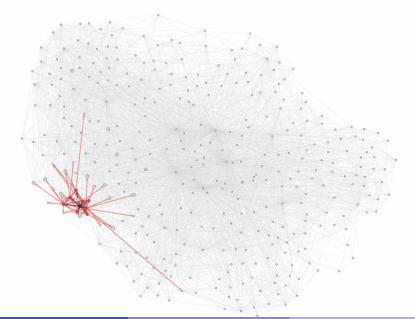
Input Diffusion and the Evolution of Production Networks

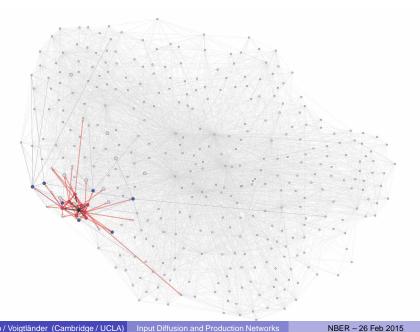
Vasco Carvalho
Cambridge and CEPR

Nico Voigtländer
UCLA and NBER

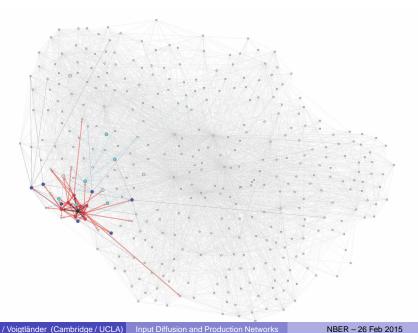
NBER Meeting San Francisco 26 February 2015

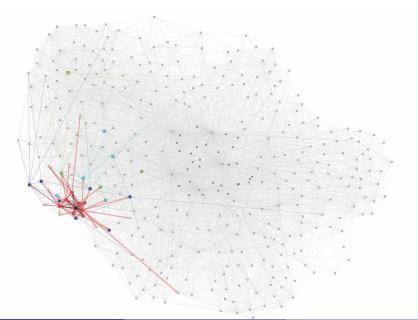

Motivation

- Adoption of inputs is an important dimension of technical progress
- Recent literature also stresses the role of input linkages:
 - for aggregate productivity outcomes
 - in propagating micro shocks and generating aggregate fluctuations

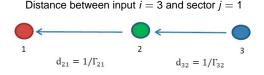

Motivation

- Adoption of inputs is an important dimension of technical progress
- Recent literature also stresses the role of input linkages:
 - for aggregate productivity outcomes
 - in propagating micro shocks and generating aggregate fluctuations
- This paper:
 - Analyze formation of input-output linkages through a network perspective
 - Empirics: document novel pattern in the data: Producers tend to adopt new inputs from the network neighborhood of their existing suppliers
 - ► Theory: stylized model of networked input search & adoption


Diffusion of Semiconductors. I-O Network in 1967


1972

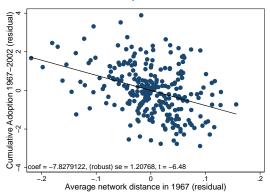
1977



1982

Network Distance

- BEA Input-Output Tables, 4-digit 1967-2002. Define i j pairs:
 - i: potential input supplier
 - j: potential adopter
- Network distance d_{ij} : minimum-distance path linking sector j to potential supplier i (directed, weighted by input flows)
- Focus on *i-j* pairs that are not (yet) directly connected


Main finding illustrated in a single graph

- For each sector i ("input supplier"), compute its average network distance to all other sectors j (potential adopters) in 1967
- "Cumulative adoption" = number of sectors *j* that adopt *i* until 2002

Main finding illustrated in a single graph

- For each sector i ("input supplier"), compute its average network distance to all other sectors j (potential adopters) in 1967
- "Cumulative adoption" = number of sectors *j* that adopt *i* until 2002

Cumulative Adoption, 1967-2002

Findings and their Relationship to the Literature

- Role of networks in input and technology adoption
 - Diffusion of innovations in social networks (e.g., Conley & Udry, 2010; Banerjee et al., 2013)
- Growth by recombination of ideas (Weitzman, 1998)
- Evolution of input-output networks under random search (Oberfield, 2013).
- Generalized diffusion (e.g. GPT) is more likely when input is used by central producers in the network
 - Novel implication for GPT literature (e.g. Helpman and Trajtenberg, 1998; Jovanovic and Rousseau 2005)
- Out-degree distribution follows a power law
 - Consistent with data. Key for propagation of shocks as stressed in Acemoglu et al. (2012)

Plan for the Talk

- Empirics:
 - 4-digit SIC sectors
 - Firm level, based on Compustat data
- Theory: Sketch model of input search and adoption

Does network proximity between two sectors predict subsequent input adoption?

Probit, OLS, Hazard model:

$$Prob\left(A_{ij}(y)=1\right)=g\Big(d_{ij}(y-5),\;X_i(y),\;X_j(y)\Big)$$

- A_{ij}(y): indicator for sector j adopting input i in year y
- $d_{ij}(y-5)$: (directed) network distance b/w i and j, lagged by 5 years
- X_i(y), X_j(y): controls for input-producing/adopting sector (e.g., TFP, fixed effects)

Panel Results on Input Adoption

Dep. Var.: Dummy for adoption of input *i* by sector *j* in year *y*

Bop. Val.: Bulling for adoption of input 7 by sector 7 in year y								
Falleration	(1)	(2)	(3)	(4)	(5)	(6)		
Estimation	Probit	Probit	OLS	OLS	Hazard	Hazard		
Distance $d_{ij}(y-5)$	-0.1885*** (0.0041)	-0.1882*** (0.0041)	-0.0092*** (0.0002)	-0.0092*** (0.0002)	0.5947*** (0.0059)	0.5955*** (0.0058)		
	[-2.34%]	[-2.34%]	[-1.45%]	[-1.45%]	[-4.14%]	[-4.20%]		
$\triangle_5 TFP_i$		0.1131*** (0.0365) <i>[0.07%]</i>		0.0154*** (0.0025) [0.12%]		1.5061*** (0.1068) <i>[0.16%]</i>		
$\triangle_5 TFP_j$		-0.0950 (0.1453)		-0.0064 (0.0113)		1.2088 (0.3588)		
Observations	577,498	577,498	577,498	577,498	577,498	577,498		

Notes: Standard errors in parentheses, clustered at the adopting sector (j) level. * p < 0.01, ** p < 0.05, *** p < 0.05. Values in [square brackets] are standardized coefficients, reflecting the change in adoption probability (over a 5-year interval) due to a one standard deviation increase in the explanatory variable.

Robustness Check

Panel results are robust to

- Require use of new inputs for ≥15 years to qualify as adoption
- Exclude new links formed within 2-digit sectors
- Use only initial network distance in 1967
- Controls for *i* and *j* (employment, fixed effects, TFP level)
- Consider only links with ≥\$1mio purchase

Panel Results on Input Adoption: Placebo

No predictive power of forward distance

Dep. Var.: Dummy for adoption of input *i* by sector *j* in year *y*

			, , ,			
Estimation	(1) Probit	(2) Probit	(3) OLS	(4) OLS	(5) Hazard	(6) Hazard
Forward Distance $d_{jj}(y-5)$	0.012 (0.012) [0.11%]	0.012 (0.012) [0.11%]	0.029** (0.012) [0.18%]	-0.013 (0.013) [-0.07%]	-0.013 (0.013) [-0.07%]	0.016 (0.012) [0.01%]
Distance $d_{ij}(y-5)$		-0.205*** (0.011) [-1.61%]	-0.199*** (0.012) <i>[-1.57%]</i>		-0.367*** (0.024) [-1.24%]	-0.356*** (0.026) [-1.24%]
Controls	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
Observations	501,539	501,539	418,734	358,390	358,390	292,244

Notes: Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in adoption probability (over a 5-year interval) due to a one standard deviation increase in the explanatory variable.

Does network proximity lead to faster adoption?

Time-to-Adopt Regressions

$$T_{ij} = \beta \cdot d_{ij}^{67} + \gamma \cdot \triangle \textit{Efficiency}_i + \delta_i + \eta_j + \varepsilon_{ij}$$

- T_{ij}: Years until sector j adopts input i after 1967 (not defined if no adoption by 2002)
- d_{ii}⁶⁷: network distance in 1967
- \(\triangle Efficiency_i\) (average annual) change in efficiency in input-producing sector (TFP, price)
- δ_i and δ_j : input-producing and adopting sector fixed effects

Time to Adoption

Dep. Var.: Time to adoption of input *i* by sector *j* after 1967

	(1)	(2)	(3)	(4)	(5)	(6)
Years excluded	1997	1997	1972,97	none	1997	1997
Other remarks					2-digit [†]	narrow [‡]
Distance d_{ij} in 1967	0.937*** (0.196) [0.64]	3.112*** (0.341) <i>[2.14]</i>	1.778*** (0.360) <i>[1.15]</i>	3.104*** (0.311) <i>[2.04]</i>	3.307*** (0.354) [2.28]	1.228*** (0.290) <i>[0.72]</i>
$\triangle TFP_i(1967 - y_{adopt})$	-96.925*** (3.919) [-1.78]	-364.787*** (13.186) <i>[-6.70]</i>	-331.477*** (26.434) [-3.95]	-281.502*** (11.861) <i>[-4.37]</i>	-376.759*** (14.029) [-6.97]	-146.929*** (12.575) <i>[-3.06]</i>
Using Sector FE	\checkmark	✓	✓	✓	✓	✓
Producing Sector FE		✓	✓	✓	✓	✓
R^2	0.19	0.73	0.72	0.67	0.73	0.66
Observations	14,849	14,849	8,604	24,312	13,856	6,421

Notes: Standard errors in parentheses, clustered at the adopting sector (j) level. * p < 0.01, ** p < 0.05, *** p < 0.05. ** p < 0.05. ** p < 0.05. ** p < 0.05. *** p < 0.05. ** p < 0.05. ** p < 0.05. ** p < 0.05. *** p < 0.05. *** p < 0.05. ** p < 0.05. *** p < 0.05. **

[†] Column 5 excludes all *i-j* pairs that belong to the same 2-digit industry.

[‡] The narrow definition of adoption requires new i-j pairs to be present for at least 15 years in order to qualify as adoption.

Firm-Level Results

Compustat data (customer segment file) 1977-2008

- Customers of a given firm that account for more than 10% of sales
- 43.506 firm-to-firm links
- Compute (binary) network distance

Dep. Var.: Dummy for firm i adopting inputs from firm i in a 5-year time interval v

		(a)				(0)	/= \
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	Probit	OLS	OLS	OLS	OLS	OLS
Sample					2-digit [†]	Manufacturing	Services
$I_{ij}(y-5)$	0.02854*** (0.00745) [2.85%]	1.61359*** (0.11780) /2.69%/	0.02161*** (0.00779) [2.16%]	0.02140** (0.00888) [2.14%]	0.01834** (0.00806) [1.83%]	0.01966** (0.00904) [1.97%]	0.02367* (0.01348) [2.37%]
In(geodistance)	-0.00006*** (0.00001) [-0.007%]	-0.05809*** (0.00604) [-0.005%]	-0.00007*** (0.00001) [-0.007%]	-0.00007*** (0.00001) [-0.007%]	-0.00006*** (0.00001) [-0.006%]	-0.00006*** (0.00002) [-0.006%]	-0.00007*** (0.00001) [-0.007%]
$\triangle_5 \ln(Y/L)_i$				0.00003*** (0.00001)	0.00003*** (0.00001)	0.00003** (0.00001)	0.00003 (0.00002)
Controls Using Firm FE Producing Firm FE Year FE	✓	✓	*	*	*	V V V V	V V V V V V V V V V
Observations	14,634,939	14,634,939	14,634,939	8,895,481	8,461,685	4,906,536	3,381,959

Notes: The dependent variable is a dummy that takes on value 1 if firm j adopts input j in a given 5-year interval y between 1977 and 2006. $I_{ii}(y-5)$ is an indicator that equals one if firms i and j were indirectly linked (had a binary distance of 2) in the previous five-year interval. The variable geodistance is the geographical distance between i and j. $\triangle_5 \ln(Y/L)_i$ denotes the change in output per worker in the input-producing firm (i) over the previous (lagged) 5-year interval. Controls include the change in output per worker in the input-using firm over the previous 5 year interval $(\triangle_5 \ln(Y/L)_i)$, as well as output per worker and $\ln(\text{employment})$ for both input-producing and input-using firms.

Model - Overview

Model structure – variety level

- Build on models of dynamic network formation (Jackson and Rogers, 2007; Chaney, 2013)
- Every period t, a new variety arrives exogenously
- Variety production uses labor and intermediate inputs
- Input choice made in period t; fixed thereafter

Input adoption occurs in 2 steps:

- 1. Network Search: Identify potential inputs
- Adoption decision

Aggregation from variety-level to sector-level

Step 1: Network Search for Potential Inputs

Producer of new variety t:

- Randomly draws a set K_t of "essential" input varieties
 - \triangleright e.g. if *t* is a car: K_t includes wheels, body, engine
- Randomly chooses a set N_t of potentially useful input varieties from the network neighborhood of K_t
 - e.g. make car lighter: search among producers that supply body materials (BMW i3: ultra-light carbon fiber body)

➤ Outdegree Equation

Step 2: Input Adoption

Essential inputs

No customization costs. All are used.

Network inputs

- Input-specific random customization costs
- Trade-off between:
 - i. Gains from input variety à la Romer (1990)
 - ii. Input-specific (randomly drawn) customization costs
- Endogenous optimal number of network inputs is adopted
 - In expectation: identical across varieties

Main Implications

- Adoption of input i by variety t is more likely...
 - If i is in t's network neighborhood (search)
 - ▶ If the price of *i* is relatively low (adoption)
- Aggregation to Sector-Level
 - Use assignment rule based on essential inputs (also used by BEA)
 - Variety-level results hold

Main Implications

- Adoption of input i by variety t is more likely...
 - If i is in t's network neighborhood (search)
 - ▶ If the price of *i* is relatively low (adoption)
- Aggregation to Sector-Level
 - Use assignment rule based on essential inputs (also used by BEA)
 - Variety-level results hold
- The out-degree distribution follows a power law
 - Emergence of "star" varieties/sectors that serve as inputs to many other varieties

Conclusion

- Analyze input adoption from a network perspective theoretically and empirically
- Initial network proximity raises likelihood of input adoption. Interpretation:
 - Search for inputs along supplier relationships
 - Technological proximity: 'Closer' inputs are more useful and/or easier to integrate
- Important implications for growth
 - Emergence of GPTs
 - "Growth bottlenecks": distortions to gateways for adoption
 - Predicting sector-specific growth

Network Distance and Growth

Average network distance in 1967 is a strong predictor of subsequent growth

BACKUP

Computers Adopting Semiconductors

- Early computers: used vacuum tubes, no semiconductors
- 1960s: start using transistors ('Electronic Components')
 - Transistors in turn used semiconductors
 - ► Input flow: Semiconductors ⇒ Electronic Components ⇒ Computers
 - ► But: Semiconductors ⇒ Computers in 1967 I-O Table
- Early 1970s: switch to integrated circuits/microprocessors
 - Integrated circuits: rely heavily on semiconductors
 - Adoption of semiconducting material in motherboard and other components
 - ▶ 1972 I-O Table: Semiconductors ⇒ Computers

Evolution of Outdegree

Growth rate of variety *i*'s outdegree:

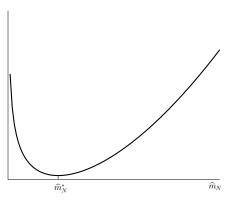
$$\frac{\partial d_i^{out}(t)}{\partial t} = p_K \frac{m_K}{t} + p_N \frac{m_K d_i^{out}(t)}{t} \frac{m_N}{m_K (p_K m_K + p_N m_N)}$$

- t: overall number of varieties in the economy at time t
- m_K: number of essential inputs that the new variety t draws
- m_N : number of network inputs that t identifies as potentially useful
- p_K , p_N : adoption probabilities

Variety Production Function

Output of variety *t*:

$$y_{t} = \frac{A_{t}}{1 + C_{t}} \left(\mathbf{X}_{t}^{K} \right)^{\alpha} \left(\mathbf{X}_{t}^{N} \right)^{\beta} I_{t}^{1 - \alpha - \beta}$$


- $C_t = \sum_{n \in \widehat{N}_t} c_{t,n}$: (annualized) customization cost of adopted inputs $n \in \widehat{N}_t$; $c_{t,n} = b \cdot r_{t,n}$ with b > 0 and $r_{t,n}$ uniform random
- $\mathbf{X}_t^K = \left(\sum_{k \in K_t} \mathbf{X}_{tk}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$: composite of essential inputs
- $\mathbf{X}_t^N = \left(\sum_{n \in \widehat{N}_t} \mathbf{X}_{tn}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$: composite of <u>adopted</u> network inputs

Cost minimization: \Rightarrow optimal choice of \hat{N}_t :

$$\widehat{N}_t^* = \operatorname*{arg\,min}_{\widehat{N}_t \subseteq N_t} \left\{ \left(1 + \sum_{n \in \widehat{N}_t} c_{t,n} \right) \left(\sum_{n \in \widehat{N}_t} \phi_n^{\frac{1}{1-\epsilon}} \right)^{\frac{\beta}{1-\epsilon}} \right\}$$

Optimal number of adopted network inputs

Notes: The figure illustrates the optimal choice of input adoption. The x-axis shows the number of adopted network inputs. \widehat{m}_N . These are ranked by their customization cost. The y-axis shows the term from equation (8) that is proportional to marginal production cost, and that an input adopter seeks to minimize. For small \widehat{m}_N , the input variety effect à la Romer (1990) dominates, so that production costs are decreasing if more inputs are adopted. For higher \hat{m}_{M} , customization costs for each additional adopted input are also high, outweighing the input variety effect. Thus, production cost become increasing in \widehat{m}_{N} . The optimal number of adopted network inputs is denoted by \widehat{m}_{N}^{*} .

Towards Empirics: Measurement of Network Distance

- Direct-requirements input-output matrix Γ . Γ_{ij} : cost share of input i in the total intermediate input expenditures of sector j.
- If $\Gamma_{ij} > 0$: define distance from j to i as $d_{ij} = \frac{1}{\Gamma_{ij}}$
- If $\Gamma_{ij} = 0$ (i.e., j does not directly source inputs from i) but j is further downstream from i, then d_{ij} is the sum of the distances connecting i and j
 - ► If several such paths exist, d_{ij} is the minimum distance path linking i to j.

Adoption of Inputs in the Data: Example

SIC Sector 3661 (Telephone and telegraph apparatus)

- 1972: adopts Adhesives and sealants (SIC 2891), Metal coating and allied services (SIC 3479)
- 1982: adopts Mechanical measuring devices (SIC 3820)
- 1987: adopts Electrometallurgical products (SIC 3313), Relays and industrial controls (3625)
- 1997: adopts Environmental controls (SIC 3822), Porcelain electrical supplies (3264)

Time to Adoption – Additional Results

Dep. Var.: Time to adoption of input i by sector j after 1967

	(1)	(2)	(3)	(4)	(5)	(6)
Remarks			2SLS [†]			narrow [‡]
Distance d_{ij} in 1967	1.620*** (0.181)	0.968*** (0.212)	0.976*** (0.182)	3.464*** (0.323)	3.148*** (0.327)	0.889*** (0.229)
	[1.11]	[0.66]	[0.67]	[2.37]	[2.17]	[0.52]
$\triangle TFP_i(1967 - y_{adopt})$			-211.401*** (24.137) <i>[-3.88]</i>		-147.042*** (14.199) <i>[-2.70]</i>	
$\triangle P_i(1967 - y_{adopt})$	99.765*** (3.029) <i>[4.13]</i>			157.734*** (4.282) [6.52]	134.913*** (4.760) <i>[5.40]</i>	130.989*** (2.740) <i>[5.31]</i>
$\triangle TFP_i(1958 - 67)$		-18.341*** (6.189) <i>[-0.28]</i>				
Using Sector FE Producing Sector FE	✓	\checkmark	\checkmark	√	√	√
R ² Observations	0.26 15,072	0.17 15,072	0.16 14,849	0.76 15,072	0.77 14,849	0.82 6,456

Notes: Standard errors in parentheses, clustered at the adopting sector (j) level. * p < 0.01, ** p < 0.05, *** p < 0.05. *** p < 0.

[†] Two stage least square regression uses historical TFP growth in input-producing sectors ($\triangle TFP_i$ 1958-67) as in instrument for TFP growth after 1967 ($\triangle TFP_i$ since '67). The first stage has an F-statistic of 807.

[‡] The narrow definition of adoption requires new *i-j* pairs to be present for at least 15 years in order to qualify as adoption.