cash settlement quantity and a cash settlement price for each

agent. A direct settlement mechanism consists of functions qN
i : S K → R and pN

i : S K → R for

all agents i ∈ K and network N. The cash settlement quantity is qN
i , and pN

i is the cash settlement

price for agent i in network N. Let pN = (pN
i (.))i∈K and qN = (qN

i (.))i∈K be the profile of price and

quantity functions when the network is N and P = (pN) and Q = (qN) be the price and quantity

profiles. Note that I allow agents to have different cash settlement prices; in other words, I am

not restricting the case to pN
i = pN

j for all i, j ∈ K. Therefore, any reallocation of money and

the defaulted bonds can be generated by cash settlement and physical settlement. The number of

defaulted bonds that are used for physical settlement must clear itself, formally, for all networks N

and s ∈ S K: ∑
i∈K

(ni − qN
i (s)) = 0.

This is equivalent to
∑

i∈K qN
i (s) = 0. This mechanism is ex-post incentive compatible if, for all
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networks N, i ∈ K, and s = (si, s−i) & s′ = (s′i , s−i) ∈ S K , the following holds:

ui(biv(s) + (ni − qN
i (s))(100 − v(s)) + qN

i (s)(100 − pN
i (s))) ≥

ui(biv(s) + (ni − qN
i (s))(100 − v(s)) + qN

i (s′)(100 − pN
i (s′))). (4)

This means that agent i with private information si should not find it profitable to misreport his

signal as s′i , when all other agents’ signal profiles are s−i. Since the utility function is increasing,

inequality (5) is equivalent to

(ni − qN
i (s))(100 − v(s)) + qN

i (s)(100 − pN
i (s)) ≥

(ni − qN
i (s))(100 − v(s)) + qN

i (s′)(100 − pN
i (s′)).

I use the notation (P,Q,U) for a settlement mechanism with price, quantity, and payoff func-

tions pN
i (.), qN

i (.), and UN
i (.) for all networks N and agents i ∈ K. Agent i’s payoff in the network

N when all agents are reporting their signals truthfully is as follows:

UN
i (s) = ui(biv(s) + ni(100 − v(s)) + qN

i (s)(v(s)) − pN
i (s))).

For economy of exposition, I define ΛN
i (s) = ni(100 − v(s)) + qN

i (s)(v(s)) − pN
i (s)) to be the

risk-neutral payoff of agent i from settling the CDS contracts when the network is N; therefore,

UN
i (s) = ui(biv(s) + ΛN

i (s)).8 Note that the cash settlement part of risk-neutral payoff, qN
i (s)(v(s))−

pN
i (s)), is a monetary transfer to the agent. The mechanism is ex-post budget balanced if, for all

networks, N and s ∈ S K , the equality
∑

i∈K qN
i (s)(100 − pN

i (s)) = 0 holds for all signal profiles s.
8I am not restricting attention to risk-neutral agents.
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Because ni’s sum up to zero, this is equivalent to
∑

i∈K ΛN
i (s) = 0 for all s. It is ex-post weakly

budget balanced if, for all networks, N and s ∈ S K , the inequality
∑

i∈K ΛN
i (s) ≤ 0 holds. It is

ex-ante budget balanced if Eρ[
∑

i∈K ΛN
i (s)] = 0 for all networks N and signal profiles s. I define

ex-ante weakly budget-balanced mechanisms similarly. I restrict attention to ex-post incentive

compatible and ex-ante weakly budget-balanced settlement mechanisms. A mechanism has no

short sell if qi(s) ≤ ni − bi for all i ∈ K and s ∈ S K .

Agents’ prior about the signals is denoted by µ; the probability of observing signal profile s is

µ(s). The designer does not know µ, but she holds a prior ρ about µ. Let κ be the support of the

designer’s belief. Let ρ be the designer’s prior about the agents’ prior, that is, ρ is a probability dis-

tribution over agents’ priors, µ. I use Eρ to refer to the expected value symbol, given the designer’s

information. I maintain the following assumption throughout the paper.

Assumption 4.1. Full Rank Belief: If function x : S → R satisfies Eµ[x(s)] = 0 for almost all µ

in the support of the designer’s belief, then x(s) = 0 for all s ∈ S .

This assumption means that the designer is sufficiently unaware of the agents’ prior. This

assumption is violated if, for example, the designer knew the mean of the agents’ signals. How-

ever, this assumption would be satisfied if the designer believes that the agents’ prior is a small

perturbation of some distribution.

An agent is short selling if he ends up with a net negative number of defaulted bonds after

the settlement, that is: bi < ni − qi. The problem is trivial if the market facilitates short selling,

simply set qN
i (s) = 0 and settle all contracts with physical settlement. However, short selling in

this market is generally difficult or impossible. Therefore, any settlement should satisfy the no

short sell constraint, which is qi ≥ ni − bi for all i ∈ K.
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5 Desired Properties

5.1 Participation

As of 2009 all CDS contracts are pegged to the result of the centralized CDS settlement mech-

anism. ISDA has argued that such policy ensures certainty, consistency, enhanced transparency,

and liquidity. Even though CDS contracts are hardwired to the outcome of the settlement mech-

anism, if both parties of a CDS contract agree they are allowed to side settle their contracts by a

concerted settlement procedure. Hence, we need a model to understand how agents participate in

the settlement mechanism.9

An agent who does not have any CDS contracts is not obligated to participate in the settlement

mechanism; he participates if there is a positive payoff. This motivates the following definition: A

mechanism is ex-post individually rational for agents without contracts if, for all networks N, all

signal profiles s ∈ S K , all agents i ∈ K that satisfy ni, j = 0 ∀ j ∈ K, the inequality ΛN
i (s) ≥ 0 holds.

It is interim individually rational if the inequality Es−i[U
N
i (s)] ≥ Es−i[u

N
i (biv(s))] holds.

I formally model the participation decision of agents who have CDS contracts. In standard

mechanism design, agents can choose whether to participate in the mechanism. They participate

when they have a non-negative payoff from participating in the mechanism. Participation in this

environment is different for an important reason. Agents with CDS contracts are required to par-

ticipate by default; however, if both parties of a CDS contract agree, they can settle some of their

contracts with another mechanism. In this environment, agents’ outside options are no longer ex-

ogenous; rather, they depend on their signals as well as other agents’ signals. In other words, if

an agent agrees to settle a CDS contract though another mechanism, it reveals information about

9See http://www.isda.org/companies/auctionhardwiring/auctionhardwiring.html
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his own private signal. I do not assume the number of contracts that a pair of agents has is pri-

vate information; rather, agents are legally allowed to not bring a number of their contracts to the

settlement mechanism if all parties of these contracts agree.

All the results of the paper are proven when I only consider side settlements by a pair of agents.

However, to provide a more general model of participation, I consider side settlements by mulitple

pairs of agents. Due to bilateral decisions that groups of agents may make prior to participating

in the mechanism about the number of contracts, the designer may face contract matrices different

from the original network of contracts. When the contract matrix is N, if a group of agents choose

to settle some of their contracts outside of the settlement mechanism, the designer faces a new con-

tract matrix, namely M. In this case, M is a reduction of N. Formally, M = [mi, j] is a reduction of

N = [ni, j] if, for all i, j ∈ K, the inequality |mi, j| ≤ |ni, j| holds. I use the notation M ≺ N, if M is a

reduction of N. Let A be the set of all agents who choose to settle some of their contracts outside

of the settlement mechanism. Note that A = K(M − N) where M − N is a contract matrix in which

agents i and j have mi, j − ni. j contracts.

A blocking mechanism can be viewed as a settlement mechanism when the set of agents is A

and the network of contracts is N − M. The main differences are that it does not have to be budget

balanced and does not have to clear the number of defaulted bonds used. However, the blocking

mechanism must provide the designer with an expected positive surplus. A blocking mechanism

has an important role; it is the process whereby all contracts that were not brought to the settlement

mechanism are settled. I use the notation (P′,Q′,U′) for the blocking mechanism. Let Ue
i be the
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payoff of an agent from joining the blocking mechanism, i.e.,

Ue
i (s) = ui[bivi(s) + Λ′i(s) + ΛM

i (s)] (5)

where Λ′i(s) = (ni − mi − q′i(s))v(s) + q′i(s)(100 − p′i(s)). I present two models for the blocking: (i)

complete information case and (ii) incomplete information case.

5.1.1 Complete Information Case

Agents in A for a subset of their types block the settlement mechanism and reduce the network

from N to M if there exists a blocking mechanism (P′,Q′,U′) and prescribed non-zero measure

subset of types S ′i ⊆ S i for agents in A, such that the following holds:

1. For all i ∈ A and sA ∈
∏

i∈A S i, the following inequality holds:

Es−A[UN
i (sA, s−A))] ≤ Es−A[Ue

i (sA, s−A)]. (6)

where Ue
i is agent i’s payoff from joining the blocking mechanism; see equation (5). Agents

in A join the coalition when their types are in the prescribed subset of types. Inequality (6)

means that, if all signals of agents in A are in the prescribed sets, then the expected payoff

of all agents i ∈ A from the settlement mechanism with network N is not larger than an

agent’s total payoff from the blocking mechanism and the payoff from the settlement mecha-

nism with network M. This gives agent i an incentive to join the coalition when all blocking

agents’ signals are in the prescribed sets.
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2. For all sA ∈ S K such that πA\{i}(sA) ∈
∏

j∈A\{i} S ′j and π{i}(s) ∈ S i \ S ′i , the following inequality

holds:

Es−A[UN
i (sA, s−A))] ≥ Es−A[Ue

i (sA, s−A)]. (7)

Inequality (7) means that if agent i’s signal is not in S ′i , and the signal of all other agents in

A are in the prescribed sets, then agent i’s expected payoff from the settlement mechanism

with network N is not smaller than the agent’s total payoff from the blocking mechanism and

his payoff from the settlement mechanism with network M.

3. The blocking designer has a positive payoff. Formally, the following inequality must hold:

E[−
∑
i∈A

Λ′i(s)|πA(s) ∈ S A] > 0. (8)

Inequalities (6) and (7) mean that agents in A, for a subset of their private signals, may form a

coalition and settle some of their contracts with the blocking mechanism. Agents in the coalition,

A, choose between (PN ,QN ,UN) and (PM,QM,UM) plus the blocking mechanism. Consider a

game in which agents in A choose whether to exit the mechanism. The block is formed only

when all agents choose to exit. If agents choose the strategy of exiting only if the type is in the

prescribed set, then these inequalities guarantee that agent i ∈ A, upon learning the types of all

agents in A \ {i}, would not regret his participation decision. The mechanism is ex-post unraveled

if blocking exists.

To understand inequality (8), think of the blocking designer as an agent. Note that, in general,

the blocking mechanism does not have to balance the budget or clear the number of defaulted

bonds that are used for physical settlement. Because there may be a surplus or a deficit in (i)
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monetary transfer and (ii) the number of defaulted bonds, the blocking designer’s payoff may not

be zero. Inequality (8) means that the blocking designer’s expected payoff, conditional on the

event that the block is formed, must be positive. The first term that appears in the summation is

the blocking designer’s payoff from defaulted bonds, and the second term is his payoff from the

monetary transfer. The strict inequality (8) guarantees that no mechanism is blocked by the null

mechanism.10

A settlement mechanism (P,Q,U) is ex-post unravel-proof if, for any pair of contract matrices

M and N and subset of agents A ⊆ K, where agents in A reduced N to M, agents in A cannot form

a block for a subset of their types. A settlement mechanism is weakly ex-post unravel-proof if

there is no pair of agents who could form a block. One can strengthen the notion of unravel proof

to consider blocks by more than two agents. However, the results of the paper are correct in either

case.

The following proposition ensures that the set of unravel-proof mechanisms is not empty.

Proposition 5.1. A settlement mechanism (P,Q,U) that settles all contracts with cash settlement

with a constant price, i.e., pN
i = pi and qN

i = ni is ex-post unravel-proof. Moreover, if agents are

risk neutral and the following inequality holds, then there is no ex-post unraveling in which agents

in A reduce the network from N to M.

∑
i∈A

Es−A[ΛN
i (sA, s−A)] ≥

∑
i∈A

Es−A[ΛM
i (sA, s−A)] for almost all sA ∈ S A (9)

The inequality means that the sum of agents’ risk-neutral expected payoffs that are in A is

greater when the network is N compared to that of network M.

10A mechanism where all the quantities are equal to zero.
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Proof. I prove the second part of the proposition first. Assume that there is a blocking mechanism

(P′,Q′,U′). Note that, when agents are risk neutral, inequality (6) is equivalent to:

∀i ∈ A and sA ∈
∏
i∈A

S ′i , Es−A[ΛN
i (sA, s−A)] ≤ Es−A[ΛM

i (sA, s−A) + Λ′i(sA, s−A)]. (10)

If one adds this for all i ∈ A and takes expectations over all sA ∈
∏

S ′i , then the following holds:

∑
i∈A

E[ΛN
i (s)|πA(s) ∈

∏
i∈A

S ′i] ≤ E[ΛM
i (s) + Λ′i(s)|πA(s) ∈

∏
i∈A

S ′i] (11)

Inequalities (11) and (8) imply the following inequality:

∑
i∈A

E[ΛN
i (s)|πA(s) ∈

∏
i∈A

S ′i] < E[ΛM
i (s)|πA(s) ∈

∏
i∈A

S ′i] (12)

Therefore, for some s ∈ S K ,
∑

i∈A ΛN
i (s) <

∑
i∈A ΛM

i (s). This contradicts the assumption in the

proposition.

I prove the first part of the proposition. When agents are not risk neutral, then inequality (6)

does not in general imply (16). This is because agents may share the risk through the blocking

mechanism. However, when the mechanism sets a constant price, the outcome of the mechanism

becomes risk-free. Because agents are weakly risk averse, equation (6) implies equation (16). The

rest of the argument follows as presented above. �

The contribution of this paper is that I consider the possibility that the outside option of an

agent depends on the set of other agents who exercise their outside option. This is because the

agents who choose to ‘exit’ may decide to band together and settle some of their contracts among
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themselves through a different mechanism. Such a possibility was first considered in the literature

on cooperative games and culminated in the notion of the core. The notion of unraveling presented

in this paper is related to the block in matching theory and the block in cooperative game theory.

The difference between blocking in matching theory and the notion of unraveling is that, in my

setup, the network is predetermined and only price and quantity of cash settlement are chosen

through a mechanism. Unravel-proofness is a property of a mechanism that is defined over net-

works, but stability is defined over a possible match. Unlike similar concepts in corporate game

theory, the notion of unravel-proofness can be naturally extended to environments with incomplete

information. A generalization of the unravel-proofness notion to environments with incomplete

information is presented in the following section.

5.1.2 Incomplete Information Case

I extend the blocking mechanism definition to environments in which agents who participate in

a block do not know each other’s signals but share a prior. When agents make decisions about

whether to join the blocking mechanism, they update their belief upon observing other agents’

decisions. An agent’s choice to participate in a blocking mechanism reveals information about his

private signal. Other agents take this into account when making their decisions. The notion of

interim blocking is defined as follows:

For all i ∈ A, subsets ∅ , S ′i ⊆ S i are called the prescribed sets. Let event Ei be defined as

follows:

Ei = {s ∈ S K |πA\{i}(s) ∈
∏

j∈A\{i}

S ′j , π{i}(s) ∈ S i \ S ′i}.
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Define event E as

E = {s ∈ S K |πA(s) ∈
∏
j∈A

S ′j}.

Note that Ei is the event that the private signals of all agents in A, except for agent i, are in the

prescribed sets. Event E is the event that the private signals of all agents in A are in the prescribed

sets. The inequalities in the blocking mechanism definition, inequalities (6), (7), and (8), change

to the following inequalities:

Es−i[U
N
i (s)|E] ≤ Es−i[U

e
i |E], (13)

Es−i[U
N
i (s)|Ei] ≥ Es−i[u

e
i |E

i]. (14)

E[−
∑
i∈A

Λ′i(s))|E] > 0. (15)

To interpret inequalities (13) and (14), imagine a game whose players are agents in A. These

agents, after observing their private signals, choose whether to participate in the blocking mech-

anism. If all of these agents decide to participate in the blocking mechanism, their payoff is that

of the blocking mechanism plus that of the settlement mechanism when the network is M. If

some decide not to participate in the blocking mechanism, their payoff is only that of the settle-

ment mechanism when the network is N. The mechanism is unraveled if this game has a Bayesian

Nash Equilibrium in which agents in A, for a subset of their types, choose the blocking mechanism.

With the new definition of a block, unravel-proofness is naturally redefined. A mechanism is

interim unravel-proofness if there is no pair of agents who could form an interim block. One can

strengthen the notion of unravel-proofness to consider blocks by more than two agents. However,

the results of the paper are correct in either case.

26



Proposition 5.2. A settlement mechanism (P,Q,U) that settles all contracts with cash settlement

with a constant price, i.e., pN
i = pi and qN

i = ni is interim unravel-proof. Moreover, if agents are

risk neutral and the following inequality holds, then there is no interim unraveling in which agents

in A reduce the network from N to M.

∑
i∈A

Es−A[ΛN
i (sA, s−A)] ≥

∑
i∈A

Es−AΛM
i (sA, s−A)] for almost all sA ∈ S A (16)

Proof. The proof is an adaptation of the proof of proposition 5.1 and, hence, is omitted. �

5.2 Unbiased Mechanisms

As I mentioned in Section 2, several authors have criticized the current settlement mechanism for

underpricing the underlying bond. The current mechanism in use sets a biased price, which results

in a difference between physical settlement and cash settlement. Since at the time of contracting a

CDS, it is not known if the CDS contract will be settled by cash settlement or physical settlement,

the biased pricing results in uncertainty and hence efficiency loss. I look for mechanisms that over-

come this issue. Due to the information rent, based on agents’ private information about the value

of the defaulted bond, ex-post correct pricing is not possible, unless all contracts are physically

settled; I discussed in Section 1 that this is not possible. However, I consider a weaker condition; I

look for mechanisms that are unbiased from the ex-ante perspective. I define unbiasedness in two

ways.
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5.2.1 Weakly-Unbiased

A weakly-unbiased mechanism is one that does not misprice the defaulted bond in expectation.

Formally, mechanism (P,Q,U) is weakly unbiased if, for all networks N and agents i ∈ K:

E[ΛN
i (s)] = [ni(100 − v(s))]. (17)

Equation (17) means that, from an ex-ante perspective, the agents’ risk-neutral payoff from the

settlement mechanism is the same as their payoff from physical settlement of all contracts or cash

settlement with the price equal to the value of the defaulted bond. Note that, because both price

and quantity may depend on the signal profile, this condition is not equivalent to E[pN
i (s)] = E[v].

Observation 5.1. If E[ΛN
i (s)] = ni(100 − E[v]), then Eρ[

∑
i∈K ΛN

i (s)] = (
∑

i∈K ni)(100 − E[v]) = 0.

Therefore, a mechanism is weakly ex-ante budget balanced if it is weakly unbiased.

5.2.2 Unbiased

If the mechanism is not strategy proof, some agents may settle some of their contracts outside of the

settlement mechanism. Therefore, agents’ total payoff is not only the payoff from the settlement

mechanism; it should also include the payoff from the blocking mechanisms. A mechanism is

unbiased if the agents’ total payoff, including the payoff from the settlement mechanism and the

blocking mechanisms, from an ax-ante perspective, is equal to the agents’ payoff from physical

settlement of all contracts or cash settlement with the correct price.

To formally define unbiased mechanisms, I first define the notion participation-choice. For
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some networks, a pair of agents may find it profitable to settle some of their contracts with a

blocking mechanism. Using the participation model introduced in secion 5.1 , I allow agents to

take these actions; a mechanism is unbiased if it is weakly unbiased, regardless of these actions.

The results of the paper are valid if one considers only coalitions by pair of agents in the definiction

of unbisedness. However, to provide a richer model we consider groups of agents.

Consider an ex-post incentive-compatible settlement mechanism, namely (P,Q,U), which may

not be unravel-proof. Let Ω be the set of all possible networks,. We allow for several coalitions to

coexist, let PN be the set of coalitions (blockings) when the true network of contract is N. Hence,

a participation-choice is a collection of sets (PN)N∈Ω whereby elements of PN capture the sub-

networks that join a coalition if the true network of contract is N. For all networks N, each element

of c ∈ PN has a network cN ≺ N, a subset of agents cA ⊆ K(cN), a set of type profiles S c
i ⊆ S i for

all i ∈ cA, and a blocking mechanism for the cN network, (P̂c, Q̂c, Ûc). Let ct =
∏

i∈cA
S c

i for all

i ∈ cA. This participation-choice should satisfy three conditions:

1. Let AN(s) be the set of all coalitions that are formed when the signal profile is s ∈ S K .

Formally,

AN(s) = {c ∈ AN |πcA(s) ∈ ct}.

It must be that N̄(s) =
∑

c∈AN (s) cN ≺ N. This means that the network that is left after

coalitions are formed is a reduction of N.

2. Agent i’s payoff from this participation-choice when the network is N is ui(Λ
PN
i (s)) where:

Λ
PN
i (s) =

∑
c∈AN (s):i∈cA

Λ̂c
i (s) + Λ

N−N̄(s)
i (s).
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Joining the coalitions for the prescribed types must be a Bayesian Nash Equilibrium. For-

mally, for all networks N and c ∈ AN , let events Ec and Ei
c be defined as:

Ec = {s ∈ S K |πAc(s) ∈
∏

j∈K(cN )

S c
j},

Ei
c = {s ∈ S K |πAc(s) ∈

∏
j∈K(cN )\{i}

S c
j , π{i}(s) ∈ S i \ S c

i }.

For all i ∈ cA, the following inequalities should hold:

Es−i[u
PN
i (s)|Ec] ≥ Es−i[u

PN\{c}
i (s)|Ec],

Es−i[u
PN
i (s)|Ei

c] ≤ Es−i[u
PN\{c}
i (s)|Ei

c].

3. Given a coalition c ∈ AN , when the signal profile is s ∈ S K , agent i ∈ K(cN) enters the coali-

tion c if πcA(s) ∈ S ct
i . The blocking designer’s expected payoff from the blocking mechanism

should be positive, conditional on the event that all agents in cA join the blocking mecha-

nism. This is similar to inequality (15), which ensures that the blocking mechanisms are

self-sustaining.

Consider a participation-choice for each agents’ prior µ. The mechanism is unbiased if, for all

networks N, all agents i ∈ K, and all participation-choices, the following holds:

Eρ[Λ
PN
i (s)] = Eρ[ni(100 − v(s))]. (18)

This condition indicates that, from an ex-ante perspective, agent i’s total payoff from the blocking
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mechanism and the settlement mechanism for all possible participation-choices is equal to the

agent’s payoff from physical settlement of all contracts. Note that, because I allow some contracts

to be settled outside of the settlement mechanism, the notion of budget balancedness must be

modified. The mechanism is weakly budget balanced regardless of agents’ participation-choice if,

for all networks N and all participation-choices, the following holds:

Eρ[
∑

i∈K(N)

Λ
N−N̄(s)
i (s)] ≤ 0.

5.3 Robustness With Respect to Network

The current mechanism that is in use takes only the net number of contracts as an input and not the

details of the network of contracts. The rationale for this property is the lowering of the systemic

risk and transaction costs. To elaborate, consider the following example: Agent 1 has sold a

number of CDSs to Agent 2, and Agent 2 has sold the same amount of CDSs to Agent 3. If

Agent 1 is unable to settle these contracts with Agent 2, it would harm all agents in the chain.

To get around this issue, the clearinghouse treats Agent 2 as an agent without a CDS contract.

This also results in fewer transactions and, hence, reduces the transaction cost. This motivates

the property of robust with respect to network. Here is the formal definition: A mechanism

is robust with respect to the network if, for all pairs of networks M = [mi, j] and N = [ni, j] that

satisfy
∑

j∈K mi, j =
∑

j∈K ni, j for all i ∈ K, the following equality holds: ∀i ∈ K, qN
i (s) = qM

i (s) and

pN
i (s) = pM

j (s).
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6 Results

I provided a model of participation when groups of agents can join the blocking mechanism, how-

ever, all the results of papers are proven when only a pair of agents engage in side settlement.

I look for mechanisms that satisfy a combination of properties that I have introduced in the

previous section. Before presenting the characterization results, I introduce a class of mechanisms

called pooling-sepreable mechanisms and posted-price mechanisms.

A pooling-seprable mechanism settles CDS contracts that are between pair of agents separately.

The prices and quantities that a pooling-sepreable mechanism sets to settle CDS contracts between

a pair of agents does not depend on the two agents’ reported signals. Also, the risk neutral pay-off

of agents must satisfy an additive property, that is, given a pair of networks N and M in which

no pair of agents have contracts in both networks, ΛM+N
i (s) = ΛN

i (s) + ΛM
i (s), where M + N is

a network in which agents i and j have ni, j + mi, j contracts. Formally, a settlement mechanism is

pooling-seprable if, for each pair of agents i and j and number of contracts n, there exists a quantity

and price functions qn
i, j : S K\{i, j} → R and pn

i, j : S K\{i, j} → R satisfying qn
i, j(s−i, j) + q−n

j,i (s−i, j) = 0 and

pn
i, j(s−i, j) = p−n

j,i (s−i, j) for all s−i, j ∈ S K\{i, j}, such that, for all i ∈ K, network N and s ∈
∏

i∈K(0, 1) :

ΛN
i (s) =

∑
j∈K

ni, j(100 − v(s)) + qni, j

i, j (s−i, j)(v(s) − pni, j

i, j (s−i, j)) (19)

Note that the term inside the summation is the risk-neutral payoff of agent i in a network in which

agent i has only ni, j contracts with agent j, and price and quantities are pni, j

i, j (s−i, j) and qni, j

i, j (s−i, j)

respectively. The pooling-separable mechanisms can be characterized by the prices and quantities

that the mechanism sets when only two agents have contracts with each other. Note that a pooling-

32



seprable mechanism is weakly unbiased if and only if

E[qn
i, j(s−i, j)(v(s) − pn

i, j(s−i, j))] = 0 ∀i, j ∈ K, n ∈ Z. (20)

Proposition 6.1. Any settlement mechanism that is pooling-seprable and satisfies equation (20)

is weakly unbiased and ex-post individually rational for agents without contracts. Moreover, if

agents are risk neutral, the settlement mechanism is unravel-proof (both complete information and

incomplete information).

Proof. The only non-trivial property is unravel-proofness when agents are risk neutral. Note that

mechanisms in this class satisfy the sufficient conditions in propositions 5.1 and 5.2. Therefore,

they are unravel-proof. �

A pooling-seprable settlement mechanism (P,Q,U) is a posted price mechanism if the price

and quantity functions qn
i, j(.) and pn

i, j(.) do not depend on the reported signals or agents i and j.

That is, for all s−i, j ∈ S K\{i, j}, qn
i, j(s−i, j) = qn and pn

i, j(s−i, j) = p for some constants p and qn
i, j. A

posted price mechanism has a fair price if the price is equal to the ex-ante value of the defaulted

bond, conditional on the designer’s information p = Eρ[v].

Observation 6.1. A posted-price mechanism that settles all contracts with cash settlement is

unravel-proof, unbiased, and robust with respect to network.

6.1 Characterizations

Theorem 6.2. If (P,Q,U) is a settlement mechanism that is full information unravel-proof, weakly

unbiased, and robust with respect to network, and ex-post individually rational for agents without
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contracts, then almost certainly it is a posted-price mechanism with a fair price.

Proof. A sketch of the proof is presented; for the complete proof, see the appendix. Proof is by

induction. First, I establish the case in which there are only two agents. To prove the inductive

step, I use the following lemma.

Lemma 6.3. Consider the assumptions and the setup in proposition 5.1, if the settlement mecha-

nism is pooling-seprable when the network is M, equation (19) holds for network M, then almost

certainly for all s ∈ S K: ∑
i∈A

ΛN
i (s) =

∑
i∈A

ΛM
i (s).

This lemma connects the mechanism in a network to its reductions. Since we only consider

side settlments by two agents, we use lemma 6.3 when |A| = 2. To explain how this lemma is

applied in the proof, I provide an example.

Consider the case of three agents {i, j, k}, where k has one contract with i, and i has one contract

with j (see Figure 4); call this network of contracts N. Let M1 be a network where agent k has one

contract with agent i and M2 be a network where agent i has one contract with agent j (see Figure

4). Because the result is true for two agents, I can apply the lemma 6.3 for two pairs of networks N

& M1 and N & M2. Also, the mechanism is budget balanced when the network is N, hence I have:

ΛN
i (s) + ΛN

j (s) = Λ
M1
i (s), ΛN

i (s) + ΛN
k (s) = Λ

M2
i (s) and ΛN

i (s) + ΛN
j (s) + ΛN

k (s) = 0 (21)

Therefore,
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Network M2

ΛN
i (s) = Λ

M1
i (s) + Λ

M2
i (s), ΛN

j (s) = −Λ
M2
i (s) and ΛN

k (s) = −Λ
M1
i (s).

This proves the inductive step for this case.

I provide a sketch of the proof of lemma 6.3. Note that
∑

i∈A ni =
∑

i∈A mi, weakly-unbiasedness

implies: ∑
i∈A

Eρ[ΛN
i (s)] =

∑
i∈A

Eρ[ΛM
i (s)]

If the lemma does not not hold, then for some s∗ ∈ S ,

∑
i∈A

ΛN
i (s∗) <

∑
i∈A

ΛM
i (s∗). (22)

Inequality (22) implies that there exists Ti ∈ R, such that

∑
i∈A

Ti < 0 and for all i ∈ A ΛN
i (s∗) = ΛM

i (s∗) + Ti. (23)

I construct a blocking for A. Because the mechanism is a posted price when the network is M,
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si

Payoff

s∗i
Figure 5

Payoff from not jointing the blocking mechanism, network N: ΛN
i (si, s∗−i)

Payoff from joining the blocking: ΛM
i (si, s∗−i) + Λi(si, s∗−i)

Payoff from leftover network plus a constant: ΛM
i (si, s∗−i) + Ti

ΛN
i (s∗) = ΛM

i (s∗) + Ti is linear. Convexity of ΛN
i (si, s∗−i) follows from incentive compatibility of

the mechanism. Because (23) holds, ΛN
i (., s∗

−i) lies above ΛM
i (., s∗

−i) + Ti (see Figure 5). In the

candidate blocking, we want agent i to join the blocking mechanism only when his signal is s∗i .

(Here the set of type is a measure zero set; in the proof, I provide a blocking with a positive measure

of types). Note that the candidate blocking mechanism must be ex-post incentive compatible.

Therefore, all I need to find is a blocking mechanism with payoff Λi such that ΛM
i (., s∗

−i) + Λi(., s∗−i)

is convex and lies weakly below ΛN
i (., s∗

−i) and equal to ΛN
i (., s∗

−i) at s∗i . Intuitively, this can be

done by considering a convex function that lies between ΛN
i (., s∗

−i) and ΛM
i (., s∗

−i) + Ti. The fact that∑
i∈A Ti < 0 guarantees that the blocking mechanism satisfies equation (8). �

The unravel-proofness property in Theorem 1 is the full information notion. The same result

still holds with the imperfect information model.

Theorem 6.4. Under assumption 4.1, if (P,Q,U) is a settlement mechanism that is interim unravel-

proof, robust with respect to network, weakly-unbiased, and interim individually rational for agents
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without contracts, then almost certainly it is a posted-price mechanism with a fair price.

Proof. See the appendix for the proof. �

The motivation for unravel-proofness is that participation in the mechanism ensures liquid-

ity and transparency of the settlement procedure. However, this property can be replaced with a

stronger version of the weak-unbiasedness property, namely, the unbiasedness property.

Theorem 6.5. Under assumption 4.1, if (P,Q,U) is a settlement mechanism that is robust with re-

spect to the network, unbiased, weakly budget balanced regardless of agents’ participation choice,

and interim individually rational for agents without contracts, then almost certainly it is a posted-

price mechanism with a fair price.

Proof. See the appendix for the proof. �

7 Discussion

7.1 Relaxing Robustness with Respect to the Network

Note that, if agents are risk neutral, the class of pooling-seprable mechanisms satisfy all of the

properties that are introduced in this paper, except for robustness with respect to network. I pro-

pose another example where the mechanism is not pooling.

Example 7.1. There are four risk-neutral agents, 1, 2, 3, and 4. Agents 1 and 2 and Agents 3 and

4 have 10 CDS contracts, whereas Agents 1 and 3 are buyers. The expected value of the defaulted
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bond is the sum of the agents’ signals. Price and payoffs are as follows:11

q1(s) = s1 + s2 − s3 − s4 + 3, Λ1(s) =
s2

1

2
+ s1(3 + s2 − s3 − s4) −

s2
2

2
+ s2(3 − s3 + s4)

q2(s) = −s1 + s2 + s3 − s4 − 3, Λ2(s) =
s2

2

2
− s2(3 + s1 − s3 + s4) −

s2
1

2
− s1(3 − s3 − s4)

q3(s) = s4 + s3 − s1 − s2 + 3, Λ3(s) =
s2

3

2
+ s3(3 − s4 + s1 + s2) −

s2
4

2
+ s4(3 − s1 + s2)

q4(s) = s4 − s3 + s1 − s2 − 3, Λ4(s) =
s2

4

2
− s4(3 + s3 − s1 + s2) −

s2
3

2
− s3(3 − s1 + s2)

This mechanism is ex-post incentive compatible, as qi(s) =
∂Λi(s)
∂si

. Agents 1 and 2 as well as Agents

3 and 4 do not have an incentive for side settling, as their payoffs sum to zero; see Propositions

5.1 and 5.2. Consider a network where Agents 1 and 3 are both CDS buyers and have five CDS

contracts with Agents 2 and 4. Agents in this new network have the same net number of contracts

as the original network. If the mechanism is robust with respect to the network, then it should set

the same price and quantity. However, my results show that, if we set the same price and quantity,

then we lose unravel-proofness.

7.2 Selling CDS Contracts

Agents are legally allowed to sell some of their CDS contracts prior to participating in the settle-

ment mechanism. In this section, I explore the possibility that agents trade their contracts before

the settlement mechanism, but after they learn their signals. This motivates a change in the defini-

tion of unravel-proofness to ensure that agents do not have an incentive to take the following two

actions: (i) settling some of their contracts with another mechanism and (ii) selling some of their

11Note that a settlement mechanism can be characterized by risk-neutral payoffs and quantities.
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contracts. I change the definition of network reduction as follows:

Formally, M is a reduction of N if there exists a sequence of networks (Mt = [mt
i, j]i, j∈K)t=τ

t=0 such that

M0 = N, M1, M2,...,Mτ = M and given Mt for 0 ≤ t ≤ τ − 1, Mt+1 satisfies one of the following

two cases:

1. Contract matrix Mt+1 , Mt is such that, for all i, j ∈ K, |mt
i, j| ≥ |m

t+1
i, j | and if mt

i, j , 0, then

mt
i, j and mt+1

i, j have the same sign. In this case, the set of agents who took this action is all

agents i ∈ K such that mt
i, j , mt+1

i, j for some agent j ∈ K.

2. Contract matrix Mt+1 is constructed from Mt by removing some contracts that are between

two agents i ∈ K and j1 ∈ K and adding these contracts to contracts between i and another

agent, j2 ∈ K. It must be that

mt+1
i, j1 + mt+1

i, j2 = mt
i, j1 + mt

i, j2 .

No other contract is removed or added. This is the case where agent j1 buys some of the

contracts that are between j2 and i from agent j2. In this case, agents i, j1 and j2 took an

action.

The definition of unraveling is similar to the previous case. Let A be the set of agents who (poten-

tially) take these actions. These agents block and reduce the network from N to M if there exists

a blocking mechanism that satisfies the inequalities in the definition of blocking.12 The blocking

mechanism has two roles: (i) it is where all contracts that were not brought to the settlement mech-

anism are settled and (ii) it is where agents are compensated for selling their CDS contracts. With
12For the case of complete information, these inequalities are inequality (6), (7), and (8), and, for the case of

incomplete information, they are (13), (14), and (15).
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this modification, unbiasedness and unravel-proofness are naturally redefined.

Theorem 7.1. Given the new definitions, the results of Theorems 6.2, 6.4, and 6.5 still remain true

if one drops the property of robustness, with respect to the network, from the list of properties.

Proof. See the appendix for the proof. �

7.2.1 Ex-ante Uniform Price

I propose a generalization for the unbiased and weakly-unbiased properties. A mechanism is

weakly ex-ante uniform price if, from an ex-ante perspective, CDS contracts have the same pay-

off. Without this property, different contracts will be settled differently, even from an ex-ante

perspective.

Here is a formal definition: A mechanism satisfies weak ex-ante uniform price property if, for

some price function p : S → R, all networks N, and all agents i ∈ K:

Eρ[uN
i (s)] = Eρ[ni(100 − p(s))].

Ex-ante uniform price property is defined naturally. Given a participation-choice for agents’

prior, agent i’s ex-ante payoff is defined as E[uPN
i (s)] for all s ∈ S K . The mechanism is unbiased if,

for all agents i ∈ K, all networks N and all participation plans and some price function p : S → R,

the following holds:

Eρ[u
PN
i (sK(N))] = Eρ[ni(100 − p(s))]. (24)
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Proposition 7.2. Properties of unbiasedness and weakly-unbiasedness can be replaced with ex-

ante uniform price and weakly ex-ante uniform price, respectively, in Theorems 6.2, 6.4, 6.5, and

7.1.

Proof. See the appendix for the proof. �

8 Conclusion

I took a mechanism design approach to address the design of a CDS contract-settlement prob-

lem. The design would have been trivial if short selling were possible because one could settle

all contracts physically. Physical settlement of all contracts would result in an ex-post unbiased-

settlement procedure. Inability to short sell makes the design problem non-trivial. An important

issue considered in this paper, neglected by other authors, is participation. Any settlement mech-

anism should take into account this issue when making predictions regarding the settlement price

and agents’ payoffs. The main result of the paper is that any settlement mechanism that is robust

with respect to the network and, from a designer’s ex-ante standpoint, sets an unbiased price is a

posted-price mechanism. This mechanism sets a price equal to the expected value of the defaulted

bond, conditional on designer’s information. Moreover, this mechanism is almost surely the unique

mechanism that satisfies enumerated properties in the introduction. In addition, it guarantees par-

ticipation by all agents. The main result of the paper should be interpreted as an impossibility

result, which means that there is no non-trivial settlement mechanism that can make this market

efficient if naked CDSs are present.

The tool that is developed in this paper is a new approach to extending the notion of the core

to the case of incomplete information. I considered the ’exit game’ before joining the blocking
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mechanism. This model can be applied to mechanism design problems in which (i) agents are al-

lowed to get together and use another mechanism for their purpose and (ii) the decision to leave the

mechanism occurs before formation of the grand mechanism. An example of such environments

is dark markets in the stock exchange.
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9 Appendix

9.1 Proof of Inequalities in the Leading Example:

One can rewrite agent i’s payoff that he receives when qi contracts are settled physically with price

pi as ui(ni(100 − v(s)) + qi(v(s) − pi)). I have:

E[U1
1(0, s2, 0)] =

1
2

(E[U1(0, 0, 0) + E[U1(0, 1, 0)]) = −20(100 − E[v|s1 = 0, s3 = 0]) +
1
2

(168 + 105) =

− 20(100 − E[v|s1 = 0, s3 = 0]) + 136.5

E[U1
1(1, s2, 0)] =

1
2

(E[u1(1, 0, 0) + u1(1, 1, 0)] = −20(100 − E[v|s1 = 1, s3 = 0]) +
1
2

(−84 − 105) =

− 20(100 − E[v|s1 = 1, s3 = 0]) − 94.5

E[Ue
1(0, s2, 0)] = −20(100 − E[v|s1 = 0, s3 = 0]) − 3.5(10.5 − 42) − 3(10.5 − 30) =

− 20(100 − E[v|s1 = 0, s3 = 0]) + 168.75

E[Ue
1(1, s2, 0)] = −20(100 − E[v|s1 = 1, s3 = 0]) − 3.5(52.5 − 42) − 3(52.5 − 30) =

− 20(100 − E[v|s1 = 1, s3 = 0]) − 104.25

E[U1
3(0, s2, 0)] = 10(100 − E[v|s1 = 0, s3 = 0]) − 84

E[U1
3(0, s2, 1)] = 10(100 − E[v|s1 = 0, s3 = 1]) − 21

E[Ue
3(0, s2, 0)] = 10(100 − E[v|s1 = 0, s3 = 0]) − 84

E[Ue
3(0, s2, 1)] = 10(100 − E[v|s1 = 0, s3 = 1]) − 21

This proves the inequalities.
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9.2 Proof of Theorem 6.2

I prove the following proposition:

Proposition 9.1. Let M and N be a pair of contract matrices, where M is a reduction of N. Let A be

defined as in the definition of blocking and (P,Q,U) be a settlement mechanism with no complete

information unraveling, for which N is reduced to M by agents in A. If for all i ∈ A, pM
i and qM

i do

not depend on si, then the following inequality must hold:

∑
i∈A

Es−A[ΛN
i (sA, s−A)] ≥

∑
i∈A

Es−A[ΛM
i (sA, s−A)] for all sA ∈ S A (25)

The inequality means that sum of agents’ risk-neutral expected payoffs that are in A is greater

when the network is N compared to that of network M.

Proof. I prove that the following holds: For all intervals of types S ′i = [si, si] ⊆ S i i ∈ A such that∏
i∈A S ′i has a positive measure,

∑
i∈A

E[ΛN
i (s)|πA(s) ∈

∏
i∈A

S ′i] ≥
∑
i∈A

E[ΛM
i (sA, s−A)|πA(s) ∈

∏
i∈A

S ′i] (26)

This is equivalent to (25). Let (P,Q,U) be a settlement mechanism that does not satisfy (26),

i.e., for some interval of types S ′i = [si, si] ⊆ S i i ∈ A such that
∏

i∈A S ′i has a positive measure,

the opposite of (26) holds. I construct a blocking mechanism (P′,Q′,U′) in which agent i ∈ A

joins the blocking mechanism if si ∈ S ′i . For all i ∈ A and s ∈ S K , set the quantity as follows:
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q′i(s) = qN
i (s) − qM

i (s)

q′i(s) =



qN
i (s) − qM

i (s) if si ≤ si ≤ si,

qN
i (si, s−i) − qM

i (si, s−i) if si > si,

qN
i (si, s−i) − qM

i (si, s−i). if si < si

I set the price for the blocking mechanism as follows:

p′i(s) =



p̂i(s) if si ≤ si ≤ si,

p̂i(si, s−i), if si > si,

p̂i(si, s−i). if si < si

where p̂i(s) is the unique solution to the following equation:

ΛN
i (s) = ΛM

i (s) + (ni − mi − qi(s)))(100 − v(s)) + q′i(s)(100 − p̂i(s)).

This equation has a unique solution, as the right-hand side is linear in p̂i(s). Note that, by con-

struction, if si ≤ si ≤ si then Λ′i(s) = ΛN
i (s) − ΛM

i (s).

I prove that the mechanism (P′,Q′,U′) is ex-post incentive compatible. Because the settlement

mechanism is incentive compatible when the network is N and qM(., s−i) does not depend on si, for
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all i ∈ A and (s′i , s−i), (si, s−i) ∈ S K ,

ΛM
i (s′i , s−i) − ΛM

i (si, s−i) = qM
i (si, s−i)(E[v|s′i , s−i] − E[v|si, s−i])

ΛN
i (s′i , s−i) − ΛN

i (si, s−i) ≥ qN
i (si, s−i)(E[v|s′i , s−i] − E[v|si, s−i])

Therefore, if si ≤ si, s′i ≤ si,

Λ′i(s′i , s−i) − Λ′i(si, s−i) ≥ q′i(si, s−i)(E[v|s′i , s−i] − E[v|si, s−i])

This proves that the blocking mechanism is incentive compatible in this case. Note that the set-

tlement mechanism sets the same price and quantity if si, s′i > si or if si, s′i < si. Therefore, the

incentive compatibility is trivial for those cases. If s′i > si and si ∈ [si, si], then, by construction

and incentive compatibility of the blocking mechanism in [si, si], the following holds:13

Λ′i(s′i , s−i) = Λ′(si, s−i) + q′i(si, s−i)(E[v|s′, s−i] − E[v|si, s−i]) ≥

Λ′(si, s−i) + q′i(si, s−i)(E[v|s′, s−i] − E[v|si, s−i]) + q′i(si, s−i)(E[v|si, s−i] − E[v|si, s−i]) ≥

Λ′(si, s−i) + q′i(si, s−i)(E[v|s′i , s−i] − E[v|si, s−i])

This proves the ex-post inventive compatibility for this case. All other cases admit a similar proof.

Inequality (6) is satisfied by construction. To check inequality (7), let i ∈ A, (si, s−i) ∈
∏

j∈A S ′j

and s′i > si. For economy of exposition, let s = (si, s−i), s′ = (s′i , s−i) and s = (si, s−i). Incentive

compatibility of the settlement mechanism when the network is N, construction of the blocking

13Because the mechanism is ex-post incentive compatible in S ′i , q′i(si, s−i) ≥ q′i(si, s−i)
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mechanism, and that prices and quantities do not depend on the agent’s signal when the signal is

M imply the following:

ΛN
i (s′) ≥ ΛN

i (s) + qN
i (s)(E[v|s′] − E[v|s]) = ΛM

i (s) + Λ′i(s) + qN
i (s)(E[v|s′] − E[v|s])

= ΛM
i (s′) + Λ′i(s′) + (qN

i (s) − qM
i (s) − q′i(s))(E[v|s′] − E[v|s]) = ΛM

i (s′) + Λ′i(s′)

If s′i < si, then:

ΛN
i (s′) ≥ ΛN

i (s) + qN
i (s)(E[v|s′] − E[v|s]) = ΛM

i (s) + Λ′i(s) + qN
i (s)(E[v|s′] − E[v|s])

= ΛM
i (s′) + Λ′i(s′) + (qN

i (s) − qM
i (s) − q′i(s))(E[v|s′] − E[v|s]) = ΛM

i (s′) + Λ′i(s′)

These prove inequality (7). Because the opposite of (26) holds, the blocking mechanism designer

has a positive expected payoff. �

I prove lemma 6.3.

Proof. Note that, if the mechanism is pooling-seprable with network M, then the assumption in the

second part of Proposition 9.1 is satisfied. Taking expectation from the conclusion of Proposition

9.1 implies: ∑
i∈A

E[ΛN
i (s)] ≥

∑
i∈A

E[ΛM
i (s)] for all s ∈ S . (27)

Because the mechanism is weakly-unbiased, the following holds:

∑
i∈A

Eρ[ΛN
i (s)] =

∑
i∈A

Eρ[ΛM
i (s)]. (28)
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Equality (44) and Proposition 9.1 imply that, almost surely for all s ∈ S K , the following holds:

∑
i∈A

ΛN
i (s) =

∑
i∈A

ΛM
i (s). (29)

�

I prove the following lemmas.

Lemma 9.2. Consider an agent i ∈ K and two ex-post incentive compatible settlement mechanisms

with price, quantity, and risk-neutral payoff functions pi, qi,Λi and p′i , q
′
i ,Λ

′
i . If q′i(.) and p′i(.) do

not depend on si for all si ∈ (0, 1) and almost surely for all s ∈ S K , Λi(s) = Λ′i(s), then almost

surely qi(s) = q′i(s) and pi(s) = p′i(s).

Proof. Let E be that set of signal profiles s−i such that, for almost all si ∈ [0, 1], Λi(si, s−i) =

Λ′i(si, s−i). Note that, because Λi(s) = Λ′i(s) holds almost certainly, the complement of E is measure

zero. Given s−i ∈ E, let si, s′i , s
′′
i be such that Λi(si, s−i) = Λ′i(si, s−i), Λi(s′i , s−i) = Λ′i(s′i , s−i),

Λi(s′′i , s−i) = Λ′i(s′′i , s−i) and s′i < si < s′′i . Ex-post incentive compatibility implies that:

Λi(s′i , s−i) − Λi(si, s−i) ≥ qi(si, s−i)(E[v|s′i , s−i] − E[v|si, s−i]).

Note that

Λi(s′i , s−i) − Λi(si, s−i) = Λ′i(s′i , s−i) − Λ′i(si, s−i) = q′i(si, s−i)(E[v|si, s−i] − E[v|s′i , s−i])

Therefore, q′i(si, s−i) ≥ qi(si, s−i). Considering ex-post incentive compatibility for types si and s′′i

implies that q′i(si, s−i) ≤ qi(si, s−i). Therefore, q′i(si, s−i) = qi(si, s−i) and p′i(si, s−i) = pi(si, s−i).
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One can choose s′i close enough to 0 and s′′i close enough to 1. Therefore, almost certainly for all

si ∈ [0, 1], , q′i(si, s−i) = qi(si, s−i) and p′i(si, s−i) = pi(si, s−i). �

Lemma 9.3. Assume N is a network where only two pairs of agents have contracts. If the mech-

anism (P,Q,U) is ex-post individually rational, full information unravel-proof, ex-ante weakly

budget balanced, and weakly-unbiased, then almost certainly (i) qN
i (s) = 0 for all signal profiles

s ∈ [0, 1]|K| and agents i ∈ K who do not have any CDS contracts in network N and (ii) the

mechanism is almost certainly ex-post budget balanced.

Proof. Consider the contract matrix in which no agent has a CDS contract, namely, the ∅ network.

Because the mechanism is ex-post individually rational, U∅i (s) ≥ 0 for all i ∈ K; therefore, Λ∅i (s) ≥

0 for all i ∈ K. Ex-ante weakly budget balanced condition implies that
∑

i∈K Eρ[Λ∅i (s)] ≤ 0. Hence,

almost certainly, Λ∅i (s) = 0 for all i ∈ K. In network N, consider a block by the two agents who

have CDS contracts. Lemma 6.3 implies that, for all s ∈ S K , the following holds almost certainly:

∑
i∈K(N)

ΛN
i (s) = 0. (30)

Ex-post budget balancedness implies that, for all i ∈ K \ K(N) and s ∈ S K :

ΛN
i (s) ≥ 0. (31)

Because the mechanism is ex-ante weakly budget balanced, the following inequality holds:

Eρ[
∑
i∈K

ΛN
i (s)] ≤ 0. (32)
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Inequalities (30), (31), and (32) imply that, almost certainly for all i ∈ K \ K(N) and s ∈ S K ,

ΛN
i (s) = 0 and

∑
i∈K(N) ΛN

i (s) = 0. Therefore,
∑

i∈K ΛN
i (s) = 0 for all i ∈ K. Moreover, lemma 9.2

implies that for all i ∈ K \ K(N) and almost all s ∈ S K , qN
i (s) = 0. �

I establish a generalization of the induction base as a lemma.

Lemma 9.4. If in network N, agents i and j have CDS contracts only with each other and for

almost all s ∈ K qN
i (s) + qN

j (s) = 0, then, almost certainly, qN
i (s), pN

i (s), qN
j (s) and pN

j (s) do not

depend on si and s j and pN
i (s) = pN

j (s).

Proof. Consider a block where agents i and j choose to side settle all of their contracts. Lemma

6.3 implies that ΛN
i (s) + ΛN

j (s) = 0 for almost all s ∈ S K . Set

A = {s−i, j ∈ [0, 1]|K|−2|qN
i (si, s−i,) + qN

j (si, s−i) = 0 for almost all si ∈ [0, 1] almost all s j ∈ [0, 1]}

As−i, j = {(si, s j) ∈ (0, 1)2|qN
i (si, s−i,) + qN

j (si, s−i) = 0}

The assumption in the lemma implies that A has probability 1. Given s−i, j ∈ A and (si, s j) ∈ As−i, j ,

let (s′i , s j) ∈ As−i, j and (si, s′j) ∈ As−i, j be such that E[v|s′i , s j] = E[v|si, s′j]. Note that, because v(s)

is increasing and continuous, by definition of A, I can always find s′i , s
′
j such that s′i > si. Ex-post

incentive compatibility implies that:

qN
i (si, s j, s−i, j)(E[v|s′i , s j, s−i, j] − E[v|si, s j, s−i, j]) ≤ ΛN

i (s′i , s j, s−i, j) − ΛN
i (si, s j, s−i, j) (33)

qN
j (s′i , s

′
j, s−i, j)(E[v|s′i , s j, s−i, j] − E[v|s′i , s

′
j, s−i, j]) ≤ ΛN

j (s′i , s j, s−i, j) − ΛN
j (s′i , s

′
j, s−i, j) (34)

qN
i (s′i , s

′
j, s−i, j)(E[v|si, s′j, s−i, j] − E[v|s′i , s

′
j, s−i, j]) ≤ ΛN

i (si, s′j, s−i, j) − ΛN
i (s′i , s

′
j, s−i, j) (35)

qN
j (si, s j, s−i, j)(E[v|si, s′j, s−i, j] − E[v|si, s j, s−i, j]) ≤ ΛN

j (si, s′j, s−i, j) − ΛN
j (si, s j, s−i, j) (36)

50



Note that the left- and right-hand side of all these sum up to zero; therefore, all of these inequalities

must hold with equality. Equality of inequality (33) means that agent i is indifferent about reporting

si and s′i when his signal is, in fact, s′i . Let s′′i be a signal for agent i such that si < s′′i < s′i , ex-post

incentive compatibility implies that:

qN
i (s′′i , s j, s−i, j)(E[v|s′i , s j, s−i, j] − E[v|s′′i , s j, s−i, j]) ≤ ΛN

i (s′i , s j, s−i, j) − ΛN
i (s′′i , s j, s−i, j) (37)

qN
i (si, s j, s−i, j)(E[v|s′′i , s j, s−i, j] − E[v|si, s j, s−i, j]) ≤ ΛN

i (s′′i , s j, s−i, j) − ΛN
i (si, s j, s−i, j) (38)

qN
i (si, s j, s−i, j) ≤ qN

i (s′′i , s j, s−i, j) (39)

Adding inequalities (37) and (38) and applying inequality (39) implies inequality (33). Because

inequality (33) holds with equality, inequalities (37), (38) and (39) hold with equality as well. This

implies that, for all si < s′′i < s′i :

qN
i (si, s j, s−i, j) = qN

i (s′′i , s j, s−i, j)

I can choose s′i < si as well. Therefore, I conclude that, in a neighborhood around si, the function

qi(., si, s−i, j) is constant. Therefore, qN
i (., s j, s−i, j) almost certainly does not depend on si.A similar

argument holds for agent j. This proves the lemma. �

If only two agents, i and j, have CDS contracts, then lemma 9.3 implies that, almost certainly,

the mechanism sets a quantity of zero for all other agents; therefore, the assumption of lemma 9.4

is valid. Lemma 9.4 implies that, when only two agents have CDS contracts with each other, then

the price and the quantity do not depend on agents’ signals. If agents i and j have n contracts, let

pn
i, j(s−i, j) (= pn

j,i(s−i, j)) and qn
i, j(s−i, j)(= −qn

j,i(s−i, j) be the price and quantity. Consider a network
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where three agents, i, j and k, have CDS contracts as follows: i has n CDS contracts with j, and j

has n CDS contracts with k. Assume i is a CDS buyer and k is a CDS seller. Call this network M.

Apply lemma 6.3 for A = {i, j} and conclude:

ΛM
i (s) = n(100 − v(s)) + qn

j,k(s− j,k)(v(s) − pn
j,k(s− j,k)) (40)

Note that, in network M, agent j has net zero CDS contracts. Robustness with respect to network

implies that

ΛM
i (s) = n(100 − v(s)) + qn

i,k(s−i,k)(v(s) − pn
i,k(s−i,k)) (41)

Equations (40) and (41) imply that

qn
j,k(s− j,k)(v(s) − pn

j,k(s− j,k)) = qn
i,k(s−i,k)(v(s) − pn

i,k(s−i,k)) (42)

Note that the only term that depends on sk in both sides of equation (42) is v(s). Therefore,

equation (42) implies that qn
j,k(s− j,k) = qn

i,k(s−i,k) and qn
j,k(s− j,k) = qn

i,k(s−i,k). Therefore, it must

be that qn
i, j(s−i, j) = qn and pn

i, j(si, j) = pn for all i, j ∈ K. Because the mechanism is unbiased,

pn = Eρ[v]. This proves the induction base.

Given network N, let f (N) be the number of pairs of agents who have contracts with each other

and g(N) be the number of pairs of agents who have contracts with each other and do not have

contracts with other agents. I prove the result by induction on h(N) = 2 f (N) + g(N). So far, I have

established the result for h(N) ≤ 3. Given network N, where h(N) > 3 and i ∈ K(N), I show that
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ΛN
i has the form described in the theorem. There are four cases:

Case 1: For some j and k ∈ K, i has contracts with j, j has some contracts with k, and k has

contract with i.

Proof: construct contract matrix N i,N j and Nk as follows: N i is constructed from N

by removing the contracts between j and k, N j is constructed by removing the contracts

between i and k, and Nk is constructed from N by removing the contracts between i and

j. Lemma 6.3 implies:

ΛN
i (s) + ΛN

j (s) = ΛNk

i (s) + ΛNk

j (s), (43)

ΛN
i (s) + ΛN

k (s) = ΛN j

i (s) + ΛN j

k (s), (44)

ΛN
j (s) + ΛN

k (s) = ΛNi

j (s) + ΛNi

k (s). (45)

Equalities (43), (44) and (45) imply that

2ΛN
i (s) = ΛNk

i (s) + ΛNk

j (s) + ΛN j

i (s) + ΛN j

k (s) − ΛNi

j (s) − ΛNi

k (s) (46)
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Since h(N i), h(N j) and h(Nk) < h(N), the induction base implies that

2ΛN
i (s) =

∑
l∈K\{ j}

ni,l(100 − v(s)) + qni,l(v(s) − p) +
∑

l∈K\{i}

n j,l(100 − v(s)) + qn j,l(v(s) − p)

+
∑

l∈K\{k}

ni,l(100 − v(s)) + qni,l(v(s) − p) +
∑

l∈K\{i}

nk,l(100 − v(s)) + qnk,l(v(s) − p)

−
∑

l∈K\{k}

n j,l(100 − v(s)) + qn j,l(v(s) − p) −
∑

l∈K\{ j}

nk,l(100 − v(s)) + qnk,l(v(s) − p)

= 2
∑
l∈K

ni,l(100 − v(s)) + qni,l(v(s) − p) − ni, j(100 − v(s)) − qni, j(v(s) − p)

− ni,k(100 − v(s)) − qni,k(v(s) − p) − n j,i(100 − v(s)) − qn j,i(v(s) − p)

+ n j,k(100 − v(s)) − qn j,k(v(s) − p) − nk,i(100 − v(s)) − qnk,i(v(s) − p)

+ nk, j(100 − v(s)) − qnk, j(v(s) − p) (47)

Note that for all r, s ∈ K, nr,s + ns,r = 0 and qn + q−n = 0 for all n ∈ Z, hence, equality

(47) implies that

ΛN
i (s) =

∑
l∈K

ni,l(100 − v(s)) + qni,l(v(s) − p)

Case 2: For some j and k ∈ K, i has contracts with j, j has some contracts with k, and k and i do

not have contracts with each other.

Proof. Remove the contracts between i and j and call the network Nk. Also, remove the

contracts between j and k and call the network N i. Lemma 6.3 implies that for all s ∈ S :

ΛN
i (s) + ΛN

j (s) = ΛNk

i (s) + ΛNk

j (s)

ΛN
j (s) + ΛN

k (s) = ΛNi

j (s) + ΛNi

k (s) (48)
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I construct network M as follows:

mr,s =



ni, j if (r, s) = (i, k)

n j,i + n j,k if (r, s) = ( j, k)

0 if (r, s) = (i, j)

−ms,r if (r, s) ∈ {(k, i), (k, j), ( j, i)}

nr,s otherwise

(49)

Note that h(M) = h(N). Robustness with respect to network implies ΛM
r (s) = ΛN

r (s) for

all r ∈ K and s ∈ S . In network M, remove the contracts between j and k and call the

network Mi. Note that h(Mi) < h(N). Lemma 6.3 implies that for all s ∈ S :

ΛN
j (s) + ΛN

k (s) = ΛM
j (s) + ΛM

k (s) = ΛMi

j (s) + ΛMi

k (s). (50)

Note that the inductive hypothesis applies to Mi, N i, N j and Nk. Equalities (49), (50) and

similar argument as in the previous case proves the result for this case. �

Case 3: agent i has contracts with two agents j and k. This case admits a similar proof to previous

cases.

Case 4: agent i only has contracts with agent j ∈ K and j has no contract with other agents. Since

f (N) ≥ 3, there exists an agent k ∈ K who has contracts with other agents. Construct

network M from N as follows: remove the contracts between i and j, add contracts

between i & k and j & k, such that mi,k = ni, j and m j,k = n j,i. Note that all agents have the
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same net number of contracts in M and N, therefore, robustness with respect to network

implies ΛN
i (s) = ΛM

i (s). The rest of the proof is similar to case 2.

9.3 Proof of Theorem 6.4

I establish the result of lemma 6.3 for the case of incomplete information unravel-proof mecha-

nisms. Let networks M,N satisfy M ≺ N and assume pM
i and qM

i do not depend on the reported

messages. If, for some non-zero measure set of signals Πi∈AS ′i , the inequality

E[
∑
i∈A

ΛN
i (s)|πA(s) ∈ Πi∈AS ′i] < E[

∑
i∈A

ΛM
i (s)|πA(s) ∈ Πi∈AS ′i]

holds, then one can design a blocking mechanism similar to proposition 9.1. This implies that, for

all non-zero measure Πi∈AS ′i , the following holds:

E[
∑
i∈A

ΛN
i (s)|πA(s) ∈ Πi∈AS ′i] ≥ E[

∑
i∈A

ΛM
i (s)|πA(s) ∈ Πi∈AS ′i]. (51)

Because the mechanism is unbiased,

E[
∑
i∈A

ΛN
i (s)] = E[

∑
i∈A

ΛM
i (s)]. (52)

Equality (51) and (52) and assumption 4.1 imply that, almost certainly, for all s ∈ S K :

∑
i∈A

ΛN
i (s) =

∑
i∈A

ΛM
i (s). (53)

A similar argument in the proof of lemma 6.3 implies the following: For almost all i ∈ K \ K(N):
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Eµ[ΛN
i (s)] = 0 holds. Assumption 4.1 implies ΛN

i (s) = 0 for all networks N and agents i ∈

K \ K(N). This proves the result of lemma 6.3 in this case. Proof of lemma 9.3 is followed from

lemma 6.3. The rest of the proof is identical to the proof of Theorem 6.2.

9.4 Proof of Theorem 6.5

Let networks M,N satisfy M ≺ N, and A is the set of agents who reduced the network from N to

M. If the mechanism is payoff equivalent to a posted price mechanism when the network is M,

then the following holds: ∑
i∈A

ΛN
i (s) =

∑
i∈A

ΛM
i (s).

Proof: If for some positive measure set of types Πi∈AS ′i , the following inequality holds:

E[
∑
i∈A

ΛN
i (s)|πA(s) ∈ Πi∈AS ′i] < E[

∑
i∈A

ΛM
i (s)|πA(s) ∈ Πi∈AS ′i]. (54)

Consider a participation-choice in which agents in A block the mechanism and reduce the network

from N to M (see proposition 5.2). Because the mechanism is unbiased, for all i ∈ K, the following

holds:

Eρ[ΛM
i (s)I{πA(s)∈Πi∈AS ′i } + ΛN

i (s)I{πA(s)<Πi∈AS ′i }] = Eρ[ni(100 − v(s))] (55)

I sum up these equalities for all i ∈ K(N − M) and apply equation (54) to conclude:

Eρ[
∑
i∈A

ΛM
i (s)] > Eρ[

∑
i∈A

ni(100 − v(s))]

= Eρ[
∑
i∈A

mi(100 − v(s))] (56)
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Consider a participation-choice in which the M network does not unravel; unbiasedness implies

that (56) must hold with equality. This contradiction implies that (54) does not hold. I apply the

unbiasedness for the participation choice with no unraveling to conclude: For all positive measure

πA(s) ∈ Πi∈AS ′i

E[
∑
i∈A

ΛN
i (s)|πA(s) ∈ Πi∈AS ′i] = E[

∑
i∈A

ΛM
i (s)|πA(s) ∈ Πi∈AS ′i]. (57)

Assumption 4.1 implies that, almost certainly,

∑
i∈A

ΛN
i (s) =

∑
i∈A

ΛM
i (s). (58)

The rest of the proof is the replicate of the proof of Theorem 6.2.

9.5 Proof of Theorem 7.1

Lemma 6.3 can be extended to this case. Because the new notions of unbiasedness and unravel-

proofness are stronger, and cases 2, 3 and 4 of the proof of theorem 6.2 are the only parts that use

the property of robustness with respect to the network of contracts, all I need to do is to replace

these steps. Here is the replacement:

Case 2: For some j and k ∈ K, i has contracts with j, j has some contracts with k, and k and i do

not have contracts with each other.

Proof. Construct network Ni by removing the contracts between j and k, and Nk by
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removing the contracts between i and j. If i sells all his contracts with j to agent k,

network M is constructed. Lemma 6.3 implies:

ΛN
i (s) + ΛN

j (s) = Λ
Nk
i (s) + Λ

Nk
j (s)

ΛN
j (s) + ΛN

k (s) = Λ
Ni
j (s) + Λ

Ni
k (s)

ΛN
i (s) + ΛN

j (s) + ΛN
k (s) = ΛM

i (s) + ΛM
j (s) + ΛM

k (s) (59)

Similar argument as in Case 2 of theorem 6.2 shows that equations (59) prove the result.

�

Case 3: agent i has contracts with two agents j and k. This case admits a similar proof to previous

cases.

Proof. The proof of this case is similar to the previous case. �

Case 4: agent i only has contracts with agent j ∈ K and j has no contract with other agents.

Proof. Let k1, k2 ∈ K \ {i, j} be a pair of agents who have contracts with each other. �

9.6 Proof of Proposition 7.2

The unbiased and weakly-unbiased properties have been used in equations (44), (52), and (55).

These equations still hold if I make the replacement. However, it has been argued that equation (53)

contracts with the unbiasedness property. This equation also contracts with the ex-ante uniform

price property.
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