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Abstract

This study quantifies the efficiency of a real-world bargaining game with two-sided incomplete

information. Myerson and Satterthwaite (1983) and Williams (1987) derived the theoretical efficient

frontier for bilateral trade under two-sided uncertainty, but little is known about how well real-world

bargaining performs relative to the frontier. The setting is wholesale used-auto auctions, an $80

billion industry where buyers and sellers participate in alternating-offer bargaining when the auction

price fails to reach a secret reserve price. Using 270,000 auction/bargaining sequences, this study

nonparametrically estimates bounds on the distributions of buyer and seller valuations and then

estimates where bargaining outcomes lie relative to the efficient frontier. Findings indicate that the

observed auction-followed-by-bargaining mechanism is quite efficient, achieving a large fraction of the

surplus and trade volume which can be achieved on the efficient frontier.
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1 Introduction

From haggling in an open-street market to negotiating a corporate takeover deal, alternating-offer bar-

gaining between a buyer and seller is one of the oldest and most common forms of transaction. When both

parties have incomplete information, it is known that equilibrium outcomes are difficult to characterize.1

Myerson and Satterthwaite (1983) demonstrated that full efficiency is not possible, and theoretical effi-

ciency bounds are derived in Myerson and Satterthwaite (1983) and Williams (1987), but it is unknown

how well real-world bargaining performs relative to these bounds. Williams (1987) emphasized that “little

is known about whether or not these limits can be achieved with ‘realistic’ bargaining procedures.” This

paper is the first attempt to bring data to this question in order to quantify the efficiency of real-world

bargaining with two-sided incomplete information. I develop a framework to estimate distributions of

private valuations on both sides of the market at wholesale used-auto auctions. I then map these prim-

itives into results from the theoretical mechanism design literature in order to measure the efficiency of

bargaining relative to the first-best frontier and the information-constrained, second-best efficient frontier.

The data analyzed in this paper consist of several hundred thousand sequences of back-and-forth

bargaining offers between buyers and sellers at wholesale used-auto auctions, a large market where new

and used-car dealers buy vehicles from other dealers as well as from rental companies and banks. This

industry passes 15 million cars annually through its lanes, selling about 60% of the vehicles, worth a

total of $80 billion. Throughout much of the industry, auction houses employ the following mechanism:

a secret reserve price set by the seller followed by an ascending price auction, which, when the secret

reserve price is not met, is followed by post-auction, alternating-offer bargaining mediated by the auction

house. This setting is ideal for studying bargaining under two-sided uncertainty because all players are

experienced professionals and are likely to understand well the game being played. Also, because the

bargaining takes place after an ascending auction and after the seller’s choice of a secret reserve price,

the efficiency of bargaining can be studied while imposing only minimal assumptions on the structure or

equilibrium of the bargaining game.

After a brief introduction to the industry, Section 2 discusses the data in detail. The data comes from

several different auction houses from 2007 to 2010, containing detailed information on each car as well

as the actions taken by sellers and buyers in each stage of the game. The data is broken down into two

main samples: cars sold by used and new-car dealers (which I refer to as the dealers sample), and cars

sold by large institutions, such as rental companies, banks, and fleet companies (which I refer to as the

fleet/lease sample). Reserve prices exceed auction prices by an average of $1,000, with this gap being

higher in the dealers sample than the fleet/lease sample. The game ends at the auction, with no recorded

bargaining, approximately 76% of the time in the dealers sample and 82% of the time in the fleet/lease

1Fudenberg and Tirole (1991) stated, “The theory of bargaining under incomplete information is currently more a

series of examples than a coherent set of results. This is unfortunate because bargaining derives much of its interest from

incomplete information.” Fudenberg, Levine, and Tirole (1985) similarly commented “We fear that in this case [of two-sided

incomplete information], few generalizations will be possible, and that even for convenient specifications of the functional

form of the distribution of valuations, the problem of characterizing the equilibria will be quite difficult.”
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sample. When the game ends in trade at a bargained price, this price exceeds the auction price by $600

on average.

I lay out a simple model in Section 3 which describes the three stages of the game at wholesale auto

auctions. The post-auction bargaining is modeled as a general alternating-offer bargaining game. The

auction stage is modeled as an ascending auction with symmetric private values among bidders, where

bidders’ values and the seller’s value are correlated through auction-level heterogeneity unobserved by

the econometrician. The seller’s secret reserve price is chosen optimally before the auction. I prove two

preliminary results which motivate an estimation strategy: first, truth-telling is a dominant strategy for

bidders in the auction, and second, the seller’s secret reserve price strategy is monotone. These two

properties allow for nonparametric identification of the distributions of buyer and seller types.

Sections 4 and 5 constitute the heart of the paper. Section 4 presents the approach for estimating

the distributions of buyer and seller valuations. After controlling for observable covariates and auction

house fees, I account for unobserved heterogeneity at the auction level through a semi-nonparametric

approach, relying on deconvolution argument due to Kotlarski (1967) for identification. I then estimate

the distribution of buyer valuations using an order statistics inversion. The approach for estimating

the distribution of seller types is new. It exploits the property that the seller’s secret reserve price will

be strictly monotonic. I use bounds defined by revealed preferences arguments taken from the seller’s

response to the auction price. The approach is similar in spirit to Haile and Tamer (2003), using bounds

implied by very basic assumptions about players’ rationality to learn about model primitives without

solving for the equilibrium of the game.

Section 5 presents the methods for estimating the efficient frontier and other counterfactual mech-

anisms from mechanism design theory. It is important to note that throughout the paper, the terms

“efficient” or “second-best” refer to ex-ante incentive efficiency, taking informational asymmetries into

account. To refer to full efficiency, I use the terms “ex-post efficient” or “first-best.”2 I also use the terms

“surplus” and “gains from trade” interchangeably. The efficient frontier (or Pareto frontier) delineates

the best possible outcomes, in terms of buyer and seller surplus, that could be achieved by any bilat-

eral bargaining game in the presence of two-sided incomplete information. Myerson and Satterthwaite

(1983) and Williams (1987) demonstrated how this frontier depends on the distributions of buyer and

seller valuations. Therefore, the estimated distributions from Section 4 are crucial for solving for these

mechanisms. To solve for the Pareto frontier, I adopt an approach described in Williams (1987). I also

demonstrate that the direct revelation mechanism corresponding to the dynamic bargaining mechanism

currently used at auto auctions is identified from information on whether trade occurred and from secret

reserve and auction prices.

I combine the estimated distributions of buyer and seller valuations and the allocation functions

defining the current mechanism and counterfactual mechanisms, putting theoretical bargaining and real-

world bargaining on the same footing in order to quantify bargaining efficiency. First, I examine the

2For a more detailed taxonomy of ex-ante, interim, and ex-post efficiency under incomplete information, see Holmström

and Myerson (1983).
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efficiency loss due to incomplete information. Ideally, a buyer and seller should trade whenever the buyer

values a good more than the seller (first-best, ex-post efficient trade). However, incomplete information

on both sides gives rise to a bilateral monopoly, where each party has some market power. Myerson

and Satterthwaite (1983) demonstrated that a deadweight loss occurs as each party trades off the dual

incentives of increasing the probability of trade and extracting additional rent from the other party, akin

to the deadweight loss in a standard one-sided monopoly pricing model. As a result, some trades fail to

occur even when the buyer values the good more than the seller.3 This deadweight loss is given by the

gap between the the second-best mechanism derived in Myerson and Satterthwaite (1983) and first-best

trade. I discover that incomplete information need not be a huge problem in this market: The second-best

mechanism achieves 96–99% of first-best surplus.

Second, I examine the efficiency of post-auction bargaining relative to the information-constrained

efficient frontier. Unlike the mechanisms discussed in Myerson and Satterthwaite (1983) and Williams

(1987), alternating-offer bargaining with two-sided uncertainty has no clear equilibrium predictions due

to signaling by both parties. As a result, it is unknown where alternating-offer bargaining lies within

the efficient frontier. Any gap between the efficient frontier and real-world bargaining represents a

deadweight loss which could theoretically be eliminated by committing to a static efficient mechanism

along the frontier. Therefore, I refer to this as the deadweight loss due to mechanism choice/limited

commitment.4 Findings indicate that the post-auction bargaining lies quite close to the efficient frontier,

achieving 90–95% of the efficient level of surplus. This result is true in both the dealers sample and

the fleet/lease sample. The deadweight loss due to limited commitment is therefore quite small in this

market.

In addition to Myerson and Satterthwaite (1983) and Williams (1987), other papers examining the

theoretical efficient frontier from a mechanism design standpoint include Ausubel and Deneckere (1993),

Ausubel, Cramton, and Deneckere (2002), Satterthwaite and Williams (1989), and Chatterjee and Samuel-

son (1983). Ausubel and Deneckere (1993) and Ausubel, Cramton, and Deneckere (2002) demonstrated

theoretically that when buyer and seller distributions have monotone hazard rates and when high weights

are placed on the seller or buyer payoff, some equilibria of a dynamic, alternating-offer bargaining game

can reach the efficient frontier. Satterthwaite and Williams (1989) studied the k double auction game and

found that generically only the k = 0 or k = 1 double auctions reach the efficient frontier.5 Chatterjee

and Samuelson (1983) demonstrated that in the symmetric uniform case the k = 1/2 double auction also

reaches the efficient frontier.

A large theoretical literature on incomplete information bargaining has yielded valuable insights

through focusing on special cases rather than the full, two-sided incomplete information setting.6 The

3Formally, Myerson and Satterthwaite (1983) demonstrated that when the supports of buyer and seller types overlap,

there does not exist an incentive-compatible, individually rational mechanism which is ex-post efficient and which also

satisfies a balanced budget.
4Cramton (1992) and Elyakime, Laffont, Loisel, and Vuong (1997) also referred to this as an issue of commitment.
5A k double auction consists of both the buyer and seller simultaneously reporting sealed bids to an intermediary and,

if the buyer’s bid exceeds the seller’s, trading at a price which is a convex combination of the two bids, with weight k.
6The incomplete-information bargaining literature focuses on settings of one-sided uncertainty (Gul, Sonnenschein, and

4



set of empirical papers which structurally estimated models of incomplete information bargaining is quite

small, including Sieg (2000), Ambrus, Chaney, and Salitsky (2011), and Silveira (2012), who focused on

settings of one-sided incomplete information bargaining, and Keniston (2011), who estimated a model

of two-sided uncertainty and compared alternating-offer bargaining to a fixed-price mechanism.7 One

advantage of the current paper over previous structural papers is that, because the bargaining occurs

after an auction and after the seller reports a secret reserve price, the model’s primitives, namely the

distributions of buyer and seller valuations, can be identified from these pre-bargaining actions without

relying on much structure or a particular equilibrium notion for the bargaining game. This is particularly

useful given that, unlike auction settings or complete information bargaining games, there is no canonical

model of alternating-offer bargaining under incomplete information with a continuum of types.8

2 The Wholesale Auto Auction Industry

The wholesale used-auto auction industry provides liquidity to the supply side of the US used-car market.

Each year approximately 40 million used cars are sold in the United States, 15 million of which pass

through a wholesale auction house. About 60% of these cars sell, with an average price between $8,000

and $9,000, totaling to over $80 billion in revenue (NAAA 2009). The industry consists of approximately

320 auction houses scattered across the country. The industry leaders, Manheim and Adesa, maintain a

50% and 25% market share, respectively, and the remaining auction houses are referred to as independent.

Each auction house serves as a platform in a two-sided market, competing to attract both sellers and

buyers. Throughout the industry, the majority of auction house revenue comes from fees paid by the

buyer and seller when trade occurs. Buyers attending wholesale auto auctions are new and used car

Wilson 1986; Gul and Sonnenschein 1988; Fudenberg and Tirole 1983; Sobel and Takahashi 1983; Fudenberg, Levine, and

Tirole 1985; Ausubel and Deneckere 1989; Rubinstein 1985a,b; Bikhchandani 1992; Grossman and Perry 1986; Admati and

Perry 1987; Cramton 1991), settings of one-sided offers (Cho 1990; Feinberg and Skrzypacz 2005; Cramton 1984; Ausubel

and Deneckere 1993), settings with two-types rather than a continuum of types (Chatterjee and Samuelson 1988; Compte

and Jehiel 2002), or settings with uncertainty not being about valuations (Abreu and Gul 2000; Watson 1998). Two papers

which modeled bargaining as an alternating-offer game and a continuum of types with two-sided incomplete information,

where the incomplete information is about players’ valuations, are Perry (1986), which predicted immediate agreement or

disagreement, and Cramton (1992), which modeled the bargaining game as beginning with a war of attrition and consisting

of players signaling their valuations through the length of delay between offers, as in Admati and Perry (1987). Neither

of these models fits the type of bargaining observed at wholesale auto auctions. See Binmore, Osborne, and Rubinstein

(1992), Ausubel, Cramton, and Deneckere (2002), Roth (1995), and Kennan and Wilson (1993) for additional surveys of

the theoretical and experimental bargaining literature.
7A separate strand of literature, such as Tang and Merlo (2010) and Watanabe (2009), discussed the identification and

estimation of complete information rather than incomplete information games.
8Several papers analyzed models of auctions followed by complete information bargaining (Huh and Park 2010; Elyakime,

Laffont, Loisel, and Vuong 1997), one-shot bargaining (Bulow and Klemperer 1996; Eklof and Lunander 2003; Menezes and

Ryan 2005), or one-sided incomplete information (Wang 2000). Genesove (1991) also discussed post-auction bargaining

at wholesale auto auctions. He tested several parametric assumptions for the distributions of buyer and seller valuations,

finding that these assumptions performed poorly in explaining when bargaining occurred and when it was successful.
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dealers.9 Sellers may also be used or new car dealers (whome I will refer to as “dealers”) selling off extra

inventory, or they may be large institutions, such as banks, manufacturers, or rental companies (whom I

will refer to as “fleet/lease”) selling repossessed, off-lease, or old fleet vehicles. Throughout, I will refer

to the seller as “she” and the buyer as “he”.

Sellers bring their cars to the auction house and most report a secret reserve price.10 In the days

preceding the auctioning of the car, potential buyers may view car details and pictures online, including a

condition report for cars sold by fleet/lease sellers, or may visit the auction house to inspect and test drive

cars.11 The auction sale takes place in a large, warehouse-like room with 8–16 lanes running through

it. In each lane there is a separate auctioneer, and lanes run simultaneously. A car is driven to the

front of the lane and the auctioneer calls out bids, raising the price until only one bidder remains. The

characteristics of the car as well as the current high bid are listed on a large monitor near the auctioneer.

The entire bidding process usually takes 30–90 seconds.

If the auction price exceeds the secret reserve price, the car is awarded to the high bidder. If the

auction price is below the secret reserve, the high bidder is given the option to enter into bargaining

with the seller. If the high bidder opts to bargain, the auction house will contact the seller by phone,

at which point the seller can accept the auction price, end the negotiations, or propose a counteroffer.12

If the seller counters, the auction house calls the buyer. Bargaining continues until one party accepts

or terminates negotiations. The typical time between calls is 2–3 hours.13 Auction house employees

contacting each party take care not to reveal the other party’s identity in order to prevent the buyer and

seller from agreeing on a trade outside of the auction house, avoiding auction house fees.14

A seller accepting the auction price (or bargaining offers) below the reserve price may seem puzzling

9Note that the term “new” means the dealer is authorized to sell new cars from a manufacturer, but can also sell used

cars. On the other hand, “used” car dealers can only sell used cars. Genesove (1993) discussed the differences of cars sold

by new vs. used-car dealers and found weak evidence of adverse selection among cars sold by used-car dealers. Note also

that the general public is not allowed at these auctions; Hammond and Morrill (2012) presented a model explaining this

feature of auto auctions.
10Some sellers choose not to report a reserve as they plan to either be present during the auction or to await a phone call

from the auction house informing them of the auction price prior to deciding whether to accept.
11According to conversations with participants and personal observations at auction houses, few buyers appear to visit

the auction house prior to the day of sale.
12If the seller a present during the auctioning of the car, the seller may choose to accept or reject the auction price

immediately. If the seller is not present but the auctioneer observes that the auction price and the reserve price far enough

apart that phone bargaining is very unlikely to succeed, the auctioneer may choose to immediately reject the auction price

on behalf of the seller.
13During the time a car is in the bargaining process, or if that bargaining has ended in no trade, interested buyers other

than the high bidder may also contact the auction house and place offers on the car. If the bargaining between the original

high bidder and seller ends in disagreement, bargaining commences with the next interested buyer as long as his offer is

higher than previous offers the seller has rejected. This occurs for about three percent of the cars in the full dataset. This

separate form of dynamics is not accounted for in the model below, and hence the observations are not included in the

analysis.
14If the seller is an institution then her identity is revealed, and institutions tend to try to build a positive reputation

of not setting excessively high reserve prices. Conversations with industry participants reveal that at some auction houses

outside of the data sample studied in this paper, the identity of small sellers is also revealed.
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given that the seller could have accomplished an equivalent outcome by reporting a lower secret reserve

price. Industry participants explain this phenomenon as having several potential causes: sellers system-

ically set high reserve prices due to overly optimistic beliefs about auction prices (Treece 2013) or in

attempt to influence auctioneers to achieve higher prices (Lacetera, Larsen, Pope, and Sydnor 2014), or

sellers are learning something about demand after observing the auction.15

If the auction and/or bargaining does not result in trade the first time the vehicle is up for sale (or

first “run”), the vehicle can either be taken back to the seller’s business location or, more often, remain

at the auction house until the next available sales opportunity, usually the following week.16 The seller

can change her reserve price before the next run of the vehicle. If trade takes place but the buyer feels

he has been given a lemon, he may, under certain conditions, request arbitration, in which the auction

house intervenes to either undo the sale or negotiate a lower sale price.17 This occurs less than three

percent of the time in practice.

The data used in this paper come from six auction houses, each maintaining a large market share in

the region in which it operates. Between January 2007 and March 2010 these auction houses passed over

600,000 vehicles through their lanes. The data from these auction houses includes detailed information

on each car, including make, model, year, trim, and odometer reading; condition report (prepared by the

auction house for fleet/lease vehicles); a blue book estimate provided by the auction house; the number of

pictures displayed in the online pre-sale profile of the car; disclosure codes for different types of damage

reported by the seller; and the identity of the seller.

An observation in the dataset represents a run of the vehicle, that is, a distinct attempt to sell the

vehicle through the auction or, if the reserve price is not met, through post-auction bargaining. The

total number of runs recorded in the data is approximately 1,000,000, so on average a vehicle passes

through the lanes 1.67 times. I treat each run as an independent observation and do not model dynamics

between runs. For a given run, the data records the date, time, auction house location, and auction

lane, as well as the seller’s secret reserve price, the auction price, and, when bargaining occurs over the

phone, the full sequence of buyer and seller actions (accept, quit, or counter), and the amounts of any

offers/counteroffers.

I drop observations with no recorded auction house blue book estimate; cars less than one year or

greater than 16 years old; cars with less than 100 miles or greater than 300,000 miles on the odometer;

observations in which the auction sale timestamp is missing; and observations for which the following

variables lie outside their respective 0.01 and 0.99 quantiles: auction price, reserve price, blue book price,

15For the estimation approach I adopt in Section 4, knowing the precise data-generating process for reserve prices is

unnecessary; it is only necessary that secret reserve prices be strictly increasing in the seller’s underlying true valuation, a

result generated by the model in Section 3. Appendix A.2 generalizes the theoretical results of Section 3 to a demand-learning

case.
16Genesove (1995) presented a search model to study the seller’s decision to reject the auction price and take the car back

to her own car lot.
17For a buyer to be able to request arbitration, the car’s sale price must be greater than $2,500 and the alleged lemon

feature of the car must fall into certain pre-determined categories, such as structural damage, which was unreported by the

seller.
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Table 1: Descriptive Statistics for Auto Auction Data

mean s.d. mean s.d.

Trade 0.711 0.453 0.760 0.427

Reserve price $7,380 $5,195 $10,307 $5,764

Auction price $6,257 $4,923 $9,826 $5,846

Blue book $6,812 $4,853 $10,963 $6,140

Age (years) 6.779 3.380 3.150 2.558

Mileage 97,920 46,511 57,178 40,320

Sample size 136,135 136,459

Dealers sample Fleet/lease sample

Notes: Trade is an indicator for whether trade occurred between the buyer and seller.

Blue book is an estimate of the market value of the car, provided by the auction house. 

or the gap between the reserve and auction price. I drop observations for which fewer than ten vehicles

were observed at a given make-model-year-trim-age combination or days in which fewer than 100 cars

were offered for sale at a given auction house. I drop observations where the auction price or reserve price

is missing or is equal to zero and incomplete bargaining sequences.18 In the end, I am left with 136,135

runs of cars sold by used-car dealers (which I will refer to as the dealers sample), and 136,459 sold by

fleet/lease sellers (which I will refer to as the fleet/lease sample).

Summary statistics are displayed in Table 1. The probability of trade is 0.71 in the dealers sample

and slightly higher in the fleet/lease sample. In the dealers sample, the average auction price is over

$1,000 below the average reserve price and about $600 below the average blue book price. Dealer cars

are on average seven years old and have nearly 100,000 miles on the odometer. Fleet/lease cars tend to

be newer (three years old and 57,000 miles), higher priced, and have a smaller gap between the reserve

and auction prices. Also, unlike dealer cars, in fleet/lease cars the reserve price does not exceed the blue

book price on average.

Table 2 displays the characteristics of observations in the dealers sample which end at each period of

the game, and similarly in Table 3 for the fleet/lease sample. For each period of the game, the columns

18Some observations record a secret reserve price or an auction price but not both. These observations, or observations

with incorrectly recorded bargaining sequences (such as a seller acceptance followed by a buyer counteroffer) are not suitable

for my final analysis but are still useful in controling for observable heterogeneity as explained in Section 4.2. Missing secret

reserve prices typically occur when the seller chooses not to report a reserve price, either planning to be present at the

auction sale to accept or reject the auction price in person or planning to have the auction house call her on the phone

rather than determining a reserve price ex-ante. Missing auction prices can occur due to the descending/ascending practice

of auctioneers: auctioneers do not start the bidding at zero; they start the bidding high and then lower the price until a

bidder indicates a willingness to pay, at which point the ascending auction begins. If bidders are slow to participate, the

auctioneer will cease to lower bids and postpone the sale of the vehicle until a later date, leaving no auction price recorded.

See Lacetera, Larsen, Pope, and Sydnor (2014).
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Table 2: Outcome of game by period: Dealers sample

Ending 

period

Player's 

turn # Obs  % of Sample % Trade

Reserve 

price

Auction 

price

Reserve 

price

Auction 

price

Final 

price

1 (Auction) 104,505 76.766% 80.67% $7,458 $6,447 $6,949 $6,048 $6,048

(39.49%) ($5,243) ($4,975) ($4,933) ($4,702) ($4,702)

2 S 11,075 8.135% 62.18% $6,622 $5,285 $6,366 $5,306 $5,306

(48.50%) ($4,952) ($4,646) ($4,862) ($4,626) ($4,626)

3 B 14,929 10.966% 13.85% $7,194 $5,575 $7,769 $6,544 $6,959

(34.54%) ($4,978) ($4,619) ($5,276) ($5,030) ($5,114)

4 S 3,293 2.419% 70.88% $7,721 $6,312 $7,563 $6,249 $6,503

(45.44%) ($5,147) ($4,844) ($5,015) ($4,728) ($4,803)

5 B 1,893 1.391% 44.43% $8,175 $6,627 $8,519 $7,001 $7,643

(49.70%) ($5,198) ($4,873) ($5,430) ($5,090) ($5,247)

6 S 247 0.181% 82.59% $8,265 $6,747 $8,307 $6,818 $7,306

(38.00%) ($5,353) ($5,051) ($5,437) ($5,143) ($5,244)

7 B 159 0.117% 60.38% $8,349 $6,746 $8,554 $6,992 $7,743

(49.07%) ($5,180) ($4,958) ($5,225) ($5,031) ($5,174)

8 S 25 0.018% 76.00% $8,968 $7,576 $8,934 $7,663 $8,197

(43.59%) ($5,045) ($5,001) ($5,599) ($5,557) ($5,628)

9 B 6 0.004% 66.67% $7,583 $6,225 $6,675 $5,188 $5,838

(51.64%) ($4,362) ($4,517) ($2,871) ($2,964) ($2,800)

10 S 3 0.002% 100.00% $8,333 $6,100 $8,333 $6,100 $7,233

(0.00%) ($5,620) ($4,453) ($5,620) ($4,453) ($5,701)

Notes: For each period (period 1 = auction and immediately following, period 2 = seller's first turn in post‐

auction bargaining, period 3 = buyer's first turn, etc.), table reports the number of observations ending in that

period, percent of total sample ending in that period, and percent of time which trade occurred. Table also

reports reserve price and auction price for observations ending in a given period and, for those observations

ending in trade, the reserve price, auction price, and final price conditional on trade. 

Conditional on trade occurring Full dealers sample

in these tables display the number of observations ending in that period, the percent of the total sample

which this number represents, the percent of cases which ended in trade, as well as the unconditional

reserve price and auction price (whether or not trade occurred) and the reserve price, auction price, and

final price estimated only using cases which did end in trade. Period 1 is the auction. Observations

ending in period 1 represent cases which ended with the auction or immediately thereafter, and hence
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Table 3: Outcome of game by period: Fleet/lease sample

Ending 

period

Player's 

turn # Obs  % of Sample % Trade

Reserve 

price

Auction 

price

Reserve 

price

Auction 

price

Final 

price

1 (Auction) 112,410 82.376% 80.73% $10,818 $10,559 $10,716 $10,655 $10,655

(39.44%) ($5,883) ($5,886) ($5,993) ($5,990) ($5,990)

2 S 11,016 8.073% 90.99% $7,412 $6,163 $7,386 $6,231 $6,231

(28.64%) ($4,593) ($4,387) ($4,588) ($4,391) ($4,391)

3 B 10,793 7.909% 13.89% $8,246 $6,464 $8,457 $7,257 $7,710

(34.58%) ($4,211) ($3,961) ($4,256) ($4,132) ($4,199)

4 S 1,013 0.742% 83.51% $8,619 $7,053 $8,608 $7,080 $7,404

(37.12%) ($4,476) ($4,236) ($4,473) ($4,242) ($4,316)

5 B 1,117 0.819% 46.73% $8,928 $7,338 $9,091 $7,643 $8,280

(49.92%) ($4,573) ($4,321) ($4,612) ($4,367) ($4,482)

6 S 47 0.034% 87.23% $9,083 $7,246 $8,780 $6,967 $7,587

(33.73%) ($4,451) ($4,423) ($3,986) ($3,881) ($4,092)

7 B 56 0.041% 57.14% $10,876 $8,915 $10,802 $8,680 $9,697

(49.94%) ($6,129) ($5,628) ($6,893) ($6,223) ($6,613)

8 S 4 0.003% 50.00% $11,250 $9,650 $6,250 $4,800 $5,475

(57.74%) ($7,263) ($6,730) ($1,768) ($1,131) ($1,591)

9 B 3 0.002% 33.33% $11,633 $10,150 $11,400 $10,600 $10,900

(57.74%) ($5,754) ($5,489) . . .

Full fleet/lease sample Conditional on trade occurring 

Notes: For each period (period 1 = auction and immediately following, period 2 = seller's first turn in post‐

auction bargaining, period 3 = buyer's first turn, etc.), table reports the number of observations ending in that

period, percent of total sample ending in that period, and percent of time which trade occurred. Table also

reports reserve price and auction price for observations ending in a given period and, for those observations

ending in trade, the reserve price, auction price, and final price conditional on trade. 

cases for which no bargaining actions are recorded.19

The remaining periods are labeled with even numbers for seller turns and odd numbers for buyer

19When the reserve is not met, the game may still end immediately (and very frequently does–61.26% of the time in the

dealers sample and 45.65% of the time in the fleet/lease sample (not shown in Tables 2–3)—when one of the following is

true: 1) the seller is present at the auction house and can immediately accept or reject the auction price; 2) the auctioneer

rejects the auction price on behalf of the seller, knowing that alternating-offer bargaining is unlikely to occur; or 3) the

high bidder walks away from bargaining before the seller is contacted. The third case is observable in the data, and occurs

1.32% of the time in the dealers sample and 0.59% of the time in the fleet/lease sample (not shown in Tables 2–3). The

first two cases are indistinguishable in the data, and therefore I assume that any time the auctioneer chooses to reject the

auction price on behalf of the seller this choice coincides with what the seller would have done given the chance.
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turns. Period 2 is the seller’s first turn in the post-auction bargaining game, and observations ending in

this period represent cases in which the seller accepted the auction price or quit. Period 3 is the buyer’s

first turn in bargaining, and is reached only if the seller chose to counter in period 2. Play continues back

and forth between the buyer and seller until one party accepts or quits.

Table 2 demonstrates that in 77% of the dealers sample the game ends at the auction, and in these

cases the final price when trade happens (which occurs 81% of the time) is naturally the auction price.

Consider now the fifth period of the game. Only 1.4% of the full sample reaches the this period, but

this still consists of nearly 2,000 observations. In the fifth period, when trade does occur, it occurs at

an average final price ($7,643) which is over $600 above the average auction price ($7,001), but still does

not reach as high as the average reserve price ($8,519). Overall, Table 2 suggests that observations which

ended in later periods had somewhat higher reserve prices than those ending in earlier periods, consistent

with Coasian dynamics. Only 3 buyer-seller pairs endured ten periods of the game, all of them coming

to agreement in the end, at an average price over $1,000 above the average auction price.

Table 3 displays similar patterns for the fleet/lease sample. 82% of the sample ended the game at the

auction. Less than one percent ended in the fifth period, but this still consists of over 1,000 observations.

Buyer-seller pairs who traded in this round did so at an average of $600 above the auction price. Other

than observations ending in the first period, observations with phone bargaining ending in later periods

had higher average reserve prices than those ending in earlier periods, again consistent with Coasian

dynamics. Three pairs remained for nine periods of the game, with only one of the three ending in trade.

3 Model of Post-Auction Bargaining with Secret Reserve Price

This section presents a model of the auction-followed-by-bargaining mechanism used at wholesale auto

auctions. I first discuss the timing of the mechanism and set up some general assumptions. I discuss each

stage of the game, starting from the end with the post-auction bargaining stage. I then present a model

of the ascending auction stage, demonstrating that truth-telling is a weakly dominant strategy, and the

stage in which the seller chooses a secret reserve price, demonstrating that the seller’s strategy is strictly

increasing.

The timing of the game at wholesale auto auctions is as follows:

1. Seller sets a secret reserve price.

2. N bidders bid in an ascending auction.

3. If the auction price exceeds the secret reserve price, the high bidder wins the item.

4. If the auction price does not exceed the secret reserve price, the high bidder is given the opportunity

to walk away, or to enter into bargaining with the seller.20

20At wholesale auto auctions, some large institutional sellers are given the option to elect to eliminate step 4 above,

implying that when the auction price does not meet the secret reserve price, the high bidder is not allowed to immediately
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5. If the high bidder chooses to enter bargaining, the auction price becomes the first bargaining offer,

and the high bidder and seller enter an alternating-offer bargaining game, mediated by the auction

house.

Throughout I maintain the following assumptions:

Assumptions.

(A1) The ascending auction follows a button auction model with N ≥ 2 risk-neutral bidders participating.

For i = 1, ..., N , each buyer i has a private valuation B̃i = W + Bi, with W ∼ FW , Bi ∼ FB, and

with Bi independent of W .

(A2) The risk-neutral seller has a private valuation S̃ = W + S, where S ∼ FS, with S independent of

W and Bi for all i.

(A3) In bargaining players face a per-offer disutility, (cB , cS) > 0, as well as discount factor, δ ∈ [0, 1),

where 1− δ represents the probability that bargaining will break down exogenously.

I further assume FB , FS , and FW have corresponding atomless densities fB , fS , and fW , with supports

[B,B], [S, S], and (−∞,∞). Let realizations of these random variables be denoted b, s, and w.

The assumption of private values implies that the random variable W is observed by all buyers and

the seller. In the estimation framework in Section 4, I allow W to be unobservable to the econometrician

but observed by all players, thus allowing for all players’ values to be correlated.21 Conditional on W ,

buyers and sellers have independent private values (IPV). A motivation for this framework is that buyer,

or dealer sellers, have valuations arising primarily from their local demand and inventory needs.22 Also,

seller valuations can depend on the value at which the car was assessed as a trade-in, or, for a bank or

leasing company, valuations can arise from the size of the defaulted loan.23 The button auction model is a

natural choice given that jump bidding is rare as it is the auctioneer who calls out bids, and bid increments

are small.24 The assumption of symmetry is not strong in this setting given that buyer identities are

unknown to the seller in bargaining and given the assumption of a private values button auction, implying

walk away from bargaining but must wait until the seller responds to the auction price. This situation is referred to

as a “binding-if auction.” It can be shown that in a binding-if auction, the seller’s secret reserve price strategy is only

guaranteed to be weakly increasing, rather than strictly as in the non-binding-if case. It can also be shown that bidders will

not necessarily drop out of bidding at their valuations but may instead drop out at a price slightly below their valuation

to account for the possibility of paying bargaining costs. In the data, there is no way to know if a sale took place in a

binding-if setting. I treat all auctions as non-binding-if auctions.
21I also introduce characteristics observable to both the econometrician and all players and I control for these observables.
22Conversations with buyers, sellers, and auction house employees support this assumption: buyers claim to decide upon

their willingness to pay before bidding begins, often having a specific retail customer lined up for a particular car. See Lang

(2011). Studying Korean auto auctions, Kim and Lee (2008) tested and failed to reject the IPV assumption, while Roberts

(2010) found evidence of unobserved auction-level heterogeneity (analogous to W ).
23These explanations for seller values are due to conversations with industry professionals. Note also that adverse

selection from the seller possessing more knowledge about car quality than the buyer is likely small because of auction

house information revelation requirements and because sellers are not previous owners/drivers of the vehicles.
24Bid increments lie between $25 and $100.
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that bidders’ auction strategies will not depend on the identities of other participants.25 The parameter

δ captures the feature that bargaining may end through an auction house employee failing to follow up

on a bargaining sequence, occurring in 1–2% of bargaining interactions.26

In what follows, I demonstrate two properties which prove useful for estimation: 1) a buyer’s auction

strategy is to drop out at his value, as in a standard ascending auction, and 2) the seller’s secret reserve

price strategy, ρ(S), is strictly increasing in her type S. I model the game conditional on a realization of

W and thus omit W for notational simplicity and return to it in Section 3.4).

3.1 Bargaining Stage

This section describes a simple model of the dynamic, post-auction bargaining game. The game begins

with an offer by the buyer in period t = 1. At wholesale auto auctions, this offer is the auction price

at the auction. The seller then chooses between accepting (A), quitting (Q)—meaning terminating the

negotiations—or making a counteroffer (C). Accepting ends the game, with trade taking place at the

accepted price. Quitting also ends the game, with no trade taking place. After a counteroffer by the

seller, play returns to the buyer, who then chooses between accepting, quitting, and counter offering.

Thus, at t even it is the seller’s turn, and at t odd it is the buyer’s turn. Below, I refer to period “t”

as being the seller’s turn and period “t + 1” as being the buyer’s turn. Where useful for clarification,

I also include the superscripts “S” or “B” in notation to denote an action taken by the seller or buyer

respectively.

Suppose it is the seller’s turn at time t. Let Ht ≡ {Pτ}t−1
τ=1 represent the set of offers made from

period 1 up through period t− 1. The player whose turn it is at time t has not yet made an offer and so

this offer does not enter into Ht. Let DS
t ∈ {A,Q,C} represent the seller’s decision in period t, and let

DB
t+1 ∈ {A,Q,C} represent the buyer’s decision in period t+ 1.

The seller’s payoff at time t is given by the following. Conditional on the history of offers being

Ht = ht ≡ {pτ}t−1
τ=1, which includes the buyer’s most recent offer PBt−1 = pBt−1, a seller of type S = s,

25See Coey, Larsen, and Sweeney (2014) for a formal treatment of the implications of asymmetries in ascending auctions.
26This number is based on the percent of bargaining sequence records in which trade failed and the sequence of offers was

incomplete, ending with an counteroffer. A key reason for modeling discounting (either time discounting or, in this case, a

probability of exogenous breakdown) lies in the results of Perry (1986), who showed in a game with two-sided uncertainty

that if 1) there is no discounting and 2) bargaining costs take the form of an additive cost common to all buyers and an

additive cost common to all sellers then the unique equilibrium is for bargaining to end immediately. Cramton (1991)

discusses how allowing for discounting overcomes this feature.
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chooses to accept (A), quit (Q), or counter (C), yielding the following payoffs:

A : pBt−1

Q : s

C : V St
(
s|ht

)
= max

p

{
pδ Pr

(
DB
t+1 = A|ht+1

)
+ s

(
δ Pr

(
DB
t+1 = Q|ht+1

)
+ 1− δ

)
+ δ Pr

(
DB
t+1 = C|ht+1

)(
δEPBt+1

[
max

{
PBt+1, s, V

S
t+2

(
s|Ht+2

)} ∣∣∣∣∣ht+1

]
+ s(1− δ)

)}
− cS

where p is the counteroffer chosen by the seller.27 The per-period bargaining disutility (cS > 0) is assumed

to be common across sellers, and the probability of not terminating exogenously (δ < 1) is assumed to be

common across sellers as well as buyers. The seller’s counteroffer payoff takes into account that the buyer

may either accept, quit, or return a counteroffer. In the latter case, the seller receives her expected payoff

from being faced with the decision in period t+ 2 to accept, quit, or counter. Exogenous breakdown may

occur in any period, in which case the seller receives s as a payoff.28

Similarly, the buyer’s payoff at time t + 1 is given by the following. Conditional on the history of

offers being Ht+1 = ht+1 ≡ {pτ}tτ=1, which includes the seller’s most recent offer PSt = pSt , a buyer of

type B = b chooses to accept (A), quit (Q), or counter (C), yielding the following payoffs:

A : b− pSt
Q : 0

C : V Bt+1

(
b|ht+1

)
= δ

(
max
p

{
(b− p) Pr

(
DS
t+2 = A|ht+2

)
+ δ Pr

(
DS
t+2 = C|ht+2

)
EPSt+2

[
max

{
b− pSt+2, 0, V

B
t+3

(
b|Ht+3

)} ∣∣∣∣∣ht+2

]})
− cB

where p is the counteroffer chosen by the buyer and cB > 0 represents the buyer’s per-period bargaining

disutility, assumed to be common across buyers. The buyer’s outside option is normalized to zero.

3.2 Ascending Auction Stage

This section discusses bidders’ strategies in the ascending auction stage of the mechanism. Bidder i’s

strategy is the price, βi, at which he stops bidding as a function of his type, Bi = bi, which represents his

27The realization ht+1 includes all of ht as well as the seller’s choice of counteroffer in this period, and the random variable

Ht+2 includes the seller’s choice in this period, as well as the buyer’s choice in the next period, the random variable PBt+1.
28In reality, the outside option of both the buyer and seller is a complicated object that cannot be estimated in the scope

of this data, as a buyer who exits bargaining has the choice to obtain vehicles from a variety of sources, such as other sales

at the same auction house, competing auction houses, online markets, or trade-ins, and a seller who exits bargaining may

choose to leave the car at the auction house, return the car to her car lot, or sell it through another source.
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valuation for the car. Let R = ρ(S) be a random variable representing the secret reserve price of seller

of type S who uses reserve price strategy ρ(·). Let

β = max
k 6=i

βk(Bk)

Bidder i will be the highest bidder if and only if βi > β. The expected payoff of bidder i from following

bidding strategy βi(bi) is given by

M(bi, β) =


(bi − β) Pr (β > R)

+πB(β, bi) Pr
(
β < R, πB(β, bi) > 0

)
, if βi > β.

0 otherwise.

(1)

Buyer i would decide to enter bargaining if πB(β, bi) > 0, where πB(β, bi) represents the buyer’s

expected payoff from entering bargaining, equivalent to the counteroffer payoff in the previous section

but with the auction price as the buyer’s counteroffer, rather than the maximizing counteroffer. In this

setup, the following property holds:

Proposition (1). If in the bargaining game the seller never accepts offers below the auction price, truth-

telling is weakly dominant for bidders in the auction stage. That is, βi(bi) = bi.

All proofs are found in Appendix A.

This result implies that the winning bid will be the second order statistic from the distribution of

buyer valuations, as in standard ascending or second price auctions.29 Intuitively, the assumption that

the seller never accepts bargaining offers below the auction price ensures that buyers will not be tempted

to bid beyond their valuations in the ascending auction stage in hopes of bargaining to a lower price in the

post-auction bargaining stage. This is supported by the data: the bargained price is not lower than the

auction price. Moreover, bidders are not tempted to drop out before the bidding reaches their valuations

because if the high bidder learns that the auction price did not meet the secret reserve, he can always

opt out of bargaining. And because the auction price is the second-highest valuation of the bidders, the

seller cannot infer anything about the valuation of the winner other than learning the point at which the

buyer distribution is truncated, eliminating any incentive of buyers to shade bids downward.

3.3 Secret Reserve Price Stage

In this section, I discuss the seller’s choice of a secret reserve price, chosen before the beginning of the

auction to maximize the seller’s expected revenue. Applying Proposition 1, the auction price will be B(2),

29Huh and Park (2010) found the same result in a theoretical model of second price auctions with complete informa-

tion (rather than incomplete information) post-auction bargaining: bidders’ strategies were unaffected by the presence of

bargaining.
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the second order statistic of buyer valuations. In choosing her secret reserve price, ρ(S), a seller of type

S = s wishes to maximize her ex-ante payoff, given by

EB(2),B

[
B(2) ∗ 1

{
B(2) > ρ(s)

}
+ s ∗ 1

{
B(2) < ρ(s), πB(B(2), B) ≤ 0

}
(2)

+ πS
(
B(2), s

)
∗ 1
{
B(2) < ρ(s), πB(B(2), B) > 0

}]
(3)

This term consists of three pieces: 1) the auction high bid, which the seller receives if it exceeds the

reserve; 2) the seller’s outside option, her type s, which the seller receives if the auction high bid is below

the reserve and the buyer opts out of bargaining; and 3) the seller’s bargaining payoff, πS
(
B(2), s

)
=

max
{
B(2), s, V S2

(
s|B(2)

)}
, which the seller receives when the high bid is below the reserve and bargaining

occurs. I apply a monotone comparative statics result from Edlin and Shannon (1998), a special case of

Topkis’s Theorem, to obtain the following:

Proposition (2). The seller’s optimal secret reserve price, ρ∗(s), is strictly increasing in s.

The intuition behind Proposition 2 is that the secret reserve price is never revealed and hence the seller

can use a separating strategy without perfectly signaling her type. To prove this result, I first show that

bargaining payoffs are weakly increasing in players’ types. The strict monotonicity relies on bargaining

being costly to buyers (Assumption A3), such that some buyers will choose to opt out of bargaining when

informed they did not meet the secret reserve. Without costly bargaining, Topkis’s Theorem can be used

to show that ρ∗(s) will be weakly increasing.

3.4 Auction-level Heterogeneity

Sections 3.1–3.3 derived results conditional on a given realization of auction-level heterogeneity. The

independence of W , S, and B in the model described above yields the following result:

Lemma (1). Suppose, when W = 0, the secret reserve is r and, for each period t at which the game

arrives, the offer is given by Pt = pt and the decision to accept, quit, or counter is given by Dt = dt.

Then when W = w the secret reserve will be r + w, the period t offer will be pt + w, and the period t

decision will be dt.

Lemma 1 is similar to results used elsewhere in the empirical auctions literature (Haile, Hong, and

Shum 2003) but is a generalization specific to this setting of a secret reserve price auction followed

by bargaining. The result makes it feasible to apply empirical approaches accounting for auction-level

heterogeneity, both observed and unobserved, as described in Sections 4.2–4.3. Lemma 1 is also crucial

in identifying the region of the buyer and seller type space in which trade occurs, as described in Section

5.2.
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4 Estimating Distributions of Buyer and Seller Valuations

In this section, I exploit the model properties derived above in order to estimate the distribution of buyer

and seller valuations. The estimation consists of several steps:

1. Accounting for auction house fees

2. Controlling for observed heterogeneity (auction-level characteristics observable to the econometri-

cian)

3. Controlling for unobserved heterogeneity (auction-level heterogeneity observed by the players but

not by the econometrician)

4. Estimating the distribution of buyer valuations through an order statistic inversion

5. Estimating bounds on the distribution of seller valuations using revealed preferences arguments

Let j = 1...J represent observations in the data, where each observation contains a complete set of

actions for one play of the game, i.e. a reserve price, auction price, and any bargaining actions. Let rrawj

and b
(2),raw
j represent the reserve price and auction price in the raw data, prior to any adjustments for

auction house fees or heterogeneity.

4.1 Auction House Fees

If trade occurs for car j, both the buyer and seller pay a fee, hj , to the auction house, and the fee schedule

is approximately a linear function of the transaction price, pj .
30 Let

h(p) = α0 + α1p.

Let hrj ≡ h(rrawj ) and hb
(2)

j ≡ h(b(2),raw) represent the fee which would be charged if rrawj or b(2),raw were

the final price. Using an estimate of these objects, the auction price for car j, can be adjusted upward to

account for the fact that a buyer would be required to pay the auction price as well as the fee, and the

reserve price an similarly be adjusted downward. Let

rhj ≡ rrawj − hrj
b
(2),h
j ≡ b(2),raw

j + hb
(2)

j

Thus rhj and b
(2),h
j represent the reserve price and auction price which would have occurred absent auction

house fees.31

Fees are observed in the data whenever a transaction occurs. Therefore, the parameters α0 and α1

can be estimated with a linear regression using the sample of data in which trade occurs. In practice,

30The fee paid by the buyer and seller are not necessarily equivalent for each car, but the fee schedules do not differ

drastically and approximating them as equivalent simplifies the fee adjustment.
31Note that this is simply an approximation and abstracts away from any effect which the presence of auction house fees

has on equilibrium prices.

17



fees can vary by auction house and can change from year to year. Therefore, I perform the above steps

by estimating α0 and α1 separately for each auction house and year.

4.2 Observed Heterogeneity

To account for auction-level characteristics, xj , which are observed to the econometrician as well as to

the players, I apply Lemma 1. I assume xj is independent of the unobserved heterogeneity of car j, wj

(unobserved by the econometrician but observed by all players). Let the total auction-level heterogeneity

be given by Γ(xj , wj) = x′jγ + wj . Lemma 1 implies that auction prices and reserve prices can be

“homogenized” (Haile, Hong, and Shum 2003) by jointly regressing reserve prices and auction prices on

observables as follows:

[
rhj

b
(2),h
j

]
=

[
x′jγ + γr

x′jγ

]
+

[
r̃j − γr
b̃
(2)
j

]
,

where r̃j = rj + wj , b̃
(2)
j = b

(2)
j + wj , and the parameter γr captures the difference in means between

reserve prices and auction prices. In the vector xj I include fifth-order polynomial terms (all degrees of

the polynomial from one through five) in the auction houses’ blue-book estimate, the odometer reading,

and the run number of the vehicle.32 xj also contains the number of previous auction attempts for the car;

the number of pictures displayed online; a dummy for whether or not the odometer reading is considering

accurate, and the interaction of this dummy with the odometer reading; the interaction of the odometer

reading with a car-make dummies; dummies for each make-model-year-trim-age combination (where age

refers to the age of the vehicle in years); dummies for condition report grade (ranging from 1-5, observed

only for fleet/lease vehicles); dummies for auction house location interacted with date of sale and auction

house location interacted with hour of sale; dummies for 32 different vehicle damage categories recorded

by the auction house; dummies for each seller who offers cars for sale at least 500 times; and dummies for

discrete odometer bins.33 Finally, xj also includes six measures of the thickness of the market during a

given auction sale.34 The R2 from this first-stage regression is 0.96 in the fleet/lease sample and 0.95 in

the dealers sample, implying that most of the variation in auction prices and reserve prices is explained

by observables.35 An estimate of r̃j is then given by subtracting x′j γ̂ from rhj , and similarly for b̃
(2)
j .

32The run number represents the order in which cars are auctioned. I include fifth-order polynomials for both the

run number within an auction-house-by-day combination, and the run number within an auction-house-by-day-by-lane

combination.
33Odometer bins are as follows: four equally sized bins for mileage in [0, 20000]; eight equally sized bins for mileage in

[20000, 80000]; four equally sized for mileage in [100000, 200000]; one bin for mileage in [200000, 250000]; and one bin for

mileage greater than 250000.
34I compute these market thickness measures as follows: for a given car on a given sale date at a given auction house, I

compute the number of remaining vehicles in still in queue to be sold at the same auction house on the same day which

lie in the same category as the car in consideration. The six categories I consider are make, make-by-model, make-by-age,

make-by-model-by-age, age, or seller.
35In order to improve estimates of γ, these regressions include observations for which the reserve price is recorded but the

auction price is missing and vice versa, as well as observations with incorrectly recorded bargaining sequences, as explained

18



4.3 Unobserved Heterogeneity

To account for heterogeneity wj in the value of car j which is observed by the players but not by the

econometrician, I apply a result due to Kotlarski (1967), which implies that observation of r̃j = rj + wj

and b̃
(2)
j = b

(2)
j + wj , along with an assumption that E[b(2)] = 0, is sufficient to identify the densities

fW , fR, and fB(2) . This identification result has been applied in estimation elsewhere in the auctions

literature by directly computing characteristic functions and applying Fourier inversions to perform a

deconvolution. I adopt a simpler approach using semi-nonparametric maximum likelihood (SNP).36 The

likelihood function be given by

L =
∏
j

[∫
fB(2)(b̃

(2)
j − w)fR(r̃j − w)fW (w)dw

]
(4)

I approximate each density using normalized Hermite polynomials. For each random variable Y ,

fY (y) ≈ 1

σ

(
K∑
k=0

θYk Hk

(
y − µY
σY

))2

1√
2π
e
− 1

2

(
y−µY
σY

)2

where K is a smoothing parameter; θY , µY , and σY are parameters; and Hk are Hermite polynomials

defined recursively by H1(y) = 1, H2(y) = y, and Hk(y) = 1√
k

[yHk−1(y)−
√
k − 1Hk−2(y)] for k > 2.

I maximize the likelihood in (4) subject to the constraints
∑K
i=1(θYi )2 = 1 for each random variable

Y , which ensures each approximated function is indeed a density function, and also subject to the

constraint E[b(2)] = 0. For the smoothing parameter I choose K = 5. The location and scale parameters

{µY , σY }Y=W,R,B(2) are not required for identification but improve the performance of the estimator and

are standard in SNP estimation with Hermite polynomials. I estimate them in an initial step, maximizing

(4) with the vectors θY set to zero for each Y , that is, each density fY is approximated by a N(µY , σY ).

I then plug in the estimated values of {µ̂Y , σ̂Y }Y=W,R,B(2) into (4) and maximize over {θY }Y=W,R,B(2) .

I perform the integration in (4) by Gauss-Hermite quadrature (See Appendix B.1).

4.4 Distribution of Buyer Valuations

Identification of the underlying distribution of buyer valuations, FB , follows from Proposition 2, which

implies that the auction price will be the second order statistic of buyer valuations. Given knowledge

of the distribution of the second order statistic of buyer valuations, FB(2) (which is identified by by the

previous section), and assuming a known distribution for N , the number of bidders, it is known that

FB(2)(b(2)) =
∑
n

Pr(N = n)
[
nFB(b(2))n−1 − (n− 1)FB(b(2))n

]
(5)

See, for example, Athey and Haile (2007). I assume N follows a Poisson distribution with mean λ,

truncated below at N = 2, yielding

FB(2)(b(2)) =
e−λ

1− e−λ(1 + λ)

(
eλFB(b(2))(1 + λ(1− FB(b(2))))− 1− λ

)
in Section 2.

36See Freyberger and Larsen (2014a) for details on SNP estimation in auction settings with unobserved heterogeneity.
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See Lemma 5 of Matsuki (2013).37 Given λ, and given an estimate of FB(2) from Section 4.3, the function

FB(b(2)) can be solved for at any point b(2) using standard nonlinear equation approaches.38 I adopt a

bisection method. Based on personal observation of many used-car auctions, I choose λ = 7 for dealer

sales and λ = 10 for fleet/lease sales.39

4.5 Distribution of Seller Valuations

To identify the distribution of seller valuations, I invoke an argument similar to the Haile and Tamer

(2003) bounds in English auction settings. The argument differs from Haile and Tamer (2003), however, in

that observation-level bounds are not available. Instead, I obtain bounds on the distribution of S̃ = S+W

relying on probability statements formed from many observations of sellers’ initial responses to the auction

price, B̃(2) = B(2) +W . I then translate these bounds to bounds on FS by applying Proposition 2.

As in Section 3, let DS
2 ∈ {A,Q,D} represent the seller’s choice in period 2 of the bargaining game

to accept, quit, or counter. Also, for purposes of identification, in cases where the auction price exceeded

the reserve price, or in cases where the auction price fell below the reserve price but there was immediate

trade, I consider DS
2 to have a value of accept (A); and in cases where there was immediate disagreement,

I consider DS
2 to have a value of quit (Q). Therefore, a realization of DS

2 = dS2 is available for each

observation in the data.

Observe that

Pr(DS
2 = A|B̃(2) = b̃(2)) ≤ Pr(S̃ ≤ b̃(2))

Pr(DS
2 = Q|B̃(2) = b̃(2)) ≤ Pr(S̃ ≥ b̃(2))

Both observations follow from revealed preference arguments. Intuitively, if a seller accepts an auction

price of b̃(2), it must be the case that the seller values the car less than b̃(2), and if the seller quits when

the auction price is b̃(2), it must be the case that the seller values keeping the car herself more than b̃(2).40

Define L̃(v) ≡ Pr(DS
2 = A|B̃(2) = v) and Ũ(v) ≡ Pr(DS

2 6= Q|B̃(2) = v).

Combining these two observations yields

L̃(v) ≤ FS̃(v) ≤ Ũ(v) (6)

37I modify Lemma 5 of Matsuki (2013) to apply to the case where N is always at least 2.
38Differentiating (5) yields the density:

fB(b(2)) =
fB(2) (b(2))(1− e−λ(1 + λ))

λ2eλ(FB(b(2))−1)(1− FB(b(2)))

An estimate of fB(2) comes from the sieve MLE approach of Section 4.3.
39Many more bidders are physically present at auction houses during auction sales; these numbers correspond approx-

imately to the mean number of bidders showing active interest in the auction. Similar numbers are found in Genesove

(1991).
40The equivalent of these two statements in the Haile and Tamer (2003) English auction setting, for buyer valuations,

is that a buyer never bids more than the buyer’s value and never lets a competitor win at a price the buyer would have

been willing to pay. Applying similar bounds for buyer choices in the bargaining game is more complicated than for seller

choices given that some bargaining games end quickly, before the buyer’s turn, and hence the bargaining games for which

a buyer’s choice is observable suffer from selection. See Freyberger and Larsen (2014b).
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In order to obtain bounds on FS rather than on FS̃ , recall that FR̃ and FR are both identified (the

former from observations of r̃ after controlling for observed heterogeneity and auction house fees, and the

latter from the identification argument in Section 4.3), and note that

FS̃(v) = Pr(S̃ ≤ v)

= Pr(ρ(S̃) ≤ ρ(v))

= FR̃(ρ(v)) (7)

The first equality follows by Proposition 2, that the function ρ(·) is strictly increasing, and the second

by Lemma 1, which implies that the reserve price in an auction where the seller’s value is given by the

random variable S̃ = S + W and the buyers’ values are random variables given by B̃ = B + W will be

R̃ = ρ(S) +W . Similarly, note that FS(v) = FR(ρ(v)). Inverting equation (7) implies

ρ(v) = F−1

R̃
(FS̃(v)).

Therefore,

FS(v) = FR(F−1

R̃
(FS̃(v))) (8)

Applying the operation FR(F−1

R̃
(·)) to the upper and lower bounds on FS̃ yields upper and lower

bounds on FS . Let FUS and FLS represent these upper and lower bounds.

In practice, I perform several steps to improve the estimates of the upper and lower bounds on FS̃

prior to applying the operation FR(F−1

R̃
(·)). I first estimate L̃(·) and Ũ(·) using a Nadayara-Waton kernel

regression.41 I then incorporate information on r̃ to improve estimates of the upper and lower bounds on

FS̃ and to ensure that these bounds correspond to distribution functions. Specifically, note that

R̃ > S̃ ⇒ FR̃(v) ≤ L̃(v) ≤ Ũ(v) (9)

Therefore, I enforce that both the upper and lower bounds on FS̃ lie above FR̃. I also impose that the

estimates of the lower and upper bounds on FS̃ be weakly increasing through the rearrangement approach

of Chernozhukov, Fernandez-Val, and Galichon (2009).42 Let L̃∗ and Ũ∗ represent the bounds on FS̃

41The Nadayara-Watson estimator for L̃(·) is given by

̂̃L(u) =

∑
j Kh(u− b̃(2)j )1{dS2,j = A}∑

j Kh(u− b̃(2)j )

where 1{dS2,j = A} is an indicator for whether the seller of car j chose to accept the auction price b
(2)
j . Kh is a Gaussian

kernel with bandwidth h set to the asymptotically optimal bandwidth for kernel density estimation of b̃(2). I follow the

same procedure for Ũ(·)
42In this setting, rearrangement is performed by simply sorting the lower bounds (estimated on a uniformly spaced grid)

and reassigning them to the original grid points, and similarly for the upper bounds. Chernozhukov, Fernandez-Val, and

Galichon (2009) demonstrated that, when estimating a monotone function, a rearranged estimate is always an improvement,

in terms of estimation error, over an original, nonmonotonic estimate. In practice, the approach is sensitive to extreme

outliers, and so for this esimation I do not include the top and bottom 0.1% of observations of b̃(2), where the kernel

regression estimates are noisy. In practice, the rearrangement has only little impact on the estimates, smoothing out small

nonmonotonic portions of the bounds.
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after enforcing (9) and after enforcing monotonicity. Finally, these estimates are not necessarily onto;

that is, there may not exist values of b̃(2) at which sellers accept or quit with probability very close to

0 or 1. I fill in these missing parts of the upper and lower bounds by assuming a constant gap between

quantiles FR̃ and those of the upper or lower bounds on FS̃ .43

After estimating FUS and FLS , upper and lower bounds on FS , I obtain draws from these distributions

by inverting the distributions at random uniform draws. I estimate the corresponding densities using

kernel density estimation of these draws.44

4.6 Distribution Estimates

Results displayed in Figures 1–4.

5 The Pareto Frontier and Real-World Bargaining

This section describes how the Pareto frontier and others counterfactual mechanisms can be solved for once

the distributions of seller and buyer valuations are known. I also describe identification and estimation

of the direct mechanism corresponding to the real-world, dynamic bargaining mechanism used at auto

auctions. I then bring together the estimates from Section 4 to analyze the efficieny of bargaining.

The counterfactuals hold fixed the distribution of buyer and seller types. In reality, changing the

mechanism could change the distribution of types.45 Also, in counterfactuals I only change bargaining—I

do not change the auction. Each counterfactual mechanism is a mechanism for bilateral trade between

the seller and high bidder after a no-reserve ascending auction has occurred. The auction selects the

highest-value bidder, and the lower bound for the buyer’s support in the post-auction bargaining game

becomes b(2), the high bid at the auction.46 Finally, the counterfactual comparisons all consider surplus

after removing auction-level heterogeneity, both observed and unobserved.

43To fill in these values of L̃∗(·) and Ũ∗(·) close to zero and one, I do the following. Let {vm}m=1,...,M represent the grid

of points on which L̃∗(·) is evaluated. Let vL = arg minm L̃∗(vm) and vL = arg maxm L̃∗(vm). Then

FL
S̃

(v) ≡


FR̃(v + r(vL)) if v < vL

L̃∗(v) if v ∈ [vL, vL]

FR̃(v + r(vL)) if v > vL

FLS is then given by FLS (v) ≡ FR(F−1

R̃
(FL
S̃

(v))). I follow the same steps for Ũ∗(·).
44As above, I use a Gaussian kernel with the asymptotically optimal bandwidth.
45For example, the buyer and seller types choosing to attend the auction house could change if the mechanism were

more or less favorable for certain types. Also, the distribution of seller types could change, because embedded in the seller

valuations is the option to attempt to sell the car the following week, and the payoff from doing so would change with the

mechanism.
46Note that I do not work with a direct mechanism in which N buyers and one seller simultaneously report types to a

mechanism designer, primarily because this mechanism would be starkly different from mechanisms applied in practice and

because I wish to focus on the efficiency of bilateral trade in particular. I also do not consider a secret reserve price in these

counterfactual mechanisms.
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Figure 1: Densities of reserve price and auction price with and without unobserved heterogeneity, and

density of unobserved heterogeneity.
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Figure 2: Bounds on distribution of S̃. Panels (a) and (b) display bounds prior to additional estimation

steps. Panels (c) and (d) display final bounds on S̃.
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Figure 3: Densities of seller valuations (upper and lower bound) with and without unobserved hetero-

geneity.
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Figure 4: Densities of seller valuations (upper or lower bound), buyer valuations, and auction price.
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5.1 Solving for the Pareto Frontier and other Direct Bargaining Mechanisms

In this section I discuss how I solve for the Pareto frontier and other direct, efficient mechanisms condi-

tional on a realization of B(2) = b(2). By the Revelation Principle (Myerson 1979), any static, incentive-

compatible, individually rational, bilateral trade mechanism can be written as a direct revelation mecha-

nism where player’s truthfully report their valuations to a broker and then trade occurs with probability

x(s, b), with the buyer paying p(s, b) to the seller.47 Williams (1987) demonstrated that a bilateral bar-

gaining mechanism can alternatively be summarized by the two objects (x, q), rather than (x, p), where

q is the expected utility for the type S.48 The ex-ante expected utility of the buyer and seller in a

mechanism (x, q) is given by

US(x, q) = q +

∫ B

b(2)

∫ S

S

x(s, b)FS(s)
fB(b)

1− FB(b(2))
dsdb (10)

UB(x, q) = G(x)− q +

∫ B

b(2)

∫ S

S

x(s, b)
(1− FB(b))

1− FB(b(2))
fS(s)dsdb (11)

where

G(x) =

∫ B

b(2)

∫ S

S

(φB(b)− φS(s))x(s, b)fS(s)
fB(b)

1− FB(b(2))
dsdb (12)

and

φS(s) ≡ φS(s, 1) φB(b) ≡ φB(b, 1)

φS(s, α1) = s+ α1
FS(s)

fS(s)
and φB(b, α2) = b− α2

1− FB(b)

fB(b)

Williams (1987) demonstrated further that the Pareto frontier, that is, the maximized value of

ηUS + (1− η)UB (13)

for η ∈ [0, 1], can be traced out by the class of mechanisms with trading rules, x(s, b), defined by

xα1(η),α2(η)(s, b) = 1 {φB(b, α2(η)) ≥ φS(s, α1(η))}

The parameters (α1(η), α2(η)) can be solved for at each η using an approach developed in Williams (1987)

and described in Appendix B.3. Intuitively, the approach maximizes (13) subject to G(xα1(η),α2(η)) ≥ 0,

where G(x) is defined in (12). This constraint implies that the worst types—the lowest buyer type

and highest seller type—must receive a non-negative surplus in order to be willing to participate in the

mechanism.

Existence of these mechanisms and the success of the solution method in Williams (1987) is guaran-

teed as long as φS(s) and φB(b) are weakly increasing. This assumption is common in the mechanism

47Note that the notation here is the reverse of Myerson and Satterthwaite (1983) and Williams (1987), in which p

represented the probability of trade and x represented the transfer.
48The transfer function, p, is not essential for the results here. I report it in Appendix B.3.
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design literature. I impose this condition on the estimated φS(s) and φB(b) before solving the counter-

factual mechanisms. To do so, I follow the rearrangement approach of Chernozhukov, Fernandez-Val,

and Galichon (2009). The monotonic estimates of φS(s) and φB(b) can then be used to re-solve for the

implied densities and distributions as described in Appendix B.2.49 Overall, the rearrangement has little

effect on the densities and distributions other than smoothing out small deviations from monotonicity.

Figure 8 in Appendix B.2 displays the original and rearranged densities.

Several mechanisms of interest fit into this framework, such as the following

1. First-best trade (infeasible mechanism where trade occurs whenever buyer values the car more than

seller): α1 = α2 = 0.

2. Second-best trade (the mechanism maximizing the gains from trade): η = 1/2, α1 = α2 = α∗,

where α∗ solves G(xα
∗,α∗

) = 0.

3. Seller-optimal: η = 1, α1 = 0, α2 = 1.

4. Buyer-optimal: η = 0, α1 = 1, α2 = 0.

5. Pareto frontier: mechanisms maximizing (13) subject to G(xα1(η),α2(η)) ≥ 0 for η ∈ [0, 1].

Note that an auction followed by the seller-optimal mechanism is equivalent to a public reserve auction.50

An additional mechanism with α1 = α2 = 1 is discussed in Myerson and Satterthwaite (1983) and would

maximize the gains to a broker (auction house) with market power. This mechanism is discussed in

Appendix C.

I derive an additional direct mechanism which maximizes the probability of trade rather than the

gains from trade. This result is a corollary to Theorem 2 of Myerson and Satterthwaite (1983) and the

proof follows the same line of reasoning as in Myerson and Satterthwaite (1983).51 The proof of existence

relies on strict monotonicity of φS(s) and φB(b), but in practice I am able to solve for it while only

imposing weak monotonicity as described above.

Corollary (1). Suppose φS(s) and φB(b) are both strictly increasing. Then the direct mechanism max-

imizing the probability of trade has allocation rule xκ(s, b) = 1 {φS(s)− (2κ)/(1− κ) ≤ φB(b)}, where

κ ∈ [0, 1) is the solution to G(xκ(s, b)) = 0.

Once the first-stage auction is taken into account, the ex-ante probability of trade in any of these

direct mechanisms is given by

Pr(trade) =

∫ B

B

∫ B

B(2)

∫ S

S

x(s, b; b(2))fS(s)
fB(b)

1− FB(b(2))
fB(2)(b(2))dsdbdb(2) (14)

49This use of Chernozhukov, Fernandez-Val, and Galichon (2009) for imposing monotonicity may be of independent

interest in empirical auctions work. For example, it provides a method for imposing monotone bidding function estimates

in first price auction settings, an alternative to the approach of Henderson, List, Millimet, Parmeter, and Price (2011).
50See Menezes and Ryan (2005).
51Note that the expected transfer functions for the mechanism in Corollary 1 are given by (20) and (21) in Appendix B.3
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and the expected gains from trade is given by∫ B

B

∫ B

B(2)

∫ S

S

(b− s)x(s, b; b(2))fS(s)
fB(b)

1− FB(b(2))
fB(2)(b(2))dsdbdb(2) (15)

To perform this integration, I use Gauss-Chebyshev quadrature, as described in Appendix B.1, with 200

nodes in the s and b dimensions, and 25 nodes in the b(2) dimension.52

5.2 Estimating the Dynamic Mechanism

This section describes how I solve for surplus in the currently used mechanism by backing out a direct

mechanism corresponding to the mechanism used at auto auctions. As with the above mechanisms, this

direct mechanism can be characterized by functions x and p determining whether or not trade will occur

and at what price. x and p will in general depend on the realization of the high bid at the auction, b(2),

as this is the lower bound of the support of buyer types when bargaining takes place.

Let the allocation function for the dynamic mechanism be written

xD(s, b; b(2)) ≡ 1
{
b ≥ g

(
ρ(s), b(2)

)}
(16)

where g(·) is an unknown function.53 Here I again rely on the result of Proposition 2 that ρ is strictly

increasing in s and hence the allocation function can be considered to be a function of s or of r = ρ(s);

the latter is more convenient computationally.

As (16) is currently written, g(·) is not identified given the available data: I observe whether or

not trade occurred, but I do not observe realizations of b, or even of r or b(2) because of unobserved

heterogeneity. However, for each observation in the data, I do have an estimate of r̃ = r + w and

b̃(2) = b(2) + w, which implies an estimate of ψ ≡ r̃ − b̃(2) = r − b(2). To exploit this result, note that

Lemma 1 implies that the allocation function can be simplified to

xD(r, b; b(2)) = 1
{
b− b(2) ≥ g

(
r − b(2), b(2) − b(2)

)}
(17)

= 1
{
b− b(2) ≥ g0

(
r − b(2)

)}
(18)

where g0(ψ) = g(ψ, 0). Recall that Lemma 1 demonstrates that the probability of trade in a setting

where realizations of the reserve price, auction price, and bargaining buyer’s type were given by (r, b(2), b)

would be the same as in a setting where each of these objects were reduced by a common amount. The

probability of trade at any value of ψ, a realization of the random variable Ψ = R − B(2), can then be

written

Pr(trade|Ψ = ψ) =

∫ B

B

1− FB
(
g0(ψ) + b(2)

)
1− FB

(
b(2)
) fR

(
ψ + b(2)

)
fB(2)

(
b(2)
)∫ B

B
fR(ψ + v)fB(2)(v)dv

db(2) (19)

52Increasing the number of nodes in any dimension did not change the results. A greater degree of accuracy in the b and

s dimensions than in the b(2) dimension is useful, as each mechanism is solved conditional on b(2).
53Although the counterfactual mechanisms discussed in Section 5.1 all had binary allocation functions, this is not nec-

essarily the case for the dynamic mechanism, but without assuming an indicator function the dynamic allocation function

would not be identified.
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Figure 5: Estimate of g0(R−B(2)) defining region where trade occurs.

I use (19) to solve for g0(·) on a grid of ψ using a bisection method. To estimate Pr(trade|Ψ = ψ), I

use a Nadayara-Watson kernel regression.54 To estimate the right hand side of (19), I use Gauss-Hermite

quadrature, plugging in each of the estimated densities. The expected gains from trade under the current

mechanism can then be evaluate as in (15), replacing x with the estimate of xD. Note that this estimate

ignores any loss in surplus due to bargaining costs. Section 5.4 discusses bounds on this loss.

5.3 Putting It All Together: How Efficient Is Bargaining?

Results displayed in Figures 5–7 and Table 4–5.

5.4 Bounding surplus lost due to bargaining costs

The parameters δ, cS , and cB can be partially identified as follows.

6 Conclusion

This paper examined the efficiency of bargaining from a real-world setting with two-sided incomplete

information. I developed a model and strategy for nonparametrically identifying and estimating the

distributions of valuations on both sides of the market without relying on a particular structure or

equilibrium for the bargaining game. I then mapped these distributions into the static, direct revelation

mechanism framework which traces out the efficient frontier derived in Myerson and Satterthwaite (1983)

and Williams (1987). I found that the deadweight loss due to incomplete information—the gap between

the first-best trade line and the second-best frontier—is small in the wholesale used-car market. I also

54I use a Gaussian kernel with bandwidth set to the asymptotically optimal bandwidth for kernel density estimation of

Ψ.
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Figure 6: Expected gains from trade in dynamic mechanism and on Pareto frontier.

31



0 2 4 6 8
0

2

4

6

8

Seller payoff

B
uy

er
 p

ay
of

f

Dynamic Pareto frontier

First−best

(a) Dealers, seller upper bound

0 2 4 6
0

1

2

3

4

5

6

7

Seller payoff

B
uy

er
 p

ay
of

f
Dynamic Pareto frontier

First−best

(b) Fleet/lease, seller upper bound

0 1 2 3 4 5
0

1

2

3

4

5

Seller payoff

B
uy

er
 p

ay
of

f

Dynamic Pareto frontier

First−best

(c) Dealers, seller lower bound

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Seller payoff

B
uy

er
 p

ay
of

f

Dynamic Pareto frontier

First−best

(d) Fleet/lease, seller lower bound

Figure 7: Expected gains from trade in dynamic mechanism, on Pareto frontier, and on first-best efficient

frontier.
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Table 4: Dealers sample: Expected gains from trade and prob of trade in counterfacual and current

mechanisms

First‐best

Second‐

best

Buyer‐

optimal

Seller‐

optimal

Dynamic 

mechanism

Expected gains 7.097 6.866 6.428 6.862 6.527

from trade (0.262) (0.236) (0.260) (0.238) (0.339)

Buyer gains 0.903 5.384 0.898 0.714

(0.067) (0.199) (0.066) (0.068)

Seller gains 5.962 1.044 5.964 5.375

(0.219) (0.107) (0.219) (0.316)

Probability of  0.980 0.974 0.852 0.973 0.711

trade (0.008) (0.009) (0.020) (0.008) ‐‐

First‐best

Second‐

best

Buyer‐

optimal

Seller‐

optimal

Dynamic 

mechanism

Expected gains 4.551 4.442 3.460 4.432 4.131

from trade (0.152) (0.154) (0.153) (0.154) (0.166)

Buyer gains 0.795 2.715 0.780 0.704

(0.058) (0.175) (0.055) (0.067)

Seller gains 3.647 0.745 3.652 2.989

(0.134) (0.111) (0.134) (0.130)

Probability of  0.916 0.868 0.541 0.862 0.711

trade (0.008) (0.010) (0.025) (0.010) ‐‐

A. Counterfactuals under seller distribution upper bound (units=$1,000)

A. Counterfactuals under seller distribution lower bound (units=$1,000)

Notes: Dealers sample. Direct, static mechanisms compared to current 

dynamic mechanism based on estimated gains, payment, and probability of 

trade. Gains are in $1,000 units. Standard errors are from 200 bootstrap 

replications. 
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Table 5: Fleet/lease sample: Expected gains from trade and prob of trade in counterfacual and current

mechanisms

First‐best

Second‐

best

Buyer‐

optimal

Seller‐

optimal

Dynamic 

mechanism

Expected gains 7.097 6.866 6.428 6.862 6.527

from trade (0.262) (0.236) (0.260) (0.238) (0.339)

Buyer gains 0.903 5.384 0.898 0.714

(0.067) (0.199) (0.066) (0.068)

Seller gains 5.962 1.044 5.964 5.375

(0.219) (0.107) (0.219) (0.316)

Probability of  0.980 0.974 0.852 0.973 0.711

trade (0.008) (0.009) (0.020) (0.008) ‐‐

First‐best

Second‐

best

Buyer‐

optimal

Seller‐

optimal

Dynamic 

mechanism

Expected gains 4.551 4.442 3.460 4.432 4.131

from trade (0.152) (0.154) (0.153) (0.154) (0.166)

Buyer gains 0.795 2.715 0.780 0.704

(0.058) (0.175) (0.055) (0.067)

Seller gains 3.647 0.745 3.652 2.989

(0.134) (0.111) (0.134) (0.130)

Probability of  0.916 0.868 0.541 0.862 0.711

trade (0.008) (0.010) (0.025) (0.010) ‐‐

A. Counterfactuals under seller distribution upper bound (units=$1,000)

A. Counterfactuals under seller distribution lower bound (units=$1,000)

Notes: Dealers sample. Direct, static mechanisms compared to current 

dynamic mechanism based on estimated gains, payment, and probability of 

trade. Gains are in $1,000 units. Standard errors are from 200 bootstrap 

replications. 
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found that the deadweight loss due to mechanism choice/limited commitment is quite small. This result

is consistent with the hypothesis of Wilson (1986) and Ausubel and Deneckere (1993) who suggested that

it may be that “[dynamic bargaining mechanisms] survive because they employ trading rules that are

efficient for a wide class of environments.”

The use of dynamic, post-auction bargaining may seem puzzling at first: why wouldn’t used cars

be sold with a standard auction format, such as an auction with no reserve price or an auction with a

public reserve price? The findings of this paper shed some light on this question. Recall that, in this

setting, it is the auction house, rather than the seller, who chooses the mechanism. An auction house is a

platform in a two-sided market, required to attract both buyers and sellers, each with private information

about his or her valuation for the good. A no-reserve auction could drive some high-value sellers out

of the market. And while a public reserve auction is optimal for the seller, alternative mechanisms,

including post-auction bargaining, may be preferred for the buyer or for the auction house, and may

allow the market to achieve a more efficient allocation. Alternating-offer bargaining in particular is a

natural mechanism which is easy for players to understand and for the auction house to implement, and

which does not require the same level of commitment as static bargaining mechanisms, which, while more

efficient, require players to sometimes walk away from negotiations even when it is discovered ex-post

that gains from trade exist.55

As highlighted in Appendix C, the nature of wholesale used-car industry as a network of competing

platforms likely affects auction houses’ choice of mechanism—both the choice of whether or not to allow

post-auction bargaining as well as the choice of fee structure. Studying the role of two-sided uncertainty

and competition among auction houses in determining auction houses’ choice of mechanism is infeasible

in the data I use in this paper but would be a valuable goal for future research.
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A Proofs and Generalizations

A.1 Proofs

Proof of Proposition 1

Proof. Note that πB(β, bi) is given by

πB(β, bi) = δ

(
(bi − β) Pr

(
DS

2 = A|β
)

+ δ Pr
(
DS

2 = C|β
)
EPS2

[
max

{
bi − PS2 , 0, V B3

(
bi|{β, PS2 }

)} ∣∣∣∣∣β
])
− cB

This expression is the payoff to the buyer from stating the auction high bid as a counteroffer, which is

how the post-auction bargaining game begins.

Because the high bidder, after learning that the high bid did not meet the secret reserve price, has the

option to immediately walk away without entering bargaining, the payoff M(β, bi) cannot be negative.

To see that truth-telling is a dominant strategy, suppose first that bidder i drops out at some βi < bi.

1. If bi ≤ β, then βi < bi ≤ β, so bidder i is not the high bidder, and would not have been even if he

had bid βi = bi.
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2. If bi > β, then the following is true:

(a) If β < βi < bi, then bidder i is the high bidder and gets an expected payoff of M(β, bi).

(b) If βi < β < bi, then bidder i loses, but i would have been the high bidder if he had bid bi, and

would have again made M(β, bi).

Thus, dropping out at a price less than bi will never raise bidder i’s payoff, and in some cases may decrease

it.

Now, suppose that bidder i drops out at some βi > bi

1. If β ≤ bi, then β ≤ bi < βi, then bidder i is the high bidder and gets payoff M(β, bi), but would

have received this same payoff dropping out at bi. Also, as noted above, because it is the auctioneer,

rather than the bidders, who calls out bids, a player cannot actually outbid himself in an attempt

to win the object while avoiding costly bargaining.

2. If β > bi, then the following is true:

(a) If bi < βi < β, then bidder i loses, and would not have been the high bidder even if he had

bid βi = bi.

(b) If bi < β < βi, then bidder i is the high bidder, but would not choose to enter bargaining

because the condition that the seller never accepts offers below the auction high bid rules out

the possibility that bidder i could receive a positive payoff by bargaining.

Proof of Proposition 2

Proof. In order to prove this result, the following lemma is useful

Lemma (A). For any finite T and history ht, V
S
t (s|ht) is weakly increasing in s and V Bt+1

(
b|ht+1

)
is

weakly increasing in b for all t ≤ T .

Proof of Lemma A

The proof proceeds by induction on the number of periods remaining. Suppose there are T total periods

in the game and there is currently one period remaining: it is the seller’s turn and after her turn the

buyer will only be allowed to accept or quit. Let hT−1 represent the history at the beginning of period

T − 1 and hT the history in the final period. The seller’s payoff from countering at a price of p is then

UST (s, p|hT−1) ≡
(
pδ Pr(DB

T = A|hT ) + s
(
δ(1− Pr(DB

T = A|hT )) + 1− δ
))
− cS

Let p∗(s|hT−1) = arg maxpW
S
T (s, p|hT−1). That is, V ST−1(s|hT−1) = WS

T−1(s, p∗(s|hT−1)|hT−1).

Now let VT−1(s, s′|hT−1) represent the payoff to the seller of type s who mimics type s′ < s. Clearly

VT−1(s, s|hT−1) ≥ VT−1(s, s′|hT−1) because VT−1(s, s|hT−1) is the maximized counteroffer payoff given
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the seller’s true value, s. It remains to be shown that VT−1(s, s′|hT−1) ≥ VT−1(s′, s′|hT−1). Below, let

hT represent the history in period T when the seller of type s has mimicked type s′ in period T −1. That

is, hT = {hT−1, p∗(s′|hT−1)}. Observe that

VT−1(s, s′|hT−1) =
(
p∗(s′|hT−1)δ Pr(DB

T = A|hT ) + s(δ(1− Pr(DB
T = A|hT )) + 1− δ)

)
− cS ,

and

VT−1(s′, s′|hT−1) =
(
p∗(s′|hT−1)δ Pr(DB

T = A|hT ) + s′(δ(1− Pr(DB
T = A|hT )) + 1− δ)

)
− cS

Thus,

VT−1(s, s′|hT−1)− VT−1(s′, s′|hT−1) = (s− s′)(δ(1− Pr(DB
T = A|hT )) + 1− δ)

≥ 0

Therefore, VT−1(s, s|hT−1) ≥ VT−1(s′, s′|hT−1), and the seller’s counteroffer payoff is weakly increasing

in her type when there is one period remaining.

To complete the proof by induction,, let V ST−(t−1)(s|h
T−(t−1)) denote the seller’s counteroffer payoff

with t− 1 periods remaining, and suppose V ST−(t−1)(s|h
T−(t−1)) is weakly increasing s. Note that when

there are t periods remaining, VT−t(s, s|hT−t) ≥ VT−1(s, s′|hT−t) by the same argument as above. It

remains to be shown that VT−t(s, s
′|hT−t) ≥ VT−t(s′, s′|hT−t). Let

hT−(t−1) = {hT−t, p∗(s′|hT−t)}

HT−(t−2) = {hT−t, p∗(s′|hT−t), PBT−(t−1)}

Note that

VT−t(s, s
′|hT−t)− VT−1(s′, s′|hT−t)

= (s− s′)
(
δ Pr

(
DB
T−(t−1) = Q|hT−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|hT−(t−1)

)
×
(
δEPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−1)

(
s, s′|HT−(t−2)

)}
− max

{
PBT−(t−1), s

′, V ST−(t−1)

(
s′, s′|HT−(t−2)

)} ∣∣∣∣∣hT−(t−1)

]
+ (s− s′)(1 + δ)

)
≥ 0

Therefore, VT−t(s, s|hT−t) ≥ VT−t(s
′, s′|hT−t), completing the proof. The proof that the buyer coun-

teroffer payoff, V Bt+1

(
b|ht+1

)
, is increasing follows by the same steps.

(Continuation of Proof of Proposition 2)
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Let χ(b) be defined by 0 = πB(χ, b), where πB is defined in the proof of Proposition 1. Intuitively, χ

is the high bid at the auction which would make a high bidder of type b indifferent between bargaining

and not bargaining. Note that, for b′ > b, πB(χ(b), b′) > 0, because V B3 (·) is increasing in b by Lemma A.

Thus, χ(b′) > χ(b), and hence χ−1, the inverse, exists and is also strictly increasing. To make notation

clear, if y = χ(b), then this inverse function gives b = χ−1(y), which defines the lowest buyer type who

would enter bargaining when the high bid is y. Also, note that χ(b) < b because πB(b, b) < 0 due to

cB > 0.

The seller’s payoff can then be re-written as∫ B

ρ

b(2)fB(2)(b(2))db(2) +

∫ ρ

B

[∫ χ−1(b(2))

b(2)
sfB(b)db+

∫ B

χ−1(b(2))

πS
(
b(2), s

)
fB(b)db

]
fB(2)(b(2))

1− FB(b(2))
db(2)

=

∫ B

ρ

b(2)fB(2)(b(2))db(2) +

∫ ρ

B

[
s
(
FB(χ−1(b(2)))− FB(b(2))

)
+ πS

(
b(2), s

)(
1− FB(χ−1(b(2)))

)] fB(2)(b(2))

1− FB(b(2))
db(2)

Differentiating the above expression using Leibniz Rule yields the following first-order condition for

ρ:

∂

∂ρ
= −ρ+ s

FB(χ−1(ρ))− FB(ρ)

1− FB(ρ)
+ πS (ρ, s)

1− FB(χ−1(ρ))

1− FB(ρ)

Lemma A implies that πS
(
b(2), s

)
is weakly increasing in s, and thus ∂

∂ρ will be strictly increasing in

s because FB(χ−1(ρ)) > Fb(ρ) given that χ−1(·) is strictly increasing and fB(·) is atomless. Given that
∂
∂ρ is strictly increasing in s, the Edlin and Shannon (1998) Theorem implies that, as long as the optimal

ρ∗(s) lies on the interior of the support of ρ, ρ∗(s) will be strictly increasing in s. The support of ρ is the

real line, thus completing the proof. Note that without costly bargaining a weak monotonicity can still

be obtained following Topkis Theorem.

Proof of Lemma 1

Proof. Given the structure of additive separability in the willingness to pay/sell, the goal is to show that

the auction high bid, players’ bargaining counteroffers, and the seller’s secret reserve price will also be

additively separable in the auction-level heterogeneity. Suppose the auction-level heterogeneity is given

by a fixed scalar, W = w. The buyer’s type is given by B̃ = B +W ∼ FB̃ , with density fB̃ . The seller’s

type is given by S̃ = S +W .

That the auction high bid will be additively separable in W is obvious, given that the bidding func-

tion is the identity function. To demonstrate that bargaining offers are also additively separable, the

proof proceeds by induction on the number of periods remaining. Suppose there is currently one period

remaining in the bargaining game: it is the seller’s turn and after her turn the buyer will only be allowed

to accept or quit.

In the final period, a buyer with type B̃ = b̃ will accept a price, p̃, if and only if p̃ ≤ b̃. In period
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T − 1, the seller of type S̃ = s̃ chooses p̃∗ to solve

p̃∗ = arg max
p̃
{δp̃(1− FB̃(p̃)) + s̃ (δFB̃(p̃) + 1− δ)− cS}

= w + arg max
p
{δp(1− FB(p)) + s (δFB(p) + 1− δ)− cS + w(1− FB(p)) + w (δFB(p) + 1− δ)}

= w + arg max
p
{[δp(1− FB(p)) + s (δFB(p) + 1− δ)− cS ] + w}

Therefore, the penultimate bargaining offer in the heterogeneous setting is w above the bargaining offer

from the homogeneous good setting, and similarly for the seller’s maximized payoff.

To complete the proof by induction, suppose that offers and payoffs in periods T−(t−1) and T−(t−2)

are w higher than their homogeneous good counterparts. It remains to be shown that the same holds

true for the offers and payoffs in period T − t. Let all (̃·) expressions represent the heterogeneous model

expressions. The seller’s payoffs from accepting, declining, or countering in period T − t can be written

as follows:

A : p̃BT−(t+1) = w + pBT−(t+1)

D : s̃ = w + s

C : Ṽ ST−t

(
s̃|h̃T−t

)
= max

p̃
p̃δ Pr

(
DB
T−(t−1) = A|h̃T−(t−1)

)
+ s̃

(
δ Pr

(
DB
T−(t−1) = Q|h̃T−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|h̃T−(t−1)

)
×

(
δEP̃B

T−(t−1)

[
max

{
P̃BT−(t−1), s̃, Ṽ

S
T−(t−2)

(
s̃|H̃T−(t−2)

)} ∣∣∣∣∣hT−(t−1)

]
+ s̃(1− δ)

)
− cS

= w + max
p

pδ Pr
(
DB
T−(t−1) = A|hT−(t−1)

)
+ s

(
δ Pr

(
DB
T−(t−1) = Q|hT−(t−1)

)
+ 1− δ

)
+ δ Pr

(
DB
T−(t−1) = C|hT−(t−1)

)
×

(
δEPB

T−(t−1)

[
max

{
PBT−(t−1), s, V

S
T−(t−2)

(
s|HT−(t−2)

)} ∣∣∣∣∣hT−(t−1)

]
+ s(1− δ)

)
− cS

The last line follows by removing w from each expression and from the following claim: the probability of

the buyer accepting, declining, or countering in period T − (t− 1) will be the same in the heterogeneous

good model as in the homogeneous good model. To prove this claim note that the buyer’s payoffs for
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each action are given by:

A : b̃− p̃ST−t = b− pST−t
D : 0

C : Ṽ BT−(t−1)

(
b̃|h̃T−(t−1)

)
= δ

(
max
p̃

(b̃− p̃) Pr
(
DS
T−(t−2) = A|h̃T−(t−2)

)
+ δ Pr

(
DS
T−(t−2) = C|h̃T−(t−2)

)
EP̃S

T−(t−2)

[
max

{
b̃− P̃ST−(t−2), 0, Ṽ

B
T−(t−3)

(
b̃|H̃T−(t−3)

)} ∣∣∣∣∣h̃T−(t−2)

])
− cB

= V BT−(t−1)

(
b|hT−(t−1)

)
Finally, consider the seller’s secret reserve price in the auction with auction-level heterogeneity w. Let

χ̃ satisfy 0 = πB(χ̃, b̃). Note that πB(χ̃, b̃) = πB(χ, b) by the above arguments for the buyer’s bargaining

payoff. The first order condition for the seller’s secret reserve, r̃ = ρ(s̃), from the proof of Proposition 2,

will be given by

∂

∂r̃
= −r̃ + s̃

FB̃(χ̃−1(r̃))− FB̃(r̃)

1− FB̃(r̃)
+ πS (r̃, r̃)

1− FB̃(χ̃−1(r̃))

1− FB̃(r̃)

= −r̃ + w + s
FB(χ−1(r̃ − w))− FB(r̃ − w)

1− FB(r̃ − w)
+ πS (r̃ − w, s) 1− FB(χ−1(r̃ − w))

1− FB(r̃ − w)

Therefore, the optimal secret reserve price in the heterogeneous setting will be w above the optimal

reserve in the homogenous setting, completing the proof.

Proof of Corollary 1

Proof. This proof follows similar steps to those in the proof of Theorem 2 of Myerson and Satterthwaite

(1983) and relies on results from Theorem 1 of Williams (1987). The problem is to find an allocation rule

x : [b(2), B]× [S, S]→ [0, 1] to maximize∫ B

b(2)

∫ S

S

x(s, b)fS(s)fB(b)dsdb

subject to the players’ participation constraint, which is

0 ≤
∫ B

b(2)

∫ S

S

(φB(b, 1)− φS(s, 1))x(s, b)fS(s)fB(b)dsdb

See Myerson and Satterthwaite (1983) for more details. Letting λ denote the Lagrange multiplier, the

unconstrained problem is to maximize∫ B

b(2)

∫ S

S

(1 + λ (φB(b, 1)− φS(s, 1)))x(s, b)fS(s)fB(b)dsdb
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For any λ ≥ 0, the Lagrangian is maximized when x(s, b) = 1 if and only (1 + λ (φB(b, 1)− φS(s, 1))) ≥ 0.

To achieve this result, let

1

λ
=

2κ

1− κ
κ ∈ [0, 1) may then be solved for to equate the participation constraint to zero. That is, let

G̃(κ) =

∫ B

b(2)

∫ S

S

(φB(b, 1)− φS(s, 1))xκ(s, b)fS(s)fB(b)dsdb

where

xκ(s, b) = 1

{
φS(s, 1)− 2κ

1− κ
≤ φB(b, 1)

}
Observe that xκ(s, b) is decreasing in κ. Therefore, for some α < κ, G̃(α) will differ from G̃(κ) only

because 0 = xα(s, b) < xκ(s, b) = 1 for some (s, b) where φB(b, 1) < φS(s, 1)− 2α
1−α , implying that at that

same (s, b), it must be the case that φB(b, 1) < φS(s, 1). Thus, as κ increases, xκ(s, b) yields trade at

regions of the type space at which (φB(b, 1)− φS(s, 1)) is negative. Therefore, G̃(κ) is decreasing in κ.

To prove the G̃(κ) is continuous, note that if φS(s, 1) and φB(b, 1) are both strictly increasing, then

given any b and κ, the equation φB(b, 1) = φS(s, 1)− 2α
1−α has at most one solution in s, so G̃(κ) can be

written as

G̃(κ) =

∫ B

b(2)

∫ g̃(b,κ)

S

(φB(b, 1)− φS(s, 1)) fS(s)fB(b)dsdb

where h̃(b, κ) is continuous in b and κ, so G̃(κ) is continuous. Note also that G̃(0) >= 0, and

limκ→1 G̃(κ) = −∞. Therefore, there exists a unique κ ∈ [0, 1) such that G̃(κ) = 0. By Theorem 1

of Williams (1987), the transfer function of this mechanism will by given by (20) and (21).

A.2 Generalization to Demand-learning Case

Let ...

B Additional Computational Details

B.1 Gaussian Quadrature

The counterfactual analysis in this paper requires the evaluation of a significant number of integrals, such

as (14). In order to achieve accuracy and limit the computational burden, I employ Gauss-Chebyshev

integration, as advocated by Judd (1998), with a large number of nodes. Specifically, let zk, k = 1, ...,K

be the Chebyshev nodes, given by zk = cos(π(2k − 1)/(2K)). Let g(v) be the function to be integrated.

Then ∫ v

v

g(v)dv ≈ π(v − v)

2K

K∑
k=1

g(xk)wk
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where xk = (1/2)(zk + 1)(v − v) + v and wk = (1− z2
k)1/2. For integration in multiple dimensions, I use

a tensor product: ∫ u

u

∫ v

v

g(v, u)dvdu ≈ π2(v − v)(u− u)

(2K)2

K∑
j=1

K∑
k=1

g(xk, xj)wkwj

See Kythe and Schäferkotter (2005) or Judd (1998) for additional details. In the estimation of integrals

in this paper, I use 200 nodes when integrating in the dimension of the seller’s or high bidder’s type.

Accuracy in these two dimensions is essential, as this is the level at which I solve for counterfactual

mechanisms (conditional on the high bid). The integration over the high bid, on the other hand, is not

involved in solving for mechanisms, so I use 25 nodes in this dimensions. Increasing the number of nodes

beyond 25 does not change results.

In evaluating the SNP likelihood function in Section 4.3, I employ Gauss-Hermite quadrature as

follows. Let ...

B.2 Imposing Monotonicity and Solving for Implied Density/Distribution

I impose that φS(s) and φB(b) be weakly increasing following the rearrangement approach of Cher-

nozhukov, Fernandez-Val, and Galichon (2009). In practice, this operation can be performed as follows.

Let a grid of values on [S, S] be given by zS = [zS1 , ..., z
S
K ] and on [B,B be given by zB = [zB1 , ..., z

B
K ]′. Let

φ̂S(zS) and φ̂B(zB) be the estimates of φS and φB obtained by plugging in the estimated distributions

and densities from Sections 4.4-4.5 evaluated at the elements of zB and zS . Rearrangement is performed

by simply sorting the vector φ̂S(zS) and reassigning the sorted values to the original zS vector, and

similarly for φ̂B(zB). Let φ̂∗S(zS) and φ̂∗B(zB) denote the rearranged estimates.

The implied densities and distributions corresponding to the rearranged estimates can then solved for

by noting that d lnFS(s)/ds = fS(s)/FS(s), which implies∫ s

S

1

φS(u)− u
du = lnFS(s)− lnFS(S) ⇒ FS(s) = e

(∫ s
S

1
φS(u)−udu+lnFS(S)

)

and similarly for FB . Thus,

F̂ ∗S(zSk ) = e

(∫ zSk
S

1
φ̂∗
S

(u)−u
du+ln F̂S(zS1 )

)
and f̂∗S(zSk ) =

F̂ ∗S(zSk )

φ̂∗S(zSk )− zSk

F̂ ∗B(zBk ) = 1− e

(∫ zBk
B

1
φ̂∗
B

(u)−u
du+ln(1−F̂B(zS1 ))

)
and f̂∗B(zBk ) =

1− F̂ ∗B(zBk )

zBk − φ̂∗B(zBk )

Figure 8 displays the results of this monotization on the estimated densities.

B.3 Solving for the Pareto Frontier and the Transfer Function

The Pareto frontier which can be achieved by static, incentive compatible, individually rational, bilateral

trade mechanisms can be solved for using Theorem 3 of Williams (1987), which states the following.

Recall that each mechanism is summarized by two objects, (x, q), defined in Section 5.
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Figure 8: Densities of seller valuations (upper and lower bound on seller valuations) and buyer valuations

before and after imposing monotonicity through rearrangement.
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Theorem (from Williams 1987).

Suppose φs(s) and φb(b) are weakly increasing. Then

1. For 0 ≤ η < 1/2, if G(xᾱ1,0) ≥ 0 for ᾱ1 = 1 − η/(1 − η), then (xᾱ1,0, 0) is the unique solution

maximizing (13) for this η; if G(xᾱ1,0) < 0, then there exists a unique (α∗1, α
∗
2) that satisfies the

equations G(xα1,α2) = 0 and (α2 − 1) = (α1 − 1)(1 − η)/η, and (xα
∗
1 ,α

∗
2 , 0) is the unique solution

maximizing (13) for this η.

2. For 1/2 < η ≤ 1, if G(x0,ᾱ2) ≥ 0 for ᾱ2 = 1+(η−1)/η), then (x0,ᾱ2 , G(x0,ᾱ2)) is the unique solution

maximizing (13) for this η; if G(x0,ᾱ2) < 0, then there exists a unique (α∗1, α
∗
2) that satisfies the

equations G(xα1,α2) = 0 and (α2 − 1) = (α1 − 1)(1 − η)/η, and (xα
∗
1 ,α

∗
2 , 0) is the unique solution

maximizing (13) for this η.

For these direct mechanisms defining the Pareto frontier, Theorem 1 of Williams (1987) implies that,

given (x, q), the expected transfer for a seller of type s or for a buyer of type b, which I denote pS(s) and

pB(b), respectively, are given by

pS(s) = q + s

∫ B

b(2)
x(s, b)

fB(b)

1− FB(b(2))
db+

∫ S

s

∫ B

b(2)
x(u, b)

fB(b)

1− FB(b(2))
fS(u)dbdu (20)

pB(b) = G(x)− q + b

∫ S

S

x(s, b)fS(s)ds+

∫ b

b(2)

∫ S

S

x(s, u)
fB(u)

1− FB(b(2))
fS(s)dsdu (21)

C Auction House Revenues and the Broker Optimal Mechanism

Myerson and Satterthwaite (1983) demonstrated that the mechanism which would maximize revenue for

a broker with market power is given by allocation function x1,1, with transfers given by pB(s, b), the

amount paid by the buyer to the auction house, and pS(s, b), the amount which the auction house then

passes on to the seller. The difference constitutes auction house revenue. These transfer functions can

be defined in many ways. One such way is given by Myerson and Satterthwaite (1983) as

pB(s, b) = x1,1(s, b) ∗min{u|u ≥ B,φB(u) ≥ s}

pS(s, b) = x1,1(s, b) ∗max{v|v ≤ S, φS(v) ≤ b}

Revenue is given by G(x1,1), where G(·) is defined in (12). This expression is the participation constraint

which must be satisfied in any individually-rational, incentive-compatible mechanism. In the mechanisms

which maximize the gains from trade or the probability of trade, this expression is equal to zero. In the

mechanism maximizing the auction house revenue, however, the auction house wishes to leave some slack

in the participation constraint in order to extract surplus from participants.

Table 6: Performance of broker-revenue maximizing mechanism
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The performance of this mechanism relative to the dynamic mechanism is shown in Table 6. The

expected revenue for the auction house in the dynamic mechanism was estimated using data on fees

when trade occurred. Table 6 demonstrates that the broker-optimal mechanism would result in auction

house revenues of ...

The expected auction house revenue can also be seen as the difference between the payment from the

buyer to the auction house and the amount which the auction house passes on to the seller after removing

fees. Note that in the broker-optimal mechanism, the payments themselves are much smaller but the gap

between payments of buyers and seller is larger. The probability of trade and total expected gains from

trade are both lower under the broker-optimal mechanism, as this mechanism introduces an additional

deadweight loss due to the broker’s rent-extraction behavior.

It is difficult to interpret these results given that a shift to this mechanism would likely drive buyers

and sellers away from the auction house and toward competing sourcing venues, and this competition

is not expressed in the model. Therefore, while auction house revenue is clearly of primary interest to

the auction house, competition among auction houses may impede an individual auction house from

achieving the payoff of the broker optimal mechanism. Townsend (1983) demonstrated, in a general

equilibrium framework, that competition among auction houses, or even the threat of competition, leads

to the Walrasian equilibrium as the number of buyers and sellers grows large. Thus, auction houses may

appear to behave as though they were maximizing surplus rather than achieving the optimal revenue for a

solo auction house. However, Economides and Siow (1988) showed, in a competition-on-a-line framework,

that liquidity provides positive externalities for buyers and sellers which are not fully internalized by the

auction house, and this may prevent efficient entry of auction houses and hence prevent the market

from achieving the surplus-maximizing allocation. It is theoretically ambiguous how close auction houses

would come to achieving the revenue-maximizing outcomes in a setting with two-sided uncertainty. For

these reasons, and due to the fact that I have no data on competing auction houses, I do not focus on

this mechanism.
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