Measuring the stance of monetary policy in conventional and unconventional environments by Leo Krippner

Discussion at the NBER East Asian Seminar in Economics

Martin Berka

University of Auckland and CAMA

June 21, 2014 Tokyo

- Topic: correct measurement of the monetary policy stance under ZLB
- I'm nowhere near this field
- But Leo is pretty much founding it
- So much so that FRB of St. Louis president James Bullard made a presentation few years ago that could be called "Leo Krippner's work"

Shadow rates

• Estimate the yield curve even under ZLB, using shadow interest rates (due to Black, 1995):

• $\underline{i} = \max(0, r + \pi)$: a real-world option of holding physical cash

- Shadow interest rate calculated by assuming there is no physical currency: "What policy rate would generate the observed yield curve if the policy rate could be negative?"
 - Assume shadow bond with price $P(t + \tau)$, $@\tau$, pays 1 at maturity
 - Physical currency pays pays 1, has price of 1
 - ▶ Risk-neutral investors choose a min-price investment $\min(1, P(t + \tau))$
 - The boundary condition of 1 implies a *shadow* bond price $P(t, \tau + \delta) C(t, \tau, \tau + \delta)$ where *C* is a call option.
 - You can use it to obtain non-negative forward rates, approximately:

$$\underline{f}(t, \tau) = -\frac{1}{\delta} \left(\log \left[\frac{P(t, \tau + \delta) - C(t, \tau, \tau + \delta)}{P(t, \tau)} \right] \right)$$

• Back out the implied (shadow) interest rates from $\underline{f}(t,\tau)$

Shadow rates

Leo's measure

- Estimate this shadow yield curve using shadow Gausiann Affine Term Structure Models, developed in Leo's other work
- Integral between the truncated shadow yield curve and the estimated long-run interest rate, to measure the stance of monetary policy
- Because this "Effective monetary stimulus" is an integral of full path of interest rates, it's less sensitive to model specification and estimation methods than SSR, "take-off horizon", etc.
- Estimated with different OECD datasets

Martin Berka (U of Auckland)

Comments: I like the idea

- Heavy-artillery methodological contribution
- I like that the method presents a summary of current and future interest rates, rather than focusing on a single rate or a single point of time
 - E.g., a quick path to a long-run rate will have a smaller EMS value than a slow path
 - This presents a method of trading off different paths of interest rate changes
- Effect of monetary policy under ZLB measured through the "take-off" point τ_0 , long-run rate, and the curvature of the yield curve.
 - This is much better than using shadow rates explicitly, since they don't exist in real world

Normative implications

- The right way of summarizing a yield curve and trading-off i.r. paths?
- E.g., imagine two types of monetary policy actions (shock vs. gradual), but with an identical integral (EMS value)
- These may have different welfare implications
 - In economic theory, interest rates key for inter-temporal allocation of Consumption (e.g., the Euler equation)
 - ► Thus, the interest rate paths have first-order effects on welfare
 - Your EMS measure doesn't consider the path of the interest rates explicitly (risk-neutral agent)
- A quick way of considering this would be to derive your option-pricing kernel from a log-utility
- A short-cut could be to ad-hoc include the interest rate variability explicitly (more = bad)
- Such metric could inform much wider audience: welfare measures of MP actions under ZLB

Ranking your methods

- You present two main methods: EMS-Q and EMS-P
- Each can be estimated in different ways (method, number of factors)
- Is there a way to rank them?
 - Important for operational usefulness
- I'd again give (some negative) weight to i.r. variability when computing EMS

Volatility

- Your EMS measures seem very volatile
- The asset-price nature of your EMS: integrating over rates of maturities many years ahead; a shift of your yield curve, or a change in the long-run rate, therefore has quantitatively large implications

• Wasn't your EMS meant for ZLB times?

Small comments

- Make this more accessible for mere humans like myself
- Explain intuitively the meaning of your second (EMS-P) measure
 - EMS-P delivers much lower estimate of the long-run interest rate in your Figure 13 - why?
- I like you thinking about the nominal exchange rates
 - Also an asset price, similar to the nature of EMS
 - But should consider EMS in both countries
 - Construct an "EMS" measure for the interest rate differential between countries
 - This could be fertile ground for future work

Strange spike in Figure 11

K-ANSM(3) Level estimates

Martin Berka (U of Auckland)