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Abstract

The Melitz model with Pareto-distributed firm productivity has become
a tractable benchmark in international trade. It predicts that, conditional
on the fixed costs of exporting, all variation in exports across trading part-
ners will occur on the extensive margin (the number of firms exporting). In
the World Bank’s Exporter Dynamics Database on firm-level exports from
50 countries, however, we find that half of the variation in exports occurs
on the intensive margin (exports per exporting firm). We explore several
ways to explain this discrepancy. Most importantly, firm productivity does
not follow a Pareto distribution.
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1. Introduction

The Melitz (2003) model with Pareto-distributed firm productivity has become
a useful and tractable benchmark in international trade. It is consistent with
many firm-level facts — see, for example, Eaton et al. (2011). It generates a grav-
ity equation (Chaney, 2008). And it yields a simple summary statistic for the
welfare gains from trade (Arkolakis et al., 2012).

The Melitz-Pareto model makes a sharp prediction: conditional on the fixed
costs of exporting, all variation in exports across trade partners should occur
through the number of exporters — the extensive margin. Lower variable trade
costs should stimulate sales of a given exporter, but draw in marginal exporters
to the point that average exports per exporter — the intensive margin — is un-
changed. This exact offset is a special property of the Pareto distribution. But
it is not so dependent on other aspects of the Melitz model. The dominance
of the extensive margin extends to some environments with firm-market id-
iosyncratic shocks to demand and fixed costs (e.g., Eaton et al. (2011)), non-CES
preferences (e.g., Arkolakis et al. (2015)), non-monopolistic competition (e.g.,
Jensen et al. (2003)), multi-national production (e.g., Arkolakis et al. (2014)),
and convex marketing costs (e.g., Arkolakis (2010)).

It has been difficult to test the sharp prediction of the Melitz-Pareto model
because most firm-level empirical studies have only a few exporting origins
or importing destinations. Eaton et al. (2008) analyze firm-level exports for
Colombia, Eaton et al. (2011) France, Eaton et al. (2012a) (henceforth EKS) Den-
mark and France, Manova and Zhang (2012) China, and Arkolakis and Muendler
(2013) Brazil, Chile, Denmark and Norway. With just one destination or origin,
itis possible that exports vary on the intensive margin because of differences in
fixed costs of exporting to a given market, rather than because of any deviation

from Pareto-distributed firm productivity.!

'0One could look at whether firm exports from a given origin follow a Pareto distribution. But
this begs the question of whether the deviation is widespread across origins and, more to our
point, generates a lot of variation on the intensive margin.
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We use the World Bank’s Exporter Dynamics Database (hereafter EDD) to ex-
amine the importance of the extensive and intensive margins empirically. The
EDD covers firm-level exports from 50 developing countries to all destination
countries in most years from 2003-2013.? Because the EDD contains so many
different origin-destination pairs, we can control for both origin-specific and
destination-specific fixed trade costs. Controlling for such fixed trade costs, the
elasticity of the intensive margin with respect to overall exports is around 50
percent in the EDD. Considering mean exports in each percentile of a country’s
exporter size distribution, the intensive margin elasticity with respect to overall
exports rises steadily from around 20 percent for the smallest exporters to over
50 percent for the largest exporters.

We next explore potential explanations for the positive intensive margin elas-
ticity (i.e., the tendency of big exports per exporter to go along with big overall
exports). First, we consider the possibility that fixed trade costs vary by origin-
destination pairs. The problem with this story is that higher fixed trade costs
raise average exports per exporter, but also lower overall exports. To explain
why the intensive margin is increasing in overall exports, one would need vari-
able trade costs to be very negatively correlated with fixed trade costs. A corol-
lary is that, whereas variable trade costs rise decisively with distance between
trade partners, one would need the fixed trade costs to fall with distance be-
tween trade partners. Moreover, this explanation would require that the in-
tensive margin elasticity be equally important for the smallest and the largest
exporters, rather than rising steadily with exporter size percentile.

Second, we explore the role of multi-product firms. If the typical firm ex-
ports more products where overall export flows are larger, this could account for
the importance of the intensive margin for exports. We show that the number of
HS 6-digit products per exporting firm do indeed account for about 12 percent

of the variation in overall exports, or about one-fourth of the 50 percent contri-

2Within exporting firms and their destination countries, the exports can be broken into
products at least down to the HS 6-digit level. Fernandes et al. (2015) describe the dataset in
detail.
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bution of the intensive margin to overall exports. However, in the context of the
multi-product Melitz-Pareto model developed by Bernard, Redding and Schott
(2011), this explanation still requires a negative correlation between firm-level
fixed costs of exporting and variable trade costs, and for firm-level fixed costs
to fall with the distance between trading partners. Moreover, the significant in-
tensive margin elasticity per firm-product implies that fixed costs of exporting
per product also fall with distance.

A third hypothesis we investigate is granularity — a finite number of firms.
With a continuum of firms, the extensive margin should explain all variation
in overall exports (conditional on fixed costs) in the Melitz-Pareto model. With
a finite number of firms, however, the intensive margin (and overall exports)
can be high because of good productivity draws from the Pareto distribution
within a country. We develop a general method of moments (GMM) estimator
for the elasticity of fixed trade costs to distance that is valid under granularity
as in Eaton et al. (2012a). This estimator yields a negative elasticity, implying
that even under granularity fixed trade costs are required to fall with distance to
explain a positive intensive margin elasticity. Using simulations of finite draws
from a Pareto distribution, we find that granularity generates only a modest in-
tensive margin elasticity, and — in contrast to what we observe in the data —
almost entirely in the right tail of the exporter size distribution.

Lastly, we depart from the Pareto distribution to consider a lognormal dis-
tribution of firm productivity. Head et al. (2014) analyze how the welfare gains
from trade in the Melitz model differ with a lognormal instead of a Pareto dis-
tribution. Bas et al. (2015) show how the trade elasticity varies with a lognormal
distribution. Both papers marshal evidence from firms in France and China
pointing to the empirical relevance of the lognormal distribution. With this
motivation, we show that lognormally-distributed firm productivity (with real-
istic dispersion) can indeed generate a sizable intensive margin elasticity. When
variable trade costs fall and fixed costs are constant, the ratio of mean to mini-

mum exports increases as the productivity cutoff falls under the lognormal dis-
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tribution (while being constant under Pareto). Shifting to lognormal productiv-
ity also changes our inference about fixed trade costs, rendering them positively
correlated with variable trade costs and rising with distance. It also implies
that, as in the data, the intensive margin elasticity rises steadily with the size
percentile of exporters.

The rest of the paper is organized as follows. In Section 2 we formalize the
predictions of the Melitz-Pareto model. Section 3 describes the EDD data. In
Section 4 we document the empirical importance of the intensive margin in ac-
counting for cross-country variation in exports. Sections 5 and 6 explore how
allowing for multi-product firms and granularity, respectively, affects the impli-
cations of the Melitz-Pareto model for the intensive margin and contrast those
implications against the data. Finally, in Section 7 we study how the implica-
tions of the Melitz model change when we drop the Pareto assumption and
assume instead that the productivity distribution is lognormal. Section 8 con-

cludes.

2. Properties of the Melitz-Pareto Model

We start with the Melitz model with a continuum of single-product firms with
a Pareto distribution for productivity as in Chaney (2008) and Arkolakis et al.
(2008). As this is a well-known model, we will be brief in the presentation of the
main assumptions. There are many countries indexed by ¢, j. Labor is the only
factor of production available in fixed supply L; in country i and the wage is w;.
Preferences are constant elasticity of substitution (CES) with elasticity of substi-
tution across varieties denoted by ¢ and common across countries. Each firm
produces one variety under monopolistic competition. Firm-level productivity
¢ is distributed Pareto with shape parameter 6 > o — 1, Pr (¢ < ¢o) = Gi(¢o) =
1 — (o/b;)~". Firms from country i also incur fixed trade costs F;jaswell as ice-
berg trade costs 7;; to sell in country j. In each country i there is a large pool

of prospective entrants which can pay an entry cost £ to draw a productivity ¢
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from G;(p).2

Sales in destination j by a firm from origin ¢ with productivity ¢ are

l—0o
zij(p) = A; (6“]’;” ) , 1)

-0
where A; = P/ "w;L;, P;7 = Y, N; Josor (5%) dG;(yp) is the price index
in j, N; is the total number of firms in4, ¢ = o/ (0 — 1) is the markup, and ; is

the productivity cutoff for exports from i to j, which is defined implicitly by
zii(¢i;) = o Fij. 2)
The value of overall exports from i to j is then

Xij=Ni 2i;(p)dGi () - (3)
>0k
The free-entry condition entails ¥ = Y. [(X;;/0) — F; (1 — Gi(y};)] - Combined
with Equations (3) and (2) and using the fact that G;(y) is Pareto, this implies
N, = "0—*915— The equilibrium is a set of wages w; such that w;L; = > i Xije
The nuzmber of firms from ¢ that export to j is N;; = N; f@z@; dG; (p) . Using
again the fact that G;(y) is Pareto we get from (3) that

0 —c * )97V
Xij = (m) Aj (wiry) 7N () @

and

Ny = VN, (¢) ™" (5)

Combining (2), (4) and (5), the extensive margin is

w -0 o —6/(e=1) 6/( )
[ — —0/(c—1
Nij = N; (_bz» ) (—A]) 7'y : (6)

3Both F;; and F¥ are in units of the numeraire. Since we focus on cross-section properties
of the equilibrium, we do not need to specify whether the fixed trade cost entails hiring labor in
the origin or the destination country.




THE INTENSIVE MARGIN IN TRADE 7

while the intensive margin is

TN (9— (0 — 1)> Fi "

We can always decompose variable and fixed trade costs as follows: 7,; =

7077, and F;; = FYF¢F;. Taking logs in (6) and (7), and defining variables

appropriately, we have
In Ny = p° + " — 01ln 7 — OIn F 8)

and

Inz;; = p° + ,u:;’d +1In Ej, 9)

where § = -2-. These are the two key equations that we use to derive the results
in the rest of this section.
Consider the OLS regression of Inz;; on In X;; with origin and destination
fixed effects,
Inz;; = FE) + FE] + aln X;; + €;;. (10)

The estimated regression coefficient is given by

cov(In Z;5, In X;;)

var <1n X'Z-])

o=

(11)

where In Z;; denotes variable In z;; demeaned by origin and destination fixed ef-

fects, and likewise for other variables. The Intensive Margin Elasticity (IME) is

IME = &. The extensive margin elasticity is EME = % =1—IME.
According to the model (i.e., using equations 8 and 9), the coefficient & is

given by

(6 — 1) var(In f’u) + Gcov(InT;j, In E])

IME = — - 5
var (~9In%; — (0 1) In Fy)

(12)

This result can be used to extract several implications of the model, which we
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present in the form of four observations in the rest of this section.

Our first observation says that if all variation in fixed trade costs comes from
origin and destination fixed effects, for example because F;; wajl.*'y (as in
Arkolakis (2010)), then the model implies that the intensive margin elasticity is
Zero.

Observation 1: If var (ln ﬁw) = 0 then IME = 0.

Combined with the assumption that § > 1, the result in (12) also implies
that if the intensive margin elasticity is positive then there must be a negative
correlation between the variable and fixed trade costs (ignoring origin and des-
tination fixed costs).

Observation 2: If IME > 0 then corr(In Ej, In7;) < 0.

Ignoring origin and destination fixed effects, equation 9 implies that

cov(In Ej, In c?zsvtw) = cov(Inz;;,In c/iz\;tw)
Thus, if average exports per firm fall with distance then fixed trade costs must
also fall with distance. This is captured formally by our third observation which
is related to the fixed trade costs elasticity with respect to distance.

Observation 3: If % < 0 then % < 0.

Exports of a firm in the p'* percentile of the exporter size distribution are
oFy; (¢?/ @j)g,l , where ¢ is such that Pr [p < ¢?|¢ > ¢¥;] = p. Since produc-
tivity is distributed Pareto, the ratio ©”/¢;; and thus average exports per firm in

each percentile should be the same for all ij pairs. Denote average exports per

pct

firm in percentile pct as z7;” and consider the following regression:

In xfjct =FE? + FE? + P 1In X;; + €4
and define the IME for each percentile as IME?* = a4*“. The previous argu-
ment implies that the intensive magin elasticity calculated separately for each

percentile is the same as the overall intensive margin elasticity.*

4Observation 4 no longer holds when fixed trade costs vary across firms. However, simula-
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Observation 4: IMEP" = IME, for all pct.
We can go beyond the previous qualitative observations and derive the fixed
and variable trade costs implied by the model so as to compute actual values for

d CO’U(lIl ﬁ” 711‘1 (/i_’L\S/t”)

corr(ln ﬁ,;j, In7;;) < 0an . Combining equations 8 and 9 to solve

var(Indist;;)

for In F;; and In7;; in terms of In z;; and In N,; yields
InFj =67 + 679 + Inay (13)

and
OIn7,; = 07° + 67" — Olnz;; — In Ny (14)

Model-implied values for In F}; are (ignoring origin and destination fixed ef-
fects) directly given by In z;, but for In 7;; we need a value for § to go from In ;;

and In NV;; in the data to model-implied values for 6 In 7;;.°

3. World Bank Exporter Dynamics Database

We use the Exporter Dynamics Database (EDD) described in Fernandes et al.
(2015) to study the intensive and extensive margins of trade using firm-level
data. The EDD is based on customs data covering the universe of export trans-
actions provided by customs agencies from 70 countries (56 developing and 14
developed countries). For each country, the raw customs data contains annual
export flows disaggregated by firm, destination and Harmonized System (HS)
6-digit product, based on a time-consistent product classification. Oil exports
(HS chapter 27) are excluded from the customs data due to lack of accurate
firm-level data for many of the oil-exporting countries. For most countries total

non-oil exports in the EDD are close to total non-oil exports reported in COM-

tions in that case suggest that I M EP¢* may be downward sloping, which is contrary to what we
observe in the data. This is something we plan to explore further.

5To show results for 7;;, we need an estimate of 6. The Appendix outlines the procedure that
we use, which follows that in Eaton et al. (2011). Alternatively, we appeal to estimates of § and
o from Head and Mayer (2014) and Bas et al. (2015)
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TRADE/WITS. The set of more than 100 statistics included in the EDD are pub-
licly available at the exporting country-year, exporting country-product-year,
exporting country-destination country-year, or exporting country-product-destination
country-year levels for download, and include in particular, measures of aver-
age exports per firm as well as the number of exporters, which are comparable
across countries.

In this paper we exploit the underlying exporter-level customs data for 49
countries included in the second release of the EDD as well as China.® Hence
we use an unbalanced panel of 50 developing countries whose sample periods
cover some or all of the years between 2003 and 2013, as shown in Table 1.

Using these data we calculate variants of average exports per firm, number
of exporters, and total exports at the exporting country-destination country-
year level or at the exporting country-product or industry-destination country-
year level. We focus on products or industries belonging to the broad manufac-
turing sector. Specifically, using a concordance across the ISIC rev. 3 classifi-
cation and the HS 6-digit classification we consider only HS 6-digit codes that
correspond to ISIC manufacturing sub-sectors 15-37. The product disaggrega-
tions that we use are HS 2-digit, HS 4-digit, or HS 6-digit. The industries that
we use are groups of HS 2-digit codes as defined in Table 2. For exporter size
percentiles, we calculate average exports per firm based on firms within each

size percentile at the exporting country-destination country-year level.

4. The Melitz-Pareto Model vs. the Data

We start by plotting the intensive margin (z;;), the extensive margin (1V;;), and
total exports (X;;) from all countries in the EDD to four large destinations: the

United States (US), Japan, Germany and France for each year — see Figure 1.7

6China is not included in the EDD due to confidentiality concerns, but statistics based on
exporter-level customs data for China can be used in this paper.

"We restrict destination countries to be the US, Japan, Germany and France to reduce noise
associated with country pairs with few exporters. We further restrict the sample to the 676 coun-
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Each dot corresponds to (z;;, X;;) (panel a) or (IV;;, X;;) (panel b). The plotted
line represents the prediction of the Melitz-Pareto model with a continuum of
firms and fixed trade costs that vary by origin and destination but not across
country pairs, i.e., var(ﬁj) = 0. Observation 1 in Section 2 indicates this is a
horizontal line for the intensive margin (panel a) and has a unit slope for the
extensive margin (panel b). The IME is the slope of the regression line running
through the data in panel a - it corresponds to & from regression 10. The inten-
sive margin elasticity is clearly positive while the extensive margin elasticity is
clearly less than one.

We supplement Figure 1 with Table 3, which shows results for the IME from
the benchmark regression 10 with several alternative specifications. In the bench-
mark specification it ranges between 0.45 and 0.52, with the latter being our
preferred estimate due to the inclusion of origin and destination fixed effects.
The results are robust in wider samples. When all destinations are included, the
IME estimate only falls to 0.43 in the third column of Table 4. In a sample with
country pairs with less than 100 exporters, IME estimates remain higher than
0.48, as reported in Table 5, and reach 0.67 when origin and destination fixed
effects are included.

As a further robustness check, we estimated the IME based on data with an
industry disaggregation for each country pair each year. It could be the case
that average exports per firm are constant across different countries within the
same industry, but differ across industries. Positive IME estimates could thus
arise from a different sectoral composition of exports across country pairs, but
be consistent with the basic Melitz-Pareto model at the sector level. We show,
however, that this is not the case. Consider Figure 2 where we plot the intensive
and extensive margins against total exports at the exporting country-industry-
destination country-year level. The slope of the regression line going through

the data is still positive for the intensive margin. Table 6 shows that the IME

try pairs with more than 100 exporters (i.e., ¢j pairs for which N;; > 100 when j is US, Japan,
Germany or France).
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actually increases when moving from aggregate to disaggregated data, implying
that the sectoral composition of trade is not an explanation for the puzzle. At
the lowest level of aggregation available, which is HS 6-digit products, the IME
is as high as 0.71.

Finally, we check whether the results are driven by the prevalence of small
firms in the data. To do this, we calculate average exports per firm, number of
firms and total exports using only data on exporters whose annual exports were
atleast $1,000. The results reported in Table 7 change only slightly, with the IME
never falling below 0.42.

We further explore the implications of a positive IME for fixed and variable
trade costs. Using Equations (13) and (14) we uncover model-implied fixed and
variable trade costs components that vary by origin-destination pairs. As per
Observation 2, the Melitz-Pareto model can have a positive IME, but this would
imply a negative correlation between fixed and variable trade costs. Indeed,
Table 8 reports that this correlation is negative and strong.

Moreover, Observation 3 implies that fixed trade costs must decline with dis-
tance if cov(Inz;;,In afz'vstij) < 0. We plot fixed trade costs against distance in
Figure 3. As expected from the positive sign of the IME and the fact that total
exports fall with distance, the figure shows that fixed trade costs are decreasing
with distance, while variable trade costs are increasing with distance. This find-
ing is puzzling, since one would expect trade barriers to increase rather than fall
with distance. Table 9 confirms that the fixed trade cost elasticity with respect
to distance, reported in the first column, is negative and statistically significant.

We also check the implications of Observation 4 by plotting the IME"* for
each exporter size percentile in Figure 4. The horizontal line corresponds to the
theoretical prediction of a common elasticity across percentiles while the dots
represent the estimated elasticities for each percentile. Contrary to Observation
4, the IME is not constant across percentiles, it is significantly lower than the
overall IME of 0.52 for the first 90 percentiles, and is increasing gradually. The

largest IME is observed in the top percentile.
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To conclude, in the data we find the intensive margin elasticity to be positive
and significant, both statistically and economically. This finding is robust to the
inclusion of a variety of fixed effects, various samples, disaggregation and exclu-
sion of small firms, and is at odds with the simple version of the Melitz-Pareto
model with fixed trade costs varying only because of origin and destination ef-
fects. One can of course allow a richer pattern of variation in fixed trade costs
across country pairs to make the model perfectly consistent with the data, but
then the positive IME has further puzzling implications for fixed trade costs,
which should fall with distance and be very negatively correlated with variable
trade costs. To the best of our knowledge, there are no models that would mi-
crofound such a strong and negative correlation between the two types of trade
costs and a negative fixed trade costs elasticity with respect to distance. The
datais also at odds with the implication from the Melitz-Pareto model of a con-

stant IME across percentiles.

5. Multi-Product Extension of Melitz-Pareto

In Section 4 we show that around half of the variation in bilateral exports is
explained by the firm-level intensive margin. This contradicts the basic Melitz-
Pareto model with a continuum of single-product firms and no variation in bi-
lateral fixed trade costs, var(ﬁ-j) = 0. One can always assume that bilateral fixed
trade costs are such that the model matches the data, but this leads to the awk-
ward implications that the covariance between fixed trade costs and either vari-
able trade costs or distance is negative. In this section we explore whether the
contradictions between the model and the data are maintained for a popular
extension of the Melitz-Pareto model to multi-product firms. The idea is that
what the basic Melitz-Pareto model considers as the intensive margin is really
an extensive margin operating at the level of the firm. Thus, perhaps the reason
why average exports per firm fall with distance in the data is that firms export

fewer products (because of higher product-level fixed trade costs) even though
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they export more per product to more distant destinations.

5.1. Theory

We consider an extension of the Melitz-Pareto model due to Bernard, Redding
and Schott (2011). Each firm can produce a differentiated variety of each of
a continuum of products in the interval [0,1] with productivity ¢\, where ¢ is
common across products and ) is product-specific. The firm component ¢ is
drawn from a Pareto distribution G () with shape parameter 6/, while the firm-
product component )\ is drawn from a Pareto distribution G?(\) with shape pa-
rameter 07. To have well-defined terms given a continuum of firms, we impose
6/ > ¢» > o — 1. To sell any products in market j, firms from country i have to
pay a fixed cost F;;, and to sell each individual product requires an additional
fixed cost of f;;. Variable trade costs are still 7;;.

The cutoff ) for a firm from ¢ with productivity ¢ that wants to export to j,

A (), is given implicitly by

l1-0o
A A =ofij. 15
f(wz;-(so)) 71 1o

We can then write the profits in market j for a firm from country i with produc-

mle) = /:OU [(A;(so))al -

The cutoff productivity for firms from i to sell in j is given implicitly by 7;;(};) =

tivity o as

£2dGP(N). (16)

F;;. As in the canonical model, the number of firms from country ¢ that export
to market jis N;; = [1 — G/ (g@fj)] N;, while the number of products sold by firms
fromiin jis M;; = N; f:i [1—G? (\;(¢))] dG7 (). Combining the previous ex-
pressions, using the fact that G?(\) and G/(y) are Pareto, writing f;; = f7 f¢ ﬁj,
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Fj = FZ-"FJdEj, and 7;; = 777/7;;, and defining variables appropriately we get

_ of of ~ of ~

J o — 1 ep 9}7
Inz}; = In X5 — In M;; = pr’o + M?Ad +In ﬁj? (18)
and
In wf; =InX;; —InN; = M?f7d + N;Cf’d +1In ﬁza (19)

Itis easy to verify thatif f;; = 0 for all , j then this model collapses to the canon-
ical model with single-product firms.

From regressions similar to regression 10 we now have two intensive margin
elasticities, one for the intensive margin defined over products and one for the
intensive margin defined over firms:
cov(In 7, In )Afw)

var(In X; )

IME® = (20)

with s = f,p. Letting § = 6/ / (0 — 1) and x = ¢/ /6”, then from Equations (17) to
(19) we have

(9_ — X) var (ln ﬁj) + (x — 1) cov(In ﬁj,ln }?’”) + Ocov(In ﬁj, In7;;)

IME? = — — 21)
var(In X;;)
and
ME — (x — D)war (ln ﬁ’u) + (6 — x) cov(In ﬁ-j, In f’m) + Gcov(In Ej, In7;;)

var(In X;;) o)

Letting m,; = M,;/N,; be the average number of products sold by firms from
i in j, we have that =, = 2¥;m;; and X;; = 2;m;;N;;. This implies that IME/ is
equal to IME? plus the extensive product margin elasticity, cov(In 7, In X;;) /var(In X;;).

Observation 1 in the single-product firm model remains valid in the multi-
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product firm model, while we now have an analogous observation for the product-
level intensive margin elasticity:

Observation 5: If var (ln ﬁ) = 0 then IME? = 0.

The assumption ¢ > ¢? > o — 1 implies that y > 1and # > x > 1 and in turn
this leads to the following extensions of observation 2:

Observation 6: IfIME’ > 0 then either cov(In f;;, In F};) < 0or cov(In Fj;, In7;;) <
0 (or both).

Observation 7: IfIME? > 0 then either cou(In f;, In Fj;) < 0or cov(In fi;,In7;;) <
0 (or both).

Observation 3 remains valid in the multi-product firm model, and we now
also have an analogous observation for product-level fixed trade costs:

Observation 8: If cov(In 77, In dist;;) < 0 then cov(In fij.Indist;;) < 0.

As in the single-product model, we can use the model to back out the im-
plied trade costs. Equation (19) can be used to obtain a model-implied Ej
(which would be the same as the one derived in the single-product model) while

Equation (18) can be used to obtain a model-implied ﬁ]

5.2. Data

Table 10 reports the estimated product-level IME, IME”. In our basic sample
with the 4 large destinations the IME? never falls below 0.37 (see panel a). When
all destinations are included, the IME? remains virtually unchanged (see panel
b). Of course, the IME/ is the same as that reported in Section 4. While we
could have the model match the data by allowing both firm-level and product-
level fixed trade costs to vary appropriately across country pairs, from observa-
tions 6 and 7 this would imply that those fixed trade costs would be negatively
correlated, or that the covariances between those fixed trade costs and variable
trade costs would be negative.

Observation 8 indicates that if product-level fixed trade costs increase with

distance, then a positive covariance between average exports per product-firm
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and distance should be observed. In fact, the opposite is verified in the data: as
shown in Figure 5, z}; declines with distance,® implying that product-level fixed
trade costs are also falling with distance, as was the case for firm-level fixed

trade costs in Section 4 (see the third column of Table 9).

6. Granularity

The previous sections have considered a model with a continuum of firms. With
a discrete and finite number of firms it may be possible to generate a positive
covariance between the intensive margin and total exports that could in princi-

ple explain our empirical findings. We explore this possibility in this section.

6.1. Theory

Eaton et al. (2012b) extend the Melitz-Pareto model above to allow for granular-

ity. Equations 8 and 9 then become
InNy; = g + 2 = 0In 7y — OIn Fy + & (23)

and

Inw;; = " + M?’d +1In Ej + €45, (24)

where ¢;; and ¢;; are error terms arising from the fact that now the number of
firms is discrete and random. Using the same definition for the intensive mar-
gin elasticity as in Section 3, and assuming for the sake of argument that all

covariances between In 7;; or In F;; with ¢;; or ¢;; are equal to zero, the previous

8Bernard, Redding and Schott (2011) report a positive but statistically insignificant coeffi-
cient for the regression of In 2%. on distance (see their Table II). Their regression uses only data
for U.S. exports data, so it doesn’t include origin and destination fixed effects (they include a
control for destination-country size).
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equations imply that

(6 — 1) var(ln Fj) 4 fcou <1n Tij, 1n ﬁ”> —wvar(g;j) — cov(gij, &ij)

IME = — (25)

var (—an Tij — (9_ — 1) In Ej + &5 + &;)

Even if cov(e;;, &;;) = 0, since var(e;;) > 0, this could explain /M E > 0 even with
cov (ln Ej, In ﬁj> > (. Thus, in theory, granularity could explain the positive in-
tensive margin elasticity that we find in the data without relying on implausible
patterns for fixed trade costs.

To check whether granularity is a plausible explanation for the positive IME
in the data we will conduct two tests. First, we will estimate the fixed trade cost
elasticity with respect to distance taking into account granularity and the pos-
sible biases it may induce. Second, we will simulate firm-level exports under
granularity and the assumption of fixed trade costs that vary by origin and des-
tination only and estimate the implied IME. We describe each of these tests in

turn.

Fixed Trade Costs and Distance with Granularity

In the Melitz-Pareto model with a continuum of firms average exports per firm
can be expressed as z;,; = kF;;, where k = 5"% If we relax the continuum
assumption to allow for granularity, then average exports per firm can be ex-
pressed as z;; = xF}; + €;;, where ¢;; is an error term that arises from random
realizations of productivity draws, and the first moment of which is indepen-
dent of any variables that determine bilateral fixed trade costs. If we further
assume that F; = FPFfet st 4 v;; /k, where v;; satisfies E(vj;|dist;;) = 0, we

can then write

Ty = KEYFles M0 45, (26)
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where u;; = v;; + ;5 is an error term that captures both the deviation of F;; from
its mean as well as the granularity error term ¢;;. Since both E(v;;| Indist;;) and
E(e;;|Indist;;) are equal to zero, it follows that E(u;;|dist;;) = 0. The challenge in
estimating the fixed trade costs elasticity with respect to distance, ¢, from this
equation is that we cannot simply take logs to obtain a log-linear equation to
be estimated by OLS, because the error term that comes from granularity is not
log-additive.

To proceed, we follow Charbonneau (2012) to derive a GMM estimate of (.
To take advantage of the time dimension of our data, we extend 26 to allow for

a time-specific component in the expression of fixed trade costs,
xijt — K)F;OF;{Ftecln dist;; + uijta (27)

where again E(u;;;|dist;;) = 0. As is shown in the Appendix, manipulating equa-

tion 27 yields the moment condition

— Indist;;+ln dist;p,+1n dist;—In dz’stlk)> %

¢
E [(xiktxljt — Tyt Tije€ (

(—Indist;; + Indist;, + Indist); — Indisty,)] =0 (28)
In the next subsection we will use this moment condition to estimate (.

The IME under Granularity: Simulation

To assess how well granularity can explain a positive IME, we simulate exports
of N;; firms for each of the country pairs in the sample. We add demand shocks
to allow for a less than perfect correlation between exports of different firms
across different destinations. In the standard Melitz model with demand shocks,
exports from ¢ to j of a firm with productivity ¢ and destination-specific de-

mand shock «; can be calculated as

o—1
a.
v (p, ) = o Fj; ( ikjgp*) , (29)
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where o};¢;}; is a combination of productivity and demand shocks of the small-
est exporter from i selling to j . To estimate the IME in simulations we perform

the following steps:

1. Draw ¢ and «; from some distribution. The number of draws is equal to
N;;, the number of exporters in the EDD dataset for each origin-destination
pair in 2009. To be more precise, we draw the product «;¢ for each firm-
destination pair assuming either that, as in the standard Melitz model,
there are no demand shocks and hence the product o;¢ is perfectly corre-
lated across destinations or that, at the other extreme, there is no correla-
tion in the product o across destinations (pure demand shocks case). In
both cases, we draw ;¢ from a Pareto distribution with a shape parame-

ter to be specified below.

2. Assume that var (Fw) = 0, so that F}; = F?F{. This will allow us to study
the IME generated by granularity by itself.

3. Use Equation (29) to simulate the exports for each firm and to calculate
average exports per firm (in total and in each percentile) for each origin-

destination pair.

4. Run the IME regression 10 on the simulated export data, with In z;; being
either the intensive margin for all firms exporting from i to j, or for each

percentile in the size distribution of exporters from i to j .

6.2. Data

We now discuss the evidence obtained first for the fixed trade costs elasticity
with respect to distance and second for the IME with simulated data.

We use Equation (28) to estimate firm-level as well as product-level fixed
trade cost elasticities with respect to distance (). Table 11 shows that both
of these elasticities are negative and statistically significant, so both firm-level

and product-level model-implied fixed trade costs are decreasing with distance
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even when granularity is taken into account. Hence granularity does not help
to eliminate one of the puzzles emerging from the comparison between the
Melitz-Pareto model and the data.

Table 12 reports the estimated IME using simulated data for alternative val-
ues of § and for either zero or perfect correlation between the product of de-
mand and productivity shocks across destinations. We consider 4 values of 6:
our estimate § = 2.3, the value that can be inferred from standard estimates of
6 and o in the literature (i.e., ¢ = 5, the central estimate of the trade elasticity
in Head and Mayer, 2014, and o = 5 from Bas et al. (2015), so § = 1.25), as well
as § = 1.75 from Eaton et al. (2011) (which they estimate using the procedure
outlined in the Appendix) and § = 1 (as in Zipf’s Law).

Two broad patterns emerge from the table. First, the simulated IME de-
creases with . This is because the effect of granularity on the IME is stronger
when there is more dispersion in productivity levels. Second, the simulated
IME is highest when productivity is less correlated across destinations, again
because this gives granularity more room to generate a covariance between av-
erage exports per firm and total exports.

For our estimate of § (# = 2.3) and with no demand shocks (so there is perfect
correlation in firm-level productivity across destinations), the simulated IME
of 0.002 is quite low. The highest simulated IME occurs for the case in which
6 = 1 and there is no correlation between the product of demand shocks and
productivity across destinations. In this case the simulated IME is 0.37, not too
far from our preferred estimate based on the data of 0.52. But we think of this
as an extreme case because § = 1 is far from the estimates that come out of
trade data, and because of the implausible assumption that firm-level exports
are completely uncorrelated across destinations.

To explore this further, we examine the implications for the IME across per-
centiles. We calculate average simulated exports per firm in each percentile and
use those to estimate an IME per percentile. We plot the resulting 100 IME es-

timates in Figure 6 along with the corresponding IME estimates based on the
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actual data. The IME based on the actual data is increasing with a spike at the
top percentile. Granularity and the Pareto distribution fail to reproduce this
pattern in the simulated data, since the corresponding IME is much smaller
than in the data for most percentiles. The IME in the simulated data is almost
zero for small percentiles and is relatively high for a small number of top per-
centiles. We conclude that granularity does not offer a plausible explanation for

the positive estimated IME in the data.

7. Lognormal

In this section we depart from the assumption of a common Pareto distribu-
tion of firm-level productivity and instead assume a lognormal distribution. In
the theory section we start by showing how this can lead to a positive IME in a
simple Melitz model, and then propose a maximume-likelihood estimation pro-
cedure for a richer Melitz model with heterogeneous fixed costs and demand
shocks. The data section presents the results from the estimation and the im-

plications for the IME as well as for the model-implied trade costs.

7.1. Theory
A simple Melitz model with a lognormal distribution

Consider a model exactly as that presented in Section 2, but with productivity
distributed lognormal. We will show here the implication of this for the IME.
Following Bas et al. (2015) (henceforth BMT), let

1 ()
H(p) = ——o | ot 99) g
(907/]) ((10;})0—_1/4)0 SO 1_G<802}) (70

Since z;;(¢) o ¢?~* then the ratio of average to minimum exports for each coun-

*
ij

try pair satisfies
xij/xij(<ﬂjj> = H(‘P?j)- (30)
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If firm productivity is distributed Pareto with parameter # > o — 1 (as in Section
2) then it is easy to show that H(yp) = % (see Equation 7), so that the aver-
age to minimum ratio does not depend on selection. This property only holds
with a Pareto distribution of productivity. Assume instead that in each origin
country ¢ firm productivities are drawn from a lognormal distribution with lo-
cation parameter p,, and scale parameter o,. Letting ®() be the CDF of the

standard normal distribution, this implies that

lno— u.

Gi(p)=12 <M) ] (31)
Tp

Letting h(x) = ®'(x)/®(z) be the ratio of the PDF to the CDF of the standard

normal, BMT show that

h [—(ln 80% - ,Uso,i)/aw]

— (32)
h [—(ln i — i)/ Tp + ‘730}

a (‘Pi‘kj) =

where 7, = (0 — 1) 0,. Combined with 1 — G(};) = N;;/N;, we have

e :Q(Ni) = o () . (33)
i (¢3;) N; h (@-1 (%) 4 (%)

Thus, the average to minimum ratio of exports for country pair ij only depends
on the share of total firms in i that export to j, with the relationship given by the
function Q().

As argued by BMT, () is an increasing function. To understand the impli-
cation of this property, consider a decline in 75, so that ¢; decreases with no
effect on minimum sales (which remain at o F};). The decline in 7;; leads to an
increase in exports of incumbent firms (which increases average exports per
firm) and entry of low productivity firms (which decreases average exports per
firm). Under Pareto these two effects exactly offset each other so there is no
change in average exports per firm. If productivity is distributed lognormal the

second effect does not fully offset the first, and hence average exports per firm
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increase with a decline in 7;;. Since this also increases the number of firms that
export (and hence total exports), this will naturally generate a positive IME.
Given values of 7, as well as N, for every country, we can use our data on
Nj; to compute 2 (N;;/N;) for all country pairs. Combined with z;;(¢};) = o F;
and imposing F;; = FYF}, we can use Equation (33) to get the model-implied

average exports per firm (in logs),
Inwy = pf + p? + InQ (N /N;) . (34)

In contrast to Observation 1 for the Melitz-Pareto model, under under lognor-
mality we will have a positive IME even with var(F};) = 0.

We can also compute model-implied fixed and variable trade costs similarly
to what we did under the assumption of Pareto-distributed productivity. First,

we obtain Fj; from

~ Nz
ln E] = (SiFvo + (SJde —+ ln xl] - IHQ ( N]> . (35)

Second, to compute 7;;, we combine Equations (1), (2), (31) and (33) to get (with

appropriately defined fixed effects)

Ny, Ny
(c—1)In7; = 5Z’O+5]T-’d —Inz;; +InQ; (M]> —{—690(1)_1 (1 — N]) (36)

()

Armed with estimates of F}; and (o —1)7;;, we can compute their correlation and
check whether F}; increases or decreases with distance (demeaned by origin
and destination fixed effects).

These empirical exercises require estimates for 5, as well as N; for every
country. We use Bento and Restuccia (2015) (henceforth BR) data to estimate

a value for N; for all the countries in our sample.® We acknowledge slippage

9Using census data as well as numerous surveys and registry data, BR compiled a dataset
with the number of manufacturing firms for a set of countries. Unfortunately, the sample in
BR has missing observations for a number of countries in the EDD. We impute missing values
projecting the log number of firms on log population. There is a tight positive relationship
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between theory and data in that we obviously do not have a measure of the
entry level N;, but (at best) only for the number of existing firms, which in the-
ory would correspond to (1 — G;(¢5;)) N; (our approach in the next subsection
avoids this problem). We use the QQ-estimation proposed by Head et al. (2014)
(henceforth HMT) to obtain estimates of o, and p.,; for every i (see the Ap-

pendix for a detailed description).

Full Melitz-lognormal model

The previous section has shown that a model with a lognormal distribution of
firm productivity is capable of generating a positive intensive margin elastic-
ity conditional on fixed costs. However, the model we considered had two very
stark predictions. First, fixed trade costs that are common across firms lead to
the prediction that sales of the least productive exporter from i to j are equal to
oF;;. In the data we observe many firms with very small export sales (sometimes
as low as $1) which implies unrealistic fixed trade costs. Second, as shown by
Eaton et al. (2011), the model implies a perfect hierarchy of destination markets
(i.e., destinations can be ranked according to profitability, with all firms that sell
to a destination also selling to more profitable destinations) and perfect corre-
lation of sales across firms that sell to multiple markets from one origin. None
of these predictions holds in the data.

In this section we consider a richer model with firm-specific fixed trade costs
and productivity shocks that vary by destination. This is similar to the setup in
Eaton et al. (2011), except that we further assume that there is zero correlation
between demand shocks and fixed costs shocks within destinations. More im-
portantly, we assume that firm productivity, demand shocks (denoted by «;)

and fixed trade costs (denoted by f;) are distributed jointly lognormal, i.e., for

between log number of firms in the BR dataset and log population with an elasticity of 0.945, as
reported in Table 13 and in Figure 7.
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each origin i:

Inp i afp O ... 0 0 ... O
In oy Lo 0 03 ... 0 0 ... 0
nay; | ~N o || 0 0 ... 02 0 ... 0 : (37)
1nf1 Myl 0 0 e 0 0']2c ce 0
].Ilfj Hfig 0 0 0 0 O'jzc

Note that we allow mean log productivity to be origin-specific while imposing
that the mean of demand shocks be the same across origin-destination pairs
(however, we cannot separately identify these parameters). Mean fixed costs
are allowed to vary across origin-destination pairs and are assumed to be un-
correlated with demand shocks within destinations. In our empirical estima-
tion we will not be able to separately identify mean productivity from wages and
variable trade costs - they will all be absorbed into an origin-destination fixed
effect. Also, we restrict the dispersion of log productivity to be the same across
all origins, and we restrict the dispersion of log demand shocks and log fixed
trade costs to be the same across all origin-destination pairs. The assumption of
joint lognormality as well as independence between demand shocks and fixed
trade costs makes the likelihood function tractable and the estimation proce-
dure much faster. In future work we plan to explore relaxing the assumption of
independence between demand shocks and fixed trade costs.

Without risk of confusion, we change notation in this section and use X; =
(Xi1, ..., X;;) to denote the random variable representing log sales of a firm from

i in each of the J destinations, with z; = (z;1, ..., z;;) being a realization of X,
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and gy, (x;) being the associated probability density function. According to the
model, a firm does not export to destination j if it has a large fixed trade cost
draw f; relative to its productivity and its demand shock for that destination.
Let D;; = In[A; (wr;)' 7] and let Z;; = D;; + Ina; + (0 — 1) Iny be a latent

variable which we observe only if a firm actually exports. We then have

ij = )
0 otherwise

with 7, = (Z;, ..., Z;y) distributed according to

Zin diy o

QI
€ N

2
+ o,

; (38)

Qi
S N
Qi
€ N

ZiJ diJ
where d;; = D;; + o + (0 — 1) pip; and o, = (0 — 1) o,

Using firm-level data from the EDD across different origins and destina-
tions, we can estimate the parameters in (38) as well as mean log fixed trade
costs (up to a constant) and their dispersion using maximum likelihood meth-
ods. The density g, (z;) is easy to write down for the case in which X;; > 0 forall
j except one, but otherwise it is computationally expensive to compute because
of the correlation across Z,; that arises from the common productivity term In ¢.
For now, we simplify the analysis by considering only data for two destinations,
which we label j = 1, 2. To be consistent with our previous empirical exercises,
we also restrict the sample to include only origins with at least 100 exporters
to the two chosen destinations. The Appendix shows how to derive the density
9(xu,X:2) (Ti1, Ti2) for this case. We compute g(x,, x,,) (i1, z:2) for each observa-
tion in our dataset (which is a realization of { X, X;»} that we observe). Since

all random variables are independent across firms, we can compute the log-
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likelihood function as a sum of log-densities,

InL (9\ {mi (ki) , ig (ki)}i,k,.) = Z Z I [g(x x0) (@i (K)o (K:))], (39)

where N, is the number of firms from ¢ that sell to either of the two destinations
we consider, and where k; is an index for a particular observation in our dataset
(for origin i it takes values in 1, ..., N;;) and 6 is a vector of parameters that we

want to estimate,

0= {{dz‘jaﬂfn‘j}i,j v5soa0aa‘7f}

where [i;;; = Ino + py,;. Because the likelihood is potentially not concave
in 6 and because there are 75 parameters to estimate, we rely on the estima-
tion methodology proposed by Chernozhukov and Hong (2003). We use the
Metropolis-Hastings MCMC algorithm to construct a chain of estimates 619,
dropping the first 750k runs ("burn in” period) and then continuing until n =
3M M. Chernozhukov and Hong (2003) show that § = % 3" 9™ is a consis-
tent estimator of ¢, while the covariance matrix of § is given by the variance of
6™, so we use this to construct confidence intervals for 4.

Loosely speaking, identification works as follows. First, data on export flows
and the number of exporters across country pairs helps in identifying d;; and
firi;- Second, the variance of firm sales within each ¢j pair helps in identify-
ing the sum of the dispersion parameters for productivity and demand shocks,
o, + 0,. Third, the extent of correlation of firm sales from a particular origin
across different destinations helps in identifying o, separately o,,: the more cor-
related firm sales are across destinations, the larger is o,, relative to o,. Finally,

to understand how o/ is identified, imagine for simplicity that there is only one

10We use Gibbs sampling technique. At each iteration ) and #("~1) can differ by at most
one element.



THE INTENSIVE MARGIN IN TRADE 29

destination. We then have

9x, (T1) = 9z (1) X PT{FS < za|Zin =z}

where C' = Pr{Z;; < F;} and where g, () is the probability density function
of the latent sales Z;;. This implies that we can get the density of X;; by apply-

ing weights ZfustulZu=ral} v the density of Z;. The parameter o; regulates
how these weights behave with z;;. In the extreme case in which ¢; = 0 then
the weights are 0 for z;; < py, and 1/C for x;; > puy,, while in the other ex-
treme with o0y = oo the weights are all equal to 1. For intermediate cases the
density of X;; will be somewhere in the middle, with the left tail becoming fat-
ter and the right tail becoming thinner as o increases. This suggests that we
can identify o, from the shape of the density of sales. We will use the results
of the estimation to conduct similar exercises to those in the previous sections.
First, we will compute the IME for all firms and for each percentile using the
estimated model. Second, after removing origin and destination fixed effects,
we will compute the correlation across the estimated values of d;; and fi4,;, and

between them and distance.

7.2. Data
Simple Melitz model with lognormal distribution

Table 14 reports the QQ-estimate of 5,,. We report three sets of estimates: for the
full sample, the largest 50% of firms and the largest 25% of firms for each origin-
destination pair in each year. These estimates are on the high side relative to the
estimate obtained by HMT, so we will use the minimum among these estimates,
o, = 4.55, which corresponds to the subsample with the largest 25% of firms. !

We present the results for the IME (computed as explained above) for 5, =

{2.4;4.55} in Table 15. First, a lognormal distribution allows the intensive mar-

!1See the section in the Appendix titled QQ-Estimation of &, for a discussion of these esti-
mates and their relation to the estimate in HMT.
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gin elasticity to be positive even under the assumption of a continuum of firms.
Second, for our estimate of the shape parameter 5, = 4.55, the size of IME is
very close to that from the data. Third, most of the action comes from the right
tail of the exporter size distribution, as seen in Figure 8.

We use Equations (35) and (36) to compute the model-implied fixed and
variable trade costs. The correlations between those costs and distance are
reported in Table 16 and plotted in Figure 9. In contrast to our results under
Pareto, now under lognormal both the model-implied variable and fixed trade
costs are increasing with distance.

Overall, the model does much better in fitting the data when we assume that
firm productivity is distributed lognormal than when we assume that it is dis-
tributed Pareto. However, the IME for each percentile is not a perfect match
to the data, and the there is still a negative correlation between the model im-
plied variable and fixed trade costs, although it is much closer to zero than with
Pareto (-0.3 rather than -0.9). In any case, this is just a "proof of concept” that
lognormally-distributed productivity can by itself improve the performance of
the model relative to the data. In the next subsection we present the results

obtained with the estimated full Melitz-lognormal model.

Full Melitz-lognormal model

We estimate the parameters of the full Melitz-lognormal model using firm-level
data from the EDD across different origins and two destinations, the US and
Germany. An origin is included in the subsample only if it has more than 100
firms exporting to both destinations; 18 countries in our whole sample satisfy
this condition.

Before presenting the results of the estimation and discussing their implica-
tions for the IME, we show three figures revealing the fit of the estimated model
with the data. Figure 10 shows a plot of the CDF for firm-level sales from one

origin (name undisclosed for reasons of confidentiality) to the United States.!?

12With CDF G;(x), we have G;(z) = p, hence the plot is of the function In G; *(p).
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The estimated and empirical CDFs almost overlap. Other origin-destination
pairs exhibit mostly similar fit for the CDF of firm sales, with a couple of excep-
tions associated with country pairs with low N;;.

We next look at deviations from the strict hierarchy of firms sales across des-
tinations (for each origin) in the data and in the estimated model. If there were
no demand and fixed cost shocks across firms, then all firms from a given origin
that export to the least popular destination would also export to the most popu-
lar destination. The share of firms that only sell in the least popular destination
is then a measure of the extent to which this strict hierarchy predicted by the
simplest model is violated. According to Figure 11, the share predicted by the
estimated model is quite close to the one in the data.

Finally, Figure 12 shows the correlation in sales across the two destinations
for firms from a given origin that sell in both destinations. The estimated model
implies that this correlation is 0.39 (with tiny deviations across origins) while
we see that this correlation exhibits some dispersion across our 18 origin coun-
tries. However, note that the country with the most firms lines up right on the
45 degree line, indicating that its implied correlation is the same as in the esti-
mated model, while the origins with correlations that deviate mostly from the
estimated model are those with few firms.

The results of the estimation for the dispersion parameters (7, 0,,0y) are
shown in Table 17. The estimated values for 7, and o, are close to 2.6, while
the estimate for o/ is close to 3.6, all with very tight 95% confidence intervals.
The estimate of ., is close to the estimate of 2.4 in BMT, and much lower than
the one we estimated in the simple lognormal model of 4.5. To put these com-
parisons in context, note that in contrast to BMT and the simple Melitz model
above, here we also have firm-specific demand shocks. Thus, for a particular
origin-destination pair the standard deviation of latent sales is (62+02)"/? = 3.7,
although selection due to fixed trade costs brings the implied standard devia-
tion for actual sales down to around 3, which is what we we observe in the data.

Table (18) and Figure (13) show the implications of the estimated model for
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the IME. We compute the IME implied by the estimated model by drawing 1MM
firms for each origin (this implies 1MM latent log sales and log fixed costs for
each destination), computing average sales (taking into account selection), and
then multiplying average sales by N, in the data to compute total exports. We
pick 1IMM because at this point we are not interested in granularity — this is just
a numerical approximation to the case with a continuum of firms. The IME
implied by the model (i.e., 0.58) is actually higher than the one in the data, al-
though the difference is not statistically significant. > We plot the associated
IME for each percentile in Figure (13) — the pattern of the IME across percentiles
is remarkably close to what we see in the data.

In Table (18) we also report the IME implied by the estimated model when
we suppress the systematic variation in fixed trade costs that does not come
from origin and destination fixed effects (i.e., we set ji;;; equal to 67 + ¢ coming
from running the regression fi;;; = 67 + 6¢ + £;;). Interestingly, the IME actually
increases in this case, revealing that the variation in fi;,;; not coming from ori-
gin and destination fixed effects actually is lowering the IME, which is exactly
what we should expect if variable and fixed trade costs are positively correlated.
We check this directly by computing the correlation between ¢;; and fi,; (after
removing origin and destination fixed effects from both) for a random sample
of 50,000 values of the ™ in the chain of estimates of #. As shown in Table (19),
the correlation is now positive and highly significant. This Table also shows the
elasticity of variable and fixed trade costs with respect to distance (ignoring ori-
gin and destination fixed effects), computed in the same way. We see that now
both types of trade costs are strongly increasing in distance.

Overall, our estimated full lognormal-Melitz model does a very good job
in fitting the EDD data and in solving the puzzles associated with the Pareto

model. The lognormal model generates an IME that is close to the one we see

3The confidence interval in Table Table (18) comes from the fact that we are running a re-
gression to compute the IME, as in the data — it does not come from computing the IME for
different values of the parameters along the Markov chain, although this is something we plan
to do in the near future.
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in the EDD data and implies fixed trade costs that are positively correlated with
variable trade costs and distance. The implied pattern for the IME across differ-

ent percentile is also very similar to what we see in the data.

8. Conclusion

The canonical Melitz model of trade with Pareto-distributed firm productivities
has a stark prediction: conditional on the level of the fixed costs of exporting,
all variation in exports across partners should be due to the number of export-
ing firms (the extensive margin). There should be no variation in the intensive
margin (exports per exporting firm), again conditional on fixed costs.

We use the World Bank’s Exporter Dynamics Database to test this prediction.
The EDD covers 50 countries for varying subsets of 2003-2013. Compared to
existing studies, the EDD allows one to look for systematic variation in the in-
tensive and extensive margins of trade, allowing for year, origin, and destination
components of fixed trading costs.

We find that about 50 percent of variation in exports occurs along the inten-
sive margin. That is, when exports from a given origin to a given destination
are high, exports per exporting firm are responsible for one-half of this. This
finding is robust to looking at all destinations or only the largest destinations,
is robust to including all firms or ignoring very small firms, is robust to includ-
ing all country pairs or only ones for which more than 100 firms export, and is
robust to dissagregating across industries.

Although variation in fixed trade costs can make the Melitz-Pareto model fit
this fact, this requires fixed trade costs that are negatively correlated with vari-
able trade costs and with distance, and the resulting model does not reproduce
the pattern for the IME across exporter percentiles. Allowing firms to export
multiple products or taking into account granularity does not reverse these im-
plications.

In contrast, moving away from a Pareto distribution and assuming that the
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productivity distribution is lognormal resolves the puzzles. A Melitz model with
lognormally distributed firm productivity, demand shocks and fixed costs, esti-
mated using maximum likelihood methods on the EDD firm-level data is con-
sistent with the positive IME and its pattern across exporter percentiles while
exhibiting fixed trade costs that are positively correlated with variable trade

costs and distance.
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Appendix

Estimation of ¢

An estimate of 0 is required to compute model-implied In Ej and In7;; as func-
tions of In z;;, In V;;, and estimated fixed effects. We follow Eaton et al. (2011)

and derive the following expression

—1/6
Tay; _ (N
] VR B 40
Tl (Ni ) (40)

where z;,; are average exports per firm for firms from ¢ that sell in market [ but
restricted to those firms that sell in markets / and j. EKK have information on
domestic sales for each firm, so they use ! = i. We do not have such information,
so we use [*(i) = argmaxy V;;, that is the largest destination market for each

origin country ¢ (e.g., the United States for Mexico). Letting

Lir= (i)l

2y = ———— (41)
Lt (i)]1* (4)
and
= 42
g Nt () 42
then we have
1

This suggests an OLS regression to recover an estimate for 6.

Eaton et al. (2011) estimate this regression for French firm-level data (in-
cluding information on sales in France) and obtain a coefficient of —0.57, which
implies # = 1.75. In their case, they keep in their estimating sample only firms
with positive sales in France, so the variables x; and Np; are calculated based
on the same set of firms. To implement an approach comparable to theirs, we
drop all firms from country 7 that do not sell to I*(i), so the sample includes

only Nj-(; firms for country i. This implies that all firms that make up N;; are
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also selling to /*(7). Figure Al reproduces Figure 3 from Eaton et al. (2011) by
plotting the variables in Equation (43). The slope in the graph is equal to 1/0,
and the corresponding estimated values are reported in Table Al. Based on the
full sample and using no weighting, the estimated @ is over 19. But in Figure Al
for small values of m,;, which correspond to small values of V;;, there is a lot of
dispersion in z;;. To minimize the effect of that noise we weight observations by
V/N,; and this lowers the estimate of § to 4.8. Finally, when we drop all observa-
tions with V;; < 100 (remember that here IV;; is a measure of firms that sell from
country i to country j and also to [*(i)) we obtain § = 2.3, which is still higher
than in Eaton et al. (2011). We will use this estimate in our simulations of the

intensive margin elasticity.

GMM Estimation of the Distance Elasticity of Fixed Trade Costs

under Granularity

Let f? =In F?, f;l =In Fjd, and f, = In F}. From equation (27) it follows that

_ it o d _ ot
Tije Clndist;; Iief’ +fi+fe +uijt6 ¢Indist;; (44)

ist.: —1 —fo_gfd_ —1 —fo_fd_
eSindistic — 4 o le=Pfi—fe _ g g le i fife (45)

Multiply equations (44) and (45) to get

_ i d_ rd d_ rd 4 _po_fpd_gq
Tijie (Indist;;j+(In disty :xiktefj I _uikef] I +uijt/§ 16 19 —=Fi—fi—Clndist;; [xikt _uikt]

(46)
and

d_ rd d_ pd 1 _fo_ fd_ ot _ iot - ;
xlktefj fa _ulktefj fe +uljt/{ 16 fP—fE—CIndist;; [xlkt_ulkt = x1,€ ¢Indisty;+C Indistyy

(47)
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Multiply equations (46) and (47) to get

— St S ot d__pd d__pd _ __fo__ pd__ ; .

4500 10 distig +C n dist {mlktefj T e L LY uzm]} _
_ e , d_ pd d_ pd 1 _fo_sd_ s

1€ ¢Indist;;4-¢ In distyy, {xiktef] fi _ uiktefj Ie + Uijik 16 fe—fi—CIndist;; [:L‘ikt . uzkt]}

(48)

Dividing both sides of (48) by e’/ /&

—(Indist;;+CIndist; —1 _—fo—fd_CIndisty; o
zijreC i57+¢ ik {xlkt — U + Uk € fi=ti=¢ U [z — Ulkt]} =
[

—(CIndist;;+CIndist 1 —fo—fd_(lIndist;;
yjpe” ¢ I disty e Indistiy {x@-kt—uikﬂruijm e Tl Indistiy [y — U]

Rearranging (49) yields

—(Indist;j+CIndist;y —(Indist;j+CIndist;y +

TiktLijt€ — Wikt Ti5t€

16—C Indist;;j+(Indist;p,—( In disty; —fl"—ff

Tijtk Uit [Tike — Wike) =

—CIndist;j+CIndisty, —CIndist;+CIndisty, +

LiktT1t€ — Uikt Ti5¢€

1 _—ClIndist;;+CIndist;,—CIndist;j—fo—f<
e ¢ +e e =i Uit [Tikr — Wike] (50)

Ttk

Taking conditional expectation of (50) yields

_C In distij +§ In distik ln diSt] — E [I_iktxljte—g In distl]' +C In distlk |ln diSt]

E [zuexije

This gives us the moment condition

E [(mkm L xlktm.teg(f1ndistij+1ndistik+1ndistljflndist,k))
iktLlj ij

(—Indist;; + Indisty, + Indist;; — Indisty,) \t} =0

Taking expectation with respect to time then gives us the moment condition in

Equation 28.
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QQ-Estimation of o,

Exports from country ¢ to country j of a firm with productivity ¢ in the model
with CES preferences and monopolistic competition is given by z;; (¢) = o F;; (gp / gpg‘j) ot
Since Iny ~ N (p4,0,) then Inz;;(¢) ~ Nyune (fip,ij, 0,510 (0 F;)), where 6, =
0, (0 —=1), figi; = ppi(c—1) +1In(0F;) + (1 —0)In(¢};), and the truncation
pointis In (o Fj;).

As in HMT, we estimate o, using a quantile-quantile regression, which min-
imizes the distance between the theoretical and empirical quantiles of log ex-
ports. Empirical quantiles are given by:

i = 0T (51)

where n is the rank of the firm among exporters from i to j. We calculate theo-

retical quantiles of exports from i to j as

QZn = [lgqj + 5¢(I)_1 (Cﬁmn) ; (52)

Ni—(n—1)
N;

where &,;,, = — is the empirical CDF and N; is the imputed number of
firms from the BR data. Following HMT we adjust the empirical CDF so that
by = % since otherwise we would get &' (@iﬂ) = oo whenn = 1.

The QQ-estimator of ., is the coefficient § obtained from the regression
In Tijn = O4j + BCI)_I (qA)ijyn> + 5ij,n~ (53)

Table 14 reports the QQ-estimate of 5,. We report three sets of estimates:
for the full sample, the largest 50% of firms and the largest 25% of firms for each
origin-destination pair in each year. According to the model, the estimates of
the slope should not change when we consider different sub-samples, but this is
not the case in Table 14. This comes from a not very surprising empirical failure
of the simple Melitz-lognormal model outlined in the first part of the previous

section: whereas this model implies that the sales distribution for any country
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pair should be distributed as a truncated lognormal (with the truncation at sales
of 0 F};), no such truncation exists in the data (i.e., we observe exporters with
very small sales).

A related issue is that our estimates for either of the sub-samples are signif-
icantly larger than the HMT estimate of 2.4. The difference comes from the
fact that HMT assume that the sales distribution for any ij pair is lognormal,
whereas we stick close to the simple model and assume that it is a truncated log-
normal, and then use data for N;; and our estimated values /V; to derive implicit
truncation points. These truncation points tend to be on the right tail of the
distribution, since N;;/N; tends to be quite low, hence the small 7, estimated
by HMT would not be able to match the observed dispersion in the sales of ex-
porters. In general, the higher the V; one takes as an input in the QQ regression,
the higher the estimate of the shape parameter one obtains.

In private correspondence, the authors of HMT pointed out that their ap-
proach would be consistent with the Melitz-lognormal model if one allows for
heterogeneous fixed costs and lets the variance of these costs go to infinity,
whereas our approach would be right if the variance goes to zero. This is part
of our motivation in allowing for heterogeneous fixed costs and then in using

MLE to estimate the full Melitz-lognormal model.
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Quasi-Bayesian Estimation for the full Melitz-lognormal model

Without risk of confusion, let’s change notation and use F;; = Ino + In f;. The

density function for the case in which we consider two destinations is

I(z41,2270)
1 Fon <xzn Zpn=za
9(X51,X:2) (331'1, fL’iz) = 5 X N 9(Z1,Z:2) (-731'1,551'2) Pr |
Fio <wmip Zip = x40
(54)
B ( \ I(zi1#0;xi20)
Fy <z
X 19z, (xll) Pr | Zz’l = T
Fio > Zis
I \ ) |
- \ 7 [(@i2#bzin=0)
Fy > Zjy
X |9z, (Ti2) Pr | Ziy = x4 ’
Fia < x40
i . ) |

where gz, z,.) (i1, z:i2) is the joint density of latent variables Z;;, which can be
computed using distributional assumptions stated in (38), and gz, (z;;) are the
associated marginal densities. Our assumptions guarantee that g, .,) (i1, %)
will be joint-normal. Note that the probabilities Pr {-|-} in (54) reflect the prob-
ability that a firm is an exporter to some market and a non-exporter to the
other market conditional on observable sales. Finally, C is the probability that
a firm exports to at least 1 destination; it can also be expressed as a CDF of joint
normal distribution. We can calculate (54) for each observation in out dataset

(which is a realization of (X, X;») that we observe). We compute the term

Fo <xzyn Zp=z
Pr

Fio <xiyo  Zip = x40
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by noting that this is equal to Gz, r,) (i1, 7;2) (by independence between F

and 7) and then using

Fa hfi1 O'ch 0

~

Fip [Lf 2 0 o JZr

The other two conditional probabilities require a bit more work. First, note that

Fi <ay Zi1
Pr | Zy =2y (=G

Fio > Zis Fy 0

| Zi1 =21

Zi2 - Fi2

To compute the object on the RHS, we use the fact that

Fi My i1 O}% 0 0
Zi —Fz ~ N er'Q_ILLf,iQ ) 0 53"‘0’3"‘0’]% 53
i Zil ] i dil ] i 0 EZ 5:3) + 0'2 ]

Using the properties of conditional normal distribution we can get

Ti1 Ti1 Hf.i1

G =G - + Bzi — di]
Fi 0 Yil 0 dio — fif 40

|Zsi=x41 |Z1=x41
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where

The other conditional probability is computed analogously.
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Table 1: EDD sample countries and years

ISO3  Country name Istyear Lastyear ISO3 Countryname Istyear Lastyear
ALB  Albania 2004 2012 KHM Cambodia 2003 2009
BFA  Burkina Faso 2005 2012 LAO Laos 2006 2010
BGD Bangladesh 2005 2013 LBN Lebanon 2008 2012
BGR  Bulgaria 2003 2006 MAR  Morocco 2003 2013
BOL Bolivia 2006 2012 MDG Madagascar 2007 2012
BWA  Botswana 2003 2013 MEX Mexico 2003 2012
CHL Chile 2003 2012 MKD Macedonia 2003 2010
CHN China 2003 2005 MMR Myanmar 2011 2013
CIV  Cote d’Ivoire 2009 2012 MUS  Mauritius 2003 2012
CMR Cameroon 2003 2013 MWI  Malawi 2009 2012
COL Colombia 2007 2013 NIC  Nicaragua 2003 2013
CRI Costa Rica 2003 2012 NPL  Nepal 2011 2013
DOM Dominican Republic 2003 2013 PAK  Pakistan 2003 2010
ECU Ecuador 2003 2013 PRY  Paraguay 2007 2012
EGY Egypt 2006 2012 PER  Peru 2003 2013
ETH Ethiopia 2008 2012 QOS  Kosovo 2011 2013
GAB  Gabon 2003 2008 ROU Romania 2005 2011
GEO Georgia 2003 2012 RWA Rwanda 2003 2012
GIN  Guinea 2009 2012 THA  Thailand 2012 2013
GTM  Guatemala 2005 2013 TZA  Tanzania 2003 2012
HRV  Croatia 2007 2012 UGA Uganda* 2003 2010
IRN  Iran 2006 2010 URY  Uruguay 2003 2012
JOR  Jordan 2003 2012 YEM Yemen 2008 2012
KEN Kenya 2006 2013 ZAF  South Africa 2003 2012
KGZ Krygyztan 2006 2012 ZMB Zambia 2003 2011

* indicates that Uganda does not have data for 2006
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Table 2: Industry groupings

HS 2-digit codes that are included in each industry

Food and beverages 02-05; 07-12; 14-24
Mineral 25-26
Chemicals 28-38
Plastic and rubber 39-40
Apparel 41-43; 60-67
Wood 44-46
Paper 47-49
Textiles 50-59
Glass 68-70
Precious metals 71
Metals 72-83
Machinery 84
Electrical machinery 85
Transport equipment 86-89

Miscellaneous 90-96
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Table 3: Benchmark IME regression

Coefficient from In z;; on In X;

M elasticity 0.459***  (.452%** 0.522***
Standard error [0.0135] [0.0146] [0.0127]

Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes

Note: 4 main destinations, V;; > 100, 676 obs.
Robust standard errors in brackets

*p < 0.05,** p < 0.01, *** p < 0.001

Table 4: IME regression, all destinations

Coefficient from In z;; on In X

IMelastiCity 0.501%*** 0.426*** 0.429***
Standard error [0.00553] [0.00621] [0.00521]

Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes

Note: all destinations, N;; > 100, 7211 obs.
Robust standard errors in brackets

*p <0.05 " p<0.0L, " p < 0.001

47
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Table 5: IME regression, countries with low N;; included

Coefficient from In z;; on In X;

IM elasticity 0.484***  0.494***  0.670***
Standard error [0.00730] [0.00775] [0.0120]

Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes

Note: 4 main destinations, 1485 obs.
Robust standard errors in brackets

*p <0.05 * p<0.01, " p < 0.001
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Table 6: IME regression, disaggregated

Coefficient from In z;; on In X,

Panel a: manufacturing industries
IM elasticity  0.589***  0.590***  (0.678***
Standard error [0.00813] [0.00814] [0.00747]
Observations 2620 2620 2620

Panel b: HS2 (within manufacturing)
IM elasticity  0.614***  0.623***  (0.719***
Standard error [0.00570] [0.00575] [0.00693]
Observations 3752 3752 3752

Panel c: HS4 (within manufacturing)
IM elasticity  0.661***  0.671***  0.707***
Standard error [0.00484] [0.00515] [0.00555]
Observations 7298 7298 7298

Panel d: HS6 (within manufacturing)
IM elasticity  0.671***  0.684***  (0.712***
Standard error [0.00469] [0.00496] [0.00550]

Observations 9514 9514 9514
Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes
Industry/HS FE Yes Yes Yes

Note: 4 main destinations, N;j > 100
Robust standard errors in brackets

*p <0.05 " p<0.01, " p < 0.001
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Table 7: IME regression, small firms excluded

Coefficient from In z;; on In X;

Panel a: 4 main destinations, N;; > 100

IM elasticity  0.455***  0.446***  (0.524***
Standard error [0.0136]  [0.0148]  [0.0124]
Observations 673 673 673
Panel b: all destinations, N;; > 100
IM elasticity  0.501***  0.423***  0.427***
Standard error [0.00559] [0.00632] [0.00523]
Observations 7128 7128 7128
Panel c: 4 main destinations
IM elasticity  0.480***  0.489***  0.671***
Standard error [0.00727] [0.00772] [0.0119]
Observations 1485 1485 1485
Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes

Firms with sales less than $1000 excluded

Robust standard errors in brackets

*p < 0.05,* p < 0.01, ** p < 0.001
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Table 8: Fixed and variable trade costs

corr(In Nj;, Inz;;)  corr(ln7;,In ﬁ”)

Raw data 0.366
[0.035]
Purged of:

Origin FE 0.500

[0.033]

Destination FE 0.352

[0.036]
Origin and Destination FE 0.418 -0.891
[0.034] [0.017]

Note: § = 5,0 = 5, N;; > 100, 676 obs.

Standard errors in brackets

Table 9: Trade costs and distance

In E] In 771] In ﬁ]

lndistij -0.440*** (0.317*** -0.211***
Standard error [0.0539] [0.0168] [0.0504]

Note: 4 main destinations, V;; > 100, 676 obs.
Robust standard errors in brackets

*p <0.05 " p<0.01, " p<0.001
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Table 10: Product-level IME

Coefficient from In z7; on In Xj;

Panel a: 4 main destinations
IM elasticity  0.369***  0.369***  0.391***
Standard error  [0.0156]  [0.0171]  [0.0157]
Observations 676 676 676

Panel b: all destinations
IM elasticity  0.446***  0.341***  (0.325***
Standard error [0.00733] [0.00768] [0.00682]

Observations 7211 7211 7211
Year FE Yes Yes Yes
Destination FE Yes Yes
Origin FE Yes

Note: N;; > 100
Robust standard errors in brackets

*p <0.05* p<0.0L,** p <0.001
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Table 11: Fixed trade costs distance elasticity and granularity

Fixed trade costs elasticity

Firm level Productlevel

¢ -0.587*** -0.165%**
Standard error  [0.0318] [0.0333]
Observations 3912 3912

Note: Nij > 100
Robust standard errors in brackets

*p < 0.05,* p < 0.01, *** p < 0.001

Table 12: IME under granularity

corr(a;jp, agp)

0 1

6 =23 0.004 0.002
§ =175 0.020 0.005
§=125 0146 0.036

f=1 0368 0.103

Note: Nij > 100

N;; data as of 2009, 74 obs.
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Table 13: Number of firms and population

log number of firms

log population 0.945***  0.944***
Standard error [0.0136] [0.0139]

Year FE Yes

Robust standard errors in brackets, 468 obs.

*p <0.05 " p<0.01, " p < 0.001

Table 14: QQ estimates of 7,

All firms Top50% Top 25%

o, 7.884"*  5.456™** = 4.545%**
[0.00332] [0.00212] [0.00260]

Observations 1,166,885 582,361 290,806
R? 0.846 0.937 0.941
Bilateral FE Yes Yes Yes

Robust standard errors in brackets

*p <0.05 " p<0.01, ** p < 0.001

Table 15: IME under lognormal distribution

IME

5, =4.55 0.431
5, =24 0.163
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Table 16: Trade costs and distance, lognormal

log fixed costs log variable costs

In dist 0.379*** 0.366***
Standard error [0.0514] [0.0179]

Note: 4 main destinations, NV;; > 100, 676 obs.
Robust standard errors in brackets

*p < 0.05,** p < 0.01, *** p < 0.001

Table 17: Estimates of dispersion, full lognormal model

Estimate 95% CI

o 2.60 (2.45, 2.78]
Ou 2.57 [2.46, 2.67]
of 3.59 [3.36, 3.78]

Table 18: Estimates of IME, full lognormal model

IME 95% CI

Unrestricted model 0.58 [0.49...0.65]
Setting fis;; = 07 + ¢ 0.63 [0.58...0.68]
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Table 19: Implies trade costs in full lognormal model

Estimate 95% CI

Correlation 0.69 [0.53...0.80]

Distance elasticity

Fixed costs 1.93 [1.45...2.33]
Variable costs 0.53 [0.47...0.57]

Table Al: Estimates of

] S. e. Observations
Full sample 19.82***  [0.902] 39,054
Weights \/ Nij 4.803*** 10.0431] 39,054
Dropping N;; < 100 2.622*** [0.0185] 7,211

Dropping M;; < 100 2.267*** [0.0140] 4,713
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Figure 1: Intensive and Extensive margins of exporting

Panel a: Average size of exporters (intensive margin) and total exports
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Panel b: Number of exporters (extensive margin) and total exports
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+ Qrigin, destination, year demeaned data
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Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represents log total exports at the exporting country-destination country-year level demeaned
by country, destination, and year fixed effects. Only four destination countries are considered:
France, Germany, Japan, and the US. The dots represent the raw measures. The line is the slope
predicted by the Melitz-Pareto model.
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Figure 2: Intensive and Extensive margins of exporting, by industry

Panel a: Average size of exporters (intensive margin) and total exports

Log (average exports)
0
1

* Industry, origin, destination, year demeaned data
|| — Canonical theory line

1 I I
-5 0 5
Log (total exports)

Panel b: Number of exporters (extensive margin) and total exports

Log (number of exporters)

* Industry, origin, destination, year demeaned data
|| — Canonical theory line

-5 0 5
Log (total exports)

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represents log total exports at the exporting country-industry-destination country-year level
demeaned by country, destination, industry, and year fixed effects. Only four destination coun-
tries are considered: France, Germany, Japan, and the US. The dots represent the raw measures.
The line is the slope predicted by the Melitz-Pareto model.
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Figure 3: Fixed and variable trade costs and distance

Panel a: fixed trade costs and distance

L
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Panel b: variable trade costs and distance

Log (variable costs)
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Log (weighted distance)

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represents log distance (demeaned by origin and destination) taken from Mayer and Zignago
(2011). The y-axis represents fixed or variables trade costs demeaned by origin and destination.
Only four destination countries are considered: France, Germany, Japan, and the US. To cal-
culate the model-implied fixed and variable trade costs we use § = 1.25 from Head and Mayer
(2014) and o = 5 from Bas et al. (2015)
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Figure 4: IME for each percentile, data
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Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represent percentiles. Each dot represents coefficient from the regression of log average exports
in each percentile on log total exports. Data is demeaned by origin, destination, and year. Only
four destination countries are considered: France, Germany, Japan, and the US.

Figure 5: Fixed product-level trade costs and distance

Log (fixed costs)
0

Log (weighted distance)

Note: the source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represents log distance taken from Mayer and Zignago (2011). Only four destination countries
are considered: France, Germany, Japan, and the US.
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Figure 6: IME for each percentile, Pareto and granularity
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Note: the source is the exporter-level data used for the Exporter Dynamics Database. The darker
solid line corresponds to IME for each percentile estimated using EDD and four main destina-
tions: France, Germany, Japan and USA. Dashed lines indicate 95% confidence intervals. The
lighter solid line is IME for each percentile implied by the model with Pareto distribution of
productivity and granularity, 6 = 1. The level of bilateral fixed trade costs was chosen to match
overall IME in the data. The number of draws for each origin-destination pair is equal to the
number of exporters from origin to destination in EDD as of 2009.
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Figure 7: Number of firms and population
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Note: the x-axis represents log of population taken from the World Development Indicators.
The y-axis represents the number of firms as computed by Bento and Restuccia (2015).
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Figure 8: IME for each percentile, lognormal
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Note: the source is the exporter-level data used for the Exporter Dynamics Database. The darker
solid line corresponds to IME for each percentile estimated using EDD and four main destina-
tions: France, Germany, Japan and USA. Dashed lines indicate 95% confidence intervals. The
lighter solid line is IME for each percentile implied by the model with lognormal distribution
of productivity, 5, = 4.55 (our estimate) and ¢ = 5 from Bas et al. (2015). The level of bilateral
fixed trade costs was chosen to match overall IME in the data. The total number of firms was
imputed from Bento and Restuccia (2015)
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Figure 9: Fixed and variable trade costs and distance, lognormal
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Note: source is the exporter-level data used for the Exporter Dynamics Database. The x-axis
represents log distance taken from Mayer and Zignago (2011). Only four destination countries
are considered: France, Germany, Japan, and the US. To calculate the model-implied fixed and
variable trade costs we use our estimate of o, = 4.55 and ¢ = 5 from Bas et al. (2015), and
implied number of firm from Bento and Restuccia (2015)



Figure 10: Full lognormal model, inverse CDF of log sales
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Note: the source is the exporter-level data used for the Exporter Dynamics Database and au-
thors’ calculations. The darker solid line corresponds to empirical CDF of log sales from some
origin to the US. The lighter solid line corresponds to CDF implied by estimated full lognormal

model



66 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRIGUEZ-CLARE

Figure 11: Share of firms selling only to the less popular market
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Note: the source is the exporter-level data used for the Exporter Dynamics Database and au-
thors’ calculations. The horizontal axis corresponds to the share of firms exporting to less pop-
ular market in the data, same shares implied by estimated model are plotted on the vertical axis.
The line is a 45° line
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Figure 12: Correlation between log exports to the US and Germany
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Note: the source is the exporter-level data used for the Exporter Dynamics Database and au-
thors’ calculations. The horizontal axis corresponds to correlation between log exports to the
US and Germany (for those firms who sell in both markets) in the data, same shares implied by
estimated model are plotted on the vertical axis. The size of the circles is proportional to the
number of exporters
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Figure 13: IME for each percentile, data and full lognormal model
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Note: the source is the exporter-level data used for the Exporter Dynamics Database and au-
thors’ calculations. The x-axis represent percentiles. The dark solid line represents coefficient
from the regression of log average exports in each percentile on log total exports in the data.
Dark dashed lines represent 95% confidence intervals. The light dashed line represents the re-
gression of log average exports in each percentile on log total exports in the simulated full log-
normal model. We use all years and 4 main destinations to calculate IME for each percentile in
the data, and estimated full lognormal model using 2009 data for 18 origins and 2 destinations:
USA and Germany.

Figure A1: Exports to largest destination and market entry
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