“Reconciling Hayek’s and Keynes’ views of recessions”
by
Beaudry Galizia Portier

Discussion by Iván Werning
@ NBER SI EFG 2014
Key Ideas

- High (excessive?) past accumulation
 - lower activity today

- Q: Efficient?
- A: No.

- Feedback loop (Chamley, 2013)
 - precautionary lower spending
 - risk of unemployment

- Keynesian conclusions, but without sticky prices
Hayek and Keynes

- **Hayek’s liquidationist view**
 - recession due to excessive boom
 - let recession run its course
 - stimulus only prolongues the adjustment

- **Keynesian view**
 - recession inefficient
 - stimulus warranted

- **This paper**
 - sides with former description
 - sides with latter prescription
Two Modules

- Precautionary Savings
- Labor market
Discussion

- Review precautionary saving feedbacks
 - General equilibrium, market clearing
 - Monetary model: zero lower bound
- Labor market friction
 - Wage determination
 - Matching technology
- Policy implications
- Open questions
Precautionary Savings Module
Standard Model

- Standard model
 - infinite horizon \(t=0,1,2,\ldots \)
 - consumption, labor, no capital
 (add \(t=0 \) durable later)
 - comparable: New Keynesian model

- Idiosyncratic uncertainty in income
 - precautionary savings
 - general equilibrium?

- “Krugman Trick”
 - assume at \(t=1 \) and beyond: efficient
 - uncertainty only at \(t=0 \)
\[
\sum_{t=0}^{\infty} \beta^t (U(c_t) - v(l_t))
\]

\[U(c) = -e^{-c}\]

\[y^i = y + u^i\]
\[
\sum_{t=0}^{\infty} \beta^t (U(c_t) - v(l_t)) \quad U(c) = -e^{-c}
\]

\[
y^i = y + u^i
\]

\[
U'(c_t) = \beta R_t \mathbb{E}[U'(c_{t+1})]
\]
\[
\sum_{t=0}^{\infty} \beta^t (U(c_t) - v(l_t))
\]

\[U(c) = -e^{-c}\]

\[
y^i = y + u^i
\]

\[
U'(c_t) = \beta R_t \mathbb{E}[U'(c_{t+1})]
\]

\[
U'(c_t) = \mathbb{E}U'(r a_{t+1}) \beta R U'(\bar{y})
\]
\[
\sum_{t=0}^{\infty} \beta^t \left(U(c_t) - v(\ell_t) \right) \quad U(c) = -e^{-c}
\]

\[
y^i = y + u^i
\]

\[
U'(c_t) = \beta R_t \mathbb{E} [U'(c_{t+1})]
\]

\[
U'(c_t) = \mathbb{E} U'(ra_{t+1}) \beta R U'(\bar{y})
\]

\[
ra_{t+1} = r R \left(y^i - c \right) = r R \left(y + u^i - c \right) = r R u^i
\]
\[
\sum_{t=0}^{\infty} \beta^t (U(c_t) - v(l_t)) \quad U(c) = -e^{-c}
\]

\[
y^i = y + u^i
\]

\[
U'(c_t) = \beta R_t \mathbb{E} [U'(c_{t+1})]
\]

\[
U'(c_t) = \mathbb{E} U'(r a_{t+1}) \beta R U'(\bar{y})
\]

\[
r a_{t+1} = r R (y^i - c) = r R (y + u^i - c) = r R u^i
\]

\[
U'(c) = \hat{\beta}(\sigma) R U'(y_{t+1})
\]

\[
\hat{\beta}(\sigma) = \mathbb{E} U'(r R u) \beta
\]
Feedback Loop

\[\sigma(C) \rightarrow \beta(C) \equiv \hat{\beta}(\sigma(C)) \]
Feedback Loop

$\sigma(C) \rightarrow \beta(C) \equiv \hat{\beta}(\sigma(C))$

$U'(C) = \beta(C) RU'(y')$
Feedback Loop

\[\sigma(C) \rightarrow \beta(C) \equiv \hat{\beta}(\sigma(C)) \]

\[U'(C) = \beta(C) RU'(y') \]

- Multiplicity possible
 - authors shy away… perhaps they shouldn’t
- Chamley (beautiful paper)
 - dynamics from good to bad equilibrium
 - stuck in bad equilibrium
 - Policy implications?
- This paper
 - simpler
 - more policy implications
Amplification

- Add “durable”
 - endowment of good at $t=0$
 - demand shifter
\[U'(X + y) = \beta(y) \cdot RU'(\bar{y}) \]
durable

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]

fixed

consumption constant or falling with X
consumption constant or falling with X

output falling

\[U'(X + y) = \beta(y) \, RU'(\bar{y}) \]
durable \(U'(X + y) = \beta(y) RU'(\bar{y}) \)

fixed

consumption constant or falling with \(X \)

output falling more
durable \quad \Rightarrow \quad U'(X + y) = \beta(y) RU'(\bar{y})

\text{fixed}

C

consumption constant or falling with X

output falling more
durable \[U'(X + y) = \beta(y) RU'(\bar{y}) \]

fixed

consumption constant or falling with X

output falling more

adjusts

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]
durable \quad fixed

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]

c

consumption constant or falling with \(X \)

output falling more

adjusts

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]

efficient \(y^*(X) \)
$U'(X + y) = \beta(y) \ R U'(\bar{y})$

- durable
- fixed
- consumption *constant or falling* with X
- output *falling more*
- adjusts

$R(X) = \frac{U'(X + y^*(X))}{\beta(y^*(X)) U'(\bar{y}')} \\
y^*(X)$

- efficient

durable → fixed

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]

C

consumption constant or falling with X

output falling more

adjusts

\[U'(X + y) = \beta(y) RU'(\bar{y}) \]

efficient

\[y^*(X) \]

\[R(X) = \frac{U'(X + y^*(X))}{\beta(y^*(X))U'(\bar{y}')} \]

c

consumption increasing, output falling less
Monetary Economy

- Monetary Economy
 - sticky prices; demand determined output
 - Fed controls interest rate
- Fed response crucial
 - no change in interest rate: feedback loops
 - responsive monetary policy: optimum
- Hayek, Keynes and… Friedman?
Labor Market Module
Labor Market
Labor Market

- Feedback *without* sticky prices and ZLB?
Labor Market

- Feedback *without* sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!
Labor Market

- Feedback *without* sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!
Labor Market

- Feedback *without* sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!

- Ignore uncertainty for a moment (pooling income)
 - not key...
 - ... before getting amplification, we need a platform
 - ... add it back later
\Pi^*(p, w) = p\Phi
\(\Pi^* \left(1, \frac{w}{p} \right) = \Phi \)
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \quad \rightarrow \quad \frac{w}{p} \]
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \ \rightarrow \ \frac{w}{p} \]

\[pF'(\ell) = w \]

\[v'(\ell) = \beta \mathcal{U}'(c')w \]
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \quad \frac{w}{p} \]

\[pF'(\ell) = w \quad \ell \]

\[v'(\ell) = \beta U'(c') w \quad w \]
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \]

\[pF'(\ell) = w \]

\[v'(\ell) = \beta U'(c')w \]
\[\Pi^* \left(\frac{w}{p}, 1 \right) = \Phi \]
\[pF'(\ell) = w \]
\[v'(\ell) = \beta U'(c')w \]
\[U'(X + y) = \beta p U'(c') \]
\[c = N(F(\ell) - \Phi) \]
\[
\Pi^* \left(1, \frac{w}{p} \right) = \Phi \quad \Rightarrow \quad \frac{w}{p}
\]

\[
pF'(\ell) = w \quad \Rightarrow \quad \ell
\]

\[
v'(\ell) = \beta U'(c')w \quad \Rightarrow \quad w
\]

\[
U'(X + y) = \beta pU'(c') \quad \Rightarrow \quad y
\]

\[
c = N(F(\ell) - \Phi) \quad \Rightarrow \quad N
\]
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \]

\[pF'(\ell) = w \]

\[v'(\ell) = \beta U'(c')w \]

\[U'(X + y) = \beta pU'(c') \]

\[c = N(F(\ell) - \Phi) \]

Note: risk not needed for inefficiency or constant consumption
\[\Pi^* \left(1, \frac{w}{p} \right) = \Phi \]

\[pF'(\ell) = w \]

\[v'(\ell) = \beta U'(c')w \]

\[U'(X + y) = \beta p U'(c') \]

\[c = N(F(\ell) - \Phi) \]

Note: risk not needed for inefficiency or constant consumption

Intuition or Magic?
Special Assumptions
Special Assumptions

- Special assumptions? Concern?
Special Assumptions

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
Special Assumptions

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications...
 - high wage rigidity...
 - ... high wage flexibility needed (Leontief)
Special Assumptions

- Special assumptions? Concern?
- Labor market…
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications…
 - high wage rigidity…
 - … high wage flexibility needed (Leontief)
Special Assumptions

- Special assumptions? Concern?
- Labor market…
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications…
 - high wage rigidity…
 - ... high wage flexibility needed (Leontief)
- What happens away from this?
Competitive Search

- Competitive Search
 - Firms post wage schedules
 - Workers direct their search
- Known to be efficiency in many settings
- Here: efficient if no uncertainty (e.g. pooling)

- Result: with Leontief matching and competitive search

 🔄 efficiency ➔ consumption rises with X
Competitive Search + Cobb Douglas
Competitive Search + Cobb Douglas

Graph showing the relationship between X and Y with different markers for c, y, N/L, I, P, and W.
Competitive Search + Cobb Douglas

Graph showing different lines for various categories labeled as c, y, N/L, l, p, and w. The x-axis represents X, ranging from 0 to 1, and the y-axis ranges from 0 to 2.2.
Other Matching

- Leontief
 - extreme wage flexibility needed
 - Nash or ex-post Walrasian not enough

- Cobb-Douglas…
 - Nash bargaining
 - Hosios condition: efficiency

- Ex post Walrasian?
\[\frac{\mu(N)}{N} \Pi^* \left(1, \frac{w}{p} \right) = \Phi \]

\[pF'(\ell) = w \]

\[v'(\ell) = \beta U'(c') w \]

\[U'(X + y) = \beta pU'(c') \]

\[c = \mu(N) F(\ell) - N \Phi \]
Ex Post Walras + Cobb Douglas
Ex Post Walras + Cobb Douglas

<table>
<thead>
<tr>
<th>X</th>
<th>c</th>
<th>y</th>
<th>N/L</th>
<th>l</th>
<th>p</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ex Post Walras + Cobb Douglas
Ex Post Walras + Cobb Douglas
Other Wage Determination

- Wage rigidity may be feature, not bug (Hall)
 - fix W/P → throw out labor supply
 - needed: smooth matching technology
- Implication
 - employment pinned down…
 - … output determined
 - … consumption determined…
 - … interest rate adjusts
<table>
<thead>
<tr>
<th>No Risk</th>
<th>Ex-Post Walras</th>
<th>Competitive Search</th>
<th>“Hall” (fixed w/p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leontief</td>
<td>$\downarrow c \downarrow Y \downarrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>X</td>
</tr>
<tr>
<td>Cobb Douglas</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
</tr>
<tr>
<td>No Risk</td>
<td>Ex-Post Walras</td>
<td>Competitive Search</td>
<td>“Hall” (fixed w/p)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Leontief</td>
<td>$\downarrow c \downarrow Y \uparrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>\times</td>
</tr>
<tr>
<td>Cobb-Douglas</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
<td>$\uparrow c \downarrow Y \downarrow R$</td>
</tr>
<tr>
<td>NORMATIVE</td>
<td>Ex-Post Walras</td>
<td>Competitive Search</td>
<td>“Hall” (fixed w/p)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Leontief</td>
<td>(c < c^*)</td>
<td>(c = c^*)</td>
<td>?</td>
</tr>
<tr>
<td>Cobb Douglas</td>
<td>(c < c^*)</td>
<td>(c > c^*)</td>
<td>?</td>
</tr>
</tbody>
</table>

With risk
Labor Wedge

- Two intensive margin distortions...
 - fictitious margin: labor vs present consumption
 - actual margin: labor vs future consumption

- Definition of labor wedge
 - fictitious margin
 - intertemporal distortion

- Labor market is distorted, but
 - due to low entry of firms (jobs/vacancies)
 - along extensive margin, not intensive margin
Policy Implications
Policy Implications

- Feedback due to uncertainty
 - stop feedback by unemployment insurance
 - better consumption sharing…
 - … improves efficiency consumption level
 - efficiency in labor market

- May not go all the way to efficient
 - government spending?
 - labor market policies?
Very nice paper, lots to think about!

Two modules

- precautionary feedback: need fix R
- labor market friction: fixes R

How generality/plausible is the mechanism?

Policy implication:

- unemployment insurance
- government spending
- labor market policies?