GOVERNMENT SPENDING MULTIPLIERS IN GOOD TIMES AND IN BAD: EVIDENCE FROM U.S. HISTORICAL DATA

Valerie A. Ramey
University of California, San Diego and NBER

and

Sarah Zubairy
Texas A&M University

EFG Research Meeting
12 July 2014
OUR METHODOLOGICAL CONTRIBUTION

1. Richer Data: Construct new historical U.S. data encompassing periods with dramatic fluctuations in unemployment and government spending and interest rates near the zero lower bound.

2. Impulse Responses: Allow for the natural transitions between states rather than assuming the economy remains in each state indefinitely.

3. Computation of Multipliers: Avoid common biases based on (1) units problems and (2) failing to account for the full response of G.
Our methodological contribution

1. **Richer Data**: Construct new historical U.S. data encompassing periods with dramatic fluctuations in unemployment and government spending and interest rates near the zero lower bound.
OUR METHODOLOGICAL CONTRIBUTION

1. **Richer Data**: Construct new historical U.S. data encompassing periods with dramatic fluctuations in unemployment and government spending and interest rates near the zero lower bound.

2. **Impulse Responses**: Allow for the natural transitions between states rather than assuming the economy remains in each state indefinitely.
Our methodological contribution

1. Richer Data: Construct new historical U.S. data encompassing periods with dramatic fluctuations in unemployment and government spending and interest rates near the zero lower bound.

2. Impulse Responses: Allow for the natural transitions between states rather than assuming the economy remains in each state indefinitely.

3. Computation of Multipliers: Avoid common biases based on (1) units problems and (2) failing to account for the full response of G.
DATA

We construct quarterly data because agents react quickly to news: 1889q1 - 2013q4

We extend Ramey (2011) military news series back to 1889 and up to 2013 in order to identify government spending shocks that are exogenous and unanticipated.

We define slack using an unemployment rate threshold.

We define ZLB periods as 1932q2-1951q1 and 2008q4 - 2013q4.
DATA

We construct quarterly data because agents react quickly to news: 1889q1 - 2013q4
DATA

- We construct quarterly data because agents react quickly to news: 1889q1 - 2013q4

- We extend Ramey (2011) military news series back to 1889 and up to 2013 in order to identify government spending shocks that are exogenous and unanticipated.
Data

- We construct quarterly data because agents react quickly to news: **1889q1 - 2013q4**

- We extend Ramey (2011) military news series back to 1889 and up to 2013 in order to identify government spending shocks that are exogenous and unanticipated.

- We define slack using an unemployment rate threshold.
DATA

- We construct quarterly data because agents react quickly to news: 1889q1 - 2013q4

- We extend Ramey (2011) military news series back to 1889 and up to 2013 in order to identify government spending shocks that are exogenous and unanticipated.

- We define slack using an unemployment rate threshold.

- We define ZLB periods as 1932q2-1951q1 and 2008q4 - 2013q4.
Shaded areas indicate time periods when the unemployment rate is above 6.5%
Shaded areas indicate time periods when interest rates are at the ZLB or monetary policy is extremely accommodative.

\[y_{t-1} \text{ is a vector of control variables} \]
\[\psi_h(L) \text{ is a polynomial in the lag operator} \]
\[\text{Coefficient } \beta_h \text{ gives the response of } z_{t+h} \text{ to the shock at horizon } h. \]
Econometric Framework:
Jorda (2005) Local Projection Method

Linear model

\[z_{t+h} = \alpha_h + \psi_h(L)y_{t-1} + \beta_h\text{shock}_t + \varepsilon_{t+h}, \text{ for } h = 0, 1, 2, \ldots \]

where

- \(y_{t-1} \) is a vector of control variables
- \(\psi_h(L) \) is a polynomial in the lag operator
- Coefficient \(\beta_h \) gives the response of \(z_{t+h} \) to the shock at horizon \(h \).
ECONOMETRIC FRAMEWORK: JORDA (2005) LOCAL PROJECTION METHOD

STATE DEPENDENT MODEL

\[z_{t+h} = I_{t-1} \left[\alpha_{A,h} + \psi_{A,h}(L)y_{t-1} + \beta_{A,h}shock_t \right] \]
\[+ (1 - I_{t-1}) \left[\alpha_{B,h} + \psi_{B,h}(L)y_{t-1} + \beta_{B,h}shock_t \right] + \epsilon_{t+h}. \]

where

- The dummy variable, \(I_t = 1 \) if in state A.
- Coefficient \(\beta_{A,h} \) gives the state A response of \(z_{t+h} \) to the shock at horizon \(h \).
- Coefficient \(\beta_{B,h} \) gives the state B response of \(z_{t+h} \) to the shock at horizon \(h \).
Avoiding Biases in Calculating Multipliers

Units
Avoiding Biases in Calculating Multipliers

Units

- Multipliers require that the changes in output and government spending be measured in the same units.
AVOIDING BIOASES IN CALCULATING MULTIPLIERS

UNITS

- Multipliers require that the changes in output and government spending be measured in the same units.

- Standard SVARs use ln(G) and ln(Y), so researchers multiply elasticities by sample average \(Y/G \) to get multipliers.
Avoiding Biases in Calculating Multipliers

Units

- Multipliers require that the changes in output and government spending be measured in the same units.

- Standard SVARs use ln(G) and ln(Y), so researchers multiply elasticities by sample average Y/G to get multipliers.

- In separate work, we show that this method can lead to biased estimates of multipliers.
Avoiding Biases in Calculating Multipliers

Units

- Multipliers require that the changes in output and government spending be measured in the same units.

- Standard SVARs use ln(G) and ln(Y), so researchers multiply elasticities by sample average Y/G to get multipliers.

- In separate work, we show that this method can lead to biased estimates of multipliers.

- Thus, we use the Hall-Barro-Redlick transformation, which converts all variables to the same units before estimation.
Avoiding Biases in Calculating Multipliers

Accounting for the full response of G
Avoiding Biases in Calculating Multipliers
Accounting for the full response of G

- Much of the literature has followed Blanchard-Perotti (2002) and computed their multipliers by comparing the peak response of Y to the initial G shock.
Avoiding Biases in Calculating Multipliers

Accounting for the full response of G

- Much of the literature has followed Blanchard-Perotti (2002) and computed their multipliers by comparing the peak response of Y to the *initial* G shock.

- Policymakers care about the response of Y relative to the *cumulative* change in G.
Avoiding Biases in Calculating Multipliers
Accounting for the full response of G

- Much of the literature has followed Blanchard-Perotti (2002) and computed their multipliers by comparing the peak response of Y to the initial G shock.

- Policymakers care about the response of Y relative to the cumulative change in G.

- Thus, we compute our multipliers by comparing the ratios of the cumulative changes up to each horizon.
RESULTS FROM THE SLACK MODEL

Blue dashed lines are responses in high unemployment state, red lines with circles are responses in low unemployment state.
Multipliers during Times of Slack

Multipliers account for dynamics of G, and are defined as:

\[
\frac{\sum_{i=1}^{M} \Delta Y_i}{\sum_{i=1}^{M} \Delta G_i}
\]

<table>
<thead>
<tr>
<th></th>
<th>Linear Model</th>
<th>High Unemp</th>
<th>Low Unemp</th>
<th>P-value for difference across states</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year integral</td>
<td>0.75</td>
<td>0.69</td>
<td>0.79</td>
<td>0.661</td>
</tr>
<tr>
<td>4 year integral</td>
<td>0.84</td>
<td>0.76</td>
<td>0.96</td>
<td>0.342</td>
</tr>
</tbody>
</table>
Robustness Checks for Slack

- Using a time-varying unemployment rate threshold
- Using linearly interpolated data
- Using 7 quarter moving average of output growth as threshold
- Controlling for taxes
- Excluding World War II
- Blanchard-Perotti identification
Multipliers at the ZLB

Multipliers account for dynamics of G, and defined as:

$$\frac{\sum_{i=1}^{M} \Delta Y_i}{\sum_{i=1}^{M} \Delta G_i}$$

<table>
<thead>
<tr>
<th></th>
<th>Linear Model</th>
<th>Near Zero Lower Bound</th>
<th>Normal</th>
<th>P-value for difference across states</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year integral</td>
<td>0.75</td>
<td>0.81</td>
<td>0.54</td>
<td>0.327</td>
</tr>
<tr>
<td>4 year integral</td>
<td>0.84</td>
<td>0.76</td>
<td>0.84</td>
<td>0.888</td>
</tr>
</tbody>
</table>
Robustness Checks for ZLB

- Defining ZLB as time periods when the T-bill rate is less than 50 basis points
- Blanchard-Perotti identification
- Controlling for taxes

Exception: Larger multipliers in ZLB when we exclude World War II: 1.59 at 2 years, 1.11 at 4 years.

Caveats:
- F-statistics for news during non-WWII ZLB state are below 1.
- Not robust to controlling for taxes
Robustness Checks for ZLB

- Defining ZLB as time periods when the T-bill rate is less than 50 basis points
- Blanchard-Perotti identification
- Controlling for taxes

Exception: Larger multipliers in ZLB when we exclude World War II: 1.59 at 2 years, 1.11 at 4 years.

Caveats:
- F-statistics for news during non-WWII ZLB state are below 1.
- Not robust to controlling for taxes
Comparison to Auerbach-Gorodnichenko (2012)

Multipliers using AG Post-WWII Sample and Identification

<table>
<thead>
<tr>
<th>Method</th>
<th>Recession</th>
<th>Expansion</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG-12’s Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>2.24</td>
<td>-0.33</td>
<td>2.57</td>
</tr>
</tbody>
</table>
Comparison to Auerbach-Gorodnichenko (2012)

Multipliers using AG Post-WWII Sample and Identification

<table>
<thead>
<tr>
<th></th>
<th>Recession</th>
<th>Expansion</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG-12’s Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>2.24</td>
<td>-0.33</td>
<td>2.57</td>
</tr>
<tr>
<td>Jordà Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>0.84</td>
<td>-0.59</td>
<td>1.43</td>
</tr>
<tr>
<td>2 year integral</td>
<td>0.24</td>
<td>0.36</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>Recession</td>
<td>Expansion</td>
<td>Difference</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>AG-12’s Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>2.24</td>
<td>-0.33</td>
<td>2.57</td>
</tr>
<tr>
<td>Jordà Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>0.84</td>
<td>-0.59</td>
<td>1.43</td>
</tr>
<tr>
<td>2 year integral</td>
<td>0.24</td>
<td>0.36</td>
<td>-0.12</td>
</tr>
<tr>
<td>AG Estimates with Natural Transitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 year integral</td>
<td>1.07</td>
<td>0.14</td>
<td>0.93</td>
</tr>
</tbody>
</table>
CONCLUSION

- We find no difference in multipliers across slack states— all multipliers in the linear and state dependent models are estimated to be between 0.7 and 1.

- Our results primarily differ from Auerbach and Gorodnichenko (2012) because our estimates incorporate the natural propensity of the economy to transition between states.

- In most specifications we find no evidence of higher multipliers when interest rates are at the ZLB.
“The widespread tendency in empirical studies of economic behavior to discard war years as “abnormal,” while doubtless often justified, is, on the whole, unfortunate. The major defect of the data on which economists must rely-data generated by experience rather than deliberately contrived experiment-is the small range of variation they encompass. Experience in general proceeds smoothly and continuously. In consequence, it is difficult to disentangle systematic effects from random variation since both are of much the same order of magnitude.

From this point of view, data for wartime periods are peculiarly valuable. At such times, violent changes in major economic magnitudes occur over relatively brief periods, thereby providing precisely the kind of evidence that we would like get by “critical” experiments if we could conduct them. Of course, the source of the changes means that the effects in which we are interested are necessarily intertwined with others that we would eliminate from a contrived experiment. But this difficulty applies to all our data, not to data for wartime periods alone.”

— Milton Friedman, American Economic Review, 42(2),(1952)