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Abstract

Various forms of substitutability are essential for establishing the existence of
equilibria and other useful properties in diverse settings such as matching, auctions,
and exchange economies with indivisible goods. We extend earlier models’ canonical
definitions of substitutability to settings in which an agent can be both a buyer in some
transactions and a seller in others, and show that all these definitions are equivalent. We
introduce a new class of substitutable preferences that allows us to model intermediaries
with production capacity. We then prove that substitutability is preserved under
economically important transformations such as trade endowments, mergers, and
limited liability. We also show that substitutability corresponds to submodularity of the
indirect utility function, the single improvement property, and a no complementarities
condition. Finally, we show that substitutability implies the monotonicity conditions
known as the Laws of Aggregate Supply and Demand.
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1 Introduction

Various forms of substitutability are essential for establishing the existence of equilibria and
other useful properties in diverse settings such as matching, auctions, exchange economies with
indivisible goods, and trading networks (Kelso and Crawford, 1982; Roth, 1984; Bikhchandani
and Mamer, 1997; Gul and Stacchetti, 1999, 2000; Milgrom, 2000; Ausubel and Milgrom,
2006; Hatfield and Milgrom, 2005; Sun and Yang, 2006, 2009; Ostrovsky, 2008; Hatfield et al.,
2013). Substitutability arises in a number of important applications, including matching with
distributional constraints (Abdulkadiroğlu and Sönmez, 2003; Hafalir et al., 2013; Sönmez
and Switzer, 2013; Sönmez, 2013; Westkamp, 2013; Ehlers et al., 2014; Echenique and Yenmez,
2015; Kominers and Sönmez, 2014; Kamada and Kojima, 2015), supply chains (Ostrovsky,
2008), markets with horizontal subcontracting (Hatfield et al., 2013), “swap” deals in exchange
markets (Milgrom, 2009), and combinatorial auctions for bank securities (Klemperer, 2010;
Baldwin and Klemperer, 2015).

The diversity of settings in which substitutability plays a role has led to a variety of
different definitions of substitutability, and a number of restrictions on preferences that appear
in some definitions but not in others.1 In this paper, we show how the different definitions
of substitutability are related to each other, while dispensing with some of the restrictions
in the preceding literature. We consider agents who can simultaneously be buyers in some
transactions and sellers in others, which allows us to embed the key substitutability concepts
from the matching, auctions, and exchange economy literatures.2 Our main result shows
that all the substitutability concepts are equivalent. We call preferences satisfying these
conditions fully substitutable.3

We introduce a new class of fully substitutable preferences that models the preferences of
intermediaries with production capacity. We then prove that full substitutability is preserved
under several economically important transformations: trade endowments and obligations,
mergers, and limited liability. We show that full substitutability can be recast in terms
of submodularity of the indirect utility function, the single improvement property, a “no
complementarities” condition, and a condition from discrete convex analysis called M \-
concavity. Finally, we prove that full substitutability implies two key monotonicity conditions:

1For instance, some definitions assume “free disposal”/“monotonicity,” under which an agent is always
weakly better off with a larger set of goods than with a smaller one, while other definitions do not; some
definitions assume that all bundles of goods are feasible for the agent, while others do not; and so on.

2While all of the results in our paper consider the preferences of a single agent, and thus do not depend on
the details of the agent’s setting, for concreteness, notational simplicity, and continuity with prior literature,
we state and prove these results in the general trading network setting of Hatfield et al. (2013).

3We use the modifier “fully” to highlight the possibility that under such preferences, an agent can be both
a buyer in some transactions and a seller in others, whereas under the “gross substitutes” preferences of Kelso
and Crawford (1982), an agent can be only a buyer or only a seller.
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the Laws of Aggregate Supply and Demand.
All of our results explicitly incorporate economically important features such as indiffer-

ences, non-monotonicities, and unbounded utility functions that were not fully addressed in
the earlier literature. For example, unbounded utility functions allow us to model firms with
technological constraints under which some production plans are infeasible.

1.1 History and Related Literature

For two-sided settings, Kelso and Crawford (1982) introduced the (demand-theoretic) gross
substitutability condition, under which substitutability is expressed in terms of changes in
an agent’s demand as prices change. Roth (1984) introduced a related (choice-theoretic)
definition, under which substitutability is expressed in terms of changes in an agent’s choice
as the set of available options changes. These conditions were subsequently extended and
generalized, giving rise to two (mostly) independent literatures.

In two-sided matching models, (choice-theoretic) substitutability guarantees the existence
of stable outcomes (Roth, 1984; Hatfield and Milgrom, 2005; Hatfield and Kominers, 2013).
Ostrovsky (2008) generalized the classic substitutability conditions to the context of supply
chain networks by introducing a pair of related assumptions: same-side substitutability and
cross-side complementarity. These assumptions impose two constraints: First, when an
agent’s opportunity set on one side of the market expands, that agent does not choose any
options previously rejected from that side of the market. Second, when an agent’s opportunity
set on one side of the market expands, that agent does not reject any options previously
chosen from the other side of the market. Both Ostrovsky (2008) and Hatfield and Kominers
(2012) showed that under same-side substitutability and cross-side complementarity, a stable
outcome always exists if the contractual set has a supply chain structure. Moreover, Hatfield
and Kominers (2012) showed that same-side substitutability and cross-side complementarity
are together equivalent to the assumption of quasisubmodularity of the indirect utility
function—an adaptation of submodularity to the setting without transfers.

In exchange economies with indivisible goods, (demand-theoretic) gross substitutability
guarantees the existence of core allocations and competitive equilibria (Kelso and Crawford,
1982; Gul and Stacchetti, 1999, 2000). Ausubel and Milgrom (2002) offered a convenient
alternative definition of gross substitutability for a setting with continuous prices, in which
demand is not guaranteed to be single-valued, and showed that gross substitutability is
equivalent to submodularity of the indirect utility function. Sun and Yang (2006) introduced
the gross substitutability and complementarity condition for the setting of indivisible object
allocation. The gross substitutability and complementarity condition, akin to same-side
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substitutability and cross-side complementarity, requires that objects can be divided into two
groups such that objects in the same group are substitutes and objects in different groups
are complements. Sun and Yang (2009) showed that like gross substitutability, the gross
substitutability and complementarity condition is equivalent to submodularity of the indirect
utility function.

Subsequent to our work, Baldwin and Klemperer (2015) obtained additional insights on
the underlying mathematical structure of fully substitutable preferences using the techniques
of tropical geometry. Baldwin and Klemperer (2015) study the set of price vectors for which
the demand correspondence is multi-valued, and associate them with convex-geometric objects
called tropical hypersurfaces. Then, using the normal vectors that determine agents’ tropical
hypersurfaces, they distinguish among preferences that are strongly substitutable, are gross
substitutable, or have complementarities.4

The discrete mathematics literature has explored several other concepts that are equivalent
to substitutability in certain settings. We provide one point of connection to that literature in
Section 6.5, where we establish the equivalence of full substitutability andM \-concavity in our
setting. Paes Leme (2014) provides a detailed survey that covers the discrete-mathematical
substitutability concepts and their algorithmic properties.5

1.2 Structure of the Paper

The rest of the paper is organized as follows. In Section 2, we present our framework. In
Section 3, we present three definitions of full substitutability, and show that they are all
equivalent. In Section 4, we present examples of classes of fully substitutable preferences.
In Section 5, we discuss transformations that preserve full substitutability. In Section 6, we
provide several alternative characterizations of full substitutability. In Section 7, we show
that full substitutability implies the Laws of Aggregate Supply and Demand. Section 8
concludes the main body of the paper.

In Appendix A, we present six additional definitions of full substitutability, which deal
explicitly with indifferences in preferences. We discuss the connections of these definitions to
those in the earlier literature and to the three definitions in Section 3. In Appendix B, we
prove that all six definitions of full substitutability in Appendix A are equivalent, and are
also equivalent to the three definitions in Section 3. Appendix C contains the proofs of all
other results in the paper.

4Our full substitutability concept corresponds to the “strong substitutes demand type” in Baldwin and
Klemperer (2015).

5Unlike in our paper, the setting of Paes Leme (2014) assumes that all bundles of goods are feasible for
the agent. Consequently, not all of the algorithmic results discussed by Paes Leme (2014) can be applied
directly in our setting.
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2 Model

All results in the paper deal with the preferences of an individual agent, and thus do
not depend on the environment in which this agent is located.6 However, for notational
convenience and for continuity with the related literature, we present these results in the
trading network setting of Hatfield et al. (2013).

There is an economy with a finite set I of agents and a finite set Ω of trades. Each
trade ω ∈ Ω is associated with a buyer b(ω) ∈ I and a seller s(ω) ∈ I, with b(ω) 6= s(ω).
We allow Ω to contain multiple trades associated to the same pair of agents, and allow for
the possibility of trades ω ∈ Ω and ψ ∈ Ω such that the seller of ω is the buyer of ψ, i.e.,
s(ω) = b(ψ), and the seller of ψ is the buyer of ω, i.e., s(ψ) = b(ω).

A contract x is a pair (ω, pω) ∈ Ω× R that specifies a trade and an associated price. For
a contract x = (ω, pω), we denote by b(x) ≡ b(ω) and s(x) ≡ s(ω) the buyer and the seller
associated with the trade ω of x. The set of possible contracts is X ≡ Ω × R. A set of
contracts Z ⊆ X is feasible if it does not contain two or more contracts for the same trade:
formally, Z is feasible if (ω, pω), (ω, p̂ω) ∈ Z implies that pω = p̂ω. We call a feasible set of
contracts an outcome. An outcome specifies a set of trades along with associated prices, but
does not specify prices for trades that are not in that set. An arrangement is a pair [Ψ; p],
with Ψ ⊆ Ω and p ∈ RΩ. Note that an arrangement specifies prices for all the trades in the
economy. For any arrangement [Ψ; p], we denote by κ([Ψ; p]) ≡ ∪ψ∈Ψ{(ψ, pψ)} the outcome
induced by [Ψ; p].

For a set of contracts Y ⊆ X and agent i ∈ I, we let Yi→ ≡ {y ∈ Y : i = s(y)}
denote the set of contracts in Y in which i is the seller and let Y→i ≡ {y ∈ Y : i = b(y)}
denote the set of contracts in Y in which i is the buyer; we let Yi ≡ Yi→ ∪ Y→i. We use
analogous notation with regard to sets of trades Ψ ⊆ Ω. For a set of contracts Y ⊆ X, we
let τ(Y ) ≡ {ω ∈ Ω : (ω, pω) ∈ Y for some pω ∈ R} denote the set of trades associated with
contracts in Y .

2.1 Preferences

Each agent i has a valuation ui : 2Ωi → R ∪ {−∞} over the sets of trades in which he is
involved, with ui(∅) ∈ R.7 Allowing the utility of an agent to equal −∞ formalizes the
idea that an agent, due to technological constraints, may only be able to produce or sell
certain outputs contingent upon procuring appropriate inputs; for example, if ψ, ω ∈ Ω with

6For example, some other agents in the economy may be allowed to form multi-sided contracts, or face
uncertainty, or behave strategically, etc.

7We assume that trades in Ω \ Ωi do not affect i, and abuse notation slightly by writing ui(Ψ) ≡ ui(Ψi)
for Ψ ⊆ Ω.
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b(ψ) = s(ω) = i and agent i cannot sell ω unless he has procured ψ, then ui({ω}) = −∞.8

The assumption that ui(∅) is finite for each i ∈ I implies that no agent is obligated to engage
in market transactions at highly unfavorable prices; he can always choose a (finite) outside
option.

The valuation ui over bundles of trades gives rise to a quasilinear utility function Ui

over bundles of trades and associated transfers. Specifically, for any feasible set of contracts
Y ⊆ X, we define

Ui(Y ) ≡ ui(τ(Y )) +
∑

(ω,pω)∈Yi→

pω −
∑

(ω,pω)∈Y→i

pω,

and, slightly abusing notation, for any arrangement [Ψ; p], we define

Ui([Ψ; p]) ≡ ui(Ψ) +
∑

ψ∈Ψi→
pψ −

∑
ψ∈Ψ→i

pψ.

Note that by construction, Ui([Ψ; p]) = Ui(κ([Ψ; p])).
The choice correspondence of agent i from the set of contracts Y ⊆ X is defined by

Ci(Y ) ≡ arg max
Z⊆Y ; Z is feasible

Ui(Z)

and the demand correspondence of agent i, given a price vector p ∈ RΩ, is defined by

Di(p) ≡ arg max
Ψ⊆Ωi

Ui([Ψ; p]).

Note that both choice and demand correspondences can be multi-valued. Also, the choice
correspondence may be empty-valued (e.g., if Y is the set of all contracts with prices strictly
between 0 and 1), while the demand correspondence always contains at least one element.
When the set Y is finite, the choice correspondence is also guaranteed to contain at least one
element.

3 Substitutability Concepts

We now introduce three substitutability concepts that generalize the existing definitions from
matching, auctions, and exchange economies with indivisible goods. For convenience, in
this section, we use the approach of Ausubel and Milgrom (2002) and restrict attention to

8In the classical exchange economy literature (Bikhchandani and Mamer, 1997; Gul and Stacchetti, 1999),
the valuation of an agent i is defined over bundles of objects Ω as ui : 2Ωi → R, and is normalized such
that ui(∅) = 0. While these assumptions are completely innocuous and natural in the context of exchange
economies, they immediately rule out the kinds of technological constraints discussed above.
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opportunity sets and vectors of prices for which choices and demands are single-valued. In
Appendices A and B, we introduce additional definitions that explicitly deal with indifferences
and multi-valued correspondences, and prove that those definitions are equivalent to each
other and to the definitions given in this section.

3.1 Choice-Language Full Substitutability

First, we define full substitutability in the language of sets and choices, adapting and merging
the Ostrovsky (2008) same-side substitutability and cross-side complementarity conditions.
In choice language, we say that a choice correspondence Ci is fully substitutable if, when
attention is restricted to sets of contracts for which Ci is single-valued, whenever the set of
options available to i on one side expands, i rejects a larger set of contracts on that side
(same-side substitutability) and selects a larger set of contracts on the other side (cross-side
complementarity).

Definition 1. The preferences of agent i are choice-language fully substitutable (CFS) if:

1. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Yi→ = Zi→, and
Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Y→irY ∗→i ⊆ Z→irZ∗→i
and Y ∗i→ ⊆ Z∗i→;

2. for all sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| = |Ci(Y )| = 1, Y→i = Z→i, and
Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have Yi→rY ∗i→ ⊆ Zi→rZ∗i→
and Y ∗→i ⊆ Z∗→i.

3.2 Demand-Language Full Substitutability

Our second definition uses the language of prices and demands, adapting the gross substitutes
and complements condition (GSC) of Sun and Yang (2006).9 We say that a demand
correspondence Di is fully substitutable if, when attention is restricted to prices for which
demands are single-valued, a decrease in the price of some inputs for agent i leads to a
decrease in his demand for other inputs and to an increase in his supply of outputs, and an
increase in the price of some outputs leads to a decrease in his supply of other outputs and
an increase in his demand for inputs.

Definition 2. The preferences of agent i are demand-language fully substitutable (DFS) if:
9The definition of full substitutability that corresponds directly to (GSC) is Definition A.4 (DCFS) in

Appendix A. See Appendix A for a detailed discussion of the connection between (GSC) and (DCFS).
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1. for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ωi→,
and pω ≥ p′ω for all ω ∈ Ω→i, for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have
{ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ω→i,
and pω ≤ p′ω for all ω ∈ Ωi→, for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have
{ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ and Ψ→i ⊆ Ψ′→i.

3.3 Indicator-Language Full Substitutability

Our third definition is essentially a reformulation of Definition 2, using a convenient vector
notation due to Hatfield and Kominers (2012). For each agent i, for any set of trades
Ψ ⊆ Ωi, define the (generalized) indicator function ei(Ψ) ∈ {−1, 0, 1}Ωi to be the vector
with component ei,ω(Ψ) = 1 for each “upstream” trade ω ∈ Ψ→i, ei,ω(Ψ) = −1 for each
“downstream” trade ω ∈ Ψi→, and ei,ω(Ψ) = 0 for each trade ω /∈ Ψ. The interpretation of
ei(Ψ) is that an agent buys a strictly positive amount of a good if he is the buyer in a trade
in Ψ, and “buys” a strictly negative amount if he is the seller of such a trade.

Definition 3. The preferences of agent i are indicator-language fully substitutable (IFS) if
for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for the unique
Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), we have ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.

Definition 3 clarifies the reason for the term “full substitutability”—an agent is more
willing to “demand” a trade (i.e., keep an object that he could potentially sell, or buy an
object that he does not initially own) if prices of other trades increase.

3.4 Equivalence of the Definitions

The main result of this section is that the three definitions of full substitutability presented
are all equivalent. Subsequently, we use the term full substitutability to refer to all our
substitutability concepts.

Theorem 1. Choice-language full substitutability (CFS), demand-language full substitutability
(DFS), and indicator-language full substitutability (IFS) are all equivalent.

In Appendix A, we introduce six additional definitions of full substitutability, which
explicitly deal with indifferences in preferences and with expanding, contracting, or both
expanding and contracting sets of available “options”; we discuss in detail how those definitions
relate to various definitions of substitutability considered in the literatures on matching,
auctions, and exchange economies. In Appendix B we state and prove Theorem B.1, which says
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that the six definitions introduced in Appendix A are all equivalent, and are also equivalent
to (CFS), (DFS), and (IFS). Theorem 1 thus follows immediately from Theorem B.1.

4 Examples

By construction, fully substitutable preferences include, as a special case, “one-sided” prefer-
ences that satisfy the gross substitutability condition of Kelso and Crawford (1982). Gross
substitutability has been extensively studied in the literatures on matching, competitive
equilibrium, and discrete concave optimization, and a variety of examples and classes of
preferences satisfying the gross substitutability condition have been presented.10

In this section, we discuss two classes of fully substitutable preferences that involve
complementarities between the contracts an agent can form as a buyer and those that he can
form as a seller. We start with “intermediary” preferences, under which an intermediary is
trying to maximize his profit from matching some of his inputs to some of the requests that
he receives. We then discuss “intermediary with production capacity” preferences, under
which an intermediary has access to some production capacity, and needs this capacity to
transform inputs into outputs.

4.1 “Intermediary” Preferences

We start with “intermediary” preferences, introduced by Hatfield et al. (2013) in the context
of used car dealers, but applicable more generally.11

Consider an intermediary i who has access to a number of heterogeneous inputs (e.g.,
used cars, raw diamonds, and temporary workers), formally represented as a set of “upstream”
contracts Y→i. Each element (ϕ, pϕ) ∈ Y→i specifies the characteristics of the particular input
and the price at which this input is available to intermediary i. The intermediary also has a
set of requests (e.g., for used cars, for engagement rings, and for temp services), represented as
a set of “downstream” contracts Yi→. Each element (ψ, pψ) ∈ Yi→ specifies the characteristics
required by the contract’s customer and the price that customer is willing to pay.

10See, e.g., Kelso and Crawford (1982), Hatfield and Milgrom (2005), Milgrom (2009), Milgrom and
Strulovici (2009), Ostrovsky and Paes Leme (2014), and Paes Leme (2014).

11A closely related class of preferences was introduced by Sun and Yang (2006, Section 4) in the context of
two-sided markets in which agents on one side (firms) have preferences over agents and objects on the other
side (workers and machines) that are determined by the productivity of each worker on each machine. Sun
and Yang (2006) show that such preferences satisfy the gross substitutes and complements (GSC) condition,
with all workers being substitutes for one another, machines being substitutes for one another, and workers
and machines being complements.
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Some inputs ϕ and requests ψ are compatible with each other, while others are not.12,13

For every compatible input–request pair (ϕ, ψ), there is also a cost cϕ,ψ of preparing the input
ϕ for resale to satisfy the compatible request ψ.14,15 Intermediary i’s objective is to match
some of the inputs in Y→i to some of the requests in Yi→ in a way that maximizes his profit,∑

(ϕ,ψ)∈µ(pψ − pϕ − cϕ,ψ), where µ denotes the set of compatible input–request pairs that the
intermediary selects.

Formally, following Hatfield et al. (2013), define a matching, µ, as a set of pairs of trades
(ϕ, ψ) such that ϕ is an element of Ω→i (i.e., an input available to intermediary i), ψ is an
element in Ωi→ (i.e., a request received by i), ϕ and ψ are compatible, and each trade in Ωi

belongs to at most one pair in µ. Slightly abusing notation, let the cost of matching µ, c(µ),
be equal to the sum of the costs of pairs involved in µ (i.e., c(µ) = ∑

(ϕ,ψ)∈µ cϕ,ψ).
For a set of trades Ξ ⊆ Ωi, letM(Ξ) denote the set of matchings µ of elements of Ξ such

that every element of Ξ belongs to exactly one pair in µ.16 Then the valuation of intermediary
i over sets of trades Ξ ⊆ Ωi is given by:

ui(Ξ) =

−minµ∈M(Ξ)c(µ) ifM(Ξ) 6= ∅

−∞ ifM(Ξ) = ∅,

i.e., it is equal to the cost of the cheapest way of matching all requests and inputs in Ξ if
such a matching is possible, and is equal to −∞ otherwise.17 (Note that ui(∅) = 0.) The

12For instance, as Hatfield et al. (2013) discuss in the context of used car dealers: “[A] blue Toyota Camry
of a particular year and mileage would be compatible with a request for a Toyota Camry with matching year
and mileage range, but would not be compatible with a request for a blue Honda Accord or for a blue Camry
with the “wrong” year or mileage range.” A given raw diamond can only be turned into polished diamonds
of certain grades, and thus can only be used for some engagement rings but not others. A particular temp
worker is only qualified to perform certain types of jobs.

13Note that some requests may have the same customers, so in particular there is no requirement that a
customer in the economy only demands one very specific type of object that he buys. For instance, as Hatfield
et al. (2013) explain in the used car context: “[A] buyer’s preferences can specify, for example, that the value
of a Toyota Camry to him is $2,000 higher than the value of a Honda Accord with the same characteristics,
or that each additional 1,000 miles on the car’s odometer decreases that car’s value by $150. In other words,
each request ψ is detailed enough that the buyer has the same value for any car that matches the request
ψ, and the buyer’s preferences are represented by a set of requests that he is indifferent over (‘I am willing
to pay $15,000 for a Toyota Camry with such-and-such characteristics or $14,500 for a Toyota Camry with
so-and-so characteristics or $13,000 for a Honda Accord with such-and-such characteristics or . . . ’).”

14For example, the cost of repairing a car, turning a diamond into an engagement ring, or training a worker
to perform a specific set of tasks.

15Note that we could formally allow all pairs of inputs and requests to be compatible, and encode
incompatibilities by saying that for some pairs (ϕ,ψ), the cost cϕ,ψ is infinite.

16Of course,M(Ξ) can be empty; e.g., it is empty if the number of inputs in Ξ is not equal to the number
of requests, or if there are some requests in Ξ that are not compatible with any input in Ξ.

17Under this valuation function, any set chosen by intermediary i will contain an equal number of offers
and requests. In principle, we could consider a more general (yet still fully substitutable) valuation function
in which an intermediary has utility for an input that he does not resell. In that case, the intermediary may
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utility function of i over feasible sets of contracts is induced by valuation ui in the standard
way formalized in Section 2.1.

Proposition 1. “Intermediary” preferences are fully substitutable.

Hatfield et al. (2013) present a rather involved proof of Proposition 1. Sun and Yang (2006)
also present an elaborate proof of an analogous result for the two-sided setting (Theorem
4.1 in their paper, with the proof on pp. 1397–1401). The results of the current paper allow
us to construct a much simpler and shorter proof, presented in Appendix C. Proposition 1
follows as a special case of Proposition 2, which shows the full substitutability of the new
class of preferences that we introduce in the next section: “intermediary with production
capacity”. Proposition 2, in turn, follows directly from our result on “mergers” of agents with
fully substitutable preferences (Theorem 4 of Section 5.2).

4.2 “Intermediary with Production Capacity” Preferences

In the “intermediary” preferences considered in Section 4.1, the intermediary either did not
need to use any of his own resources to facilitate the matches between inputs and requests,
or when he did, those resources could be expressed in monetary terms: there was a cost cϕ,ψ
of “preparing” input ϕ for request ψ. In some settings, however, we may want to consider
intermediaries who need to rely on specific physical resources that they have in order to
turn inputs into outputs, and it is more appropriate to think of these resources as fixed.
For example, a manufacturer may have a fixed set of machines, and needs to assign a set of
workers to those machines and at the same time needs to decide which outputs to produce
on the machines. An agricultural firm may have a fixed set of land lots, and needs to hire
workers to work on these lots, and at the same time needs to decide which outputs to produce.
A steel manufacturer has access to a variety of inputs (different sources of iron ore and scrap
metal) and can produce a variety of outputs (different grades and types of steel products),
and needs to assign these inputs and outputs to the fixed number of steel plants that it
has. In this section, we formally present a model of such an intermediary and show that the
preferences described by this model are fully substitutable.

An intermediary i has access to a number of inputs, formally represented as a set of
“upstream” contracts Y→i. Each element (ϕ, pϕ) ∈ Y→i specifies the characteristics of the
particular input and the price at which this input is available to intermediary i. The
intermediary also has a set of requests, represented as a set of “downstream” contracts Yi→.
Each element (ψ, pψ) ∈ Yi→ specifies the characteristics required by the contract’s customer

end up choosing more offers than requests.
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and the price that customer is willing to pay. Finally, the intermediary has a set M of
“machines”; each machine m ∈M can be used to prepare one input contract for one output
request.

For each input ϕ and machine m, there is a cost cϕ,m ∈ R ∪ {+∞} of preparing the
input to work with the machine (e.g., the cost of training a particular worker, or the cost of
transporting iron ore from its source). For each machine m and each request ψ, there is a cost
cm,ψ ∈ R ∪ {+∞} of using this machine to produce the requested output (e.g., the cost of
water required to produce a particular agricultural crop on a particular land lot, or the cost
of transporting a batch of steel to its destination). Note that we allow both costs to take the
value +∞, to enable the possibility that a particular input is not compatible with a particular
machine, or a particular machine is not compatible with a particular request. The total cost
of preparing input ϕ for request ψ using machine m is thus cϕ,m + cm,ψ. The objective of
intermediary i is to match some of the inputs in Y→i to some of the requests in Yi→, via some
of the machines, in a way that maximizes his profit, ∑

(ϕ,m,ψ)∈µ(pψ − pϕ− cϕ,m− cm,ψ), where
µ denotes the set of input–machine–request triples that the intermediary selects.

Formally, define a matching, µ, as a set of triples (ϕ,m, ψ) such that

1. ϕ is an element of Ω→i,

2. m is a machine available to intermediary i,

3. ψ is an element of Ωi→, and

4. each ϕ belongs to at most one triple in µ, each m belongs to at most one triple in µ,
and each ψ belongs to at most one triple in µ.

Slightly abusing notation, let the cost of matching µ, c(µ), be equal to the sum of the costs
of triples involved in µ, i.e., c(µ) = ∑

(ϕ,m,ψ)∈µ(cϕ,m + cm,ψ).
For a set of trades Ξ ⊆ Ωi, letM(Ξ) denote the set of matchings µ of elements of Ξ and

machines available to the intermediary, such that every element of Ξ belongs to exactly one
triple in µ. Then the valuation of intermediary i over sets of trades Ξ ⊆ Ωi is given by:

ui(Ξ) =

−minµ∈M(Ξ)c(µ) ifM(Ξ) 6= ∅

−∞ ifM(Ξ) = ∅,

i.e., it is equal to the cost of the cheapest way of satisfying all requests in Ξ using all of the
inputs in Ξ and some of the machines, if such a production plan is possible; and is equal
to −∞ otherwise. The utility function of intermediary i over feasible sets of contracts is
induced by the valuation ui in the standard way.
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Proposition 2. “Intermediary with production capacity” preferences are fully substitutable.

The proofs of Proposition 2 and all subsequent results are in Appendix C. The idea of the
proof of Proposition 2 is as follows. First, it is immediate that if the intermediary has only
one machine, his preferences are fully substitutable. Next, if an intermediary has multiple
machines (say, a set M of machines), he can be, in essence, viewed as a “merger” of |M |
single-machine agents. Theorem 4 of Section 5.2 shows that this “merger” operation preserves
full substitutability.18

To conclude this section, we note that if an agent’s preferences simultaneously incorporate
capacity constraints (as in the “intermediary with production capacity” preferences) and
costs that depend directly on how inputs are linked to outputs (as in the “intermediary”
preferences), then those preferences may not be fully substitutable. For example: Consider
a firm that has exactly one machine, can hire workers Ann and Bob, and has requests for
outputs α and β. Suppose Ann can use the machine to produce output α (but not β), while
Bob can use the machine to produce output β (but not α). In this case, the preferences of
the firm are not fully substitutable: reducing a price of an input (say, Ann) may lead to the
firm choosing to drop an output (β).

5 Transformations

In this section, we show that fully substitutable preferences can be transformed and combined
in several economically interesting ways that preserve full substitutability. We first consider
the possibility that an agent is endowed with the right to execute any trades in a given set
and the possibility that an agent has an obligation to execute all trades in a given set. We
also examine mergers, where the valuation function of the merged entity is constructed as the
convolution of the valuation functions of the merging parties.19 Finally, we consider a form

18One complication in the proof is that the merger operation, as defined in Section 5.2, would allow multiple
machines to “buy” the same input, or “sell” the same request, because it would view these input trades and
request trades as distinct. To deal with this complication, the proof adds a layer of “input dummies” and a
layer of “request dummies” to enforce the constraint that one input can only be used by one machine and the
constraint that one request can only be fulfilled by one machine. The “merger” operation then combines
these dummies with those for single-machine firms. Note that while we use this “dummy layers and mergers”
construction for the specific purpose of proving the full substitutability of “intermediary with production
capacity” preferences, it may be useful more generally to incorporate various restrictions (say, incompatibility
of some input trades) in agents’ preferences while maintaining full substitutability, both in network and
two-sided settings.

19In two-sided matching settings, the operations of “endowment” and “merger” were used by Hatfield and
Milgrom (2005) to construct the class of endowed assignment valuations, starting with singleton preferences
and iteratively applying these operations. Hatfield and Milgrom (2005) showed that these operations preserve
substitutability (Theorems 13 and 14 of Hatfield and Milgrom (2005)), and thus show that all endowed
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of limited liability, where an agent may back out of some agreed-upon trades in exchange for
paying an exogenously-fixed penalty.

5.1 Trade Endowments and Obligations

Suppose an agent i is endowed with the right to execute trades in the set Φ ⊆ Ωi at prices
pΦ. Let

û
(Φ,pΦ)
i (Ψ) ≡ max

Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

ξ∈Ξi→
pξ −

∑
ξ∈Ξ→i

pξ


be a valuation over trades in Ω r Φ; û(Φ,pΦ)

i represents agent i having a valuation over trades
in Ω r Φ consistent with ui while being endowed with the option of executing any trades in
the set Φ ⊆ Ωi at prices pΦ.

Theorem 2. If the preferences of agent i are fully substitutable, then the preferences induced
by the valuation function û(Φ,pΦ)

i are fully substitutable for any Φ ⊆ Ωi and pΦ ∈ RΦ.

Intuitively, when we endow agent i with access to the trades in Φ at prices pΦ, we are
effectively restricting (1) the set of prices that may change and (2) the set of trades that
are required to be substitutes in the demand-theoretic definition of full substitutability
(Definition 2). Naturally, this process cannot create complementarities among trades in ΩrΦ,
given that under ui these trades already are substitutes for each other and for the trades in
Φ. Hence, û(Φ,pΦ)

i induces fully substitutable preferences over trades in Ω r Φ.
Apart from endowments, agents may have obligations, that is, an agent i may be obliged

to execute trades in some set Φ ⊆ Ωi at fixed prices pΦ. We now show that if an agent’s
preferences are initially fully substitutable, they remain fully substitutable when an obligation
arises to execute some trades at pre-specified prices. Suppose agent i is obliged to execute
trades in Φ ⊆ Ωi at prices pΦ and that Φ is technologically feasible in the sense that
ui(Φ) 6= −∞. Let

ũ
(Φ,pΦ)
i (Ψ) ≡ ui(Ψ ∪ Φ) +

∑
ϕ∈Φi→

pϕ −
∑

ϕ∈Φ→i

pϕ

be a valuation over trades in Ω r Φ; ũ(Φ,pΦ)
i represents agent i having a valuation over trades

in Ω r Φ consistent with ui while being obliged to execute all trades in the set Φ ⊆ Ωi at
prices pΦ.

assignment valuation preferences are substitutable. Ostrovsky and Paes Leme (2014) showed that there exist
substitutable preferences that cannot be represented as an endowed assignment valuation, and introduced the
class of matroid-based valuations, which is obtained by iteratively applying the “endowment” and “merger”
operations to weighted-matroid valuations. Since every weighted-matroid valuation is substitutable (Murota,
1996; Murota and Shioura, 1999; Fujishige and Yang, 2003), every matroid-based valuation is also substitutable.
It is an open question whether every substitutable valuation is a matroid-based valuation.
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Theorem 3. If the preferences of agent i are fully substitutable, then the preferences induced
by the valuation function ũ(Φ,pΦ)

i are fully substitutable for any Φ ⊆ Ωi and pΦ ∈ RΦ such that
ui(Φ) 6= −∞.

The idea of the proof is to note that the demand correspondence of agent i with valuation
ũ

(Φ,pΦ)
i does not depend on prices pΦ—changing these prices simply leads to a shift in the

agent’s utility function by a fixed amount. Thus, we can assume that the trades that the
agent is obliged to buy have negative and very large (in absolute magnitude) prices, while
the trades that the agent is obliged to sell have positive and very large prices. Under those
assumptions, “obligations” become “endowments” (because the agent would voluntarily want
to execute all of these trades), and thus Theorem 3 follows from Theorem 2.

Combining Theorems 2 and 3, we see that if the preferences of agent i are fully substitutable,
then they remain fully substitutable when i is endowed with some trades and obliged to
execute others (assuming that the obligation is technologically feasible).

5.2 Mergers

The second transformation we consider is the case when several agents merge. Given a set
of agents J , we denote the set of trades that involve only agents in J as ΩJ ≡ {ω ∈ Ω :
{b(ω), s(ω)} ⊆ J}. We let the convolution of the valuation functions {uj}j∈J be defined as

uJ(Ψ) ≡ max
Φ⊆ΩJ

∑
j∈J

uj(Ψ ∪ Φ)

 (1)

for sets of trades Ψ ⊆ Ω r ΩJ . The convolution uJ represents a “merger” of the agents in J ,
as it treats the agents in J as able to execute any within-J trades costlessly.

Theorem 4. For any set of agents J ⊆ I, if the preferences of each j ∈ J are fully
substitutable, then the preferences induced by the convolution uJ (defined in (1)) are fully
substitutable.

While Theorem 4 is of independent interest, note that we also use it in the proof of
Proposition 2, where we show the full substitutability of “intermediary with production
capacity” preferences.

Note that substitutability is not preserved following dissolution/de-mergers. For example,
if agents i and j only trade with each other (i.e., Ωi = Ωj), then the preferences induced by
the convolution valuation u{i,j} are trivially fully substitutable, even if the preferences of i
and j are not.
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Note also that while merging agents preserves substitutability, the same cannot be said
about merging trades between two agents. For example, consider a simple economy with
agents i and j and four trades: set Ω consists of trades χ, ϕ, ψ, and ω. Agent i is the buyer
in all of these trades, and agent j is the seller. The valuation of agent i is as follows:

ui(Ψ) =


2 |Ψi| ≥ 2

1 |Ψi| = 1

0 otherwise.

The preferences of i are clearly fully substitutable. But now consider merging the trades
χ and ϕ into a single trade ξ. The resulting valuation function of i over the subsets of
Ω̃ ≡ (Ω r {χ, ϕ}) ∪ {ξ} is given by

ũi(Ψ) =


2 |Ψi| ≥ 2 or ξ ∈ Ψ

1 |Ψi| = 1 and ξ /∈ Ψ

0 otherwise.

Valuation function ũi is not fully substitutable. To see this, note that for price vector
p = (pξ, pψ, pω) = (1.7, 0.8, 0.8), the unique optimal demand of agent i is {ψ, ω}, but for price
vector p′ = (p′ξ, p′ψ, p′ω) = (1.7, 1, 0.8), the unique optimal demand of agent i is {ξ}. That is,
under price vector p′, agent i no longer demands the trade ω, even though its price remains
unchanged while the price of ψ increases and the price of ξ remains unchanged.

5.3 Limited Liability

The final transformation we consider is “limited liability.” Specifically, suppose that after
agreeing to a trade, an agent is allowed to renege on that trade in exchange for paying a
fixed penalty. We show that this transformation preserves substitutability. In addition to
being economically interesting, the preservation of substitutability under limited liability is
also useful technically; indeed, it enables us to transform unbounded utility functions into
bounded ones while preserving substitutability. (The fact that this transformation preserves
substitutability simplifies the technical analysis in a number of settings; see, e.g., the proof of
Theorem 1 in Hatfield et al. (2013).)

Formally, consider a fully substitutable valuation function ui for agent i. Take an arbitrary
set of trades Φ ⊆ Ωi, and for every trade ϕ ∈ Φ, pick Πϕ ∈ R—the penalty for reneging on
trade ϕ. (For mathematical completeness, we allow Πϕ to be negative.) Define the modified
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valuation function ûi as

ûi(Ψ) ≡ max
Ξ⊆Ψ∩Φ

ui(Ψ r Ξ)−
∑
ϕ∈Ξ

Πϕ

 . (2)

That is, under valuation ûi, agent i can “buy out” some of the trades to which he has
committed (provided these trades are in the set Φ of trades the agent may renege on), and
pay the corresponding penalty for each trade he buys out.

Theorem 5. For any Φ ⊆ Ωi and ΠΦ ∈ RΦ, if agent i has fully substitutable preferences, then
the valuation function ûi with limited liability (as defined in (2)) induces fully substitutable
preferences.

A common assumption in the earlier literature on two-sided matching and exchange
economies (e.g., Kelso and Crawford (1982) and Gul and Stacchetti (1999)) is that buyers’
valuation functions are monotonic.20 Intuitively, monotonicity corresponds to the special case
of our setting in which an agent has free disposal, in the sense that he can renege on any
trade at no cost. More formally, if ui is fully substitutable, then Theorem 5 implies that we
can obtain a fully substitutable and monotonic valuation function ûi by allowing the agent
to renege on any trade in Ωi at a per-trade cost of Πϕ = 0, for all ϕ ∈ Ωi.

6 Properties Equivalent to Full Substitutability

In this section, we discuss several interesting properties of valuation functions that turn
out to be equivalent to full substitutability. While these results are of independent interest,
some of them are also useful in applications. For example: The submodularity equivalence
we prove in Section 6.1 is used in our proof that substitutability is preserved under trade
endowments (Theorem 2). The object-language formulation of full substitutability we develop
in Section 6.3 is used in showing the Laws of Aggregate Supply and Demand (Theorem 10); a
closely related transformation is used in the proof of the main result of Hatfield et al. (2013).
The single-improvement property, which we introduce in Section 6.2, and M \-concavity,
discussed in Section 6.5, are useful for efficiently computing the choice function of an agent
with fully substitutable preferences, because they imply that local search for an optimal
bundle eventually reaches a global optimum (Paes Leme, 2014).

20Monotonicity of the valuation function ui requires that, for all Ξ and Ψ such that Ξ ⊆ Ψ ⊆ Ωi,
ui(Ψ) ≥ ui(Ξ).
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6.1 Submodularity of the Indirect Utility Function

A classical approach (see, e.g., the work of Gul and Stacchetti (1999) and Ausubel and
Milgrom (2002)) relates substitutability of the utility function to submodularity of the indirect
utility function. In particular, every (grossly) substitutable utility function corresponds to a
submodular indirect utility function and vice versa.21

For price vectors p, p̄ ∈ RΩ, let the join of p and p̄, denoted p ∨ p̄, be the pointwise
maximum of p and p̄; let the meet of p and p̄, denoted p ∧ p̄, be the pointwise minimum of p
and p̄.

Definition 4. The indirect utility function of agent i,

Vi(p) ≡ max
Ψ⊆Ωi
{Ui([Ψ; p])},

is submodular if, for all price vectors p, p̄ ∈ RΩ, we have that

Vi(p ∧ p̄) + Vi(p ∨ p̄) ≤ Vi(p) + Vi(p̄).

Theorem 6. The preferences of an agent are fully substitutable if and only if they induce a
submodular indirect utility function.

6.2 The Single Improvement Property

Gul and Stacchetti (1999) first observed (in the setting of exchange economies) that sub-
stitutability is equivalent to the single improvement property—an agent’s preferences are
substitutable if and only if, when an agent does not have an optimal bundle, that agent can
make himself better off by adding a single item, dropping a single item, or doing both. Sun
and Yang (2009) extended this result to their setting. Baldwin and Klemperer (2015) showed
that in their setting the single improvement property is equivalent to requiring that agents
have complete preferences.

Definition 5. The preferences of agent i have the single improvement property if for any
price vector p and set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞, there exists a set of trades
Φ such that

1. Ui([Ψ, p]) < Ui([Φ, p]),
21Similar correspondences hold in markets without transferable utility: In many-to-many matching with

contracts markets without transfers, every substitutable choice function can be represented by a submodular
indirect utility function, and every submodular indirect utility function corresponds to a substitutable choice
function (Hatfield and Kominers, 2013). In trading networks without transferable utility, every indirect utility
function representing a fully substitutable choice function is quasi-submodular (Hatfield and Kominers, 2012).
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2. there exists at most one trade ω such that ei,ω(Ψ) < ei,ω(Φ), and

3. there exists at most one trade ω such that ei,ω(Ψ) > ei,ω(Φ).

The single improvement property says that, when an agent holds a suboptimal bundle of
trades Ψ, that agent can be made be better off by

1. obtaining one item not currently held (either by making a new purchase, i.e., adding a
trade in Ω→i r Ψ, or by canceling a sale, i.e., removing a trade in Ψi→),

2. relinquishing one item currently held (either by canceling a purchase, i.e., removing a
trade in Ψ→i, or by making a new sale, i.e., adding a trade in Ωi→ r Ψ), or

3. both obtaining one item not currently held and relinquishing one item currently held.

For instance, an agent may buy one more input and commit to provide one additional output
as a “single improvement.”

Moreover, when the preferences of agent i satisfy the single improvement property, it is
easy to find an optimal bundle since, at any non-optimal bundle, a local adjustment can
strictly increase the utility of i.

We now generalize the earlier results of Gul and Stacchetti (1999) and Sun and Yang
(2009) to our setting.

Theorem 7. The preferences of an agent are fully substitutable if and only if they have the
single improvement property.

6.3 Object-Language Substitutability

An alternative way of thinking about trades in our setting is to consider each trade as
representing the transfer of an underlying object. Under this interpretation, an agent’s
preferences over trades are fully substitutable if and only if that agent’s preferences over
objects have the standard Kelso and Crawford (1982) property of gross substitutability. This
interpretation allows us to rewrite indicator-language full substitutability to more naturally
correspond to the intuitive explanation of the concept given in Section 3.

Formally, we consider each trade ω ∈ Ω as transferring an underlying object from s(ω) to
b(ω); we denote this underlying object as o(ω). We call the set of all underlying objects Ω.
Hence, after executing the set of trades Ψ ⊆ Ωi, agent i is left with both the set of objects
corresponding to the trades in Ψ where i is a buyer and the set of objects corresponding
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to trades in Ωi r Ψ where i is a seller. We define the set of objects held by agent i after
executing the set of trades Ψ as

oi(Ψ) = {o(ω) : ω ∈ Ψ→i} ∪ {o(ω) : ω ∈ Ωi→ r Ψi→}.

Conversely, we define the trade associated with an object ω as t(ω); note that t(o(ω)) = ω.
We also define the set of trades executed by i for a given set of objects Ψ ⊆ Ωi ≡ {ω ∈ Ω :
i ∈ {b(t(ω)), s(t(ω))} as

ti(Ψ) = {ω ∈ Ω→i : o(ω) ∈ Ψ} ∪ {ω ∈ Ωi→ : o(ω) ∈ Ωi r Ψ}.

Hence, for a partition of objects {Ψi}i∈I , the set of trades that implements this partition is
given by ⋃

i∈I
ti(Ψi).

For notational simplicity, for a set of objects Ψ, we let ui(Ψ) ≡ ui(ti(Ψ)).
Using object language, we can also reformulate indicator-language full substitutability to

object-language full substitutability.

Definition 6. The preferences of agent i are object-language fully substitutable (OFS) if
for all price vectors p, p′ ∈ RΩ such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for the unique
Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), if ω ∈ oi(Ψ), then ω ∈ oi(Ψ′) for each ω ∈ Ωi such that
pt(ω) = p′t(ω).

Under object-language full substitutability, an increase in the price of object ψ cannot
decrease the agent’s demand for any object ω 6= ψ. That is, the agent’s preferences over
objects are grossly substitutable, in the sense of Kelso and Crawford (1982).

We can now interpret the indicator vector ei,ψ(Ψ) as encoding whether the object ψ = o(ψ)
is transferred under Ψ:

• If ψ ∈ Ψ→i, then ψ ∈ oi(Ψ) and ei,ψ(Ψ) = 1, i.e., i obtains the object associated with ψ.

• If ψ ∈ Ψi→, then ψ /∈ oi(Ψ) and ei,ψ(Ψ) = −1, i.e., i gives up the object associated
with ψ.

• Finally, if ψ /∈ Ψ, then ei,ψ(Ψ) = 0, i.e., i neither obtains nor gives up the object
associated with ψ.

Additionally, object-language full substitutability helps us define a “no complementarities
condition,” equivalent to full substitutability, in the next section. Also, it is useful in our
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proof that fully substitutable preferences satisfy the Laws of Aggregate Supply and Demand
(under quasilinear utility).

We can reformulate the definition of the single improvement property in terms of objects.

Definition 7. The preferences of agent i have the single improvement property if for any
price vector p and set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞, there exists a set of trades
Φ such that

1. U i([Ψ, p]) < U i([Φ, p]),

2. there exists at most one object ω ∈ oi(Φ) r oi(Ψ), and

3. there exists at most one object ω ∈ oi(Ψ) r oi(Φ).

Using object language, we obtain a definition of the single improvement property that
exactly matches the intuition provided on page 19. The single improvement property says
that, when an agent holds a suboptimal bundle of trades Ψ, that agent can be made be better
off by

1. obtaining one object ω not currently held, i.e., ω /∈ oi(Ψ),

2. relinquishing one object ω currently held, i.e., ω ∈ oi(Ψ), or

3. both obtaining one object and relinquishing one object.

When substitutability is expressed in terms of preferences over trades, it is necessary to
treat relationships between “same-side” and “cross-side” contracts differently. Both Sun and
Yang (2006) and Ostrovsky (2008) introduced a concept of cross-side complementarity, which
requires that agents treat buy-side contracts as complementary with sell-side contracts (as in
our Definitions 1 and 2), which might suggest that there is something fundamentally different
between how contracts on one side are interdependent with each other versus how contracts
on different sides are interdependent. The representation of preferences in the language of
object-language substitutability uncovers that cross-side complementarity is not really a
complementarity condition per se: rather, it corresponds to an underlying substitutability
condition over objects—the same one as in the case of same-side substitutability.

The formalization of substitutability in terms of preferences over objects (Definition 6)
thus provides a very simple and compact interpretation of full substitutability that does not
require treating two sides differently: it simply says that when an agent’s object opportunity
set shrinks, the agent does not reduce demand for any object that remains in his opportunity
set. In particular, in settings with transferable utility, when prices increase, an agent’s object
opportunity set shrinks; hence, substitutability requires that the agent (weakly) increase his
demand for objects whose prices do not rise.
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6.4 The No Complementarities Condition

Gul and Stacchetti (1999) proved that substitutability is equivalent to the no complementari-
ties condition; we extend this observation here.

Definition 8. The preferences of agent i satisfy the no complementarities condition if, for
every price vector p, for any Φ,Ψ ∈ Di(p), and for any Ψ̄ ⊆ oi(Ψ), there exists Φ̄ ⊆ oi(Φ)
such that ti((Ψ r Ψ̄) ∪ Φ̄) ∈ Di(p).

The no complementarities condition requires that for any pair of optimal bundles of
objects, Ψ and Φ, and for any Ψ̄ ⊆ Ψ, there exists a set of objects Φ̄ ⊆ Φ that “perfectly
substitute” for the objects in Ψ̄, in the sense that (Ψ r Ψ̄) ∪ Φ̄ is optimal.

Theorem 8. The preferences of an agent are fully substitutable if and only if they satisfy
the no complementarities condition.

The proof of Theorem 8 is an adaptation of the proof of Theorem 1 of Gul and Stacchetti
(1999). Gul and Stacchetti (1999) assume that valuation functions are monotone and
bounded from below; thus, in our proof of Theorem 8, we must be careful to ensure that
non-monotonicities and unboundedness do not invalidate the Gul and Stacchetti (1999) proof
strategy.

6.5 M \-Concavity over Objects

Reijnierse et al. (2002) and Fujishige and Yang (2003) independently observed that gross
substitutability in the Kelso and Crawford (1982) model is equivalent to a classical condition
from discrete optimization theory, M \-concavity (Murota, 2003). In our object-language
notation, the condition can be stated as follows.

Definition 9. The valuation ui is M \-concave over objects if for all Φ,Ψ ∈ Ωi, for any
ψ ∈ Ψ,

ui(Ψ) + ui(Φ) ≤ max
{
ui(Ψ r {ψ}) + ui(Φ ∪ {ψ}),

max
ϕ∈Φ
{ui(Ψ ∪ {ϕ}r {ψ}) + ui(Φ ∪ {ψ}r {ϕ})}

}
.

A valuation function is M \-concave if, for any sets of objects Ψ and Φ, the sum of ui(Ψ)
and ui(Φ) is weakly increased when either we move a given object ψ from Ψ to Φ or we
swap ψ for some other object ϕ ∈ Φ.

Theorem 9. The preferences of an agent are fully substitutable if and only if the associated
valuation function is M \-concave over objects.
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This equivalence result follows from Theorem 7 of Murota and Tamura (2003), which
shows thatM \-concavity is equivalent to the single improvement property—and which in turn,
by our Theorem 7, implies the equivalence between full substitutability and M \-concavity.

7 Laws of Aggregate Supply and Demand

In two-sided matching markets with transfers and quasilinear utility, all fully substitutable
preferences satisfy a monotonicity condition called the Law of Aggregate Demand (Hatfield
and Milgrom, 2005).22 The analogues of this condition for the current setting are the Laws
of Aggregate Supply and Demand for trading networks, first introduced by Hatfield and
Kominers (2012).

Definition 10. The preferences of agent i satisfy the Law of Aggregate Demand if for all
finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for every Y ∗ ∈ Ci(Y ),
there exists Z∗ ∈ Ci(Z) such that |Z∗→i| − |Y ∗→i| ≥ |Z∗i→| − |Y ∗i→|.

The preferences of agent i satisfy the Law of Aggregate Supply if for all finite sets of
contracts Y and Z such that Yi→ ⊆ Zi→ and Y→i = Z→i, for every Y ∗ ∈ Ci(Y ), there exists
Z∗ ∈ Ci(Z) such that |Z∗i→| − |Y ∗i→| ≥ |Z∗→i| − |Y ∗→i|.

Intuitively, the choice correspondence Ci satisfies the Law of Aggregate Demand if,
whenever the set of options available to i as a buyer expands, the net change in the number
of buy-side contracts chosen is at least as great as the net change in the number of sell-side
contracts chosen. Similarly, the choice correspondence Ci satisfies the Law of Aggregate
Supply if, whenever the set of options available to i as a seller expands, the net change in the
number of sell-side contracts chosen is at least as great as the net change in the number of
buy-side contracts chosen. These conditions extend the canonical Law of Aggregate Demand
(Hatfield and Milgrom (2005); see also Alkan and Gale (2003)) to the current setting, in
which each agent can be both a buyer in some trades and a seller in others.

In our setting, full substitutability implies the Laws of Aggregate Supply and Demand.

Theorem 10. If the preferences of agent i are fully substitutable, then they satisfy the Laws
of Aggregate Supply and Demand.

Theorem 10 generalizes Theorem 7 of Hatfield and Milgrom (2005), who showed the
analogous result in the special case when agent i acts only as a buyer. The proof essentially
follows from applying the Hatfield and Milgrom (2005) result to the agent’s preferences over
objects.

22In the context of two-sided matching with contracts, the Law of Aggregate Demand is essential for “rural
hospitals” and strategy-proofness results (see Hatfield and Milgrom (2005) and Hatfield and Kominers (2013)).

23



8 Conclusion

Various forms of substitutability are essential for establishing the existence of equilibria and
other useful properties in diverse settings such as matching, auctions, and exchange economies
with indivisible goods. We extended earlier models’ canonical definitions of substitutability
to a setting in which an agent can be both a buyer in some transactions and a seller in
others, and showed that all these definitions are equivalent. We introduced a new class of
substitutable preferences that allows us to model intermediaries with production capacity.
We proved that substitutability is preserved under economically important transformations
such as trade endowments and obligations, mergers, and limited liability. We also showed
that substitutability corresponds to submodularity of the indirect utility function, the
single improvement property, gross substitutability under a suitable transformation (“object-
language substitutability”), a no complementarities condition, and M \-concavity. Finally,
we showed that substitutability implies the monotonicity conditions known as the Laws
of Aggregate Supply and Demand. All of our results explicitly incorporate economically
important features such as indifferences, non-monotonicities, and unbounded utility functions
that were not fully addressed in prior work.

In the current paper, we focused on the full substitutability of the preferences of an
individual agent. In related work, we have explored the properties of economies with
multiple agents whose preferences are fully substitutable. That work shows that when all
agents’ preferences are fully substitutable, outcomes that are stable (in the sense of matching
theory) exist for any underlying network structure (Hatfield et al., 2013, Theorems 1 and 5).
Furthermore, full substitutability of preferences guarantees that the set of stable outcomes is
essentially equivalent to the set of competitive equilibria with personalized prices (Hatfield
et al., 2013, Theorems 5 and 6) and to the set of chain stable outcomes (Hatfield et al.,
2015, Theorem 1 and Corollary 1), and that all stable outcomes are in the core and are
efficient (Hatfield et al., 2013, Theorem 9). Full substitutability also delineates a maximal
domain for the existence of equilibria (Hatfield et al., 2013, Theorem 7): for any domain of
preferences strictly larger than that of full substitutability, the existence of stable outcomes
and competitive equilibria cannot be guaranteed.

Appendix

A Full Substitutability Definitions with Indifferences

In this Appendix, we introduce six alternative definitions of full substitutability, as follows:
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• Definitions A.1 and A.2 are analogues of our choice-language definition (Definition 1),

• Definitions A.3 and A.4 are analogues of our demand-language definition (Definition 2),
and

• Definitions A.5 and A.6 are analogues of our indicator-language definition (Definition 3).

In contrast to Definitions 1, 2 and 3, which consider single-valued choices and demands,
Definitions A.1–A.6 explicitly consider multi-valued correspondences and deal directly with
indifferences. By explicitly accounting for indifferences and multi-valued correspondences, we
directly generalize the original gross substitutability condition of Kelso and Crawford (1982)
to our setting. Moreover, the conditions that explicitly account for indifferences turn out to
be useful for proving various results on trading networks, as we discuss below.

Definition A.1, stated in the language of choice functions, and Definition A.3, stated in
the language of demand functions, are conceptually related in that in both definitions the
set of “options” available on one side expands, while the set of options on the other side
remains unchanged.23 The idea of expanding options on one side originated in the matching
literature, where it is natural to consider an expansion in the set of available trades, which in
turn induces an expansion in the set of available contracts (see Ostrovsky (2008), Westkamp
(2010), Hatfield and Kominers (2012), and Hatfield et al. (2013)). Definition A.1 is the full
substitutability concept used by Hatfield et al. (2015) to prove the equivalence of stability
and chain stability in trading networks.24 The equivalence of Definition A.3 (DEFS) to other
definitions of full substitutability is used in the proof of Theorem 6 of Hatfield et al. (2013)
on the equivalence of stability and competitive equilibrium.

Definition A.2, stated in the language of choice functions, and Definition A.4, stated in
the language of demand functions, are related in that in both definitions the set of “options”
available on one side contracts, while the set of options on the other side remains unchanged.25

Definition A.4 (DCFS) is the full substitutability definition that corresponds most directly
to the original definition of gross substitutability of Kelso and Crawford (1982) and the
definition of Gul and Stacchetti (1999, 2000): When an agent is not a seller in any trade in the
economy, the (DCFS) condition directly reduces to those definitions of gross substitutability.

23In choice-language, the “options” are the contracts available to choose from. In demand-language, the
expansion of the set of “options” corresponds to prices of trades moving in the direction advantageous for the
agent: trades in which he is the buyer become cheaper, and trades in which he is the seller become more
expensive.

24Hatfield et al. (2015) do not assume the quasilinearity of preferences or the continuity of transfers, and
thus our equivalence results do not apply to the most general version of their setting.

25In demand-language, the contraction of the set of “options” corresponds to prices of trades moving in the
direction disadvantageous for the agent: trades in which he is the buyer become more expensive, and trades
in which he is the seller become cheaper.
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It is also the definition that corresponds to the gross substitutes and complements condition
of Sun and Yang (2006, 2009).26 The equivalence of the (DCFS) condition to other full
substitutability conditions (in particular, to the (IFS) and (DFS) conditions that only consider
single-valued demands) is used in the proof of Theorem 1 of Hatfield et al. (2013) on the
existence of competitive equilibria, in the step of the proof that “transforms” a trading
network economy to a Kelso-Crawford two-sided, “many-to-one” matching market. The
equivalence of the (DCFS) condition to the “single-valued” substitutability conditions implies
that agents’ preferences in the “transformed” market satisfy the gross substitutes condition
of Kelso and Crawford (1982), making it possible to apply the results of Kelso and Crawford
(1982) to the “transformed” market.

In contrast to Definitions A.1–A.4, which consider a change in the set of available options
on one side while keeping the options on the other side unchanged, Definitions A.5 and A.6
consider changes in the set of options available on both sides simultaneously (i.e., the set
of options on one side expands while the set of options on the other side contracts). This
idea is in line with the auction literature, where it is standard to consider the effects of a
weak increase (or decrease) of the entire price vector (see, e.g., Ausubel and Milgrom (2006)
and Ausubel (2006)). We use Definitions A.5 and A.6 in the proof of Theorem 7 on the
equivalence of full substitutability and the single-improvement property.

A.1 Choice-Language Full Substitutability

Our next two definitions are analogues of Definition 1.

26Sun and Yang (2006, 2009) studied exchange economies in which agents’ preferences satisfy the gross
substitutes and complements (GSC) condition. This condition requires that the set of objects can be
partitioned into two sets S1 and S2 in such a way that whenever the price of one particular object in S1

increases, each agent’s demand for other objects in S1 increases and each agent’s demand for other objects in
S2 decreases; there is a symmetric requirement for the case where the price of an object in S2 increases.

As discussed in Section IV.B of Hatfield et al. (2013), the framework of Sun and Yang (2006, 2009) can be
embedded into the trading networks framework by viewing agents as intermediaries that (1) “buy inputs”
from a set of artificial agents who each own one of the objects in S1 and only care about the price received,
and (2) “sell outputs” to a set of artificial agents who each can acquire only one particular object in S2

and otherwise only care about the price charged. With this embedding, the (GSC) condition for exchange
economies maps to the (DCFS) condition of our paper, and thus by our results is also equivalent to other
definitions of full substitutability.
Note that while the framework of Sun and Yang (2006, 2009) can be embedded into the trading network

framework of Hatfield et al. (2013) (as described above), the reverse is not true, because in the trading network
framework, it will usually not be possible to partition the set of trades Ω into two sets Ω1 and Ω2 such that all
agents’ preferences simultaneously satisfy the (GSC) condition with respect to that partition (see Section IV.C
of Hatfield et al. (2013) for details). Hence, in the presence of intermediaries, the trading network framework
with agents’ preferences satisfying the (DCFS) condition is more general than the exchange economy setting
with agents’ preferences satisfying the (GSC) condition.
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Definition A.1. The preferences of agent i are choice-language expansion fully substitutable
(CEFS) if:

1. for all finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Y ∗ ∈ Ci(Y ), there exists Z∗ ∈ Ci(Z) such that (Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and
Y ∗i→ ⊆ Z∗i→;

2. for all finite sets of contracts Y, Z ⊆ Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Y ∗ ∈ Ci(Y ), there exists Z∗ ∈ Ci(Z) such that (Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and
Y ∗→i ⊆ Z∗→i.

Definition A.2. The preferences of agent i are choice-language contraction fully substitutable
(CCFS) if:

1. for all finite sets of contracts Y, Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Z∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y ) such that (Y→i r Y ∗→i) ⊆ (Z→i r Z∗→i) and
Y ∗i→ ⊆ Z∗i→;

2. for all finite sets of contracts Y, Z ⊆ Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Z∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y ) such that (Yi→ r Y ∗i→) ⊆ (Zi→ r Z∗i→) and
Y ∗→i ⊆ Z∗→i.

Note that we use Y as the “starting set” in (CEFS) and Z as the “starting set” in (CCFS)
to make the two notions more easily comparable. Furthermore, note that in Case 1 of (CEFS)
and (CCFS), requiring Y→irY ∗→i ⊆ Z→irZ∗→i is equivalent to requiring that Z∗ ∩Y→i ⊆ Y ∗,
and similarly, in Case 2, requiring Yi→ r Y ∗i→ ⊆ Zi→ r Z∗i→ is equivalent to requiring that
Z∗ ∩ Yi→ ⊆ Y ∗.

A.2 Demand-Language Full Substitutability

Our next two definitions are analogues of Definition 2.

Definition A.3. The preferences of agent i are demand-language expansion fully substi-
tutable (DEFS) if:

1. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all
ω ∈ Ω→i, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p′) such that {ω ∈ Ψ′→i : pω = p′ω} ⊆
Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω for all
ω ∈ Ωi→, for every Ψ ∈ Di(p) there exists Ψ′ ∈ Di(p′) such that {ω ∈ Ψ′i→ : pω = p′ω} ⊆
Ψi→ and Ψ→i ⊆ Ψ′→i.
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Definition A.4. The preferences of agent i are demand-language contraction fully substi-
tutable (DCFS) if:

1. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all
ω ∈ Ω→i, for every Ψ′ ∈ Di(p′) there exists Ψ ∈ Di(p) such that {ω ∈ Ψ′→i : pω = p′ω} ⊆
Ψ→i and Ψi→ ⊆ Ψ′i→;

2. for all price vectors p, p′ ∈ RΩ such that pω = p′ω for all ω ∈ Ω→i and pω ≤ p′ω for all
ω ∈ Ωi→, for every Ψ′ ∈ Di(p′) there exists Ψ ∈ Di(p) such that {ω ∈ Ψ′i→ : pω = p′ω} ⊆
Ψi→ and Ψ→i ⊆ Ψ′→i.

Note that we use p as the “starting price vector” in (DEFS) and p′ as the “starting price
vector” in (DCFS). Also, in Case 1 of (DEFS) and (DCFS), requiring {ω ∈ Ψ′→i : pω =
p′ω} ⊆ Ψ→i is equivalent to requiring that {ω ∈ (Ω→i r Ψ) : pω = p′ω} ⊆ Ω→i r Ψ′, and
similarly, in Case 2, requiring {ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→ is equivalent to requiring that
{ω ∈ (Ωi→ r Ψ) : pω = p′ω} ⊆ Ωi→ r Ψ′.

A.3 Indicator-Language Full Substitutability

Our next two definitions are analogues of Definition 3.

Definition A.5. The preferences of agent i are indicator-language increasing-price fully
substitutable (IIFS) if for all price vectors p, p′ ∈ RΩ such that p ≤ p′, for every Ψ ∈ Di(p)
there exists Ψ′ ∈ Di(p′), such that ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.

Definition A.6. The preferences of agent i are indicator-language decreasing-price fully
substitutable (IDFS) if for all price vectors p, p′ ∈ RΩ such that p ≤ p′, for every Ψ′ ∈ Di(p′)
there exists Ψ ∈ Di(p), such that ei,ω(Ψ) ≤ ei,ω(Ψ′) for each ω ∈ Ωi such that pω = p′ω.

Note that we use p as the “starting price vector” in (IIFS) and p′ ≥ p as the “starting
price vector” in (IDFS).

B Equivalence of Full Substitutability Definitions

In this Appendix, we show that the three definitions in Section 3 and the six definitions in
Appendix A are all equivalent. In particular, this implies Theorem 1.

Theorem B.1. The (CFS), (DFS), (IFS), (CEFS), (CCFS), (DEFS), (DCFS), (IIFS), and
(IDFS) conditions are all equivalent.
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Proof. It is immediate that (CEFS) and (CCFS) each imply (CFS), and (IIFS) and (IDFS)
both imply (IFS). Below we establish the remaining equivalences by showing that (CFS)
⇒ (DFS), (DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS), (DEFS) ⇒ (CEFS), (DCFS) ⇒ (CCFS),
(DEFS) + (DCFS) ⇒ (IDFS) + (IIFS), and (IFS) ⇒ (DFS).

(CFS) ⇒ (DFS) We first show that Case 1 of (CFS) implies Case 1 of (DFS). For any
agent i and price vector p ∈ RΩ, let Xi(p) ≡ {(ω, p̂ω) : ω ∈ Ω→i, p̂ω ≥ pω} ∪ {(ω, p̂ω) : ω ∈
Ωi→, p̂ω ≤ pω}, in essence denoting the set of contracts available to agent i under prices p.

Let price vectors p, p′ ∈ RΩ be such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all
ω ∈ Ωi→, and p′ω ≤ pω for all ω ∈ Ω→i. Let Y = Xi(p) and Z = Xi(p′). Clearly,
Yi→ = Zi→ and Y→i ⊆ Z→i. Furthermore, it is immediate that Ψ ∈ Di(p) if and only if
κ([Ψ; p]) ∈ Ci(Y ), and similarly, Ψ′ ∈ Di(p′) if and only if κ([Ψ′; p′]) ∈ Ci(Z). In particular,
we have |Ci(Y )| = |Ci(Z)| = 1 and can thus apply (CFS) to the sets Y and Z.

Take the unique Ψ ∈ Di(p), let Y ∗ = κ([Ψ, p]), and note that Y ∗ ∈ Ci(Y ). By (CFS), the
unique Z∗ ∈ Ci(Z) satisfies Y→i r Y ∗→i ⊆ Z→i r Z∗→i and Y ∗i→ ⊆ Z∗i→. Let Ψ′ = τ(Z∗) and
note that Ψ′ ∈ Di(p′). We show that Ψ′ satisfies the conditions in Case 1 of Definition 2.

Note that Y→irY ∗→i ⊆ Z→irZ∗→i implies {ω ∈ Ω→irΨ→i : pω = p′ω} ⊆ τ(Y→i)rτ(Y ∗→i) ⊆
τ(Z→i) r τ(Z∗→i) ⊆ Ω→i r Ψ′→i. Furthermore, Y ∗i→ ⊆ Z∗i→ and pω = p′ω for each ω ∈ Ωi→

imply Ψ′i→ ⊆ Ψi→.
The proof that Case 2 of (CFS) implies Case 2 of (DFS) is analogous.

(DFS) ⇒ (DEFS), (DFS) ⇒ (DCFS) We first show that Case 1 of (DFS) implies Case
1 of (DEFS). Take two price vectors p, p′ such that p′ω ≤ pω for all ω ∈ Ω→i and pω = p′ω

for all ω ∈ Ωi→, and fix an arbitrary Ψ ∈ Di(p). We need to show that there exists a set
Ψ′ ∈ Di(p′) that satisfies the conditions of Case 1 of (DEFS).

As the statement is trivial when Di(p′) = {Ξ : Ξ ⊂ Ωi}, we assume the contrary. In the
following, let Ω̃→i = {ω ∈ Ω→i : p′ω < pω}. Let ε1 = Vi(p′)−maxΞ⊆Ωi,Ξ/∈Di(p′) Ui([Ξ; p′]), and
ε2 = minω∈Ω̃→i

(pω − p′ω). Let ε = min{ε1,ε2}
2|Ωi| . Note that by construction, ε > 0.

We now define a price vector q1 by

q1
ω =


pω − ε ω ∈ Ωi→ r Ψ or ω ∈ Ψ→i
pω + ε ω ∈ Ω→i r Ψ or ω ∈ Ψi→

0 ω /∈ Ωi.

Clearly, we must have Di(q1) = {Ψ}. Now define q2 by q2
ω = q1

ω for all ω ∈ Ω r Ω̃→i and
q2
ω = p′ω for all ω ∈ Ω̃→i. We claim that Di(q2) ⊆ Di(p′). To see this, fix an arbitrary
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Φ ∈ Di(p′) and an arbitrary Ξ /∈ Di(p′). Then we must have

Ui([Φ; q2]) ≥ Ui([Φ; p′])− |Φ|ε > Ui([Ξ; p′]) ≥ Ui([Ξ; q2]),

where the first and third inequalities follow directly from the definitions of q2, and the second
inequality follows from |Φ|ε ≤ |Ωi|ε1 < Vi(p′)− Ui([Ξ; p′]) = Ui([Φ; p′])− Ui([Ξ; p′]).

We will now show that the condition in Case 1 of Definition 2 is satisfied for any set
of trades Ψ′ ∈ Di(q2). Take any such Ψ′. Similar to the above, we define δ1 = Vi(q1) −
maxΞ⊆Ωi,Ξ/∈Di(q1) Ui([Ξ; q1]), δ2 = Vi(q2)−maxΞ⊆Ωi,Ξ/∈Di(q2) Ui([Ξ; q2]), and δ3 = minω∈Ω̃→i

(q1
ω−

p′ω). Let δ = min{δ1,δ2,δ3}
3|Ωi| , and define price vector q3 as

q3
ω =


q2
ω − δ ω ∈ Ωi→ r Ψ′ or ω ∈ Ψ′→i
q2
ω + δ ω ∈ Ω→i r Ψ′ or ω ∈ Ψ′i→

0 ω /∈ Ωi.

Clearly, we must have Di(q3) = {Ψ′}. Now define q4 by q4
ω = q3

ω for all ω ∈ Ω r Ω̃→i and
q4
ω = q1

ω for all ω ∈ Ω̃→i. Similar to the above, we can show that Di(q4) ⊆ Di(q1), and
therefore Di(q4) = {Ψ}. Since q3

ω < q4
ω for all ω ∈ Ω̃→i and q3

ω = q4
ω for all ω ∈ Ω r Ω̃→i,

we can now apply Case 1 of (DFS) to conclude that Ψ′ satisfies the condition in Case 1 of
(DEFS).

The proofs that Case 2 of (DFS) implies Case 2 of (DEFS), and that (DFS) implies
(DCFS) are completely analogous.

(DEFS) ⇒ (CEFS), (DCFS) ⇒ (CCFS) We first prove Case 1 of (CEFS). Take agent
i and any sets of contracts Y, Z ⊆ Xi such that |Ci(Z)| > 0, |Ci(Y )| > 0, Yi→ = Zi→, and
Y→i ⊆ Z→i. Define usable and unusable trades in Y as follows. Take trade ω ∈ Yi→. If there
exists real number r such that (i) (ω, r) ∈ Y and (ii) for any r′ > r, (ω, r′) /∈ Y , then trade ω
is usable in Y ; otherwise, it is unusable in Y . Similarly, take trade ω ∈ Y→i. If there exists
real number r such that (i) (ω, r) ∈ Y and (ii) for any r′ < r, (ω, r′) /∈ Y , then trade ω is
usable in Y ; otherwise, it is unusable in Y . Note that an unusable trade cannot be a part of
any contract involved in any optimal choice in Ci(Y ). The definitions of trades usable and
unusable in Z are completely analogous.

We now construct preliminary price vectors q and q′ as follows. First, for every trade
ω /∈ Ωi, qω = q′ω = 0. Second, for every trade ω unusable in Y , qω = 0, and for every trade ω
unusable in Z, q′ω = 0. Next, for any trade ω ∈ Ωi→ usable in Y , qω = max{r : (ω, r) ∈ Y },
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and similarly, for any trade ω ∈ Ωi→ usable in Z, q′ω = max{r : (ω, r) ∈ Z}. Finally, for any
trade ω ∈ Ω→i usable in Y , qω = min{r : (ω, r) ∈ Y } and for any trade ω ∈ Ω→i usable in Z,
q′ω = min{r : (ω, r) ∈ Z}.

We now construct price vectors p and p′. First, for any trade ω /∈ Ωi, pω = p′ω = 0. Second,
for any trade ω ∈ Ωi that is usable in both Y and Z, let pω = qω and let p′ω = q′ω. Finally,
we need to set prices for trades unusable in Y or Z. We already noted that for any trade ω
unusable in set Y , it has to be the case that ω is not involved in any contract in any optimal
choice in Ci(Y ); and likewise, if ω is unusable in Z, then ω is not involved in any contract in
any optimal choice in Ci(Z). Thus, in forming prices p and p′, we will need to assign to these
trades prices that are so large (or small, depending on which side the trade is on) that the
corresponding trades are not demanded by agent i.

Let Π be a very large number. For instance, let

∆1 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; q])− Ui([Ω2; q])|,

∆2 = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui(Ω1; q′)− Ui(Ω2; q′)|,

and Π = 1 + ∆1 + ∆2 + maxω∈Ωi |qω| + maxω∈Ωi |q′ω|. For all ω ∈ Ωi→ that are unusable in
Y (and thus also in Z), let pω = p′ω = −Π. For all ω ∈ Ω→i that are unusable in both Y
and Z, let pω = p′ω = Π. For all ω ∈ Ω→i that are unusable in Y but not in Z, let pω = Π
and p′ω = q′ω. Finally, for all ω ∈ Ω→i that are unusable in Z but not in Y , let pω = p′ω = qω.
Note that for any such ω, since Y ⊂ Z, (ω, qω) ∈ Z; also, as ω is unusable in Z, there are no
contracts involving ω in any optimal choice in Ci(Z).

Now, p′ω = pω for all ω ∈ Ωi→ and p′ω ≤ pω for all ω ∈ Ω→i. Take any Y ∗ ∈ Ci(Y ), and
let Ψ = τ(Y ∗). By construction, Ψ ∈ Di(p). By (DEFS), there exists Ψ′ ∈ Di(p′) such that
{ω ∈ (Ω→i r Ψ→i) : pω = p′ω} ⊆ Ω→i r Ψ′→i and Ψi→ ⊆ Ψ′i→. Let Z∗ = κ([Ψ′, p′]). Again, by
construction, Z∗ ∈ Ci(Z). We now show that this set of contracts satisfies the conditions in
Case 1 of (CEFS).

First, take some y ∈ Y→i r Y ∗→i and suppose that contrary to what we want to show,
y ∈ Z∗→i. The latter implies that y = (ω, p′ω) for some trade ω, which, in turn, implies that
pω = p′ω (because y = (ω, p′ω) ∈ Y and, since Y ⊂ Z, (ω, r) /∈ Y for any r < p′ω). But then,
by construction, {ω ∈ (Ω→i r Ψ→i) : pω = p′ω} ⊆ Ω→i r Ψ′→i, contradicting y ∈ Z∗→i. Second,
since Y ∗i→ = {(ω, pω) : ω ∈ Ψi→}, Z∗i→ = {(ω, pω) : ω ∈ Ψ′i→}, and Ψi→ ⊆ Ψ′i→, it is immediate
that Y ∗i→ ⊆ Z∗i→. This completes the proof that Case 1 of (DEFS) implies Case 1 of (CEFS).

The proofs that Case 2 of (DEFS) implies Case 2 of (CEFS) and that (DCFS) implies
(CCFS) are completely analogous.
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(DEFS) + (DCFS)⇒ (IDFS) + (IIFS) We first show that (DEFS) and (DCFS) jointly
imply (IDFS). Take two price vectors p, p′ such that p ≤ p′. Let Ψ′ ∈ Di(p′) be arbitrary. We
have to show that there exists a set of trades Ψ ∈ Di(p) such that ei,ω(Ψ′) ≥ ei,ω(Ψ) for all
ω ∈ Ωi such that pω = p′ω.

First, let p1 be a price vector such that p1
ω = p′ω for all ω ∈ Ω→i and p1

ω = pω for all
ω ∈ Ωi→. By (DCFS) there must exist a Ψ1 ∈ Di(p1) such that {ω ∈ Ψ′i→ : p1

ω = pω} ⊆ Ψ1

and Ψ1
→i ⊆ Ψ′→i. Now note that pω = p1

ω for all ω ∈ Ωi→ and pω ≤ p1
ω for all ω ∈ Ω→i. By

(DEFS), there must exist a Ψ ∈ Di(p) such that {ω ∈ Ψ→i : p1
ω = pω} ⊆ Ψ1 and Ψ1

i→ ⊆ Ψi→.
Combining this with what we know about Ψ1, we obtain that {ω ∈ Ψ→i : pω = p′ω} = {ω ∈
Ψ→i : pω = p1

ω} ⊆ Ψ1
→i ⊆ Ψ′→i and {ω ∈ Ψ′i→ : pω = p′ω} = {ω ∈ Ψ′i→ : pω = p1

ω} ⊆ Ψ1
i→ ⊆

Ψi→. This implies ei,ω(Ψ′) ≥ ei,ω(Ψ) for all ω ∈ Ωi such that p′ω = p1
ω.

The proof that (DEFS) and (DCFS) jointly imply (IIFS) is completely analogous.

(IFS) ⇒ (DFS) This follows immediately, because the price change conditions in both
Cases 1 and 2 of (DFS) are special cases of the price change condition of (IFS).

C Proofs of the Results in Sections 4, 5, 6, and 7

Proof of Proposition 1

Consider the intermediary i. Let Φ (with a typical element ϕ) denote the set of potential
inputs this intermediary faces, and let Ψ (with a typical element ψ) denote the set of potential
requests. The cost of using input ϕ to satisfy request ψ is given by cϕ,ψ. For convenience,
when ϕ and ψ are incompatible, we simply say that cϕ,ψ = +∞.

Let us now construct a “synthetic” agent î whose preferences will be identical to those
of agent i, yet will be represented in the form of “intermediary with production capacity”
preferences as defined in Section 4.2. The full substitutability of the preferences of intermediary
i will then follow immediately from Proposition 2.

Agent î faces the same sets of inputs, Φ, and requests, Ψ, as agent i. Agent î also has
|Φ| × |Ψ| machines, indexed by pairs of inputs and requests: machine mϕ,ψ “corresponds” to
an input–request pair (ϕ, ψ). The costs of intermediary î are as follows (to avoid confusion,
we will denote various costs of agent î by “ĉ” with various subindices, while the costs of agent
i are denoted by “c” with various subindices):

• For input ϕ and machine mϕ,ψ “corresponding” to input ϕ and some request ψ, the
cost ĉϕ,mϕ,ψ of using input ϕ in machine mϕ,ψ is equal to cϕ,ψ—the cost of using input
ϕ to satisfy request ψ under the original cost structure of agent i.
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• For any input ϕ′ 6= ϕ and any request ψ, the cost ĉϕ′,mϕ,ψ is equal to +∞.

• For request ψ and any machine mϕ,ψ “corresponding” to request ψ and some input ϕ,
the cost ĉmϕ,ψ ,ψ of using machine mϕ,ψ to satisfy request ψ is equal to 0.

• For any request ψ′ 6= ψ and any machine mϕ,ψ, the cost ĉmϕ,ψ ,ψ′ is equal to +∞.

With this construction, the preferences of agents i and î over sets of inputs and requests
are identical. Moreover, the preferences of agent î are those of “intermediary with production
capacity” and are thus fully substitutable (by Proposition 2). Therefore, the “intermediary”
preferences of agent i are also fully substitutable.

Proof of Proposition 2

Consider first an “intermediary with production capacity” who has exactly one machine at his
disposal. It is immediate that the preferences of such an intermediary are fully substitutable.

Next, consider a general “intermediary with production capacity”, i, who has a set of
machines M (with a typical element m) at his disposal and faces the set of inputs Φ (with
a typical element ϕ) and the set of potential requests Ψ (with a typical element ψ), with
costs as described in Section 4.2. We will show that the preferences of intermediary i can
be represented as a “merger” of several (specifically, |M | + |Φ| + |Ψ|) agents with fully
substitutable preferences, which by Theorem 4 will imply that the preferences of intermediary
i are fully substitutable.

Specifically, consider the following set of artificial agents. First, there are |Φ| “input
dummies”, with a typical element ϕ̂ for a dummy that corresponds to input ϕ. Second, there
are |M | “machine dummies”, with a typical element m̂ for a dummy that corresponds to
machine m. Finally, there are |Ψ| “request dummies”, with a typical element ψ̂ for a dummy
that corresponds to request ψ.

Each input dummy ϕ̂ can only buy one trade: input ϕ. He can also form |M | trades as
a seller: one trade with every machine dummy m̂. We denote the trade between an input
dummy ϕ̂ (as the seller) and a machine dummy m̂ (as the buyer) by ωϕ,m. Likewise, each
request dummy ψ̂ can only sell one trade: request ψ. He can also form |M | trades as a buyer:
one trade with every machine dummy m̂. We denote the trade between a machine dummy m̂
(as the seller) and a request dummy ψ̂ (as the buyer) by ωm,ψ. Each machine dummy can
thus form |Φ| trades as the buyer (one with each input dummy) and |Ψ| trades as the seller
(one with each request dummy).

The preferences of the agents are as follows. Each input dummy and each request dummy
has valuation 0 if the number of trades he forms as the seller is equal to the number of trades
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he forms as the buyer (this number can thus be equal to either 0 or 1), and −∞ if these
numbers are not equal. It is immediate that the preferences of input and request dummies
are fully substitutable.

The preferences of each machine dummy m̂ are as follows. If it buys no trades and sells
no trades, its valuation is 0. If it buys exactly one trade, say ωϕ,m for some ϕ, and sells
exactly one trade, say ωm,ψ for some ψ, then its valuation is −(cϕ,m + cm,ψ)—the total cost
of preparing input ϕ for request ψ using machine m in the original construction of the utility
function of agent i. In all other cases (i.e., when the machine dummy buys or sells more than
two trades, or when the number of trades it buys is not equal to the number of trades it
sells), the valuation of the machine dummy is −∞. Note that the preferences of the machine
dummy are also fully substitutable.

Consider now the “synthetic” agent î obtained as the merger of the |Φ| input dummies,
|M | machine dummies, and |Ψ| request dummies (see Section 5.2 for the details of the “merger”
operation). By Theorem 4, the preferences of agent î are fully substitutable. Moreover, the
valuation of agent î over any bundle of inputs and requests is identical to the valuation of
agent i over that bundle. Thus, the preferences of agent i are fully substitutable.

Proof of Theorem 2

The indirect utility function for û(Φ,pΦ)
i is given by

V̂
(Φ,pΦ)
i (pΩrΦ) ≡ max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

ξ∈Ξ→i

pξ −
∑

ξ∈Ξ→i

pξ

 +
∑

ψ∈Ψ→i

pξ −
∑

ψ∈Ψ→i

pξ


= max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

λ∈Ξ→i∪Ψ→i

pλ −
∑

λ∈Ξi→∪Ψi→
pλ




= max
Λ⊆Ω

ui(Λ) +
∑

λ∈Λ→i

pλ −
∑

λ∈Λi→
pλ

 .

Hence, V̂ (Φ,pΦ)
i (pΩrΦ) = Vi(pΩrΦ, pΦ). Now, Vi(p) is submodular over RΩ by Theorem 6. As a

submodular function restricted to a subspace of its domain is still submodular, V̂ (Φ,pΦ)
i (pΩrΦ)

is submodular over RΩrΦ. Hence, by Theorem 6, we see that û(Φ,pΦ)
i is fully substitutable.

Proof of Theorem 3

Fix a set of trades Φ ⊆ Ωi such that ui(Φ) 6= −∞ and a vector of prices pΦ for trades in Φ.
Let D̃i be the demand function for trades in Ω r Φ induced by ũΦ,pΦ

i . Fix two price vectors
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p ∈ RΩrΦ and p′ ∈ RΩrΦ such that |D̃i(p)| = |D̃i(p′)| = 1, pω = p′ω for all ω ∈ Ωi→ r Φ, and
pω ≥ p′ω for all ω ∈ Ω→i r Φ. Let Ψ ∈ D̃i(p) be the unique demanded set from Ωi r Φ at
price vector p and Ψ′ ∈ D̃i(p′) be the unique demanded set from Ωi r Φ at price vector p′.
Note that since ui(Φ) 6= −∞, there exists a vector of prices p∗Φ for trades in Φ such that, for
all Ξ ∈ Di((p, p∗Φ)) ∪Di((p′, p∗Φ)), we have Φ ⊆ Ξ. Fix an arbitrary Ξ ∈ Di((p, p∗Φ)) and let
Ψ̃ ≡ Ξ r Φ.

Claim. We must have Ψ̃ = Ψ.

Proof. Suppose the contrary. Since Ψ̃ ∪ Φ = Ξ ∈ Di((p, p∗Φ)), we must have

ui(Ξ) = ui(Ψ̃ ∪ Φ) +
∑

ψ∈Ψ̃i→

pψ −
∑

ψ∈Ψ̃→i

pψ +
∑

ϕ∈Φi→
p∗ϕ −

∑
ϕ∈Φ→i

p∗ϕ

≥ ui(Ψ ∪ Φ) +
∑

ψ∈Ψi→
pψ −

∑
ψ∈Ψ→i

pψ +
∑

ϕ∈Φi→
p∗ϕ −

∑
ϕ∈Φ→i

p∗ϕ. (3)

The inequality (3) is equivalent to

ui(Ψ̃ ∪ Φ) +
∑

ψ∈Ψ̃i→

pψ −
∑

ψ∈Ψ̃→i

pψ +
∑

ϕ∈Φi→
pϕ −

∑
ϕ∈Φ→i

pϕ

≥ ui(Ψ ∪ Φ) +
∑

ψ∈Ψi→
pψ −

∑
ψ∈Ψ→i

pψ +
∑

ϕ∈Φi→
pϕ −

∑
ϕ∈Φ→i

pϕ. (4)

However, the inequality (4) implies that Ψ̃ ∈ D̃i(p); this contradicts the assumption that
D̃i(p) = {Ψ} given that Ψ̃ 6= Ψ.

The preceding claim implies that we must have Di((p, p∗Φ)) = {Ξ} = {Ψ̃ ∪ Φ} = {Ψ ∪ Φ}.
A similar argument shows that Di((p′, p∗Φ)) = {Ψ′ ∪ Φ}. The full substitutability of ui then
implies that {ψ ∈ Ψ′→i : pψ = p′ψ} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→.

Proof of Theorem 4

We suppose, by way of contradiction, that uJ does not induce fully substitutable preferences
over trades in Ω r ΩJ . By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable
preferences ũi for the agents i ∈ I r J such that no competitive equilibrium exists for the
modified economy with

1. set of agents (I r J) ∪ {J},

2. set of trades Ω r ΩJ ,

35



3. and valuation function for agent J given by uJ .27

Now, we consider the original economy with

1. set of agents I,

2. set of trades Ω,

3. valuations for i ∈ I r J given by ũi, and

4. valuations for j ∈ J given by uj.

Let [Ψ; p] be a competitive equilibrium of this economy; such an equilibrium must exist by
Theorem 1 of Hatfield et al. (2013).

Claim. [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the modified economy.

Proof. It is immediate that [Ψ r ΩJ ]i ∈ Di(pΩrΩJ ) for all i ∈ I r J . Moreover, since Ψ is
individually-optimal for each j ∈ J in the original economy (at prices p),

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ ≥ uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pϕ (5)

for every Φ ⊆ Ω. Summing (5) over all j ∈ J and simplifying, we obtain

∑
j∈J

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]j→

pψ −
∑

ψ∈[ΨrΩJ ]→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]j→

pϕ −
∑

ϕ∈[ΦrΩJ ]→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]J→

pψ −
∑

ψ∈[ΨrΩJ ]→J

pψ ≥
∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]J→

pϕ −
∑

ϕ∈[ΦrΩJ ]→J

pψ.

The preceding claim shows that [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the
modified economy, contradicting the earlier conclusion that no competitive equilibrium exists
in the modified economy. Hence, we see that uJ must be fully substitutable.

27Technically, in order to apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (i, j)
of distinct agents in I, there exists a trade ω such that b(ω) = i and s(ω) = j. For any pair (i, j) of distinct
agents in I such that no such trade ω exists, we can augment the economy by adding the requisite trade ω
and, if i ∈ J , letting ūi(Ψ∪ {ω}) = ui(Ψ) (and similarly for j). It is immediate that ūi is substitutable if and
only if ui is substitutable.
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Proof of Theorem 5

The proof of this result is very close to Step 1 of the proof of Theorem 1 of Hatfield et al.
(2013). The only differences are that in the Hatfield et al. (2013) results, all trades could
be bought out, and the price for buying them out was set to a single large number that
was the same for all trades. By contrast, in Theorem 5 of the current paper we allow for
the possibility that only a subset of trades can be bought out, and that the prices at which
these trades can be bought out can be different, and need not be large. Adapting Step 1
of the proof of Theorem 1 of Hatfield et al. (2013) to the current more general setting is
straightforward, but we include the proof for completeness.

Consider the fully substitutable valuation function ui, and take any trade ϕ ∈ Ωi→ ∩ Φ.
Consider a modified valuation function uϕi :

uϕi (Ψ) = max {ui(Ψ), ui(Ψ r {ϕ})− Πϕ} .

That is, the valuation uϕi (Ψ) allows (but does not require) agent i to pay Πϕ instead of
executing one particular trade, ϕ.

Claim. The valuation function uϕi is fully substitutable.

Proof. We consider utility Uϕ
i and demand Dϕ

i corresponding to valuation uϕi . We show that
Dϕ
i satisfies the (IFS) condition (Definition 3). Fix two price vectors p and p′ such that p ≤ p′

and |Dϕ
i (p)| = |Dϕ

i (p′)| = 1. Take the unique Ψ ∈ Dϕ
i (p) and Ψ′ ∈ Dϕ

i (p′). We need to show
that

ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω. (6)

Let price vector q coincide with p on all trades other than ϕ, and set qϕ = min{pϕ,Πϕ}.
Note that if pϕ < Πϕ, then p = q and Dϕ

i (p) = Di(p). If pϕ > Πϕ, then under utility Uϕ
i ,

agent i always wants to execute trade ϕ at price pϕ, and the only decision is whether to
“buy it out” or not at the cost Πϕ; i.e., the agent’s effective demand is the same as under
price vector q. Thus, Dϕ

i (p) = {Ξ ∪ {ϕ} : Ξ ∈ Di(q)}. Finally, if pϕ = Πϕ, then p = q and
Dϕ
i (p) = Di(p) ∪ {Ξ ∪ {ϕ} : Ξ ∈ Di(p)}. We construct price vector q′ corresponding to p′

analogously.
Now, if pϕ ≤ p′ϕ < Πϕ, then Dϕ

i (p) = Di(p), Dϕ
i (p′) = Di(p′), and thus ei,ω(Ψ) ≤ ei,ω(Ψ′)

follows directly from (IFS) for demand Di.
If Πϕ ≤ pϕ ≤ p′ϕ, then (since we assumed that Dϕ

i was single-valued at p and p′) it has to
be the case that Di is single-valued at the corresponding price vectors q and q′. Let Ξ ∈ Di(q)
and Ξ′ ∈ Di(q′). Then Ψ = Ξ∪ {ϕ}, Ψ′ = Ξ′ ∪ {ϕ}, and statement (6) follows from the (IFS)
condition for demand Di, because q ≤ q′.
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Finally, if pϕ < Πϕ ≤ p′ϕ, then p = q, Ψ is the unique element in Di(p), and Ψ′ is equal to
Ξ′ ∪ {ϕ}, where Ξ′ is the unique element in Di(q′). Then for ω 6= ϕ, statement (6) follows
from (IFS) for demand Di, because p ≤ q′. For ω = ϕ, statement (6) does not need to be
checked, because pϕ < p′ϕ.

Thus, when ϕ ∈ Ωi→, the valuation function uϕi is fully substitutable. The proof for the
case when ϕ ∈ Ω→i is completely analogous.

To complete the proof of Theorem 5, it is now enough to note that valuation function
ûi(Ψ) = maxΞ⊆Ψ∩Φ

{
ui(Ψ r Ξ)−∑

ϕ∈Ξ Πϕ

}
can be obtained from the original valuation ui

by allowing agent i to “buy out” all of the trades in set Φ, one by one, and since the preceding
claim shows that each such transformation preserves substitutability (and Ωi is finite), the
valuation function ûi is substitutable as well.

Proof of Theorem 6

We first show that if the preferences of an agent i are fully substitutable, then those preferences
induce a submodular indirect utility function. It is enough to show that for any two trades
ϕ, ψ ∈ Ωi and any prices p ∈ RΩ, phigh

ϕ > pϕ, and phigh
ψ > pψ we have that28

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

≥ Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ). (7)

Suppose that ϕ, ψ ∈ Ω→i.29 There are three cases to consider:

1. Suppose that ϕ /∈ Φ for any Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ). Then, by individual rationality,
ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p

high
ϕ , pψ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ) = 0

and so equation (7) is satisfied, as the left side of (7) must be non-negative.
28The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given here;

see, e.g., Schrijver (2002).
29The other three cases—

1. ϕ ∈ Ω→i and ψ ∈ Ωi→,

2. ϕ ∈ Ω→i and ψ ∈ Ωi→, and

3. ϕ,ψ ∈ Ωi→—

are analogous.
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2. Suppose ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p
high
ϕ , phigh

ψ ). Then, by individual rationality,
ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, p

high
ψ ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ ) = −(pϕ − phigh
ϕ ) = phigh

ϕ − pϕ

and so equation (7) is satisfied, as the right side of (7) is (weakly) bounded from above
by phigh

ϕ − pϕ (with equality in the case that ϕ is demanded at both (pΩr{ϕ,ψ}, pϕ, pψ)
and (pΩr{ϕ,ψ}, p

high
ϕ , pψ)).

3. Suppose that ϕ ∈ Φ for some Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ) and ϕ /∈ Φ for some Φ ∈
Di(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ ). In this case, as the preferences of i are fully substitutable,
there exists a unique price p↑ϕ such that there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ ) such

that ϕ ∈ Φ and ϕ /∈ Φ̄; note that pϕ ≤ p↑ϕ ≤ phigh
ϕ . Similarly, let p↓ϕ be the unique

price at which there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p
↓
ϕ, pψ) such that ϕ ∈ Φ and ϕ /∈ Φ̄;

note that pϕ ≤ p↓ϕ ≤ phigh
ϕ . By the definition of the utility function, ϕ ∈ Φ for all

Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p
high
ψ ) for all p̃ϕ < p↑ϕ, and ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p

high
ψ )

for all p̃ϕ > p↑ϕ; similarly, ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ < p↓ϕ, and
ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ > p↓ϕ.

Since the preferences of i are fully substitutable, p↓ϕ ≤ p↑ϕ. Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ ) + Vi(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= −pϕ + p↑ϕ − 0

≥ −pϕ + p↓ϕ − 0

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
↓
ϕ, pψ) + Vi(pΩr{ϕ,ψ}, p

↓
ϕ, pψ)− Vi(pΩr{ϕ,ψ}, p

high
ϕ , pψ)

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ),

which is exactly (7).

Now, suppose that the preferences of i are not substitutable. We suppose moreover that the
preferences of i fail the first condition of Defintion 2.30 Hence, for some price vectors p, p′ ∈ RΩ

such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ωi→, and pω ≥ p′ω for all ω ∈ Ω→i, we
have that for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), either {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i or
Ψi→ 6⊆ Ψ′i→. We suppose that {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i; the latter case is analogous. Let
ϕ ∈ Ψ→i r {ω ∈ Ψ′→i : pω = p′ω}. Let phigh

ϕ be a price for trade ϕ high enough such that ϕ is
30The case where the preferences of i fail the second condition of Defintion 2 is analogous.
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not demanded at either (phigh
ϕ , pΩr{ϕ}) or (phigh

ϕ , p′Ωr{ϕ}). Hence,

Vi(pϕ, p′Ωr{ϕ})− Vi(phigh
ϕ , p′Ωr{ϕ}) = 0

while
Vi(pϕ, pΩr{ϕ})− Vi(phigh

ϕ , pΩr{ϕ}) > 0.

Thus we see that Vi is not submodular.

Proof of Theorem 7

The proof is an adaptation of the proof of Theorem 1 of Sun and Yang (2009) to our setting.
As our model is more general than that of Sun and Yang (2009)—we do not impose either
monotonicity or boundedness on the valuation functions, and we do not require that the seller
values each bundle at 0 and thus sells everything that he could sell—we have to carefully
ensure that the Sun and Yang (2009) approach remains valid.

“If” Direction. We show first that (IDFS) and (IIFS) imply the single improvement property.
Fix an arbitrary price vector p ∈ RΩ and a set of trades Ψ /∈ Di(p) such that ui(Ψ) 6=
−∞. Fix a set of trades Ξ ∈ Di(p). We focus exclusively on the trades in Ψ and Ξ by
rendering all other trades that agent i is involved in irrelevant. To this end, we first
define a very high price Π,

Π ≡ max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; p])− Ui([Ω2; p)|+ max
ω∈Ωi
|pω|+ 1,

and then, starting from p, we construct a preliminary price vector p′ as follows:

p′ω =


pω ω ∈ Ψ ∪ Ξ or ω /∈ Ωi

pω + Π ω ∈ Ω→i r (Ψ ∪ Ξ)

pω − Π ω ∈ Ωi→ r (Ψ ∪ Ξ).

Observe that Ψ /∈ Di(p′) and Ξ ∈ Di(p′). As Ψ 6= Ξ, we have to consider two cases (each
with several subcases), which taken together will show that there exists a set of trades
Φ′ 6= Ψ that satisfies conditions 2 and 3 of Definition 5 and Ui[(Φ′; p)] ≥ Ui([Ψ; p]).

Case 1: Ξ r Ψ 6= ∅. Select a trade ξ1 ∈ ΞrΨ. Without loss of generality, assume that
agent i is the buyer of ξ1 (the case where i is the seller is completely analogous).
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Starting from p′, construct a modified price vector p′′ as follows:

p′′ω =

p
′
ω ω ∈ Ωi r ((Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→) or ω /∈ Ωi

p′ω + Π ω ∈ (Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→.

First, since Ξ ∈ Di(p′), ξ1 ∈ Ξ, and p′ξ1 = p′′ξ1 , full substitutability (Definition A.5)
implies that there exists Ξ′′ ∈ Di(p′′) such that ξ1 ∈ Ξ′′. Second, observe that
following the price change from p′ to p′′, (Ξ′′→i r Ψ→i) ⊆ {ξ1} and Ψi→ ⊆ Ξ′′i→.
Thus, Ξ′′→i r Ψ→i = {ξ1} and Ψi→ ⊆ Ξ′′i→. We consider three subcases.

Subcase (a): Ξ′′i→ r Ψi→ 6= ∅. Let ξ2 ∈ Ξ′′i→ r Ψi→. Starting from p′′, construct
price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r ((Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i) or ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i.

First, since Ξ′′ ∈ Di(p′′), ξ2 ∈ Ξ′′, and p′′ξ2 = p′′′ξ2 , full substitutability (Defi-
nition A.6) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ξ2 ∈ Ξ′′′. Sec-
ond, observe that following the price change from p′′ to p′′′, Ψ ⊆ Ξ′′′ and
Ξ′′′ r Ψ ⊆ {ξ1, ξ2}. Thus, Ψ r Ξ′′′ = ∅ and Ξ′′′ r Ψ = {ξ1, ξ2} or {ξ2}.
Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe
that from the perspective of agent i the only differences from Ψ to Ξ′′′

are making one new sale ξ2, i.e., ei,ξ2(Ψ) > ei,ξ2(Ξ′′′) with ξ2 ∈ Ωi→ r Ψ,
and (possibly) making one new purchase ξ1, i.e. ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with
ξ1 ∈ Ω→i r Ψ.

Subcase (b): Ξ′′i→ r Ψi→ = ∅ and Ψ→i r Ξ′′→i 6= ∅. Let ψ ∈ Ψ→i r Ξ′′→i. Start-
ing from p′′, construct price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r ((Ξi→ r Ψi→) ∪ (Ψ→i r {ψ})) or ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r Ψi→) ∪ (Ψ→i r {ψ}).

First, since Ξ′′ ∈ Di(p′′), ψ /∈ Ξ′′, and p′′ψ = p′′′ψ , by full substitutability
(Definition A.6) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ /∈ Ξ′′′.
Second, observe that following the price change from p′′ to p′′′, Ψ r Ξ′′′ ⊆ {ψ}
and Ξ′′′ r Ψ ⊆ {ξ1}. Thus, Ψ r Ξ′′′ = {ψ} and Ξ′′′ r Ψ = {ξ1} or ∅.
Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe
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that from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling
one purchase ψ, i.e., ei,ψ(Ψ) > ei,ψ(Ξ′′′) with ψ ∈ Ψ→i, and (possibly) making
one new purchase ξ1, i.e., ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Subcase (c): Ξ′′ = Ψ ∪ {ξ1}. Let p′′′ = p′′ and Ξ′′′ = Ξ′′. Since Ξ′′′ ∈ Di(p′′′),
we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that from agent i’s
perspective the only difference from Ψ to Ξ′′′ is making a new purchase ξ1,
i.e., ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Case 2: Ξ r Ψ = ∅ and Ψ r Ξ 6= ∅. Select a trade ψ1 ∈ Ψ r Ξ. Without loss of
generality, assume that agent i is a buyer in ψ1 (the case where i is a seller is
completely analogous).
Starting from p′, construct price vector p′′ as follows:

p′′ω =

p
′
ω ω ∈ Ωi r (Ψ→i r {ψ1}) or ω /∈ Ωi

p′ω − Π ω ∈ Ψ→i r {ψ1}.

First, since Ξ ∈ Di(p′), ψ1 /∈ Ξ, and p′ψ1 = p′′ψ1 , full substitutability (Definition A.6)
implies that there exists Ξ′′ ∈ Di(p′′) such that ψ1 /∈ Ξ′′. Second, observe that
following the price change from p′ to p′′, Ξ′′ ⊆ Ψ and Ψ→i r Ξ′′→i ⊆ {ψ1}. Thus,
Ψ→i r Ξ′′→i = {ψ1} and Ξ′′ ⊆ Ψ. We consider two subcases.

Subcase (a): Ψi→ r Ξ′′i→ 6= ∅. Let ψ2 ∈ Ψi→rΞ′′i→. Starting from p′′, construct
price vector p′′′ as follows:

p′′′ω =

p
′′
ω ω ∈ Ωi r (Ψi→ r {ψ2}) or ω /∈ Ωi

p′′ω + Π ω ∈ Ψi→ r {ψ2}.

First, since Ξ′′ ∈ Di(p′′), ψ2 /∈ Ξ′′, and p′′ψ2 = p′′′ψ2 , full substitutability
(definition A.5) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ2 /∈ Ξ′′′.
Second, observe that following the price change from p′′ to p′′′, Ξ′′′ ⊆ Ψ and
Ψ r Ξ′′′ ⊆ {ψ1, ψ2}. Thus, Ξ′′′ r Ψ = ∅ and Ψ r Ξ′′′ = {ψ1, ψ2} or {ψ2}.
Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe
that from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling
one sale ψ2, i.e., ei,ψ2(Ψ) < ei,ψ2(Ξ′′′) with ψ1 ∈ Ωi→ r Ψ, and (possibly)
canceling one purchase ψ1, i.e., ei,ψ1(Ψ) > ei,ψ1(Ξ′′′) with ψ1 ∈ Ψ→i.

Subcase (b): Ξ′′ = Ψ r {ψ1}. In this subcase, let p′′′ = p′′ and Ξ′′′ = Ξ′′. Since
Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that
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from the perspective of agent i, the only difference from Ψ to Ξ′′′ is canceling
purchase ψ1, i.e., ei,ψ1(Ψ) < ei,ψ1(Ξ′′′) with ψ1 ∈ Ω→i r Ψ.

Taking together all the final statements from each subcase of Cases 1 and 2, if we
take Φ′ ≡ Ξ′′′, we obtain that we always have a price vector p′′′ and the sets Ψ and
Φ′ that satisfy conditions (2) and (3) of Definition 5. Moreover, since we always have
Φ ∈ Di(p′′′), Ui([Φ′, p′′′]) ≥ Ui([Ψ, p′′′]).

Next, we show that Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) ≥ 0 implies Ui([Φ′, p]) ≥ Ui([Ψ, p]). First,
observe that when taking the difference the prices of all trades ω ∈ Φ′ ∩Ψ cancel each
other out. Thus, replacing the prices p′′′ω with pω for all trades ω ∈ Φ′ ∩Ψ leaves the
difference unchanged. Second, observe that in all previous subcases, the construction
of p′′′ implies that for all ω ∈ ((Ψ r Φ′) ∪ (Φ′ r Ψ)), pω = p′′′ω . Combining the two
observations above, Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) = Ui([Φ′, p])− Ui([Ψ, p]), and therefore
Ui([Φ′, p]) ≥ Ui([Ψ, p]).

We now show that there exists a set of trades Φ that satisfies all conditions of Definition 5.
Since Ψ /∈ Di(p), Vi(p) > Ui([Ψ; p]). Since i’s utility is continuous in prices, there exists
ε > 0 such that Vi(q) > Ui([Ψ; q]) where q is defined as follows:

qω =

pω + ε ω ∈ (Ω→i r Ψ→i) ∪Ψi→

pω − ε ω ∈ (Ωi→ r Ψi→) ∪Ψ→i.

Our arguments above imply that there exists a set of trades Φ 6= Ψ such that Ui([Φ; q]) ≥
Ui([Ψ; q]). Using the construction of q, we obtain Ui([Φ; p])− Ui([Ψ; p]) = Ui([Φ; q])−
Ui([Ψ; q])+ε|(ΨrΦ)∪(ΦrΨ)| > Ui([Φ; q])−Ui([Ψ; q]) ≥ 0. Thus, Ui([Φ; p]) > Ui([Ψ; p]).
This completes the proof that (IDFS) and (IIFS) imply the single improvement property.

We now show that the single improvement property implies full substitutability (DCFS).
More specifically, we will establish that single improvement implies the first condition
of Definition A.4. The proof that the second condition of Definition A.4 is also satisfied
uses a completely analogous argument.

Let p ∈ RΩ and Ψ ∈ Di(p) be arbitrary. It is sufficient to establish that for any p′ ∈ RΩ

such that p′ψ > pψ for some ψ ∈ Ω→i and p′ω = pω for all ω ∈ Ω \ {ψ}, there exists a set
of trades Ψ′ ∈ Di(p′) that satisfies the first condition of Definition A.4.

Fix one p′ ∈ RΩ that satisfies the conditions mentioned in the previous paragraph
and let ψ ∈ Ω→i be the one trade for which p′ψ > pψ. Note that if either ψ /∈ Ψ or
Ψ ∈ Di(p′), there is nothing to show. From now on, assume that ψ ∈ Ψ and Ψ /∈ Di(p′).
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For any real number ε > 0 define a price vector pε ∈ RΩ by setting pεψ = pψ + ε and
pεω = pω for all ω ∈ Ω \ {ψ}. Let ∆ ≡ max{ε : Ψ ∈ Di(pε)}. Note that ∆ is well defined
since i’s utility function is continuous in prices. Furthermore, given that Ψ /∈ Di(p′),
we must have ∆ < p′ψ − pψ.

Next, for any integer n, define a price vector pn ∈ RΩ by setting pnψ = pψ + ∆ + 1
n
and

pnω = pω for all ω ∈ Ω \ {ψ}. By the definition of ∆ we must have Ψ /∈ Di(pn) for all
n > 0. By the single improvement property, this implies that for all n > 0, there exists
a set of trades Φn such that the following conditions are satisfied:

1. Ui([Ψ, pn]) < Ui([Φn, pn]),

2. there exists at most one trade ω such that ei,ω(Ψ) < ei,ω(Φn), and

3. there exists at most one trade ω such that ei,ω(Ψ) > ei,ω(Φn).

Note that we must have ψ /∈ Φn for all n ≥ 1. This follows since for any n ≥ 1 and any
set of trades Φ such that ψ ∈ Φ, Ui([Φ; pn]) = Ui([Φ; p])−∆− 1

n
≤ Ui([Ψ; p])−∆− 1

n
=

Ui([Ψ; pn]) given that Ψ ∈ Di(p).

Conditions 2 and 3 imply that for all n > 0, we must have {ω ∈ Ψ→i : p′ω = pω} = {ω ∈
Ψ→i : pnω = pω} ⊆ Φn

→i and Φn
i→ ⊆ Ψi→.

Since the set of trades is finite, it is without loss of generality to assume that there
is a set of trades Φ∗ ∈ Ωi and an integer n̄ such that Φn = Φ∗ for all n ≥ n̄. Since
i’s utility function is continuous with respect to prices and pn → p∆, we must have
Ui([Φ∗; p∆]) ≥ Ui([Ψ; p∆]). Since Ψ ∈ Di(p∆), this implies Φ∗ ∈ Di(p∆). Since
∆ < p′ψ − pψ and Vi is decreasing in the prices of trades for which i is a buyer, we must
have Vi(p∆) ≥ Vi(p′). Since ψ /∈ Φ∗, we have that Ui([Φ∗; p′]) = Ui([Φ∗; p∆]) = Vi(p∆).
Hence, Φ∗ ∈ Di(p′) and setting Ψ′ ≡ Φ∗ yields a set that satisfies the first condition of
Definition A.4.

Proof of Theorem 8

The proof is an adaptation of the proof of Theorem 1 of Gul and Stacchetti (1999). Since we
impose neither monotonicity nor boundedness conditions on valuation functions, there are a
number of details needed in order to check that Gul and Stacchetti (1999) proof strategy
works in our setting.

Throughout the proof, for any price vector p ∈ RΩ, we denote by D̃i(p) the sets of objects
that correspond to the optimal sets of trades in Di(p).
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We show first that the single improvement property in object-language implies the no
complementarities condition. Let p be an arbitrary price vector and Φ,Ψ ∈ D̃i(p) be arbitrary.
Let Ψ̄ ⊆ Ψ r Φ be arbitrary. Let Ξ ∈ D̃i(p) be a set of objects such that Ξ ⊆ Φ ∪Ψ and
Ψ r Ψ̄ ⊆ Ξ, and such that there is no Ξ′ ∈ D̃i(p) for which Ξ′ ⊆ Φ ∪Ψ, Ψ \ Ψ̄ ⊆ Ξ′, and
|Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄|. If Ξ ∩ Ψ̄ = ∅, we are done. If not, let Π be a very large number31 and
define p(ε) by setting pt(ω)(ε) = Π if ω ∈ Ω→ir (Φ∪Ψ), pt(ω)(ε) = −Π if ω ∈ Ωi→r (Φ∪Ψ),
pt(ω)(ε) = pt(ω) if ω ∈ (Φ ∪Ψ) r Ψ̄, and pt(ω)(ε) = pt(ω) + ε if ω ∈ Ψ̄. Note that for all
ε > 0 we must have Φ ∈ D̃i(p(ε)) (since Ψ̄ ⊆ Ψ \ Φ) and Ui([Φ; p(ε)]) > Ui([Ξ; p(ε)]).
Since Ξ ∈ D̃i(p), we must have ui(Ξ) 6= −∞. Hence, we can apply the single improvement
property (in object-language) to infer that there must exist a set of objects Ξ′ such that
|Ξ′ \ Ξ| ≤ 1, |Ξ \ Ξ′| ≤ 1, and Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]). Given the definition of p(ε)
and Π, we must have Ξ′ ⊆ Φ ∪Ψ. Since Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) holds for arbitrarily
small values of ε, we must have Ξ′ ∈ D̃i(p). But Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) is equivalent to
Ui([Ξ′; p])− |Ξ′ ∩ Ψ̄|ε > Ui([Ξ; p])− |Ξ ∩ Ψ̄|ε. Given that Ξ,Ξ′ ∈ D̃i(p), the last inequality
is equivalent to |Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄| and we thus obtain a contradiction to the definition of
Ξ. Hence, it has to be the case that Ξ ∩ Ψ̄ = ∅ and this completes the proof that single
improvement implies no complementarities.

Next, we show that the generalized no complementarities condition implies object-language
full substitutability. Let p, p′ be two price vectors such that p ≤ p′. Let Ψ ∈ D̃i(p) be
arbitrary.32 Let Ω̃i = {ω ∈ Ωi : pt(ω) < p′t(ω)}. The proof will proceed by induction
on |Ω̃i|. Consider first the case of |Ω̃i| = 1 and let Ω̃i = {ω}. Clearly, if ω /∈ Ψ or
Ψ ∈ D̃i(p′), there is nothing to show. So suppose that ω /∈ Ψ and that Ψ /∈ D̃i(p′).
For any ε ≥ 0, define a price vector p(ε) by setting pt(ϕ)(ε) = pt(ϕ) for all ϕ 6= ω, and
pt(ω)(ε) = pt(ω) + ε. Let ε̄ = max{ε : Ψ ∈ D̃i(p(ε))} and note that ε̄ < p′t(ω) − pt(ω)

given that Ψ /∈ D̃i(p′). Consider some ε > ε̄ and fix a set of objects Φ ∈ D̃i(p(ε)). It is
easy to see that ω /∈ Φ and that Φ ∈ D̃i(p(ε̄)). By the generalized no complementarities
condition, there must exist a set of objects Ξ ⊆ Φ such that Ψ′ := Ψ \ {ω} ∪ Ξ ∈ D̃i(p(ε̄)).
Clearly, we must also have Ψ′ ∈ D̃i(p′) and this completes the proof in case of |Ω̃i| = 1.
Now suppose that the statement has already been established for all pairs of price vectors
p, p′ such that |Ω̃i| ≤ K for some K ≥ 1. Consider two price vectors p, p′ such that
|Ω̃i| = K + 1. Fix a set of objects Ψ ∈ D̃i(p). Let ω ∈ Ω̃i be arbitrary and consider a

31For instance, let

∆ = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; p])− Ui([Ω2; p])|,

and Π = 1 + ∆ + maxω∈Ωi
|pω|.

32There is no need to rule out the possibility of several optimal bundles of objects in this proof.
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price vector p′′ such that p′′t(ω) = pt(ω) and p′′t(ϕ) = p′t(ϕ) for all ϕ 6= ω. By the inductive
assumption, there is a set Ψ′′ ∈ D̃i(p′′) such that {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} ⊆ Ψ′′. Note that
{ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} = {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} \ {ω}. Applying the inductive assumption
one more time, there has to be a set Ψ′ ∈ D̃i(p′) such that Ψ′′ \ {ω} ⊆ Ψ′. Combining this
with the previous arguments, we obtain {ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} ⊆ Ψ′. This completes the
proof.

Proof of Theorem 9

As Ω is finite and non-empty, for each agent i the domain of ui is bounded and non-empty.
Hence, by Part (b) of Theorem 7 of Murota and Tamura (2003), we see that ui is M \-concave
over objects if and only if the preferences of i have the single-improvement property.33 The
result then follows from Theorem 7.

Proof of Theorem 10

We prove the Law of Aggregate Demand; the proof of the Law of Aggregate Supply is
analogous.

Fix a fully substitutable valuation function ui for agent i. Take two finite sets of contracts
Y and Y ′ such that |Ci(Y )| = |Ci(Y ′)| = 1, Yi→ = Y ′i→, and Y→i ⊆ Y ′→i. Assume that for
any ω ∈ Ωi→, (ω, r) ∈ Yi→ and (ω, r′) ∈ Yi→ implies r = r′ (this is without loss of generality,
because for a given trade in Ωi→, agent i, as a seller, can only choose a contract with the
highest price available for that trade, and thus we can disregard all other contracts involving
that trade). Let W ∈ Ci(Y ) and W ′ ∈ Ci(Y ′). Define a modified valuation ũi on τ(Y ′i ) for
agent i by setting, for each Ψ ⊆ τ(Y ′i ),

ũi(Ψ) = ui(Ψ→i ∪ (τ(Y ′) r Ψ)i→).

Let C̃i denote the choice correspondence associated to ũi. By construction,

ũi(Ψ) = ui(oi(Ψ)), (8)
33Strictly speaking, Theorem 7(b) shows the equivalence of M \-convexity and the (M\-SI) property of

a function f . It is, however, immediate that this result implies the equivalence of M \-concavity and the
single-improvement property for a function g = −f .
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where here the object operator is defined with respect to underlying set of trades τ(Y ′):

oi(Ψ) = {o(ω) : ω ∈ Ψ→i} ∪ {o(ω) : ω ∈ τ(Y ′) r Ψi→}.

As the preferences of i are fully substitutable, the restriction of those preferences to τ(Y ′)
is fully substitutable, as well. Object-language full substitutability of those preferences, as
well as (8), together imply that ũi satisfies the gross substitutability condition of Kelso and
Crawford (1982).

Now, we must have C̃i(Y ) = {W→i ∪ (Y ′ rW )i→} and C̃i(Y ′) = {W ′
→i ∪ (Y ′ rW ′)i→}.

As we assume quasilinearity, the Law of Aggregate Demand for two-sided markets applies
to C̃i (by Theorem 7 of Hatfield and Milgrom (2005)). As Y ⊆ Y ′, this implies that
|W ′
→i∪(Y ′rW ′)i→| ≥ |W→i∪(Y ′rW )i→|. The last inequality is equivalent to |W ′

→i|−|W→i| ≥
|W ′

i→| − |Wi→|, which is precisely the Law of Aggregate Demand.
The proof that the Law of Aggregate Demand for the case in which choice correspondences

are single-valued implies the more general case in which they can be multi-valued is analogous
to the proof of the implication (DFS)⇒(DEFS) of Theorem B.1.
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