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Abstract

Electric vehicles offer the promise of reduced environmental externalities relative to

their gasoline counterparts. We determine the spatial heterogeneity in these external-

ities and evaluate several spatially-differentiated policies to correct them. To do this,

we combine a discrete-choice model of new vehicle purchases, an econometric analysis

of the electric power industry, and the AP2 air pollution model. We find three main

insights. First, there is considerable spatial variation in the environmental benefit of
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electric cars, ranging from a positive $3025 in California to a negative $4773 in North

Dakota. Second, the vast majority of environmental externalities from driving an elec-

tric car in one place are exported to other places, implying that electric cars may be

subsidized locally, even though they may lead to negative environmental benefits over-

all. Third, spatially differentiated policies can raise welfare, but the effect is much

stronger for taxes on miles driven than for subsidies on vehicle purchases.

Keywords— electric vehicles, spatial heterogeneity, air pollution, subsidy policy

1 Introduction

Due to a combination of factors, including technological advances, environmental con-

cerns, and entrepreneurial audacity, the market for electric vehicles, which was moribund for

more than a century, is poised for a dramatic revival. Several models are already selling in

considerable volumes. The portfolio of electric vehicles is beginning to span the consumer

vehicle choice set. Almost all major manufacturers are bringing new models to the market.

The Federal Government is encouraging these developments by providing a significant sub-

sidy for the purchase of an electric vehicle, and some states augment the Federal subsidy

with their own additional subsidy. One of the main motivating reasons for these subsidies is

the belief that electric vehicles provide an environmental benefit relative to gasoline vehicles

by reducing externalities from greenhouse gases (GHGs) and air pollution.

In this paper we analyze the degree to which this environmental benefit exists, giving

careful consideration to the spatial heterogeneity in the externalizes from both electric and

gasoline vehicles. We also analyze the welfare implications of spatial variation in policies

that target these externalities, such as subsidies on the purchase of an electric vehicle and

taxes on electric and/or gasoline miles.

We first document the considerable spatial heterogeneity in the environmental benefit of

an electric vehicle relative to a gasoline vehicle. Regardless of the spatial level considered

(state, MSA, or county) this benefit is large and positive in some places and large and

negative in other places. For example, California has relatively large damages from gasoline
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vehicles, a relatively clean electric grid, and a large positive environmental benefit of an

electric vehicle. These conditions are reversed in North Dakota. Using the environmental

benefit, we calculate the optimal spatial subsidies on electric vehicle purchases. Even in

the outliers such as California, optimal subsidy values are significantly less than the current

Federal subsidy. And in North Dakota the optimal subsidy actually implies a tax on the

purchase an electric vehicle.

Our second set of results shows the remarkable degree to which electric vehicles driven

in one place lead to environmental externalities in other places. For example, at the state

level, over ninety one percent of non-greenhouse damages from driving an electric vehicle are

exported to other states, i.e. accrue to states other than the state in which the vehicle is

driven. In contrast, only eighteen percent of non-greenhouse damages from driving a gasoline

vehicle are exported to other states. This discrepancy has interesting political economy

implications. Suppose that a given state is considering whether or not to implement a

subsidy on the purchase of an electric vehicle. It is not obvious whether the state will

consider total damages, or only native damages (those damages which actually occur in the

given state) when setting policy. The difference may be considerable. Accounting for total

damages the optimal subsidy is positive in 12 states. Accounting for only native damages,

the optimal subsidy is positive in 34 states.

The final set of results concern the welfare analysis of various policies. We compare, for

example, the total welfare associated with a uniform national subsidy on the purchase of

an electric vehicle with the total welfare associated with of a set of state-specific subsidies.

Our theoretical analysis reveals that the welfare gains from spatially differentiated subsidies

depend on the second and higher order moments of the spatial distribution of environmental

benefits. A companion numerical analysis shows the magnitude of these gains. Much greater

gains are realized by using differentiated taxes on electric and gasoline miles rather than

differentiated purchase subsidies. We also evaluate the current Federal policy of a $7500

subsidy on the purchase of electric car. In our model, this policy yields fairly substantial

welfare loss of several billion dollars per year relative to a first-best policy of Pigovian taxes

on miles driven.

To obtain these results, we extend and integrate three component models. The first
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component builds on discrete choice transportation models to allow for consumer choice

between electric and gasoline vehicles and to analyze welfare issues.1 The second component

builds on the econometric analysis of the relationship between electricity generation and air

pollution emissions to analyze the effects of changes in electricity load due to charging electric

vehicles on emissions from individual electric power plants.2 The third component builds on

air pollution integrated assessment models to describe the relationship between emissions

from a given smokestack or tailpipe and damages at a given spatial location.3 Combining

the components together yields a powerful modeling framework for analyzing electric vehicle

policy at various spatial scales.4

In Section 2 we develop a model that includes discrete choice over vehicle type and

environmental externalities from driving. We derive several theoretical results about optimal

policy choices and the welfare benefits from spatially differentiated policies. In Section 3

we describe the methods by which we determine emissions and damages from electric and

gasoline vehicles. Section 4 presents the results. In Section 5 we consider how the interaction

with other environmental regulations such as the Corporate Average Fuel Economy (CAFE)

standards may effect the optimal subsidies on electric vehicles. Section 6 concludes.

2 Theoretical Model

Consider a discrete choice model in which consumers in the market for a new vehicle choose

between two transportation options: a gasoline vehicle and an electric vehicle.5 Utility

1Examples of discrete choice models in include Anderson et al. 1992 and Small and Rosen 1981, and
examples of transportation models include De Borger (2001), De Borger and Mayeres (2007), and Parry and
Small (2005). Spatially differentiated policy is analyzed by Weitman (1974), Mendelsohn (1986), Stavins
(1996), Banzhaf and Chupp (2012), Muller and Mendelsohn (2009), and Fowlie and Muller (2013).

2See Graff Zivin et al (2014).
3Previous works in this area includes Mendelsohn (1980), Burtraw et al. (1998), Mauzerall et al. (2005),

Tong et al. (2006), Fann et al. (2009), Levy et al. (2009), Muller and Mendelsohn (2009), Henry et al.
(2011), Mauzerall et al. (2005), and Tong et al. (2006). In our application of integrated assessment, we
model both ground level-emissions and power plant emissions throughout the contiguous U.S., and we and
report damages within the county of emission, within the state of emission, and in total (across all receptors).

4Babaee et al (2014), Graff Zivin et al (2014), Michalek et al (2011), and Tessum et al (2014) analyze
the benefits of electric vehicles at the aggregate level. Li et al. (2014) consider spatial damages from electric
vehicles but assume uniform damages from gasoline vehicles. Ours study is the first to consider the spatial
variation in damages from both gasoline and electric cars at the state and county level.

5For examples of general discrete choice models, see Anderson et al. 1992 and Small and Rosen 1981, and
for discrete choice transportation models, see de Borger 2001, de Borger and Mayeres 2007. In supplementary
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depends on a composite consumption good `, electric miles e, and gasoline miles g. The

utility function has a quasi-linear form

U(`, g, e) = ` + f(g) + h(e),

where f and h are concave functions. Quasi-linearity implies the marginal utility of income

is constant and the purchase of gasoline or electric miles does not depend on income.

We consider several policy variables. The government may place a tax tg on gasoline

miles, a tax te on electric miles, a subsidy s on the purchase of the electric vehicle, or use

some combination of these policies (we assume the producer prices are fixed). Per capita tax

revenue R is returned in a lump sum manner. We normalize the units so that the price of

the composite good is equal to one. Consumers have income I.

The indirect utility of consuming leisure and gasoline miles is given by

Vg = max
`,g

U(`, g,0) s.t. ` + (pg + tg)g = I +R − pG,

where pG is the price of the gasoline vehicle and pg is the price of gasoline miles. Likewise,

the indirect utility of consuming leisure and electric miles is given by

Ve = max
`,e

U(`,0, e) s.t. ` + (pe + te)e = I +R − (pW − s),

where pW is the price of the electric vehicle and pe is the price of electric miles.

Following the discrete choice literature, we assume that the choice of vehicle is influenced

by i.i.d. random variables εg and εe that follow the extreme value distribution.6 Accordingly,

we define the conditional utility, given that a consumer elects the gasoline vehicle, as

Ug = Vg + εg,

Appendix B, we extend the model to include several gasoline vehicles and several electric vehicles.
6The extreme value distribution (or double exponential distribution) has two parameters, η and µ. The

expected value is µγ + η where γ is Euler’s constant (0.577). The variance is µ2π2
/6. We assume that the

expected value is zero.
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and the conditional utility, given that a consumer selects the electric vehicle, as

Ue = Ve + εe.

A consumer selects the gasoline vehicle if Ug > Ue. This occurs with probability

π = Probability(Ug > Ue) =
exp(Vg/µ)

exp(Vg/µ) + exp(Ve/µ)
,

where µ is proportional to the standard deviation of the extreme value random variables.

The expected utility of a new vehicle purchase is given by7

E [max[Ue,Ug]] = µ ln (exp(Ve/µ) + exp(Vg/µ)) .

Consumers create an environmental externality by driving, but ignore this externality

when making choices about the type of vehicle and number of miles. The externality causes

linear damages.8 In our empirical analysis, gasoline vehicles cause damages through tailpipe

emissions and electric vehicles cause damages though smokestack emissions from the electric

power plants that charge them. Because damages from air pollution may have significant

spatial effects, we develop a model with multiple regions to analyze regulation issues.

2.1 Uniform vs. differentiated regulation

Consider a simple spatial model in which there there are m regions. Let αi be the proportion

of the total population of new vehicle buyers that resides in region i. The utility functions

and (pre-policy) prices are the same across regions. Damages from GHG emissions do not

vary across regions, but damages from local air pollution do vary across regions. Moreover,

driving in region i leads to damages from local air pollution in that region as well as damages

7There are two ways to think about non-externality welfare in a discrete choice model. First, just define
welfare as the expected value of the maximum over the utility choices (i.e. de Borger 2001.) Second, use the
standard notion of compensating variation. In our model, there are no income effects. Under this condition,
Small and Rosen 1981 show that these two methods are equivalent.

8The linearity assumption is supported by prior research on the damages from local air pollutants that
have found strong evidence of constant marginal damages. See Muller and Mendelsohn 2009; Fowlie and
Muller, 2013.
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from local air pollution in other nearby regions. The sum of these local effects and damages

from GHG emissions is called the full damages from region i, and the corresponding marginal

full damages (in dollars per mile) are denoted by δgi for gasoline miles and δei for electric

miles.

We now determine welfare maximizing policy choices under both uniform and differen-

tiated regulation. Results for a subsidy on the purchase of an electric vehicle are in the

main text. Results for taxes on miles are in the Appendix. Because the first-best policy

in our model is a Pigovian tax on miles, we refer to the welfare maximizing subsidy as the

second-best subsidy.

Under differentiated regulation, each regional government selects a region-specific subsidy

on the purchase of the electric vehicle. Revenue is also region specific. If the subsidy in region

j increases, this decreases the revenue in region j, but does not effect the revenue in other

regions. For the moment, we assume a regional government cares about full damages due

to emissions from its region. We will relax this assumption below. Regional government i

selects the purchase subsidy si to maximize the welfare associated with the purchase of a new

vehicle within the region, defined as the difference between expected utility and expected

pollution damage:

Wi = µ (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiπig + δei(1 − πi)e).

Because there are no income effects, the subsidy does not effect the purchase of miles e and

g. Hence the values of e and g do not vary across regions.

The second-best subsidy on the purchase of an electric vehicle in region i is described in

the following Proposition (all proofs are in the Appendix).

Proposition 1. The second-best subsidy on the purchase of the electric vehicle in region i

is given by s∗i where

s∗i = (δgig − δeie) .

The term δgig−δeie is simply the difference between the damages when a consumer drives

a gasoline vehicle and the damages when a consumer drives an electric vehicle. Even if the

electric vehicle emits less pollution per mile than the gasoline vehicle, the sign of the subsidy
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is ambiguous, because the number of miles driven may be different. If the miles driven are

indeed the same, and the electric vehicle emits less pollution per mile than the gasoline

vehicle, then the subsidy is positive. We refer to the difference δgi − δei as the environmental

benefit of an electric mile. Keep in mind, though, that this concept really only makes sense

when the number miles driven by the two types of vehicles is the same (an assumption we

will maintain in most of the empirical section below).

Under uniform regulation, the same subsidy applies to all m regions. The central govern-

ment sets the subsidy and all revenue is returned equally across all regions. The government’s

objective is to maximize the weighted average of welfare across regions (the weights corre-

spond to the αi’s). The next proposition delineates the second-best uniform subsidy. It also

describes an approximate formula for the welfare gain in moving from the uniform policy to

the differentiated policy.

Proposition 2. The second-best uniform subsidy on the purchase of an electric vehicle is

given by

s̃ = ((∑αiδgi)g − (∑αiδei)e) .

Furthermore, let W(S∗) be the weighted average of welfare from using the differentiated

subsidies s∗i in each region and let W(S̃) be the weighted average of welfare from using the

uniform subsidy s̃ in each region. To a second-order approximation, we have

W(S∗) −W(S̃) ≈ 1

2
π(1 − π) ( 1

µ
∑αi(s∗i − s̃)2 − 1

µ2
(1 − 2π)∑αi(s∗i − s̃)3) ,

where π is evaluated at the uniform subsidy.

This result has a nice interpretation in the special case in which g = e and the population of

new vehicle buyers is the same in each region. Consider the distribution of the environmental

benefits of an electric vehicle, i.e. the distribution of the difference between the δei and δgi.

Using the second-order approximation formula, we see that the welfare gain from using the

differentiated subsidies rather than the uniform subsidy depends on both the second and

third moments for the distribution of the environmental benefits of an electric vehicle.

The formula in Proposition 2 provide useful intuition for the factors that influence the
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welfare gains from using differentiated subsidies. And it provides an interesting point of

comparison to previous work on differentiation. For example, Mendelsohn (1986) finds the

exact welfare improvement from differentiation to be a function of the second moment of

the distribution of the relevant environmental parameter (intercept of marginal benefits

of abatement). In contrast, we find that the second-order approximation to the welfare

improvement depends on both the second and third moment of the distribution of the relevant

environmental parameter (the benefits of an electric vehicle). The reasons for this difference

are discussed in Additional Appendix C. But the practical applicability of the formula is

limited because it depends on the value of µ. Recall that this parameter is proportional to

the standard deviation of the random variables in the utility function. If we determine a value

for µ, either by an econometric procedure (Dubin and McFadden 1984) or by a calibration

procedure (De Borger and Mayeres 2007), then we will generally be able to determine the

exact numerical value of the welfare gain, which eliminates the need for an approximation.

2.2 Full vs. native damages

So far we have assumed that regional government i is concerned with the full damages

caused by the consumption of miles in region i. But this may not always be the case. For

example, Pennsylvania regulators may be concerned about environmental damages which

occur in Pennsylvania, but may not be as concerned about environmental damages which

occur downwind in New York. To account for this possibility, it is useful to break up full

damages into native damages (i.e. those damages which occur in region i) and exported

damages (i.e. those which occur in other regions.)

If a regional government only cares about native damages, then its objective is to maxi-

mize

Ŵi = µ (ln(exp(Vei/µ) + exp(Vgi/µ))) − (βgiδgiπig + βeiδei(1 − πi)e),

where βgi and βei are the proportion of marginal full damages that occur solely in region i. It

follows from Proposition 1 that the second-best purchase subsidy based on native damages,

denoted by ŝ∗i , is given by

ŝ∗i = (βgiδgig − βeiδeie) .
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We would expect considerable heterogeneity in the β’s due to the various chemical and

physical process that govern the flow of emissions across regions. In general, however, we

would expect βgi to be greater than βei due to the distributed nature of electricity generation.

This implies that the subsidy ŝ∗i (which is based on native damages) is likely to be larger

than subsidy s∗i (which was based on full damages). The greater the extent to which the

electric emissions are exported to other regions, the greater the extent to which the given

region may want to subsidize the purchase of an electric vehicle.

3 Calculating air pollution damages

The theoretical model illustrates that the environmental benefit of an electric car arises

from reduced emissions relative to the gasoline car which it replaces. To calculate this

benefit, we need to determine the damages of both gasoline cars and electric cars, and these

damages may differ by location and time. We first overview our general procedure and then

describe in more detail our two component empirical models: an econometric model that

estimates marginal emissions from electric power usage, and the AP2 model (see Muller and

Mendelsohn 2009) that determines marginal damages by county for emissions from tailpipes

and smokestacks.

Our set of electric vehicles includes each of the eleven pure electric vehicles in the EPA

fuel efficiency database for the 2014 model year. Our set of gasoline vehicles is meant

to capture the closest substitute in terms of non-price attributes to each electric vehicle.

Wherever possible, we use the gasoline-powered version of the identical vehicle, e.g., the

gasoline-powered Ford Focus for the electric Ford Focus. In other cases, we identify a make

and model which is a close substitute, e.g., the BMW 750i for the Tesla Model S85. For both

gasoline and electric vehicles, we consider the damages from air emissions of five pollutants:

CO2, SO2, NOx, PM2.5, and VOCs.9 These pollutants account for the majority of GHG and

air pollution damages and have been a major focus of public policy.10

9Graff Zivin et al. (2014) only estimate electric vehicle damages from CO2.
10A more complete analysis would also include assessment of emissions from CO and toxics as well as a

“cradle-to-grave” life-cycle assessment (damages from construction, use, and wear of vehicles, roads, and
refineries). See for example, the analysis by Michalek et al. (2011) of the life-cycle damages from hybrid
electric vehicles.
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To determine the emissions rates in grams per mile for gasoline vehicles, we integrate

data from several sources. For CO2 and SO2, emissions are directly proportional to gasoline

usage so we utilize the conversion factors in GREET scaled by the EPA’s MPG for each

vehicle.11 We differentiate urban and non-urban counties by using EPA’s city and highway

mileage.12 For NOx emissions, we use the Tier 2 emission standards for the vehicle “bin”.

For PM2.5 and VOCs, we combine the allowed Tier 2 standards with GREET estimates of

PM2.5 emissions from tires and brakes and of evaporative emissions of VOCs. The resulting

emissions rates for our gasoline vehicles are reported in Appendix Table 1.

For electric vehicles, determining emission rates is more complicated. For each vehicle,

we start with the EPA estimate of MPG equivalent (i.e., the estimated kWh per mile) and

adjust for the temperature profile of each county.13 Electric vehicles use more electricity

per mile in cold and hot weather due to both the decreased performance of the battery and

the increased demand for climate control (Yuksel and Michalek, forthcoming, 2015).14 Next

we use an econometric model (described below) to estimate the marginal emissions factors

for each of our pollutants at each of 1486 power plants due to an increase in electricity

load by hour of the day and by electricity region. The final steps are to assume a daily

charging profile, combine the marginal emissions factors with the temperature adjusted MPG

equivalents, and then calculate emissions rates at each power plant per mile driven in each

county.15

Having calculated marginal emissions rates per mile for gasoline and electric vehicles for

each county for each of our five pollutants, we next value the damages.16 For CO2, we use

11In the 2012 GREET model, developed by Argonne National Laboratory, the SO2 emissions rate is
0.00616 g/mile at 23.4 mpg. This is slightly higher than the Tier 2 allowed 30 ppm which would be 0.00485
g/mile at 23.4 mpg.

12Urban counties are defined as counties which are part of a Metropolitan Statistical Area (MSA). We do
not differentiate electric vehicles by urban and rural since regenerative braking leads to smaller differences
in city and highway efficiencies.

13We model the EV range loss as a Gaussian distribution with no range loss at 68°F but a 33% range loss
at 19.4°F. See Supplementary Appendix F.

14Gasoline vehicles face similar issues, but the effect of temperature on drivetrain efficiency is much smaller,
and the climate control issues at low temperatures are essentially nonexistent, because waste heat from the
engine is used to heat the cabin. We do not adjust gasoline MPG for temperature.

15We analyze eight charging profiles: our baseline profile using estimates from Electric Power Research
Institute (EPRI) (See Appendix Figure 1), a flat profile, and six profiles with non-overlapping four-hour
charging blocks.

16All damages are in 2014$.

11



the EPA social cost of carbon of $41 per ton.17 For local pollutants, we use the AP2 model

(described below) which calculates the marginal damages from emissions in each county for

each of our four local pollutants. We then add up all the damages from our five pollutants

to calculate marginal damages (in $ per mile) from driving in each county for each of our

electric or gasoline vehicles.

To analyze any policy which affects multiple counties, we need a sense of the relative

importance of driving in the counties. So we weight all summary statistics using Vehicle

Miles Travelled (VMT) by county, as estimated by the EPA for their Motor Vehicle Emission

Simulator (MOVES).18

3.1 Estimation of Marginal Emissions from Electricity Usage

To determine the emissions that result from electricity use to charge an electric vehicle, we

must determine which power plants respond (and how they respond) to increases in electricity

usage at different locations. The electricity grid in the contiguous U.S. consists of three main

“interconnections”: Eastern, Western, and Texas. Since there are substantial electricity flows

within each interconnection but quite limited flows between interconnections, we model each

interconnection separately. Within each interconnection, transmission constraints prevent

the free flow of electricity throughout the interconnection. We follow the North American

Electric Reliability Corporation (NERC) and divide the three interconnections into nine

distinct regions.19 We use these nine NERC regions to define the spatial scale for measuring

electric vehicle emissions. In particular, our estimation strategy assumes that an electric

vehicle charged at any place within a given region has the same marginal emissions per kWh

as an electric vehicle charged at any other place within the same region.20

To estimate the response of each power plant to an increase in electricity usage, we collect

17This is the 2015 estimate using a 3% discount rate in 2014$. See
http://www.epa.gov/climatechange/EPAactivities/economics/scc.html.

18The theoretical model weights by αi (the number of new vehicle buyers). This is equivalent if vehicles
are driven the same number of miles per year in each county, and vehicles last the same number of years in
each county.

19See http://www.nerc.com for a description of NERC regions. We model the Eastern interconnection as
the six NERC regions FRCC, MRO, NPCC, RFC, SERC, and SPP, the Western interconnection as California
and the rest of the WECC, and the Texas interconnection is simply the coterminous ERCOT.

20There is some data on electricity load at NERC sub-regions. Due to multi-collinearity, our estimation
strategy would likely not work at this level of disaggregation.
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data from 2010 to 2012 on hourly emissions of CO2, SO2, NOx, and PM2.5 at 1486 power

plants.21 We also collect data on hourly electricity consumption (i.e., electricity load) for

each of our nine NERC regions.22 We estimate the marginal emissions using methods similar

to Graff Zivin et al. (2014) and Holland and Mansur (2008) allowing for an integrated market

where electricity consumed within an interconnection may be provided by any power plant

within that interconnection. In contrast to Graff Zivin et al. (2014), we estimate the effect

of changes in electricity load separately for each power plant in the interconnection. The

dependent variable, yit, is power plant i’s hourly emissions (CO2, SO2, NOx, or PM2.5) at

time t. For each power plant, we regress the dependent variable on the contemporaneous

electricity load in each of the regions within the power plant’s interconnection. In order to

examine charging times, the coefficients on load vary by hour of the day. The regression

includes fixed effects for each hour of the day interacted with the month of the sample. For

power plant i and time t, we regress:

yit =
24

∑
h=1

J(i)

∑
j=1

βijhHOURhREGIONjLOADjt +
24

∑
h=1

12

∑
m=1

αihmHOURhMONTHm + εit, (1)

where J(i) equals the number of regions in the interconnection in which power plant i is

located, HOURh is an indicator variable for hour of the day h, REGIONj indicates elec-

tricity region j, MONTHm indicates month of the sample m, and LOADjt is the electricity

consumed in region j at time t. The main coefficients of interest are the emission factors βijh,

which represents the marginal change in emissions at plant i from an increase in electricity

usage in region j in hour h.

For a given pollutant, the marginal damage from increasing electricity usage in region j

in hour h is found by summing over all i the product of the βijh and the marginal damages

for a unit of that pollutant emitted at power plant i’s location. The marginal damages for

local pollutants are determined by the AP2 model, which we now describe in more detail.

21CO2, SO2, and NOx data are directly from the EPA CEMS. We construct hourly PM2.5 from hourly
generation and annual PM2.5 emissions rates. Power plant emissions of VOCs are negligible.

22More details about this data are given in the Appendix.
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3.2 Local Air Pollution Damages: The AP2 Model

AP2 begins with an air quality module that maps emissions of NOx, SO2, PM2.5, and

VOCs from each source into ambient concentrations of SO2, O3, and PM2.5 at all receptor

locations, i.e., at all 3,110 counties in the contiguous U.S. The model then links these ambient

concentrations to exposures, physical effects and monetary damages. Damages are associated

primarily with human health effects but also include crop and timber losses, degradation of

buildings and material, and reduced visibility and recreation. For human health effects,

ambient concentrations are mapped into increased mortality risk, which is then expressed

in terms of monetary damages using a $6 million value of a statistical life (VSL).23 Finally,

AP2 uses an algorithm module to aggregate damages from all receptors to determine the

marginal damages associated with emissions of any given source.24

In its usual application, the damages calculated in AP2 are the sum of damages at all

receptors. However, as discussed above, regulators may be more concerned about native

damages than full damages. We use the AP2 model in a novel way to calculate native

damages. We disaggregate the plume of damages from a given source and only count those

damages which occur at receptors within the a given regulatory jurisdiction.

4 Results

We first determine the environmental benefit of electric vehicles and the corresponding

second-best subsidy on the purchase of the electric vehicle. We then analyze the degree

to which electric vehicles export pollution from counties and states and the resulting impli-

cations for second-best subsidies based on native or full damages. Finally, we turn to the

benefits of differentiated policies relative to uniform policies. All results are in 2014$ and all

summary statistics are weighted by VMT.

23In terms of share of total damage, the most important concentration-response functions are those gov-
erning adult mortality. We use results from Pope et al (2002) to specify the effect of PM2.5 exposure on
adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure on adult
mortality rates. A sensitivity analysis uses more recent concentration response functions from Roman et al
2008.

24See Muller, 2011; 2012; 2014. The AP2 model is an updated version of the APEEP model (Muller
and Mendelsohn 2007; 2009; 2012; NAS NRC 2010; Muller, Mendelsohn, Nordhaus 2011; Henry, Muller,
Mendelsohn 2011). More details of our implantation of AP2 are given in the Appendix.
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4.1 Environmental benefit of electric vehicles

The environmental benefit of an electric vehicle depends on the marginal damages for both

gasoline and electric vehicles. We present results for these components in turn, beginning

with marginal damages of electric vehicles. The right panel of Figure 1 illustrates our baseline

estimates of the marginal damages (in cents per mile) for the 2014 electric Ford Focus by

county. The variation is largely driven by the NERC regions, although marginal damages

vary within a region due to our county-specific temperature correction.

Table 1 shows the variation in marginal damages across the nine NERC regions for an

electric Ford Focus by various charging profiles. The damages range from one cent per mile in

California and the West (WECC) to over four cents per mile in the Midwest (MRO).25 These

regional differences in emissions reflect both a region’s generating capacity and electricity

imports from other regions. There is some variation in damages across the charging profiles.

For example, damages could be reduced in the Midwest (MRO) by over 1.5 cents per mile by

charging between 1pm and 4pm, relative to our baseline EPRI charging profile. However, it

is widely assumed, as in the EPRI charging profile, that the vast majority of electric vehicles

will be charged at night.

The left-hand-side columns in Table 2 describe the distribution of marginal damages from

electric vehicles across counties for all eleven 2014 model year electric vehicles. The mean

damage of the electric Ford Focus is about 2.5 cents per mile with the range of damages from

under one cent (in the West) to almost 5 cents (in the Midwest) per mile. The damages scale

across the electric vehicles because they are only differentiated by their efficiency (in kWh

per mile). For example, the mean, minimum, and maximum damages of the dirtiest electric

vehicle (the BYD e6) are approximately double those of the cleanest (the Chevy Spark).

Next we present the marginal damages of gasoline vehicles. The left panel of Figure 1

illustrates the marginal damages for the gasoline Ford Focus by county. The counties with

large marginal damages correspond to major population centers. Marginal damages from

our set of gasoline vehicles are shown in the middle columns of Table 2. For the gasoline Ford

Focus, mean damages are two cents per mile (the equivalent of $0.60 per gallon of gasoline)

25For a sense of the magnitude of these damages, one cent per mile is approximately $0.30 per gallon at
the MPG of the Ford Focus and four cents is $1.20 per gallon.
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but range from about a cent per mile to over four cents per mile ($1.20 per gallon).26

Taking the difference between the damages from gasoline vehicles and electric vehi-

cles gives us the environmental benefit of electric vehicles, as shown in the right-hand-side

columns of Table 2. If damages from gasoline and electric vehicles were highly correlated,

then the environmental benefit of electric vehicle would be quite small because there is sub-

stantial overlap in the distributions of damages from gasoline and electric vehicles. In fact,

the damages are not highly correlated (the correlation is 0.06). As a result, the environmen-

tal benefit of an electric vehicle is heterogeneous. For example, gasoline vehicle damages are

quite high in Los Angeles (due to the high population and properties of the airshed) but

electric vehicle damages are quite small (due to the clean Western power grid). In this situa-

tion, the environmental benefit is almost equal to gasoline damages (i.e., three to four cents

per mile) and hence electric vehicles have substantial environmental benefits. However, the

opposite can also occur, for example in the upper Midwest. Here, the environmental benefit

of an electric vehicle is negative, and is almost equal to electric vehicle damages. For each

of the electric vehicles in Table 2, the average environmental benefit is negative. This is not

surprising, given Table 1 shows that only about 30% of the VMT occurs in the three regions

with the lowest marginal damages from electricity. The electric Ford Focus is the median

electric vehicle in terms of environmental benefit, which is why focus on it throughout the

results section.

Using Proposition 2, we can convert the environmental benefit into the second-best sub-

sidy by assuming that both the electric vehicle and the gasoline vehicle are driven 150,000

miles. Figure 2 shows the subsides for each county in the contiguous U.S. Except for a few

counties around New York City and Atlanta, the subsidy is negative throughout the eastern

part of the country (i.e. consumers should pay a tax on the purchase of electric vehicles). It

is large and negative in the Upper Midwest. On the other hand, it is positive in most places

in the West, and quite large in many counties in California. Overall, the policies range from

a subsidy of $5,000 to a purchase tax of $5,000.

In Table 3, we aggregate the environmental benefits to the level of Metropolitan Statistical

26The mean damage per gallon of gasoline is $0.62 per gallon for each car since the damages are proportional
to gasoline use and our substitute cars are all in the same Tier 2 “bin”.
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Area (MSA). The highest benefit MSAs are all in California where damages from gasoline

vehicles are substantial and damages from electric vehicles are small. In these MSAs, the

environmental benefits range from 2 to 3 cents per mile with an second-best subsidy of

up to $5000. The lowest benefit MSAs are all in the upper Midwest, where the gasoline

vehicle damages are low (due to low population densities) but the electric vehicle damages

are high (due to coal-fired generation and the temperature adjustment to electric vehicle

range). Here the environmental benefits are negative 3 cents per mile for an second-best tax

of about $4000.

Other large MSAs can have either positive or negative environmental benefits. New York

and Chicago have some of the highest damages from gasoline cars, but environmental benefits

from electric vehicles are small or negative due to the high damages from electric vehicles.

Electric vehicles have substantial environmental benefits in the major Texas MSAs, due to

relatively low electric vehicle damages in Texas. However, for non-urban regions as well as

for MSAs in the Southeast, Northeast, and Midwest, the benefits from electric vehicles are

negative.

Table 4 presents the environmental benefit of an electric vehicle across states. Compared

to MSAs, the environmental benefits of electric vehicles are smaller at the state level because

of negative benefits in non-urban areas. The highest environmental benefits are in California

(a second-best subsidy of $3,000) and the West. The lowest benefits are in the Upper Midwest

(a second-best tax of almost $5,000 in North Dakota.) There are only 12 states in which the

environmental benefit is positive, and Texas is the only high VMT state outside the West in

which the environmental benefit is positive. In the average state, a 2014 electric Ford Focus

causes $724 more environmental damages over its lifetime than the equivalent gasoline Ford

Focus.

Despite these modest (or negative) environmental benefits of electric vehicles, the current

Federal subsidy for electric vehicles is $7500. Many states have additional policies designed

to encourage the adoption of electric vehicles. Clearly these modest environmental benefits

cannot explain the enthusiasm for these subsidies.
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4.2 Exporting pollution: Full and native damages

As discussed in Section 2, using a vehicle in a given region may lead to damages in that

region as well as in surrounding regions. In this section we break up full damages (the

sum of all the damages across all receptors) into native damages (damages within the given

region) and exported damages (damages in other regions).

Although both gasoline and electric vehicles export pollution, electric vehicles export to

a remarkable degree. Panel A in Figure 4 illustrates the change in PM2.5 associated with

driving a gasoline-powered Ford Focus for 150 million miles in Fulton County, Georgia.27

Most of the increase in PM2.5 is centered within a few nearby counties. Panel B in Figure 4

shows the change in PM2.5 associated with the same number of miles driven by an electric

powered Ford Focus that is charged in Fulton County, thereby increasing the generation of

electricity in the Southeast (SERC). Clearly the spatial footprint of PM2.5 is much greater

for the electric vehicles than for the gasoline vehicle.

Table 5 shows native damages at both the state and county levels for both electric and

gasoline vehicles. For electric vehicles, full damages from local pollutants are 1.6 cents per

mile on average. Native state damages are only 0.15 cents per mile, and native county

damages are only 0.02 cents per mile. Thus on average 91% of electric vehicle damages are

exported from the state and 99% (!) of damages are exported from the county. Gasoline

vehicle damages are also exported but to a much smaller extent. On average only 18% of

gasoline damages are exported from a state and only 57% of damages are exported from a

county.

Replacing full damages with native damages changes the environmental benefit calcu-

lation quite dramatically, especially at the lower tail of the distribution. This lower tail

corresponds to low gasoline damages and high electric vehicle damages. Because most elec-

tric vehicle damages are exported, the native damages for both gasoline and electric vehicles

are small, and there is not a large negative environmental benefit, i.e., the environmental

benefit increases from -3.5 cents per mile to approximately zero. On the upper tail of the dis-

tribution, electric vehicle damages were already low, so exporting electric vehicles damages

has little impact on the environmental benefit. By increasing the lower tail of the distribu-

27Or equivalently, a fleet of 10,000 vehicles driven 15,000 miles each.
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tion, the average environmental benefit based on (county or state) native damages becomes

positive. As illustrated in the right panel of Figure 3, the state environmental benefit for an

electric vehicle, using native damages, is positive in 34 out of 49 states.

This analysis of full and native damages suggests interesting implications for local electric

vehicle policy. Accounting for full damages, the second-best subsidy for an electric car is

negative in the vast majority of states. But accounting for native damages, the second-best

subsidy for an electric car is positive in the vast majority of states. This naturally leads to

the question as to whether state policymakers will place greater emphasis on full or native

damages when considering electric vehicle subsidies.

We conduct a preliminary analysis of this issue in supplementary Appendix G. Eight

states have implemented subsidies for the adoption of electric vehicles, above and beyond

the federal subsidy: California ($2500), Colorado ($6000), Georgia ($5000), Illinois ($4000),

Maryland ($3000), Massachusetts ($2500), Texas ($2500) and Utah ($1500). Because one

might be concerned this number of states is too small for a meaningful analysis, we also

consider a broader policy category consisting of all electric vehicle incentive programs. States

offer a variety of these incentives, including carpool lane access, electricity discounts, and

parking benefits.28 Although it may be possible to place an explicit monetary value on these

other incentives, we are content here to simply enumerate them. As shown in supplementary

Appendix G, regardless of whether we consider subsidies or the number of other incentives,

the state data is more highly correlated with the native damage subsidy than it is with

the full damage subsidy. This preliminary evidence suggests that native damages may help

explain policymakers’ support for electric vehicle subsidies.

4.3 Benefits of differentiated policies

Our analysis shows that the environmental benefits of electric cars are quite heterogeneous:

ranging from substantial benefits in some locations to large costs in others. This raises the

question of whether differentiated policies, which reflect this spatial heterogeneity, can lead

to large enough welfare gains to offset any additional implementation costs of differentiated

policies. To calculate the benefits from differentiated policies, we develop a more complete

28A small number of states impose a special registration fee for electric vehicles.
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calibration of the discrete choice model developed in Section 2.29 We then calculate the

efficiency gains from two sets of differentiated policies: fuel-specific taxes on miles driven

(i.e. VMT taxes) and electric vehicle purchase subsidies.

Table 6 shows the results for the Ford Focus, expressed as a welfare loss from the first-

best policy. The three different parameterizations of the model correspond to BAU electric

vehicle market shares of 1%, 5%, and 10%. To see the benefits of policy differentiation we

compare the entries across rows. The right-hand columns of Table 6 show fuel-specific VMT

taxes. The first three rows show policies based on full damages. The first-best outcome

occurs with county-level taxes on electric miles and gasoline miles set at the Pigovian level

tei = δei and tgi = δgi. Moving from uniform Federal federal taxes to state level taxes yields a

welfare gain of $5 to $20 per vehicle sold. Moving from state-level taxes to county-level taxes

yields an additional $6 to $8 per vehicle sold. The last two rows of Table 6 show policies

based on native damages. The gains from differentiation are slightly lower than those found

for full damages (a gain about $5 per vehicle for moving from state native to county native).

But in comparison with the full damages taxes, the policies based on native damages lead to

large welfare losses of approximately $75-120 per vehicle. To provide some context, annual

vehicle sales in the United States are approximately 15 million.

Next we turn to the gains from differentiating electric vehicle purchase subsidies, shown

in the first three columns of Table 6. Spatially differentiated subsidies lead to smaller welfare

gains than differentiated taxes, on the order of $1-$16 for Federal vs state policy. Compared

directly with VMT taxes, subsidies perform much worse, leading to welfare losses of approx-

imately $130-$180 per vehicle. Another interesting comparison is between state policy with

native damages and uniform federal policy base on full damages. For subsidies, these two

regulatory structures lead to roughly the same welfare. In contrast, under taxes on miles,

state policy performs significantly worse than the uniform federal taxes.

We can also evaluate the current Federal policy of a uniform $7500 subsidy for the

purchase of an electric car. The bottom row of Table 6 shows that relative to first-best, this

uniform policy leads to a welfare loss of approximately $180-$700 per car. Given 15 million

car sales per year, this corresponds to 2.7- 10 Billion dollars per year. Actual welfare losses

29See Supplementary Appendix D for more detail.
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are likely on the lower end of this range because current electric car adoption rates are less

than one percent, even with the subsidy.

4.4 Sensitivity Analysis

Our analysis requires us to make assumptions about a variety parameters, many of which may

be subject to considerable debate. Table 7 shows the sensitivity of our baseline calculation

of environmental benefit to some of our key parameter assumptions. In each case, changing

the parameters changes the electric vehicle damages, gasoline damages, and environmental

benefit in the expected direction. In all cases, the distributions of electric and gasoline

damages are uncorrelated and have wide ranges, leading to substantial heterogeneity in the

environmental benefit of electric vehicles.

5 Effects CAFE standards and other regulations

We have analyzed the environmental benefit of electric vehicles in isolation from other en-

vironmental regulations. In practice, these other regulations may impact the electricity

market and/or the market for vehicles, and hence have an effect of the environmental benefit

of electric vehicles.

One example is the Corporate Average Fuel Economy (CAFE) standards. Under CAFE,

the sales-weighted harmonic mean of MPG for a given manufacturer’s fleet of vehicles must

meet a certain requirement. Electric vehicles are assigned a MPG equivalent for this calcu-

lation. These values are generally much larger than any existing gasoline vehicle. Assuming

that the CAFE requirement is initially binding, selling an electric vehicle enables a manu-

facturer to meet a lower standard for the rest of their fleet. This implies an indirect effect

of selling an electric vehicle is that environmental damage from the rest of the fleet may

increase. Starting in 2017, this effect will be exacerbated, as the CAFE standards will treat

electric vehicles even more generously. An electric vehicle sale will receive a multiplier, start-

ing at 2 and then lowering over time. In other words, when a manufacturer sells an electric

vehicle, they will get credit in the CAFE calculation as if they have sold two electric vehicles.

This will enable them to decrease the fuel economy of the rest of their fleet even more.
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A thorough analysis of the interaction between CAFE standards and electric vehicle sales

would require a model of both supply and demand for the entire new vehicle market, because

selling an electric vehicle enables a manufacturer to change the composition of their fleet.

This has welfare effects for the consumers in the market, and, in addition, a change in the

fleet composition actually changes the CAFE standard itself.30 Incorporating these elements

is beyond the scope of this paper, but we can give a preliminary analysis of the effect of

CAFE standards on the environmental benefit of an electric vehicle that is consistent with

our model. Let the CAFE induced environmental cost of an electric vehicle be defined as

the increase in environmental damage from the rest of the fleet when an electric vehicle is

sold. In Supplementary Appendix E we determine a simple formula for the CAFE induced

environmental cost under both the current and 2017 CAFE standards.31 We show that the

optimal subsidy on the purchase of an electric vehicle is decreased by the amount of the

CAFE induced environmental cost. Applying our baseline values for the Ford Focus, the

CAFE induced environmental cost under current CAFE standards turns out to be $1439.

The magnitude of this is significant in comparison with even the largest optimal subsidy for

an electric vehicle found in our study ($3025, in California).

As another example, electric power plants in the Northeast are subject to two regional

cap-and-trade emission permit markets. Emissions of NOx are caped by an EPA program

and emissions of CO2 are capped by the Regional Greenhouse Gas Initiative. In our model

of the electricity market, we determine the marginal increase in emissions due to an increase

in the load on the electricity grid. We do not model the constraint that overall emissions are

capped. This implies that our calculation of the environmental benefit of an electric vehicle

in the Northeast is biased downward. However, it is likely that the effect of this bias is small.

During the period of our analysis, the permit prices in both markets were quite low, which

suggests that the constraints due to the cap were not very severe.

30The CAFE standard compares the sales weighted harmonic mean of actual MPG with a sales weighted
harmonic mean of targeted MPG. The targeted MPG for each vehicle is based on its footprint.

31 With respect to the 2017 CAFE standards, double counting the electric vehicle more than doubles its
CAFE induced environmental cost.
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6 Conclusion

On average, electric vehicles generate greater end-of-pipe environmental damage than di-

rectly comparable gasoline vehicles in the U.S. This difference amounts to about $0.005 per

mile, and $0.015 for vehicles driven outside metropolitan areas. We find considerable vari-

ation around this central result; electric vehicles used in Los Angeles, California produce

benefits of $0.03 per mile while those used in Grand Forks, North Dakota, produce costs

of -$0.03 per mile. The spatial resolution employed in the empirical modelling reveals an

interesting property of electric vehicles. In the vast majority of states, when a consumer opts

for an electric vehicle rather than a gasoline vehicle, they reduce air pollution in their state.

However, in all but twelve states, this purchase makes society as a whole worse off because

electric vehicles tend to export air pollution to other states more than gasoline vehicles. One

implication of this finding is the dependence of policy orientation (whether a policy should

encourage or discourage electric vehicle adoption) on the policymaker’s jursidiction. Given

our results, we would not be surprised to see a proliferation of state-specific subsidies for

electric vehicles.

Of course, given the spatial heterogeneity in the magnitude and the sign of benefits of an

electric vehicles, spatially-differentiated policy is in fact appropriate, provided they account

for all externalities, not just native ones. We find that differentiated taxes on miles driven

lead to greater welfare increases than differentiated subsidies on vehicle purchases. This is

not surprising, as economists have long recognized the superiority of putting a direct price

on externalities relative to other indirect corrective policies. Unfortunately, this insight does

not seem to have had much influence on policy, as political decision makers often implement

indirect policies instead. A consequence of this predilection is that multiple indirect policies

may target the same externalities, as is the case with CAFE standards and purchase subsidies

on electric vehicles. Our preliminary analysis suggests that the interaction of these policies

may have significant unintended consequences. It seems worthwhile to devote additional

study to this issue.

There are several important caveats to our results. First, they are based on a simple

snapshot of the electricity grid in the years 2010-2012. We might expect the grid to become
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cleaner over time by integrating new lower-emission fuels and technologies. Of course, gaso-

line vehicles may become cleaner over time as well. The overall effect on the environmental

benefit of electric vehicles will depend on the relative rates of changes of these two factors.

Second, we have focused only on the environmental externalities. To the extent that there

is a geo-political externality from gasoline use, our results understate the total benefits of

electric vehicles. Third, we have only considered air pollution from use of the vehicle, we

have not compared life-cycle emissions from manufacture and disposal of the vehicle. Fourth,

we have focused on the marginal emissions from an increase in the demand for electric power

due to electric vehicles charging. This is appropriate when the electricity demand for elec-

tric vehicles is a small fraction of overall electricity use. As electric vehicles become more

commonplace, it may be more appropriate to look at average rather than marginal emissions.

Although we have focused on light-duty vehicles, there is a broader trend toward electri-

fication of a variety of forms of transportation. Our methodology, which combines discrete-

choice models, distributed electricity generation, and air pollution models, may yield a useful

template for further analysis of the environmental consequences of this trend.
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Figure	  1:	  Marginal	  Damages	  for	  Gas	  and	  Electric	  Cars	  by	  County	  
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Figure	  2:	  Op>mal	  Electric	  Vehicle	  Subsidy	  by	  County	  
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Figure	  3:	  Op>mal	  Electric	  Vehicle	  Subsidy	  by	  State	  (Full	  and	  Na>ve	  Damages)	  

27



Figure	  4	  	  Panel	  A:	  Change	  in	  PM2.5	  Preliminary	  Fulton	  County:	  	  
1000	  ICE	  Focus	  
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Figure	  4	  	  Panel	  B:	  Change	  in	  PM2.5	  :	  1000	  EV	  Focus	  in	  SERC	  Region	  
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Table	  1:	  Mean	  damages	  in	  cents	  per	  mile	  by	  NERC	  electricity	  region	  for	  a	  2014	  Ford	  Focus	  EV	  for	  
different	  charging	  profiles.	  

 
Damages	  in	  cents	  per	  mile	  

	    
Region	   EPRI	   Flat	   Hr	  1-‐4	   Hr	  5-‐8	   Hr	  9-‐12	   Hr	  13-‐16	   Hr	  17-‐20	   Hr	  21-‐24	  

	  

VMT	  
(pct)	  

California	   0.69	   0.75	   0.65	   0.78	   0.78	   0.84	   0.82	   0.64	  
	  

12%	  
WECC	  w/o	  CA	   1.03	   0.92	   1.18	   0.98	   0.84	   0.76	   0.73	   0.99	  

	  
10%	  

ERCOT	   1.28	   1.21	   1.50	   1.41	   1.10	   1.07	   1.05	   1.16	  
	  

8%	  
FRCC	   2.48	   2.14	   3.21	   2.36	   2.25	   1.39	   1.53	   2.11	  

	  
7%	  

SERC	   2.75	   2.68	   2.76	   2.26	   2.73	   2.97	   2.64	   2.72	  
	  

24%	  
SPP	   2.24	   2.74	   2.07	   4.91	   2.30	   2.89	   2.39	   1.89	  

	  
4%	  

NPCC	   3.11	   2.75	   4.19	   3.75	   1.61	   2.12	   2.49	   2.35	  
	  

9%	  
RFC	   3.65	   3.56	   3.44	   3.39	   3.85	   3.07	   3.44	   4.17	  

	  
22%	  

MRO	   4.39	   3.61	   5.77	   4.01	   3.11	   2.63	   2.37	   3.78	  
	  

5%	  

	             Total	   2.50	   2.38	   2.69	   2.49	   2.30	   2.18	   2.18	   2.44	  
	  

100%	  
	  

Notes:	  The	  regions	  are	  listed	  by	  the	  damage	  per	  mile	  under	  the	  “Flat”	  charging	  profile.	  	  The	  EPRI	  
charging	  profile	  is	  illustrated	  in	  Appendix	  Figure	  1.	  	  The	  flat	  charging	  profile	  assumes	  charging	  is	  equally	  
likely	  across	  hours.	  	  Other	  profiles	  assume	  charging	  occurs	  only	  in	  the	  indicated	  hours.	  	  Damages	  (in	  
cents	  per	  mile)	  are	  weighted	  across	  counties	  by	  car	  VMT.	  
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Table	  2:	  Summary	  statistics	  of	  damages	  and	  environmental	  benefit	  in	  cents	  per	  mile	  for	  2014	  electric	  
vehicles	  and	  equivalent	  2014	  gasoline	  vehicles	  across	  counties	  

	   Electric	  Vehicle	   	   Gas	  Vehicle	   	   Enviro.	  Benefit	  	  

Vehicle	   mean	   min	   max	   	   mean	   min	   max	   	   mean	   min	   max	  

Chevy	  Spark	   2.20	   0.59	   4.17	   	   1.81	   1.05	   4.42	   	   -‐0.39	   -‐3.05	   3.20	  
Honda	  Fit	   2.22	   0.60	   4.20	   	   2.07	   1.24	   4.96	   	   -‐0.15	   -‐2.88	   3.73	  
Fiat	  500e	   2.26	   0.61	   4.27	   	   1.87	   1.03	   4.75	   	   -‐0.39	   -‐3.17	   3.45	  
Nissan	  Leaf	   2.30	   0.62	   4.35	   	   1.31	   0.81	   3.60	   	   -‐1.00	   -‐3.44	   2.29	  
Mitsubishi	  i-‐Miev	   2.34	   0.63	   4.41	   	   1.81	   1.05	   4.42	   	   -‐0.53	   -‐3.30	   3.17	  
Smart	  fortwo	   2.45	   0.66	   4.63	   	   1.78	   1.08	   4.61	   	   -‐0.67	   -‐3.48	   3.24	  
Ford	  Focus	   2.50	   0.67	   4.72	   	   2.00	   1.13	   4.47	   	   -‐0.49	   -‐3.53	   3.31	  
Tesla	  S	  (60	  kWh)	   2.72	   0.73	   5.15	   	   2.64	   1.41	   5.68	   	   -‐0.09	   -‐3.65	   4.48	  
Tesla	  S	  (85	  kWh)	   2.96	   0.80	   5.59	   	   2.89	   1.63	   5.96	   	   -‐0.07	   -‐3.87	   4.77	  
Toyota	  Rav4	   3.45	   0.93	   6.52	   	   2.25	   1.32	   5.18	   	   -‐1.21	   -‐5.11	   3.66	  
BYD	  e6	   4.20	   1.13	   7.94	   	   2.25	   1.32	   5.18	   	   -‐1.96	   -‐6.52	   3.45	  
	  

Notes:	  Damages	  are	  from	  power	  plant	  emissions	  or	  tailpipe	  emissions	  of	  NOx,	  VOCs,	  PM2.5,	  SO2,	  and	  
CO2e.	  	  Electric	  cars	  assume	  the	  EPRI	  charging	  profile.	  	  Equivalent	  cars	  are	  defined	  as	  the	  identical	  make	  
where	  possible.	  	  The	  equivalent	  car	  for	  the	  Nissan	  Leaf	  is	  the	  Toyota	  Prius;	  for	  the	  Mitsubishi	  i-‐Miev	  is	  
the	  Chevy	  Spark;	  for	  the	  Tesla	  Model	  S	  is	  the	  BMW	  740	  or	  750;	  and	  for	  the	  BYD	  e6	  is	  the	  Toyota	  Rav4.	  	  
Damages	  are	  in	  cents	  per	  mile	  and	  are	  weighted	  across	  counties	  by	  car	  VMT.	  	  	  
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Table	  3:	  	  Environmental	  benefit	  in	  cents	  per	  mile	  by	  Metropolitan	  Statistical	  Areas	  for	  a	  2014	  Ford	  Focus	  
(electric	  v.	  gasoline)	  	  

Metropolitan	  Statistical	  Area	  

Environmental	  
benefit	  per	  
mile	  

VMT	  
(pct)	  

Damage	  
per	  mile	  
(gasoline)	  

Damage	  
per	  mile	  
(electric)	  

	  
Purchase	  
Subsidy	  

Highest	  Benefit	  MSAs	   	   	   	   	   	  
Los	  Angeles,	  CA	   3.31	   2.88%	   3.99	   0.69	   $4,958	  
Oakland,	  CA	   2.35	   0.80%	   3.04	   0.68	   $3,531	  
San	  Jose,	  CA	   2.26	   0.57%	   2.94	   0.69	   $3,388	  
San	  Francisco,CA	   2.06	   0.47%	   2.74	   0.68	   $3,086	  
Santa	  Ana,	  CA	   2.01	   0.99%	   2.68	   0.67	   $3,016	  

Other	  High	  VMT	  MSAs	  
	   	   	   	  

	  
San	  Diego,	  CA	   1.99	   1.03%	   2.67	   0.68	   $2,986	  
Riverside,	  CA	   1.31	   1.41%	   2.02	   0.71	   $1,972	  
Phoenix,	  AZ	   0.89	   1.11%	   1.92	   1.03	   $1,328	  
Dallas,	  TX	   0.76	   1.91%	   2.05	   1.29	   $1,144	  
Houston,	  TX	   0.76	   1.83%	   2.16	   1.40	   $1,140	  
New	  York,	  NY	   0.12	   2.08%	   3.30	   3.17	   $184	  
Tampa,	  FL	   -‐0.20	   0.96%	   2.27	   2.47	   -‐$305	  
Atlanta,	  GA	   -‐0.21	   1.95%	   2.52	   2.73	   -‐$314	  
Chicago,	  IL	   -‐0.60	   1.20%	   3.12	   3.72	   -‐$900	  
Washington	  DC-‐VA	   -‐0.72	   1.81%	   2.31	   3.03	   -‐$1,077	  

U.S.	  and	  Non-‐Urban	   	   	   	   	   	  
U.S.	  Average	   -‐0.49	   100%	   2.00	   2.50	   -‐$742	  
Non-‐urban	   -‐1.46	   19%	   1.30	   2.77	   -‐$2,193	  

Lowest	  Benefit	  MSAs	   	   	   	   	   	  
St.	  Cloud,	  MN	   -‐2.73	   0.07%	   1.76	   4.49	   -‐$4,094	  
Bismarck,	  ND	   -‐2.83	   0.04%	   1.67	   4.49	   -‐$4,240	  
Fargo,	  ND-‐MN	   -‐2.93	   0.07%	   1.69	   4.61	   -‐$4,388	  
Duluth,	  MN-‐WI	   -‐2.95	   0.09%	   1.62	   4.56	   -‐$4,418	  
Grand	  Forks,	  ND-‐MN	   -‐3.00	   0.03%	   1.66	   4.66	   -‐$4,495	  
	  

Notes:	  The	  environmental	  benefit	  is	  the	  difference	  in	  damages	  between	  the	  gasoline-‐powered	  Ford	  
Focus	  and	  the	  electric	  Ford	  Focus.	  	  Environmental	  benefit	  is	  weighted	  by	  gasoline-‐car	  VMT	  by	  county	  
within	  each	  MSA.	  	  Non-‐urban	  includes	  all	  counties	  that	  are	  not	  part	  of	  an	  MSA.	  The	  vehicle	  subsidy	  
assumes	  car	  is	  driven	  150,000	  miles.	  
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Table	  4:	  	  Environmental	  benefit	  in	  cents	  per	  mile	  by	  state	  for	  a	  2014	  Ford	  Focus	  (electric	  v.	  gasoline)	  

State	  

Environmental	  
benefit	  per	  
mile	  

VMT	  
(pct)	  

Damage	  
per	  mile	  
(gasoline)	  

Damage	  
per	  mile	  
(electric)	  	  	  

	  
Purchase	  
Subsidy	  

Highest	  Benefit	  
States	  

	   	   	   	   	  

California	   2.02	   12%	   2.71	   0.69	   $3,025	  
Utah	   0.88	   1%	   1.92	   1.04	   $1,320	  
Colorado	   0.75	   2%	   1.78	   1.03	   $1,123	  
Washington	   0.74	   1%	   1.76	   1.02	   $1,108	  
Arizona	   0.73	   2%	   1.75	   1.02	   $1,093	  
Other	  High	  VMT	  
States	   	   	   	   	   	  
Texas	   0.52	   9%	   1.90	   1.38	   $784	  
Florida	   -‐0.55	   7%	   1.94	   2.49	   -‐$829	  
Georgia	   -‐0.64	   4%	   2.10	   2.74	   -‐$955	  
New	  York	   -‐0.75	   5%	   2.35	   3.10	   -‐$1,122	  
New	  Jersey	   -‐0.91	   3%	   2.70	   3.61	   -‐$1,367	  
Virginia	   -‐1.02	   4%	   1.87	   2.89	   -‐$1,532	  
Ohio	   -‐1.62	   5%	   2.02	   3.65	   -‐$2,437	  
Pennsylvania	   -‐1.65	   3%	   2.00	   3.64	   -‐$2,472	  
Indiana	   -‐1.70	   3%	   1.96	   3.65	   -‐$2,543	  
Michigan	   -‐1.81	   3%	   1.93	   3.75	   -‐$2,720	  
Lowest	  Benefit	  
States	   	   	   	   	   	  
South	  Dakota	   -‐2.52	   0%	   1.40	   3.92	   -‐$3,787	  
Minnesota	   -‐2.57	   1%	   1.57	   4.14	   -‐$3,856	  
Nebraska	   -‐2.63	   2%	   1.85	   4.48	   -‐$3,951	  
Iowa	   -‐2.75	   1%	   1.49	   4.24	   -‐$4,118	  
North	  Dakota	   -‐3.18	   0%	   1.39	   4.58	   -‐$4,773	  
	   	   	   	   	   	  
U.S.	  Average	   -‐0.49	   100%	   2.00	   2.50	   -‐$742	  
	  

Notes:	  The	  environmental	  benefit	  is	  the	  difference	  in	  damages	  between	  the	  gasoline-‐powered	  Ford	  
Focus	  and	  the	  electric	  Ford	  Focus.	  	  Environmental	  benefit	  is	  weighted	  by	  gasoline-‐car	  VMT	  within	  each	  
state.	  The	  vehicle	  subsidy	  assumes	  car	  is	  driven	  150,000	  miles.	  
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Table	  5:	  Native	  damages	  in	  cents	  per	  mile	  by	  state	  and	  county	  and	  export	  percentages	  

Vehicle	   Damages	   mean	   med	   std.	  dev.	   min	   max	  

Electric	   All	   2.50	   2.74	   1.11	   0.67	   4.72	  

	  
Non-‐GHG	   1.62	   1.86	   0.95	   0.16	   3.50	  

	  
State	   0.15	   0.16	   0.07	   0.04	   0.33	  

	  
	  	  	  	  Export	  %	   91%	   91%	  

	    
91%	  

	  
County	   0.02	   0.02	   0.01	   0.00	   0.06	  

	  
	  	  	  	  Export	  %	   99%	   99%	  

	    
98%	  

	         Gasoline	   All	   2.00	   1.91	   0.60	   1.13	   4.47	  

	  
Non-‐GHG	   0.54	   0.37	   0.53	   0.01	   2.92	  

	  
State	   0.44	   0.27	   0.51	   0.00	   2.76	  

	  
	  	  	  	  Export	  %	   18%	   27%	  

	    
5%	  

	  
County	   0.23	   0.11	   0.38	   0.00	   2.03	  

	  
	  	  	  	  Export	  %	   57%	   71%	  

	    
30%	  

	         Environmental	   All	   -‐0.49	   -‐0.81	   1.34	   -‐3.53	   3.31	  
Benefit	   Non-‐GHG	   -‐1.08	   -‐1.44	   1.14	   -‐3.43	   2.28	  

	  
State	   0.29	   0.12	   0.51	   -‐0.32	   2.46	  

	  
County	   0.21	   0.09	   0.37	   -‐0.06	   2.00	  

	  

Note:	  Damages	  in	  cents	  per	  mile.	  “All”	  reports	  damages	  from	  all	  pollutants	  at	  all	  receptors.	  	  “Non-‐GHG”	  
reports	  damages	  from	  local	  pollutants	  (i.e.,	  excluding	  CO2)	  at	  all	  receptors.	  	  “State”	  reports	  damages	  
from	  local	  pollutants	  from	  receptors	  within	  the	  same	  state	  as	  the	  source.	  	  “County”	  reports	  damages	  
from	  local	  pollutants	  from	  receptors	  within	  the	  same	  county	  as	  the	  source.	  	  “State	  Export	  %”	  reports	  the	  
share	  of	  non-‐GHG	  damages	  which	  occur	  at	  receptors	  outside	  the	  state.	  	  “County	  Export	  %”	  reports	  the	  
share	  of	  non-‐GHG	  damages	  which	  occur	  at	  receptors	  outside	  the	  county.	  	  Electric	  damages	  assume	  the	  
EPRI	  charging	  profile.	  	  Damages	  are	  weighted	  by	  gasoline-‐car	  VMT.	  
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Table	  6:	  Welfare	  Losses	  from	  Uniform	  Policies:	  Vehicles	  Subsidies	  and	  Fuel-‐Specific	  VMT	  Taxes	  	  

	  
Vehicle	  Subsidy	   VMT	  taxes	  

BAU	  EV	  Share	   1%	   5%	   10%	   1%	   5%	   10%	  

County	  policies	   133	   146	   161	   0	   0	   0	  
State	  policies	   134	   147	   164	   6	   7	   8	  
Federal	  policy	  	   135	   155	   180	   11	   19	   28	  
	   	   	   	   	   	   	  
County	  policies	  (native	  damages)	   135	   155	   179	   78	   97	   121	  
State	  policies	  (native	  damages)	   135	   156	   182	   83	   102	   127	  
	   	   	   	   	   	   	  
Current	  Federal	  Policy	   184	   401	   668	   	   	   	  
($7500	  Subsidy)	   	   	   	   	   	   	  
	  

Note:	  Deadweight	  loss	  is	  measured	  in	  dollars	  per	  car.	  The	  BAU	  EV	  Share	  is	  the	  proportion	  of	  electric	  
vehicles	  if	  there	  were	  no	  regulation.	  	  This	  share	  is	  determined	  by	  the	  assumed	  value	  for	  𝜇	  	  (10735.3,	  
16753.7,	  22451.1)	  which	  is	  proportional	  to	  the	  standard	  deviation	  of	  the	  unobserved	  relative	  preference	  
shock.	  The	  uniform	  federal	  vehicle	  subsidy	  is	  -‐$742	  per	  car.	  	  The	  uniform	  federal	  tax	  is	  2.5	  cents	  per	  mile	  
for	  electric	  cars	  and	  2.0	  cents	  per	  mile	  for	  gasoline	  cars.	  	  
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Table	  7:	  Sensitivity	  analysis	  of	  damages	  and	  environmental	  benefit	  in	  cents	  per	  mile	  for	  2014	  electric	  
and	  gasoline	  Ford	  Focus	  

	   Electric	  Vehicle	   	   Gas	  Vehicle	   	   Enviro.	  Benefit	  	  

Vehicle	   mean	   min	   max	   	   mean	   min	   max	   	   mean	   min	   max	  

Baseline	   2.50	   0.67	   4.72	   	   2.00	   1.13	   4.47	   	   -‐0.49	   -‐3.53	   3.31	  
Carbon	  cost	   	   	   	   	   	   	   	   	   	   	   	  
	  	  	  SCC=$51	   2.71	   0.80	   5.02	   	   2.36	   1.41	   4.84	   	   -‐0.35	   -‐3.55	   3.56	  
	  	  	  SCC=$31	   2.28	   0.55	   4.42	   	   1.65	   0.86	   4.09	   	   -‐0.64	   -‐3.50	   3.06	  
	   	   	   	   	   	   	   	   	   	   	   	  
No	  temperature	  
adjustment	   2.35	   0.67	   3.90	   	   2.00	   1.13	   4.47	   	   -‐0.35	   -‐2.74	   3.32	  
Average	  MPG	   2.50	   0.67	   4.72	   	   1.87	   1.36	   4.23	   	   -‐0.63	   -‐3.30	   3.02	  
	   	   	   	   	   	   	   	   	   	   	   	  
Charging	  profile	   	   	   	   	   	   	   	   	   	   	   	  
Flat	   2.38	   0.74	   3.88	   	   2.00	   1.13	   4.47	   	   -‐0.38	   -‐2.69	   3.24	  
	   	   	   	   	   	   	   	   	   	   	   	  
Double	  gasoline	   	   	   	   	   	   	   	   	   	   	   	  
emissions	  rates	   2.50	   0.67	   4.72	   	   2.54	   1.15	   7.38	   	   0.04	   -‐3.48	   5.75	  
	   	   	   	   	   	   	   	   	   	   	   	  
$2	  Million	  VSL	   1.57	   0.71	   2.64	   	   1.68	   1.13	   2.69	   	   0.12	   -‐1.49	   1.78	  
	   	   	   	   	   	   	   	   	   	   	   	  
PM	  dose	  	  
response	   3.59	   1.25	   6.89	   	   2.31	   1.14	   6.10	   	   -‐1.28	   -‐5.65	   4.05	  
	  

Notes:	  Damages	  are	  from	  power	  plant	  emissions	  or	  tailpipe	  emissions	  of	  NOx,	  VOCs,	  PM2.5,	  SO2,	  and	  
CO2e.	  	  Electric	  cars	  assume	  the	  EPRI	  charging	  profile.	  	  Damages	  are	  in	  cents	  per	  mile	  and	  are	  weighted	  
across	  counties	  by	  car	  VMT.	  	  	  

Notes:	  	  “Carbon	  cost”	  uses	  a	  social	  cost	  of	  carbon	  of	  $51	  or	  $31.	  	  “No	  temperature	  adjustment”	  assumes	  
EVs	  have	  no	  range	  degradation	  at	  low	  temperatures.	  	  “Average	  MPG”	  uses	  the	  average	  MPG	  for	  gasoline	  
cars	  instead	  of	  using	  the	  city	  MPG	  in	  urban	  counties	  and	  the	  highway	  MPG	  in	  non-‐urban	  counties.	  	  “Flat”	  
charging	  profile	  assumes	  EV	  charging	  occurs	  equally	  in	  all	  hours	  instead	  of	  following	  the	  estimated	  EPRI	  
charging	  profile.	  	  “$2	  Million	  VSL”	  assumes	  the	  VSL	  is	  $2	  million	  instead	  of	  the	  baseline	  $6	  million.	  	  “PM	  
dose	  response”	  assumes	  the	  higher	  PM2.5	  adult-‐mortality	  dose-‐response	  from	  Roman	  etal	  2008	  instead	  
of	  the	  baseline	  dose	  response.	  
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Appendix

Optimal taxes on miles

Suppose the government uses both a tax on gasoline miles and a tax on electric miles. As

is well known, the government can obtain the first-best outcome by utilizing the Pigovian

solution. Here taxes are equal to the marginal damages, so that tg = δg and te = δe.
Now suppose for some reason the government can only tax gasoline miles. What is the

optimal gasoline tax, accounting for the externalities from both gasoline and electric vehicles?

The answer to this question is given in the next Proposition.

Proposition 3. The optimal tax on gasoline miles alone is given by

t∗g =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( pG
g(pg+t∗g)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
,

where εg is the own-price elasticity of gasoline and εG is the own-price elasticity of the

gasoline car.

The optimal tax on gasoline miles alone is less than the Pigovian tax on gasoline miles.

This occurs because the consumers have the option to substitute into the electric car and

thereby avoid taxation on the externalities they generate.

The welfare gains from differentiated taxes are given in Additional Appendix A.

Proof of the Propositions

We now turn to the proofs of the propositions.

We start with a few preliminary observations. Let G = πg and E = (1−π)e. For a generic

policy variable ρ we have

∂W
∂ρ

= µ( 1

exp(Vg/µ) + exp(Ve/µ)
)( 1

µ
exp(Vg/µ)

∂Vg
∂ρ

+ 1

µ
exp(Ve/µ)

∂Ve
∂ρ

) − (δg
∂G

∂ρ
+ δe

∂E

∂ρ
) ,
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which simplifies to

∂W
∂ρ

= ((1 − π)∂Ve
∂ρ

+ π∂Vg
∂ρ

) − (δg
∂G

∂ρ
+ δe

∂E

∂ρ
) . (2)

From the definition of π we have

∂π

∂ρ
=

(exp(Vg/µ) + exp(Ve/µ)) exp(Vg/µ) 1
µ
∂Vg
∂ρ − exp(Vg/µ)(exp(Vg/µ) 1

µ
∂Vg
∂ρ + exp(Ve/µ) 1

µ
∂Ve
∂ρ )

(exp(Vg/µ) + exp(Ve/µ))2
.

which simplifies to
∂π

∂ρ
= π(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

). (3)

Using this result we can derive the following

∂G

∂ρ
= g∂π

∂ρ
+ π∂g

∂ρ
= gπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + π∂g
∂ρ

(4)

and
∂E

∂ρ
= −e∂π

∂ρ
+ (1 − π)∂e

∂ρ
= −eπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + (1 − π)∂e
∂ρ
. (5)

With these in hand we turn to the proof of the Propositions.

Proof of Proposition 3.

From the Envelope Theorem, we have (under our normalization of the wage rate, the

marginal utility of income is equal to one)

∂Vg
∂tg

= −g + ∂R
∂tg

,

and
∂Ve
∂tg

= ∂R
∂tg

.

The first-order condition for tg comes from substituting these expressions into (2) with ρ = tg,
setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0.
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Expected per capita tax revenue is given by

R = tgπg

so
∂R

∂tg
= G + tg

∂G

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
− (δe)

∂E

∂tg
= 0.

Solving for tg gives

tg =
⎛
⎝
δg + δe

∂E
∂tg

∂G
∂tg

⎞
⎠
.

Now from (3), (4), and (5), we have

∂π

∂tg
= −π(1 − π)

µ
g,

∂G

∂tg
= −π(1 − π)

µ
g2 + π ∂g

∂tg
.

and
∂E

∂tg
= π(1 − π)

µ
eg + (1 − π) ∂e

∂tg
.

Now because there are no income effects, tg does not effect the choice of e, so this latter

equation simplifies to
∂E

∂tg
= π(1 − π)

µ
eg.
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Substituting these into the first-order condition for tg and simplifying gives

tg =
⎛
⎜⎜
⎝
δg + δe

⎛
⎜⎜
⎝

e
∂g
∂tg

µ

(1−π)g − g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

We can further express this equation in terms of elasticities. The own-price elasticity of gas

miles is

εg =
∂g

∂tg

pg + tg
g

.

For discrete choice goods, own-price elasticities are defined with respect to the choice proba-

bility. The own-price elasticity of the gasoline car, given a change in the price of the gasoline

car, is

εG = ∂π

∂pG

pG
π

= π(1 − π)
µ

( ∂Vg
∂pG

− ∂Ve
∂pG

)pG
π

= π(1 − π)
µ

(−1 − 0)pG
π

= −(1 − π)pG/µ.

Substituting the elasticities into the first-order condition for tg gives

tg =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( pG
g(pg+tg)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
.

∎
Proof of Proposition 1. Throughout the proof we can drop the subscript i. From the Envelope

Theorem, we have
∂Vg
∂s

= ∂R
∂s

and
∂Ve
∂s

= (∂R
∂s

+ 1) .

The first-order condition for s comes from substituting these expressions into (2) with ρ = s,
setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂s

+ (1 − π)) − (δg
∂G

∂s
+ δe

∂E

∂s
) = 0.
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Expected per-capita tax revenue is

R = −s(1 − π).

So we have
∂R

∂s
= −(1 − π) + s∂π

∂s
.

Substituting this into the first-order condition and simplifying gives

(s∂π
∂s

) − (δg
∂G

∂s
+ δe

∂E

∂s
) = 0. (6)

So the optimal s is given by

s =
δg

∂G
∂s + δe ∂E∂s

∂π
∂s

(7)

From (4) and (5), we have
∂G

∂s
= ∂g
∂s
π + g∂π

∂s
= g∂π

∂s
,

and
∂E

∂s
= ∂e
∂s

(1 − π) − e∂π
∂s

= −e∂π
∂s
,

where the second equality in both equations follows from the fact that there are no income

effects, so ∂g
∂s and ∂e

∂s are equal to zero. Substituting these into the first-order condition for s

and simplifying gives

s = (δgg − δee) .

∎
Proof of Proposition 2. First consider the optimal uniform subsidy. Except for δgi, δei,

and αi, the regions are identical, and the government is selecting the same subsidy for each

region. Therefore, the values for e, g, and π will be same across regions. It follows that the

per-capital welfare in region i is

W̃i = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (δgiG + δeiE).

The government wants to pick the value for s to minimize W̃(s) = ∑αiW̃i. There is a single
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per-capita revenue expression

R = −(1 − π)s

that applies to the budget constraint for each consumer in each region. It follows from (6)

that the first-order condition for s is

∑ sαi
∂π

∂s
−∑αi (δgi

∂G

∂s
+ δei

∂E

∂s
) = 0.

Which can be written as

s
∂π

∂s
− (∂G

∂s
∑αiδgi +

∂E

∂s
∑αiδei) = 0.

Solving for s gives the optimal single subsidy s̃

s̃ = 1
∂π
∂s

(δ̄g
∂G

∂s
+ δ̄e

∂E

∂s
) . (8)

The equation in the Proposition now follows from the same manipulations used in the proof

of Proposition 1. The value for welfare is W̃(s̃).
Next consider the case in which each region i has subsidy si and per capita revenue

Ri = −(1 − πi)si. As discussed in the main text, because there are no income effects, the

values for e and g will not vary across regions. Let W(S) denote the weighted average of

per capita welfare across regions as a function of the vector of taxes S = (s1, s2, . . . , sn). We

have

W(S) =∑αiWi(si) =∑αi (µ (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiGi + δeiEi)) ,

where Gi = πig and Ei = (1−πi)e. We now want to take the first and second derivatives of the

regulator’s objective with respect to si. Because ∂W
∂si

does not depend on sj, the cross-partial

derivative terms will all be equal to zero. We have

∂W
∂si

= αisi
∂πi
∂si

− αi (δgi
∂Gi

∂si
+ δei

∂Ei
∂si

)
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From (3), (4), and (5) we have: ∂πi
∂si

= −πi(1−πi)µ , ∂Gi

∂si
= −πi(1−πi)µ g and ∂Ei

∂si
= πi(1−πi)

µ e. With

these we can write the derivative as

∂W
∂si

= αi
πi(1 − πi)

µ
(−si + δgig − δeie) .

Now take the second derivative. We have

∂2W
∂s2

i

= −αi
µ2
πi(1−πi)(1−2πi) (−si + δgigi − δeiei)−αi

πi(1 − πi)
µ

= − 1

µ
(1−2πi)

∂W
∂si

−αi
πi(1 − πi)

µ
.

Now consider the point S̃ = (s̃, s̃, . . . , s̃) where s̃ is the optimal single subsidy described

above. At S̃, all the revenue equations are the same across regions. It follows that

W(S̃) = W̃(s̃).

In other words, W(S̃) describes the weighted average welfare under the optimal single sub-

sidy. Using the definition of the optimal region-specific subsidy

s∗i = (δgig − δeie),

the derivatives above become

∂W
∂si

∣
S̃

= αi
µ
π(1 − π)(s∗i − s̃), (9)

and
∂2W
∂s2

i

∣
S̃

= − 1

µ
(1 − 2π) ∂W

∂si
∣
S̃

− αi
µ
π(1 − π). (10)

Because the cross-partial derivatives are equal to zero, the second-order Taylor series

expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈∑
∂W
∂si

∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.
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We use this expansion to evaluate W(S∗) −W(S̃). From (9) and (10) we have

W(S∗)−W(S̃) ≈ 1

µ
π(1−π)∑αi(s∗i −s̃)2+1

2
(− 1

µ2
π(1 − π)(1 − 2π)∑αi(s∗i − s̃)3 − 1

µ
π(1 − π)∑αi(s∗i − s̃)2) .

The formula for the second-order approximation follows by combining the quadratic (s∗i − s̃)
terms. ∎

Data sources for emissions of gasoline cars

The emissions of SO2 and CO2 follow directly from the sulfur or carbon content of the fuels.

Since emissions per gallon of gasoline does not vary across vehicles, emissions per mile can

be simply calculated by the efficiency of the vehicle.32 For emissions of NOx, VOCs and

PM2.5, we use the Tier 2 standards for NOx, VOCs (NMOG) and PM. We augment the

VOC emissions standard with GREET’s estimate of evaporative emissions of VOCs and

augment the PM emissions standard with GREET’s estimate of PM2.5 emissions from tires

and brake wear. Electric cars are likely to emit far less PM2.5 from brake wear because they

employ regenerative braking. We had no way of separating emissions into tires and brake

wear separately, so we elected to ignore both of these emissions from electric cars. This gives

a small downward bias to emissions of electric cars.

Data sources for the electricity demand regressions

The Environmental Protection Agency (EPA) provides data from its Continuous Emissions

Monitoring System (CEMS) on hourly emissions of CO2, SO2, and NOx for almost all fossil-

fuel fired power plants. (Fossil fuels are coal, oil, and natural gas. We aggregate data

from generating units to the power-plant level. Some older smaller generating units are not

monitored by the CEMS data.) CEMS does not monitor emissions of PM2.5 but does collect

electricity (gross) generation. We use additional data from the EPA’s eGrid database for

the year 2009 to convert hourly gross generation into hourly emissions of PM2.5 assuming

32The carbon content of gasoline is 0.009 mTCO2 per gallon and of diesel fuel is 0.010 mTCO2 per gallon.
For sulfur content we follow the Tier 2 standards of 30 parts per million in gasoline (0.006 grams/gallon)
and 11 parts per million diesel fuel (0.002 grams/gallon).
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a constant annual average emissions rate. Power plant emissions of VOCs are negligible.

Based on the NEI for 2008, power plants accounted for about 0.25% of VOC emissions, but

75% of SO2 emissions and 20% of NOx emissions. In contrast, the transportation sector

accounted for about 40% of VOC emissions.

The hourly electricity load data are from the Federal Energy Regulatory Commission’s

(FERC) Form 714. Weekends are excluded to focus on commuting days. See Graff Zivin et

al. (2014) for more details on the CEMS and FERC data.

Details of the AP2 model

AP2 is a standard integrated assessment model in that it links emissions to damages using

six modules. The model first uses an air quality module to map the emissions by sources

into ambient concentrations pollutants at receptor locations. Next, concentrations are used

to estimate exposures using detailed population and yield data for each receptor county in

the lower-48 states. Exposures are then converted to physical effects through the application

of peer-reviewed dose-response functions. Finally, an economic valuation module maps the

ambient concentrations of pollutants into monetary damages. AP2 also employs an algorithm

to determine the marginal damages associated with emissions of any given source.

The inputs to the air quality module are the emissions of ammonia (NH3), fine particulate

matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds

(VOC)—from all of the sources in the contiguous U.S. that report emissions to the USEPA.33

The outputs from the air quality module are predicted ambient concentrations of the three

pollutants—SO2, O3, and PM2.5— at each of the 3,110 counties in the contiguous U.S.

The relationship between inputs and outputs captures the complex chemical and physical

processes that operate on the pollutants in the atmosphere. For example, emissions of

ammonia interact with emissions of NOx, and SO2 to form concentrations of ammonium

33There are about 10,000 sources in the model. Of these, 656 are individually-modeled large point sources,
most of which are electric generating units. For the remaining stationary point sources, AP2 attributed
emissions to the population-weighted county centroid of the county in which USEPA reports said source
exists. These county-point sources are subdivided according to the effective height of emissions because
this parameter has an important influence on the physical dispersion of emitted substances. Ground-level
emissions (from cars, trucks, households, and small commercial establishments without an individually-
monitored smokestack) are attributed to the county of origin (reported by USEPA), and are processed by
AP2 in a manner that reflects the low release point of such discharges.
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nitrate and ammonium sulfate, which are two significant (in terms of mass) constituents of

PM2.5. And emissions of NOx and VOCs are linked to the formation of ground-level ozone,

O3. The predicted ambient concentrations from the air quality module give good agreement

with the actual monitor readings at receptor locations (Muller, 2011).

The inputs to the economic valuation module are the ambient concentrations of SO2, O3,

and PM2.5 and the outputs are the monetary damages associated with the physical effects of

exposure to these concentrations. The majority of the damages are associated with human

health effects due to O3 and PM2.5, but AP2 also considers crop and timber losses due to O3,

degradation of buildings and material due to SO2, and reduced visibility and recreation due

to PM2.5. For human health, ambient concentrations are mapped into increased mortality

risk and then increased mortality risks are mapped into monetary damages.34 AP2 uses the

value of a statistical life (or VSL) approach to monetize an increase in mortality risk (see

Viscusi and Aldy, 2003). In this paper we use the USEPA’s value of approximately $600 per

0.0001 change in annual mortality risk.35 This value of an incremental change in mortality

risk yields a VSL of $6 x 106 = $600/0.0001.

AP2 is used to compute marginal ($/ton) damages over a large number of individual

sources (power plants in the present analysis) and source regions (counties within which

vehicles are driven). First, baseline emissions data that specifies reported values for all

emissions at all sources is used to compute baseline damages. (For this paper, we use

emissions data from USEPA (2014) that contains year 2011 emissions.) Next, one ton of

one pollutant, NOx perhaps, is added to baseline emissions at a particular source, perhaps

a power plant in Western Pennsylvania. Then AP2 is re-run to estimate concentrations,

exposures, physical effects, and monetary damage at each receptor conditional on the added

34Because baseline mortality rates vary considerably according to age, AP2 uses data from the U.S. Census
and the U.S. CDC to disaggregate county-level population estimates into 19 age groups and then calculates
baseline mortality rates by county and age group. The increase in mortality risk due to exposure of emissions
is determined by the standard concentration-response functions approach (USEPA, 1999; 2010; Fann et al.,
2009). In terms of share of total damage, the most important concentration-response functions are those
governing adult mortality. In this paper, we use results from Pope et al (2002) to specify the effect of PM2.5

exposure on adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure
on adult mortality rates.

35Of course not all lifetime vehicle miles are driven in the same year. But we assume that marginal
damages grow at the real interest rate so that there is no need to discount damages from miles over the life
of the car.
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ton of NOx. The difference in damage (summed across all receptors) between the baseline

case and the add-one-ton case is the marginal damage of emitting NOx from the power plant

in Western Pennsylvania.36 This routine is repeated for all pollutants and all sources in the

model.

36We can also analyze the marginal damages at each receptor.
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Appendix	  Table	  1:	  2014	  Electric	  vehicles	  and	  gasoline	  equivalent	  vehicles	  

	  

Electric	  
Vehicle	  

kW-‐
hrs/Mile	  

Gasoline	  
Equivalent	   MPG	   NOx	   VOC	   PM25	  	   SO2	  

Chevy	  
Spark	  EV	   0.283	  

Chevy	  
Spark	  	   34	   0.04	   0.127	   0.017	   0.004	  

Honda	  Fit	  
EV	   0.286	   Honda	  Fit	  	   29	   0.07	   0.147	   0.017	   0.005	  
Fiat	  500e	   0.291	   Fiat	  500e	   34	   0.07	   0.147	   0.017	   0.004	  
Nissan	  
Leaf	   0.296	  

Toyota	  
Prius	   50	   0.03	   0.112	   0.017	   0.003	  

Mitsubishi	  
i-‐Miev	   0.300	  

Chevy	  
Spark	   34	   0.04	   0.127	   0.017	   0.004	  

Smart	  
fortwo	  
electric	  	   0.315	  

Smart	  
fortwo	  
coupe	   36	   0.07	   0.147	   0.017	   0.004	  

Ford	  
Focus	  
Electric	   0.321	  

Ford	  
Focus	  	   30	   0.03	   0.112	   0.017	   0.005	  

Tesla	  
Model	  S	  
(60	  kW-‐
hr)	   0.350	   BMW	  740i	   22	   0.07	   0.147	   0.017	   0.007	  
Tesla	  
Model	  S	  
(85	  kW-‐
hr)	   0.380	   BMW	  750i	   19	   0.07	   0.147	   0.017	   0.008	  
Toyota	  
Rav4	  EV	   0.443	  

Toyota	  
Rav4	  	   26	   0.07	   0.147	   0.017	   0.006	  

BYD	  e6	   0.540	  
Toyota	  
Rav4	   26	   0.07	   0.147	   0.017	   0.006	  

	  

Notes:	  	  NOx,	  VOC,	  PM2.5,	  and	  SO2	  emissions	  rates	  for	  gasoline	  equivalent	  cars	  are	  in	  grams	  per	  
mile.	  
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Appendix	  Figure	  1:	  	  EPRI	  charging	  profile.	  

	  

	  

Source:	  “Environmental	  Assessment	  of	  Plug-‐In	  Hybrid	  Electric	  Vehicles,	  Volume	  1:	  Nationwide	  
Greenhouse	  Gas	  Emissions”	  Electric	  Power	  Research	  Institute,	  Inc.	  2007.	  	  p.	  4-‐10.	  
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Supplementary Appendix A: Welfare Gains From Dif-

ferentiation: Taxation of Gasoline and Electric Miles

Here there are taxes on both gasoline and electric miles. Before turning to the analysis of

multiple regions, it is first helpful to derive the result stated in the main text that Pigovain

taxes are optimal. Following the proof of Proposition 3, the first-order condition for tg is

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0.

We now deviate from the proof of Proposition 3, because we have taxes on both gasoline and

electric miles. Per capita revenue is therefore R = tgπg + te(1 − π)e. Taking the derivative of

the revenue constraint gives
∂R

∂tg
= G + tg

∂G

∂tg
+ te

∂E

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
+ te

∂E

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
+ (te − δe)

∂E

∂tg
= 0.

Similar calculations with respect to te gives

(tg − δg)
∂G

∂te
+ (te − δe)

∂E

∂te
= 0.

It follows that the optimal taxes are tg = δg and te = δe, as stated in the main text.

Now turn to the case in which there are m regions. It is clear that the optimal region-

specific taxes are t∗gi = δgi and t∗ei = δei. In other words, each region implements the Pigovian

solution.

Now follow similar steps as in the proof of Proposition 2. Consider m regions and
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determine the optimal uniform taxes. Per capita welfare in region i is

W̃i = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (δgiG − δeiE).

The government wants to pick the value for te and tg to minimize W̃(tg, te) = ∑αiW̃i. There

is a single per-capita revenue expression

R = tgπg + te(1 − π)e

that applies to the budget constraint for each consumer in each region. The values for e and

g will be the same across regions because the taxes are uniform. The first-order conditions

for tg and te are

∑αi ((tg − δgi)
∂G

∂tg
+ (te − δei)

∂E

∂tg
) = 0.

∑αi ((tg − δgi)
∂G

∂te
+ (te − δei)

∂E

∂te
) = 0.

The solution to these equations is t̃g = δ̄g and t̃e = δ̄e. In other words, the optimal uniform tax

on gasoline miles is equal to the weighted average of the marginal damages across regions.

The value for welfare is W̃(t̃g, t̃e).
Next consider the case in which each region i has taxes tgi and tei on gasoline and

electric miles and per capita revenue Ri = tgiπigi + tei(1 − πi)ei. Let W(T ) denote the

weighted average of per capita welfare across regions as a function of the vector of taxes

T = (tg1, tg2, . . . , tgm, te1, te2, . . . , tem). We have

W(T ) =∑αiWi(tgi, tei) = µ∑αi (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiGi − δeiEi).

We now want to take the first derivatives of the regulator’s objective with respect to the

elements of T . Because the problem is separable we can simply add subscripts and αi to the

derivatives we found in the single region case. We have

∂W
∂tgi

= αi(tgi − δgi)
∂Gi

∂tgi
+ αi(tei − δei)

∂Ei
∂tgi
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and
∂W
∂tei

= αi(tgi − δgi)
∂Gi

∂tei
+ αi(tei − δei)

∂Ei
∂tei

Now consider the point T̃ = (t̃g, t̃g, . . . , t̃g, t̃e, t̃e, . . . , t̃e). At T̃ , all the revenue equations

are the same across regions It follows that

W(T̃ ) = W̃(t̃g, t̃e).

In other words, W(T̃ ) describes the weighted average welfare under the optimal uniform

taxes. Since this point has equal taxes in each region, the gasoline miles and electric miles

will be the same each each region. So we can drop the subscripts from g, e,G, and E. From

(4) we have
∂G

∂tg
= gπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + π ∂g
∂tg

= −g2π(1 − π)
µ

+ π ∂g
∂tg

.

∂E

∂tg
= −eπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + (1 − π) ∂e
∂tg

= geπ(1 − π)
µ

.

∂G

∂te
= gπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + π ∂g
∂te

= geπ(1 − π)
µ

.

∂E

∂te
= −eπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + (1 − π) ∂e
∂te

= −e2π(1 − π)
µ

+ (1 − π) ∂e
∂te

.

This gives

∂W
∂tgi

∣
T̃

= αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)

and
∂W
∂tei

∣
T̃

= αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)

The first-order Taylor series expansion of W at the point T̃ can be written as

W(T ) −W(T̃ ) ≈∑
∂W
∂tgi

∣
T̃

(tgi − t̃g) +∑
∂W
∂tei

∣
T̃

(tei − t̃e).
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Using the expressions above gives

W(T ∗)−W(T̃ ) ≈∑(αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)) (t∗gi−t̃g)+

∑(αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)) (t∗ei − t̃e).

Which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(t∗gi − t̃g)2 − 2ge(t∗gi − t̃g)(t∗ei − t̃e) + e2(t∗ei − t̃e)2))−

π
∂g

∂tg
∑αi(t∗gi − t̃g)2 − (1 − π) ∂e

∂te
∑αi(t∗ei − t̃e)2.

Substituting in the values t∗gi = δgi, t∗ei = δei, t̃g = δ̄g and t̃e = δ̄e gives

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(δgi − δ̄g)2 − 2ge(δgi − δ̄g)(δei − δ̄e) + e2(δei − δ̄e)2))−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2,

which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g(δgi − δ̄g) − e(δei − δ̄e))
2)−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2.

It is interesting to compare this formula to the corresponding one for purchase subsidies.

Using the fact that s∗i = −(δgig − δeie) and s̃ = −(δ̄gg − δ̄ee) in conjunction with the proof

of Proposition 2, we can write the first-order approximation formula for the welfare gain of

differentiated purchase subsidies as

W(S∗) −W(S̃) ≈= π(1 − π)
µ

(∑αi(e(δei − δ̄e) − g(δgi − δ̄g))2)
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The first term in the formula for W(T ∗) −W(T̃ ) has exactly the same structure as the

formula for W(S∗) −W(S̃), but the values for π, e, and g will be different across the two

formulas. The formula for W(T ∗) −W(T̃ ) also has two extra terms that correspond to the

price effects of the taxes on the purchase of gasoline and electric miles. Because these price

effects are negative, both of the extra terms increase the benefit of differentiated regulation.

In the special case in which the population in each region is the same and e = g, first term

in the formula for W(T ∗) −W(T̃ ) is proportional to the variance of the difference between

the list of numbers δgi and δei, the second term is proportional to the variance the list of

numbers δgi, and the third term is proportional to the variance of the list of numbers δei.

Supplementary Appendix B: Choice over several gaso-

line and electric cars

Here we expand the model to allow for a richer consumer choice set. There are me electric

cars and mg gasoline cars. Gasoline cars are indexed by the subscript i and electric cars are

indexed by the subscript j. Each car has a different purchase price and price of a mile, and

we allow for the possibility of car specific taxes on miles and purchases. The utility function

is

U = ` +∑
i

fi(gi) +∑
j

hj(ej),

where gi is the consumption of miles from the i’th gasoline car and ej is the consumption of

miles from the j’th electric car. The indirect utility of consuming leisure and gasoline miles

from the i’th gasoline car is given by

Vgi = max
`,gi

U(`, gi) s.t. ` + (pgi + tgi)gi = T +R − pGi.

The indirect utility of consuming leisure and electric miles from the j’th electric car is given

by

Vej = max
`,ej

U(`, ej) s.t. ` + (pej + tej)ej = T +R − (pWj − sj).
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The conditional utility, given that a consumer elects gasoline car i, is given by

Ugi = Vgi + εgi.

The conditional utility, given that a consumer elects the electric car j

Uej = Vej + εej

The consumer selects the car that obtains the greatest conditional utility. Following the

same distributional assumptions as in the main text, the probability of selecting the gasoline

car i is

πi =
exp(Vgi/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

The probability of selecting the electric car j is

πj =
exp(Vej/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

And of course ∑i πi +∑j πj = 1. Including the pollution externality, the expected per capita

utility is given by

W = µ ln(∑
i

exp(Vgi/µ) +∑
j

exp(Vej/µ)) − (∑
i

δgiπigi +∑
j

δejπjej) ,

where δgi is the damage per mile from gasoline car i and δei is the damage per mile from

electric car j. It is useful to define Gi = πigi and Ej = πjej.

Differentiated taxes on purchase of electric car

Here we consider a policy in which the government selects car-specific tax on the purchase

of electric cars. Let sj be the tax on electric car j. Government revenue is R = −∑πjsj.
Now consider a given electric car, say car k. The optimal tax on the purchase of this car,
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sk, solves the first-order condition

∂W
∂sk

=∑
i

πi
∂Vgi
∂sk

+∑
j

πj
∂Vej
∂sk

−∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

From the Envelope Theorem, we have

∂Vgi
∂sk

= ∂R

∂sk

and, for j ≠ k,
∂Vej
∂s

= ∂R

∂sk
.

For j = k we have
∂Vej
∂sk

= ( ∂R
∂sk

+ 1) .

Substituting these expressions into the first-order condition gives

∂W
∂sk

=∑
i

πi
∂R

∂sk
+∑

j

πj
∂R

∂sk
+ πk −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

This can be simplified to

∂W
∂sk

= ∂R

∂sk
+ πk −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now
∂R

∂sk
= −πk −∑

j

∂πj
∂sk

sj.

Substituting this into the first-order condition gives

∂W
∂sk

= −∑
j

∂πj
∂sk

sj −∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now, since there are no income effects,

∂Gi

∂sk
= gi

∂πi
∂sk
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and
∂Ej
∂sk

= ej
∂πj
∂sk

Substituting the derivatives of Gi and Ej gives

∂W
∂sk

= −∑
j

∂πj
∂sk

sj −∑
i

δgigi
∂πi
∂sk

−∑
j

δejej
∂πj
∂sk

= 0. (11)

We have one of these equations for each k. So we must solve the system of me equations for

the me unknowns sj. Since we do not obtain an explicit solution for the optimal taxes on

purchase, we cannot derive analytical welfare approximations to the gains from differentiation

analogous to Proposition 2. We can, of course, obtain exact welfare measures by numerical

methods.

Uniform subsidy on the purchase of an electric car

Now suppose that the government places a uniform tax s on the purchase of any electric

car. Expected per capita government revenue is given by R = −∑j πjs. The optimal s can

be found as a special case of the differentiated subsidy formula presented above. Let sk = s
for every k. Then (11) becomes

∂W
∂s

= −s∑
j

∂πj
∂s

−∑
i

δgigi
∂πi
∂s

−∑
j

δejej
∂πj
∂s

= 0.

Solving for s gives

s = −∑i
δgigi

∂πi
∂s +∑j δejej

∂πj
∂s

∑j
∂πj
∂s

Now since ∑i πi +∑j πj = 1 it follows that

∑
i

∂πi
∂s

+∑
j

∂πj
∂s

= 0.

Using this gives

s = ∑i
δgigi

∂πi
∂s

∑i ∂πi∂s

− ∑j
δejej

∂πj
∂s

∑j
∂πj
∂s

.
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In the special case in which gi = g and ej = e, we have

s = g∑i
δgi

∂πi
∂s

∑i ∂πi∂s

− e∑j
δej

∂πj
∂s

∑j
∂πj
∂s

.

The optimal subsidy is a function of the weighted sum of marginal damages from each

car in the choice set, where the weights are equal to the partial derivative of the choice

probabilities with respect to s. This generalizes the result in Proposition 1 in the main

text. The informational requirements of the two results are different, however. To evaluate

the optimal subsidy in Proposition 1, we need only make an assessment of the damage

parameters (the δ′s) and the lifetime miles (e and g). To evaluate the optimal subsidy when

there is an expanded choice set, we need, in addition, the partial derivatives of the adoption

probabilities, which requires a fully calibrated model.

Supplementary Appendix C: Comparison with Mendel-

sohn (1986)

Applying our approximation methodology to Mendelsohn’s model reveals the differences in

the welfare gain of differentiation in our model and his. In Mendelsohn’s model, the derivative

of the objective function with respect to the policy variable is linear in the environmental

parameter. And the second derivative does not depend on the environmental parameter. In

contrast, in our model, both the first and second derivatives are linear in the environmental

variable.

More formally, consider Mendelsohn’s model and let Q∗ be the optimal differentiated reg-

ulation and Q̄ be the optimal uniform regulation. The first-order Taylor series approximation

to the welfare gain form differentiation is

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄).

Both ∂W
∂Q and (Q∗−Q̄) are linear in the environmental parameter, so the welfare difference is
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is quadratic in the environmental parameter. Now consider the second-order Taylor series:

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄) + 1

2

∂2W

∂Q2
(Q∗ − Q̄)2.

The first term in this expression is quadratic in the environmental parameter. In the second

term, the second derivative does not depend on the environmental parameter, so the second

term in quadratic in the environmental parameter as well. So we see for both the first

and second order approximations, the welfare difference is quadratic in the environmental

parameter. Because Mendelsohn’s objective is quadratic, the second order approximation is

in fact exact.

In our model, the second-order approximation has a term that is cubic in the envi-

ronmental variable, which implies that the welfare benefit depends on the skewness of the

distribution of this variable. As in Mendelsohn’s model, (S∗ − S̃) is linear in the environ-

mental parameter. So the difference between models is due to differences in the first and

second derivatives. In particular, due to the discrete choice nature of our model, the first

and second derivatives are both linear in the environmental parameter. To see this, recall

that our objective function has terms such at πδ where delta is the environmental parameter

and π is the choice probability. Now π i is a function of the policy variable s. From (3) we

have
∂π

∂s
= − 1

µ
π(1 − π),

and so it follows that
∂2π

∂s2
= − 1

µ
(π(1 − π) − 2π2(1 − π)),

and, as a consequence, the first and second derivatives are both linear in δ.

Supplementary Appendix D: Calibration

To analyze welfare issues, we must have a value for µ. We determine this value by calibrating

a numerical version of the model. For this calibration, we assume a specific constant elasticity

functional form for the utility of consuming electric miles and gasoline miles. For gasoline
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miles we have

f(g) = kg
g1−γg − 1

1 − γg
and for electric miles we have

h(e) = ke
e1−γe − 1

1 − γe
+H.

We determined the values for kg and ke such that the consumer would, in the absence of

any policy intervention, consume 150,000 lifetime miles for each type of vehicle. As in the

main text, we compared the Ford Focus with the Ford Focus Electric. The values for all of

the parameters except µ and H are shown in Table A. The elasticity of demand for gasoline

miles (−1/γg) comes from Espey (1998). The elasticity of demand for electric miles (−1/γe)
is assumed to be equal to the elasticity of demand for gasoline miles.

The values for µ and H were determined such that two conditions held. First, in the

absence of any policy intervention, the consumer would select the gasoline car with some

given probability. Second, consistent with Li et al (2015)’s observation, at the current Federal

subsidy of $7500, half of electric cars sales would be due to the subsidy.

Table A: Calibration Parameters (2013 Dollars) : Ford Focus and Ford Focus Electric

Parameter Value Economic Interpretation Source/Notes

I 438641 Income US BLS : $827 week
T 87600 Endowment of time Hours in 10 year car lifetime
pe 0.0389 Price of electric miles ($ per mile) EIA : 0.1212 $ per kWh * 0.321 kWh/mile
pg 0.1126 Price of gasoline miles ($ per mile) CNN : 3.49 $ per gallon / 31 miles/gallon
pΩ 35170 Price of electric car ($) Ford Motors
pG 16810 Price of gasoline car ($) Ford Motors
kg 2.58x109 Gas miles preference parameter Calculated so that g = 150,000.
ke 8.93x108 Electric miles preference parameter Calculated so that e = 150,000.
γg 2 Gives elasticity for gas miles of -0.5 Espey 1998
γe 2 Gives elasticity for electric miles of -0.5 Assumption

Supplementary Appendix E: CAFE Standards

Consider an automobile manufacturer that produces three models a, b, and g with corre-

sponding fuel economies in miles per gallon fa < fb < fg. As the notation indicates, car g
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Table B: Value of µ as a function of the probability, with no policy intervention, of selecting
the gasoline car

H µ Probability

1688947865 10664 0.99
1688967313 10037 0.95
1688976546 9249 0.90

will play the role of the gasoline car in the main text. The sales are each model are na, nb

and ng. The CAFE standard requires that fleet fuel economy (defined as the sales-weighted

harmonic mean of individual fuel economies) exceeds a given value k. So we have

na + nb + ng
na

fa
+ nb

fb
+ ng

fg

≥ k.

Suppose initially that the cafe standard is binding, which implies that the market would

prefer to swap from a high MPG car purchase to a low MPG car purchase, but cannot do

so because of the standard. It is helpful to write the initial condition in terms of gallons per

mile rather than miles per gallon:

na

fa
+ nb

fb
+ ng

fg

na + nb + ng
= 1

k
.

We want to analyze the impact of selling an electric car on the composition of the fleet,

under the assumption that the total amount of cars sold stays the same. For CAFE purposes,

the electric car is assigned it’s MPG equivalent, which is typically much greater than the

MPG of the most efficient gasoline car. Let this be denoted by fe where fe > fg. Since the

total amount of cars sold stays the same, the sale of an electric car leads to a reduction in

sales of another type of car. This clearly raises the fleet fuel economy, the CAFE standard

is no longer binding, and so the previously restricted swap from high to low MPG may now

be allowed to take place. Assume that the electric car sale replaces a sale of a model g car,

and that the desired swap is from b to a. Also assume that the footprint of g and e are the

same, and the footprint of b and a are the same. (This keeps the value of k constant.) The
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swap of a for b can be done if the resulting fleet fuel economy satisfies the standard:

na+1
fa

+ nb−1
fb

+ ng−1
fg

+ 1
fe

na + nb + ng
≤ 1

k
. (12)

Using the initial condition this becomes

1

k
+

1
fa
+ −1

fb
+ −1
fg
+ 1
fe

na + nb + ng
≤ 1

k
,

and so the condition becomes
1

fa
− 1

fb
≤ 1

fg
− 1

fe
. (13)

The right-hand-side of (13) specifies the maximum feasible increase in gallons per mile that

may occur in the rest of the fleet due to the sale of an electric car. If the CAFE constraint

binds in the resulting fleet (which we would generally expect to be the case), then this

maximum will be obtained. And of course this increase in gallons per mile has an associated

cost to society from emissions damage.

We see that CAFE regulation induces an additional environmental cost from electric cars

due to the substitution of a low MPG car for a high MPG car. We can sketch a back-of-

the-envelope calculation for the magnitude of this CAFE induced environmental cost and its

effect on the optimal tax on electric cars as follows. Assume that car a and car b are in the

same Tier 2 “bin”. For cars in the same bin, the vast majority of environmental damages

are due to emissions of CO2. In addition, without a explicit model of the new car market,

we don’t know which region the car a will be driven. So we are content to calculate the

CAFE induced environmental cost due to CO2 emissions only. Let δa and δb be the damage

(in $ per mile) due to CO2 emissions from car a and b, respectively.37 It follows that the

additional environmental cost is give by (δa − δb)g.

Next we integrate CAFE standards with the model in the main part of the paper. We

do not try to model both supply and demand for the market for cars. Rather we simply

assume that the consumer chooses between the electric car and car g, and this choice induces

a change in the composition of the rest of the fleet due to CAFE regulation considerations.

37For example, δa =
$0.403

fa
, where the numerator is the CO2 damages per gallon in our model.
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The basic welfare equation becomes

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (π(δb + δg)g + (1 − π)(δee + δag)).

We see that if the consumer selects the gasoline car, then the fleet consists of this gasoline car

in conjunction with car b. But if the consumer selects the electric car, then the fleet consists

of the electric car in conjunction with car a. (We are ignoring the utility benefit generated

by the switch from b to a.) Following similar arguments as in the proof of Proposition 1, the

optimal subsidy is determined to be

s∗ = ((δg − (δa − δb))g − δee).

We see that the optimal subsidy is decreased by the amount equal to the CAFE induced

environmental cost (δa − δb)g. Using our Ford Focus baseline numbers, the CAFE induced

environmental cost turns out to be $1439.38

Starting in 2017, CAFE regulation will make things worse, because it will allow the

manufacturer to claim credit for two electric car sales for each actual sale of an electric car.

Thus (12), the condition for the swap from b to a becomes

na+1
fa

+ nb−1
fb

+ nc−1
fc

+ 2
fe

na + nb + nc + 1
≤ 1

k
.

Notice that we are keeping the actual amount of cars sold constant, but the CAFE regulation

enables the manufacturer to do the calculation as if they had sold one additional electric

car. Using the initial condition, this can be written as

1
fa
+ −1

fb
+ −1

fc
+ 2
fe

na + nb + nc
≤

na

fa
+ nb

fb
+ nc

fc

na + nb + nc
(na + nb + nc + 1) − (na

fa
+ nb
fb
+ nc
fc

) .

38The right-hand-side of (13) is given by 1/30−1/105 = 0.0238. Assuming this equation holds with equality,
we have (δa − δb) = 0.403 ∗ 0.0238. Multiplying by a lifetime of 150,000 miles gives $1439. We should also
note that the EPA posted MPG number for a given car is different from the CAFE MPG number for that
same car. On average, the EPA number is eighty percent of the CAFE number. We use the EPA number
in the calculation of the additional environmental cost because it more accurately reflects real word gas
consumption.
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Which simples to
1

fa
− 1

fb
≤ ( 1

fc
− 1

fe
) + (1

k
− 1

fe
) . (14)

Comparing (13) with (14), we see that the effect of double counting the electric car is to

more than double the CAFE induced environmental cost of the electric car, provided the

gallons per mile used by car c is smaller than CAFE limit on gallons per mile 1/k.

Supplementary Appendix F: The effect of temperature

on electric vehicle energy use

Let E68 be the energy usage (in KWhr/mile) at a baseline temperature of 68°F (obtained

from EPA data). In this Appendix, we determine a temperature adjusted energy usage Ẽ.

The range of an electric vehicle R is given by

R = C
E

where C is the battery capacity of the vehicle (in KWhr). We first determined a function

R(T ) that describes the range as a function of temperature and then use this function in

conjunction with weather data to calculate the temperature adjusted energy usage Ẽ for

each county.

There are three recent studies of the effect of temperature on electric vehicle range.

1. Transport Canada. This engineering study considered three different electric vehicles,

three temperatures (68°F, 19.4°F, -4°F), and cabin heat on/off conditions. The original

data is available on the internet (https://www.tc.gc.ca/eng/programs/environment-

etv-electric-passenger-vehicles-eng-2904.htm)

2. AAA. This engineering study considered three different electric vehicles, three tem-

peratures (75°F, 20°F, 95°F). We were unable to obtain the original data, but the

results are summarized on the internet (http://newsroom.aaa.com/2014/03/extreme-

temperatures-affect-electric-vehicle-driving-range-aaa-says)
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3. Nissan Leaf Crowdsource. This study summarizes user reported driving ranges at

a variety of temperatures for the Nissan leaf. The results are posted on the internet

(http://www.fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weather-range-loss-electric-

vehicle/)

There is clear evidence in these studies that significant range loss in electric vehicles

occurs both at low and high temperatures.39 We use a Gaussian function to describe this

range loss

R(T ) = R68e
− (T−68)

2

y , (15)

where R68 is the range at the baseline temperature of 68°F and y is a parameter to be fitted

from the range loss data. The transport Canada study indicates a 20 percent range loss at

19.4°F with the heat off and a 45 percent range loss at 19.4°F with the heat on. We took

the average of these figures and assumed a 33 percent range loss. This gives40

y = −1(19.4 − 68)2

ln(0.67) .

Temperature data was obtained from the CDC website.41 This gave us the average

monthly temperature in each county for the years 1979-2011. In a given month j with

temperature Tj, the energy usage per mile in that month is given by

Ej =
C

R(Tj)
= E68

R68

R(Tj)
.

Let the total miles driven in month j be denoted by xj, the temperature adjusted energy

usage is given by the formula

Ẽ = ( 1

∑xj
)

12

∑
j=1
Ejxj = ( 1

∑xj
)

12

∑
j=1

⎛
⎝

E68

e−
(Tj−68)2

y

⎞
⎠
xj.

We evaluate this formula assuming the number of miles driven per day is constant over all

39Yuksel and Michalek, forthcoming (2015) use the Nissan Leaf data in their analysis of the effect of
temperature on electric vehicle range.

40The assumed range loss is (R(19.4) −R68)/R68 = −0.33 which implies R(19.4)/R68 = 0.67. Using this in

(15), we have 0.67 = e−
(19.4−68)2

y , which we can then solve for y.
41http://wonder.cdc.gov/nasa-nldas.html.
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months.

Supplementary Appendix G: State electric vehicle in-

centives

The Department of Energy maintains a database of alternative fuels policies by state.42

Using this information, we determined four measures of state electric vehicle policy. The

first measure is the actual subsidies for the purchase of an electric vehicle. The second

measure is equal to the total number electric car of policies- including both incentives and

regulations. The third measure is equal to the number of policies that were classified as

by the Department of Energy as incentives. The fourth measure is equal to the number

of incentives that were deemed by us to be significant (thus excluding, for example, an

incentive that would only apply to the first 100 consumers to install electric vehicle charging

equipment).

The four measures are shown in Table C for each state along with the optimal subsidy

(based on full damages) and the political economy subsidy (based on native damages). Each

of the four measures is more highly correlated with the political economy subsidy than with

the optimal subsidy.

42http://www.afdc.energy.gov/laws/matrix?sort by=tech
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Table C: State electric vehicle policies
State Optimal Political Actual Significant All incentives All incentives

Subsidy Economy Subsidy Incentives and regulations
Subsidy

Alabama -1537 47 0 1 4 2
Arizona 1093 272 0 5 14 6
Arkansas -1536 -33 0 0 2 0
California 3025 1572 2500 2 45 21
Colorado 1123 320 6000 1 11 5
Connecticut -1719 -126 0 0 7 3
Delaware -2462 -23 0 0 2 0
District of Columbia -801 441 0 1 4 3
Florida -829 296 0 1 8 4
Georgia -955 601 5000 2 8 8
Idaho 702 49 0 0 1 1
Illinois -1475 990 4000 2 13 7
Indiana -2543 241 0 1 9 6
Iowa -4118 -109 0 0 4 2
Kansas -920 124 0 0 1 0
Kentucky -1665 88 0 1 4 1
Louisiana -1452 7 0 0 4 2
Maine -2619 -393 0 0 4 1
Maryland -1945 462 3000 3 12 7
Massachusetts -1498 220 2500 1 7 4
Michigan -2720 291 0 1 6 6
Minnesota -3951 304 0 1 9 2
Mississippi -1793 -51 0 0 2 1
Missouri -1367 129 0 0 6 2
Montana 87 -43 0 0 1 1
Nebraska -3856 -11 0 0 2 1
Nevada 940 150 0 2 9 3
New Hampshire -2252 -324 0 0 2 0
New Jersey -1367 724 0 2 3 2
New Mexico 702 80 0 0 6 3
New York -1122 645 0 0 5 3
North Carolina -1411 205 0 1 12 5
North Dakota -4773 -213 0 0 1 0
Ohio -2437 414 0 0 4 1
Oklahoma -791 209 0 0 5 2
Oregon 841 148 0 0 12 5
Pennsylvania -2472 322 0 0 5 3
Rhode Island -1746 -132 0 0 7 1
South Carolina -1511 48 0 0 6 5
South Dakota -3787 -173 0 0 0 0
Tennessee -1512 61 0 1 3 1
Texas 784 394 2500 1 8 7
Utah 1320 557 650 2 8 4
Vermont -2858 -430 0 0 6 2
Virginia -1532 73 0 2 13 5
Washington 1108 319 0 0 20 6
West Virginia -2930 -87 0 0 4 0
Wisconsin -3720 67 0 0 6 2
Wyoming 381 -42 0 0 0 0

Correlation with optimal subsidy 0.29 0.35 0.51 0.51
Correlation with political economy subsidy 0.50 0.52 0.68 0.77
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