A Model of Secular Stagnation

Gauti B. Eggertsson and Neil R. Mehrotra

Brown University

July 12, 2014

NBER Summer Institute
Secular Stagnation Hypothesis

I wonder if a set of older ideas ... under the phrase secular stagnation are not profoundly important in understanding Japan’s experience, and may not be without relevance to America’s experience

- Lawrence Summers

Original hypothesis:
- Alvin Hansen (1938): Suggests a permanent demand recession
- Reduction in population growth and investment opportunities
- Concerns of insufficient demand ended with WWII and subsequent baby boom

Secular stagnation resurrected:
- Lawrence Summers (2013)
- Highly persistent decline in the natural rate of interest
- Chronically binding zero lower bound

Goal here:
- Formalize these ideas in a simple model
- Propose a OLG model in the spirit of Samuelson (1958)
Preview of Results

Negative natural rate of interest can be triggered by

- Deleveraging shock
- Slowdown in population growth
- Increase in income inequality
- Fall in relative price of investment

Deflation steady state

- Permanently binding zero lower bound
- Permanent deflation
- Permanent shortfall in output from potential

Paradoxes and policy responses

- Paradox of thrift, toil and flexibility
- Raising the inflation target good but better be high enough
- Fiscal expansions (debt or spending)
ECONOMIC ENVIRONMENT

Endowment economy

- Time: $t = 0, 1, 2, \ldots$

- Goods: consumption good (c)

- Agents: 3-generations: $i \in \{y, m, o\}$

- Assets: riskless bonds (B^i)

- Technology: exogenous borrowing constraint D
Objective function:

$$\max_{C_t^y, C_{t+1}^m, C_{t+2}^o} U = \mathbb{E}_t \left\{ \log (C_t^y) + \beta \log (C_{t+1}^m) + \beta^2 \log (C_{t+2}^o) \right\}$$

Budget constraints:

$$C_t^y = B_t^y$$
$$C_{t+1}^m = Y_{t+1}^m - (1 + r_t)B_t^y + B_{t+1}^m$$
$$C_{t+2}^o = Y_{t+2}^o - (1 + r_{t+1})B_{t+1}^m$$
$$(1 + r_t)B_t^i \leq D_t$$
Consumption and Saving

Credit-constrained youngest generation:

\[C_t^y = B_t^y = \frac{D_t}{1 + r_t} \]

Saving by the middle generation:

\[\frac{1}{C_t^m} = \beta E_t \frac{1 + r_t}{C_{t+1}^o} \]

Spending by the old:

\[C_t^o = Y_t^o - (1 + r_{t-1})B_{t-1}^m \]
Determination of the Real Interest Rate

Asset market equilibrium:

\[N_t B_t^y = -N_{t-1} B_t^m \]
\[(1 + g_t) B_t^y = -B_t^m \]

Demand and supply of loans:

\[L_t^d = \frac{1 + g_t}{1 + r_t} D_t \]
\[L_t^s = \frac{\beta}{1 + \beta} (Y_t^m - D_{t-1}) - \frac{1}{1 + \beta} \frac{Y_t^{o}}{1 + r_t} \]
Determination of the Real Interest Rate

Expression for the real interest rate:

$$1 + r_t = \frac{1 + \beta (1 + g_t)D_t}{\beta Y_t - D_{t-1}} + \frac{1}{\beta Y_t - D_{t-1}}$$

Determinants of the real interest rate:

- Tighter collateral constraint reduces the real interest rate
- Lower rate of population growth reduces the real interest rate
- Higher income in the middle-generation reduces real interest rate
- Higher income in the old-generation increases real interest rate
Effect of a Deleveraging Shock

Impact effect:
- Collateral constraint tightens from D_h to D_l
- Reduction in the loan demand and fall in real rate
- Akin to Eggertsson and Krugman (2012)

Delayed effect:
- Next period, shift out in loan supply
- Further reduction in real interest rate
- Novel effect from Eggertsson and Krugman (2012)
- Potentially powerful propagation mechanism
Effect of a Deleveraging Shock

- Loans
- Gross Real Interest Rate
- Loan Supply
- Loan Demand

Diagram showing the effect of a deleveraging shock on loans and interest rates.
Does inequality affect the real interest rate?

- Our result due to intergenerational income inequality that triggers borrowing and lending
- What about inequality across a given cohort?

Generalization of endowment process:

- High-type households with high income in middle period
- Low-type households with low income in middle period
- Both types receive same income in last period
Credit-constrained middle income:

- Fraction η_s of middle income households are credit constrained.
- True for low enough income in middle generation and high enough income in retirement.
- Fraction $1 - \eta_s$ lend to both young and constrained middle-generation households.

Expression for the real interest rate:

\[
1 + r_t = \frac{1 + \beta}{\beta} \frac{(1 + g_t + \eta_s) D_t}{(1 - \eta_s) (Y_{t}^{m,h} - D_{t-1})} + \frac{1}{\beta} \frac{Y_{t+1}^{o}}{(Y_{t}^{m,h} - D_{t-1})}
\]
Price Level Determination

Euler equation for nominal bonds:

\[
\frac{1}{C_t^m} = \beta E_t \frac{1}{C_{t+1}^o} (1 + i_t) \frac{P_t}{P_{t+1}}
\]

\[i_t \geq 0\]

Lower bound on steady state inflation:

\[\bar{\Pi} \geq \frac{1}{1 + r}\]

- If steady state real rate is negative, steady state inflation must be positive
- No equilibrium with stable inflation
- But what happens when prices are NOT flexible and central bank does not tolerate inflation?
- Then the central bank’s refusal to tolerate high enough inflation will show up as a permanent recession.
Aggregate Supply

Output and labor demand:

\[Y_t = L_t^\alpha \]
\[\frac{W_t}{P_t} = \alpha L_t^{\alpha-1} \]

Labor supply:

- Middle-generation households supply a constant level of labor \(\bar{L} \)
- Implies a constant market clearing real wage \(\bar{W} = \alpha \bar{L}^{\alpha-1} \)
- Implies a constant full-employment level of output: \(Y_{fe} = \bar{L}^\alpha \)
Downward Nominal Wage Rigidity

Partial wage adjustment:

\[W_t = \max \left\{ \tilde{W}_t, P_t \alpha \bar{L}^{\alpha - 1} \right\} \]

where \(\tilde{W}_t = \gamma W_{t-1} + (1 - \gamma) P_t \alpha \bar{L}^{\alpha - 1} \)

Wage rigidity and unemployment:

- If real wages exceed market clearing level, employment is rationed
- Unemployment \(U_t = \bar{L} - L_t \)
- Similar assumption in Schmitt-Grohe and Uribe (2013)
Derivation of Aggregate Supply

For positive steady state inflation:

\[w_t = \bar{W} = \alpha \bar{L}^{(\alpha - 1)} \]
\[Y_t = Y_{fe} \]

For steady state deflation:

\[w_t = \gamma \frac{w_{t-1}}{\Pi_t} + (1 - \gamma) \bar{W} \]
\[w_t = \alpha Y_t^{\alpha - 1} \]

- Upward sloping relationship between inflation and output
- Vertical line at full-employment
FULL EMPLOYMENT STEADY STATE

![Graph showing full employment steady state](image)
Derivation of Aggregate Demand

Monetary policy rule:

\[1 + i_t = \max \left(1, (1 + i^*) \left(\frac{\Pi_t}{\Pi^*} \right)^{\phi_\pi} \right) \]

Above binding ZLB:

\[1 + i^* \left(\frac{\Pi_t}{\Pi^*} \right)^{\phi_\pi} = \frac{1 + \beta (1 + g_t)D_t}{\beta} \frac{Y_t - D_{t-1}}{Y_t - D_{t-1}} \]

Binding ZLB:

\[\frac{1}{\Pi_{t+1}} = \frac{1 + \beta (1 + g_t)D_t}{\beta} \frac{Y_t - D_{t-1}}{Y_t - D_{t-1}} \]
Effect of a Collateral Shock

- Gross Inflation Rate
- Aggregate Supply
- Deflation Steady State

- AD_1
- AD_2

Output

Gross Inflation Rate

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Properties of the Deflation Steady State

Long slump:
- Binding zero lower bound so long as natural rate is negative
- Deflation raises real wages above market-clearing level
- Output persistently below full-employment level

Existence and stability:
- Secular stagnation steady state exists so long as $\gamma > 0$
- Secular stagnation state state is determinate
- Contrast to deflation steady state emphasized in Benhabib, Schmitt-Grohe and Uribe (2001)
- Can do comparative statics!
Paradox of Toil

- **AD₂**
- **AS₁**
- **AS₂**

Graph showing the relationship between gross inflation rate and output with lines indicating deflation steady state and high productivity steady state.
Monetary Policy Responses

Forward guidance:
- Extended commitment to keep nominal rates low?
- Ineffective if households/firms expect rates to remain low indefinitely

Raising the inflation target:
- For sufficiently high inflation target, full employment steady state
- Law of the excluded middle or the timidity trap (Krugman (2014))
- Multiple steady states (two determinate, one indeterminate)
Raising the Inflation Target
Fiscal Policy Responses

Fiscal policy and the real interest rate:

\[L^d_t = \frac{1 + g_t}{1 + r_t} D_t + B^g_t \]

\[L^s_t = \frac{\beta}{1 + \beta} (Y^m_t - D_{t-1} - T^m_t) - \frac{1}{1 + \beta} \frac{Y^o_{t+1} - T^o_{t+1}}{1 + r_t} \]

- Higher government debt increases the interest rate by increasing demand for bonds
- Taxes on middle aged reducing loan supply: increase \(r_t \)
- Expected taxes on old increase loan supply: decrease \(r_t \)
- In AD-AS framework, gov. spending financed either by taxes or debt is expansionary
INCREASING GOVERNMENT SPENDING WITH TAX ON MIDDLE AGED

- Aggregate Supply
- Full Employment Steady State

Gross Inflation Rate vs. Output

- AD$_2$
- AD$_3$

Deflation Steady State
Incorporating Capital

Rental rate and real interest rate:

\[r_t^k = p_t^k - p_{t+1}^k \frac{1 - \delta}{1 + r_t} \geq 0 \]

\[r_{ss} \geq -\delta \]

- Assume that return on capital is realized in the same period as investment
- Negative real rate now constrained by fact that rental rate must be positive

Relative price of capital goods:

- Decline in relative price of capital goods lowers the real interest rate
- Global decline in price of capital goods (Karabarbounis and Neiman, 2014)
- Consistent with argument by Summers (2014)
Conclusions

Policy implications:

- Higher inflation target needed
- Limits to forward guidance
- Role for fiscal policy
- Avoid policies that tighten collateral constraint D? (i.e. capital requirements, etc.)

Key takeaway:

- NOT that we will stay in a slump forever
- Instead, the slump can be of arbitrary duration which has strong policy implications.
- Stakes are even higher for good aggregate demand management.