#### Monetary Policy Surprises, Credit Costs

and

Economic Activity

Mark Gertler and Peter Karadi

NYU and ECB

October 2013

### **Conventional Monetary Policy Transmission**

- 1. Aggregate spending depends on current and expected future real interest rates
- 2. Central bank controls nominal short rate  $i_t$
- 3. Nominal rigidities imply control over current and expected future short real rates, at least for some horizon.
- 4. Expectations hypothesis  $\Rightarrow$  policy transmitted via yield curve

Loglinear approx of m period zero-coupon gov't bond  $\Rightarrow$ 

$$i_t^m = E_t \frac{1}{m} \{ \sum_{j=0}^{m-1} i_{t+j} \} + \phi_t^m$$

 $\phi^m_t \equiv {\rm term} \ {\rm premium}$ 

#### Two Elaborations

- 1. Forward Guidance:
  - (a) CB affects yield curve by managing expectations of future path of  $i_t$ .
- 2. Credit Channel(e.g., Bernanke and Gertler 1995)
  - (a) With credit market frictions, to a first order

$$i_t^b = i_t + x_t$$

 $i_t^b \equiv$  private borrowing rate;  $x_t \equiv$  external finance premium (credit spread)

- (b) Monetary policy affects credit spreads as well as risk free rate
  - i.  $i_t \uparrow \Rightarrow$  tightening of credit frictions  $\Rightarrow x_t \uparrow$
  - ii. vice versa for  $i_t \downarrow$

## What We Do

- Analyze joint response of economic activity and various credit cost measures to "exogenous" monetary policy surprises
- To do so, we combine:
  - Traditional "money shock" VAR analysis (e.g. BB 1991, CEE 1996)
  - High frequency identification (HFI) of policy surprises on interest rates (e.g, Kuttner, 2001, GSS, 2005)
    - \* Policy surprises: Unexpected changes in interest rate futures on FOMC dates

<sup>•</sup> Use HFI measures of policy surprises as "external instruments" in monthly VARs:

## Why We Do It This Way

- Two problems with identification of policy shocks in standard VARs
  - Simultaneity between policy indicator and other financial variables
  - Measure of policy shocks do not incorporate shocks to foward guidance:
- HFI addresses both simultaneity and forward guidance issues
  - Policy shocks are surprises in interest rate futures on FOMC dates
    \* Dependent variables are same-day responses of various asset returns.
  - Permits incorporating use of forward guidance in policy action (GSS 2005)
    - \* Innovation in non-current futures rates reflects revision in beliefs about future path of rates

# Why We Do It This Way (cont)

- Limitations to HFI
  - With daily data difficult to identify the persistence of the effects of policy shocks on financial variables
  - Can't identify joint response with economic activity
- Our approach: combines strengths of VAR and HFI methodologies
  - By using futures rate surprises as external instruments, exploits HFI approach to identify exogenous policy surprises
  - Uses VAR to trace out full dynamic response of real and financial variables.

## Preview of Main Findings

- 1. FF futures surprises  $\Rightarrow$  responses in output and inflation consistent conventional monetary transmission mechanism and with existing VAR literature.
- 2. "Modest" movements in short rates  $\Rightarrow$  "large" movements in real credit costs
  - (a) Due mainly to reaction of term premia and credit spreads
  - (b) Evidence against baseline model of monetary policy transmission.
    - i. Still evidence for sticky prices: real rates move one for one with nominal
    - ii. Need to adjust model to account for term premia and credit spread responses.
- 3. Forward guidance important to strength of policy transmission.

#### Methodology

- VAR with external instruments (Stock-Watson (2012), Mertens-Ravn 2013).
- Structural autoregressive model

$$AY_t = \sum_{j=1}^p C_j Y_{t-j} + \varepsilon_t$$

• Reduced form model

$$Y_t = \sum_{j=1}^p B_j Y_{t-j} + u_t$$

$$u_t = S\varepsilon_t$$

with  $B_j = A^{-1}C_j$ ;  $S = A^{-1}$ 

# Methodology (cont')

 $y_t^p \in Y_t \equiv$  monetary policy indicator;  $\varepsilon_t^p \equiv$  structural policy shock  $s \equiv$  column in S corresponding to impact on each element of  $u_t$  of  $\varepsilon_t^p$ 

• To compute the impulse response to a monetary shock, need to estimate

$$Y_t = \sum_{j=1}^p B_j Y_{t-j} + s\varepsilon_t^p$$

- $B_i$  obtained via least squares; need restrictions to identify s
- Standard restriction: elements of s are zero except the one corresponding to the reduced form residual for the policy instrument.

#### External Instruments

 $Z_t \equiv$  vector of instrumental variables

 $\varepsilon_t^{-p} \equiv {\rm vector} ~{\rm of} ~{\rm structural}$  shocks not including policy shock

•  $Z_t$  must satisfy

 $E[\varepsilon_t^p Z_t] = \phi$  $E[\varepsilon_t^{-p} Z_t] = \mathbf{0}$ 

### External Instruments (con't)

 $u_t^p \equiv$  reduced form residual from equation for policy indicator  $u_t^q \equiv$  reduced form residual for variable  $q \neq p$ .  $s^q \varepsilon_t^p \equiv$  response of  $u_t^q$  to  $\varepsilon_t^p$ .

- Goal: Identify  $s^q$  which gives responses of  $u^q_t$  to the policy shock  $\varepsilon^p_t$
- Use 2SLS: Three steps:
  - Obtain  $u_t$  from OLS regression of reduced form VAR
  - To identify variation in  $u_t^p$  due to  $\varepsilon_t^p$ , regress  $u_t^p$  on  $Z_t$
  - To obtain estimates of  $s^q$ , regress  $u_t^q$  on  $u_t^p$ , using the fitted values  $\widehat{u_t^p}$  from the first stage regressions as instruments for  $u_t^p$ .

#### Daily Fed Funds Futures Surprises as Instruments

 $f_{t+j} \equiv$  settlement price on FOMC day in month t for FF futures expiring in t+j $f_{t+i,-1} \equiv$  settlement price on day prior to FOMC meeting  $i_{t+i}^u \equiv$  surprise in target rate expected for month t+j on FOMC day in month t.

$$i_{t+j}^u = f_{t+j} - f_{t+j,-1}$$

- $i_t^u \equiv$  shock to current funds rate target (Kuttner, 2011)
- for  $j \ge 1$ ,  $i_{t+j}^u \equiv$  shock to target expected at t + j. (GSS, 2005)
- *i<sup>u</sup><sub>t+j</sub>* measured within 30 minute window of FOMC decision
   Isolates FOMC news (GSS, 2005).

# Policy Indicator (vs. Policy Instrument)

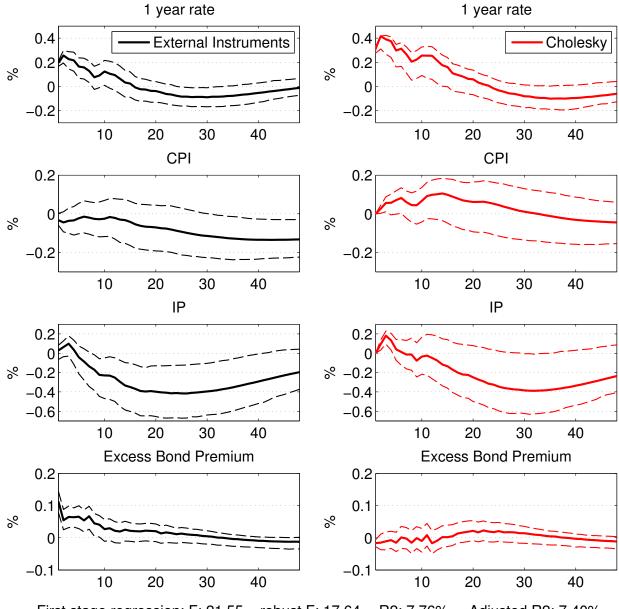
- Monthly VARs with IP, CPI, various interest rates and a policy indicator
- Policy indicator (i.e., the "policy relevant" interest rate)
  - Reflects stance of monetary policy, encompassing forward guidance.
  - Residual incorporates policy shocks, including shocks to forward guidance
- Conceptually preferred indiciator: two year government bond rate
  - View that FOMC operates with 2 yr horizon for Funds rate, (e.g. Swanson-Williams, 2012, Hanson-Stein, 2012)
- We use one year government bond rate as policy indicator for pragmatic reasons
  - Avoids potential weak instruments problem
  - Results robust to using two year rate as a policy indicator

#### Policy Indicator and Exogenous Policy Surprises

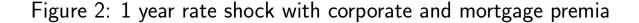
- Given monthly frequency, return on 1yr govt bond rate  $\equiv i_t^{12}$ 

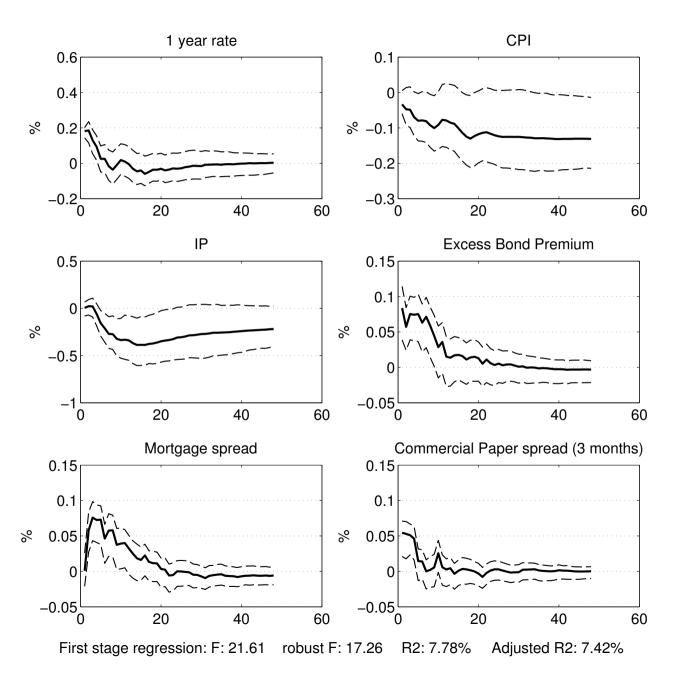
$$i_t^{12} = \frac{1}{12} E_t \{ \sum_{j=0}^{11} i_{t+j} \} + \phi_t^{12}$$

• Reduced form VAR residual for  $i_t^{12}$  equivalent to:

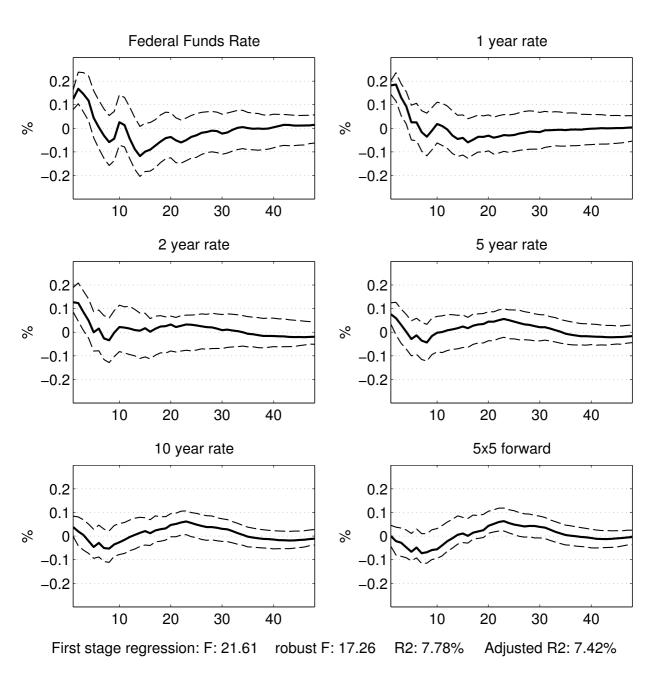

$$i_t^{12} - E_{t-1}i_t^{12} = \frac{1}{12} \sum_{j=0}^{11} \{ E_t i_{t+j} - E_{t-1}i_{t+j} \} + \phi_t^{12} - E_{t-1}\phi_t^{12}$$

- Instrumenting with FF, ED rate surprises isolates orthogonal movements
  - i.e, Isolates orthogonal surprises in current and expected future short rates.
  - Policy shock is linear combination of surprises in different FF and ED futures


## Data Description


- Sample: 1979:09 2012:06
- Economic variables: IP, CPI
- Interest rates
  - Gov't bond yields: 1yr (policy indicator), 2yr, 5 yr, 10 yr; 1m FF rate
  - Baa spread, Gilchrist/Zakrasjek excess bond premium
  - Mortgage.spread, commercial paper spread
- Instruments: available 1991:01 through 2012:06
  - 1m, 3m ahead FF futures; 6m, 9m, year ahead 3 month ED futures
  - We use 3m ahead FF futures as baseline (best instrument choice)
    - \* Results robust to other instrument combinations

#### Figure 1: 1 year rate shock with excess bond premium




First stage regression: F: 21.55 robust F: 17.64 R2: 7.76% Adjusted R2: 7.40%









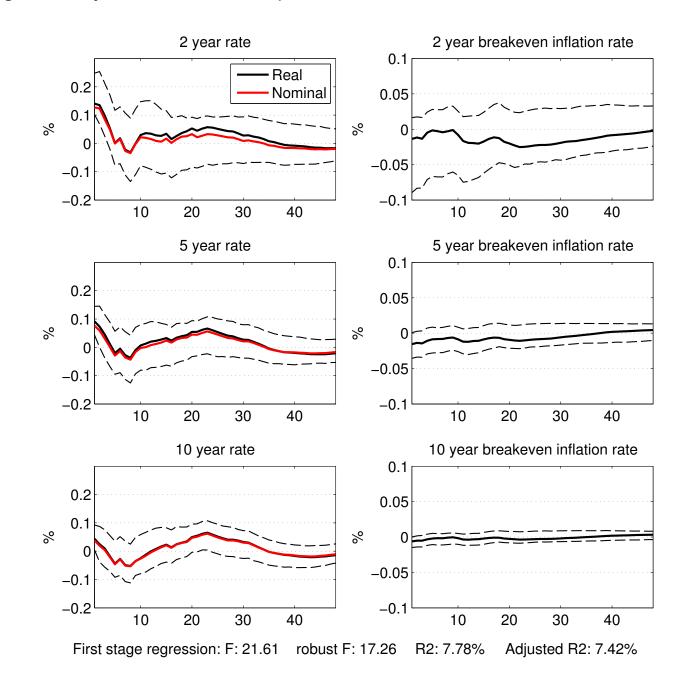
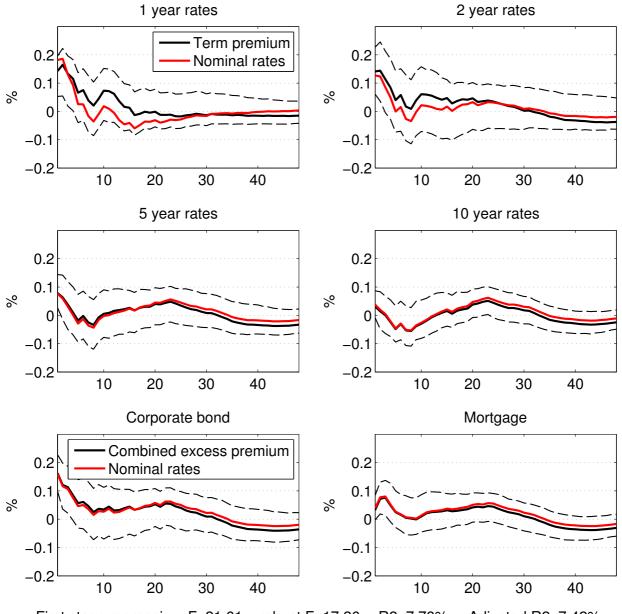



Figure 4: 1 year rate shock: Response of real rates and breakeven inflation rates

#### Calculating Term Premia and Excess Return Responses

• Term premium on m period gov't bond,  $\phi_t^m$ :

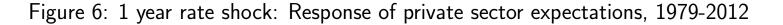
$$\phi_t^m = i_t^m - \frac{1}{m} E_t \{\sum_{j=0}^{m-1} i_{t+j}\}$$


– Obtain response of  $i_t^m$  and  $i_t \ {\rm from} \ {\rm VAR}$ 

- Use path of  $i_t$  to compute  $E_t \{\sum_{j=0}^{m-1} i_{t+j}\}$  for each t.
- Excess return on private m period bond,  $\chi_t$

$$\chi_t = i_t^{mp} - \frac{1}{m} E_t \{ \sum_{j=0}^{m-1} i_{t+j} \}$$
  
=  $(i_t^{mp} - i_t^m) + \phi_t^m$ 

 $i_t^{mp} \equiv {\rm rate} \ {\rm on} \ m$  period private bond






First stage regression: F: 21.61 robust F: 17.26 R2: 7.78% Adjusted R2: 7.42%

Term Premia Responses Using Expectations Data

- Term premia responses may reflect "non-rational" forecasts of future short rates
- Can evaluate using survey data on expectations:
  - Blue Chip Economic Indicators survey: 3 month T-bill rate forecasts up to 6 quarters ahead; available 1983:03 - 2012:06.
- Results:
  - At longer horizons (5-10 years):
    - \* Cannot reject that market expectations of the future path of the Funds rate are "rational"; i.e. consistent with the impulse responses of the Funds rate.
    - \* Term premium effects not due to "irrational expectations."
  - As shorter horizons (1-2) years
    - \* "Over-reaction" of expectations could explain term premium effects
    - \* Data is too noisy to say for sure.



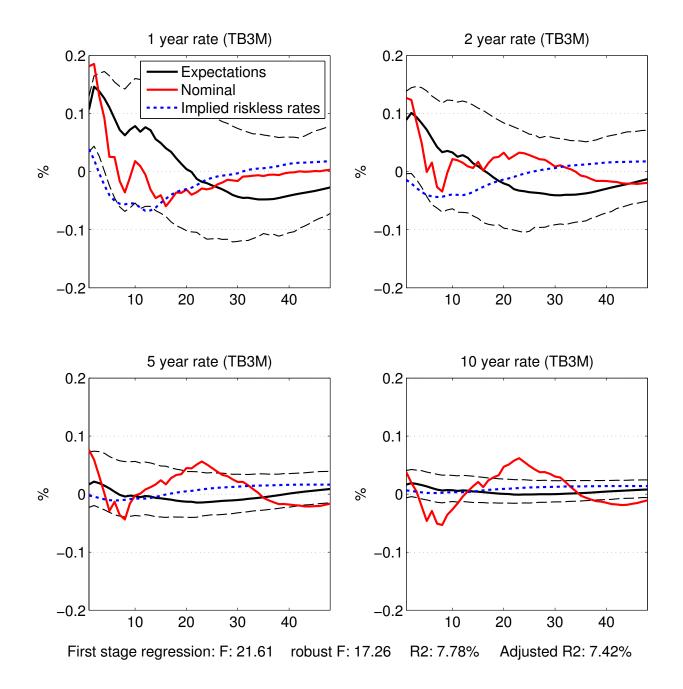




Figure 7: Federal Funds rate shock



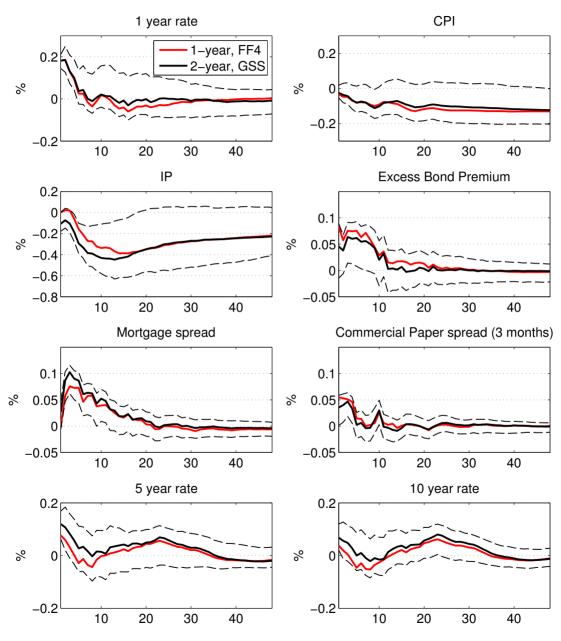
First stage regression: F: 25.16 robust F: 14.04 R2: 8.95% Adjusted R2: 8.59%

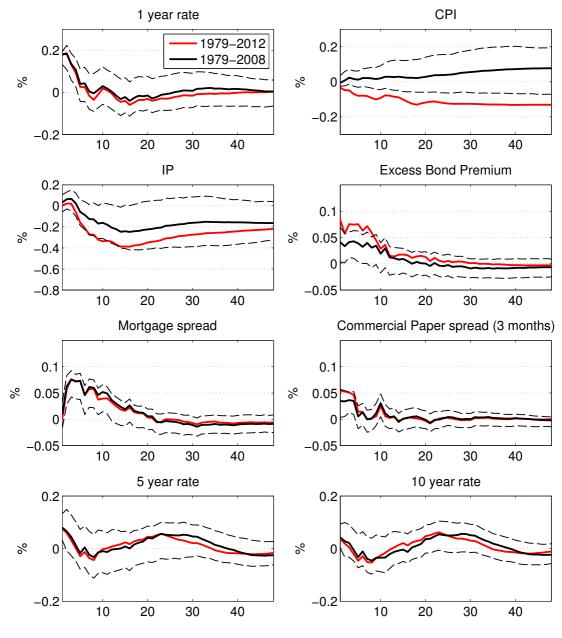
# A Model Consistent with Facts: Gertler-Karadi 2012

- Baseline: conventional monetary DSGE (CEE 2005)
- Banks intermediate funding of private securities and govt bonds
  - Financial frictions introduce balance sheet constraints on banks  $\Rightarrow$
  - Limits to arbitrage that depend inversely on balance sheet strength
  - Frictions greater for private securities than for gov't bonds
- Contractionary monetary policy shock increases both term premia and credit spreads
  - Tightening weakens bank balance sheets  $\Rightarrow$
  - Tightens limits to arbitrage, raising term premia and credit spreads
  - Amplifies impact on economy.

# Concluding Remarks

- VAR with FF/ED futures as external instruments used to study monetary policy transmission
- Key findings:
  - Responses of output and inflation consistent with earlier VAR analysis
  - "Modest" movements in short rates  $\Rightarrow$  "large" movements in credit costs
    - \* Due to responses of term premia and credit spreads
  - Forward guidance enhances impact of policy
- Main implication: need to modify conventional model to allow for term premia and credit spread effects.





Figure 8: 2 year rate shock with a full set of GSS instruments

First stage regression: F: 2.65

robust F: 3.99 R2: 4.99%

% Adjusted R2: 3.10%

#### Figure 9: 1 year rate shock, 1979-2008



First stage regression: F: 17.62 robust F: 14.76 R2: 7.81% Adjusted R2: 7.37%

| Indicator & | (1)      | (2)                 | (3)                 | (4)                 | (5)                 | $(6)$ baa $^+$     | (7)                 |
|-------------|----------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|
| Instruments | 2 yr     | 5yr                 | 10yr                | 30yr                | 5x5 forw            |                    | Mortg. <sup>+</sup> |
| FF,FF1      | 0.367*** | 0.233**             | 0.0980              | 0.00637             | -0.0369             | 0.139              | 0.170               |
|             | (3.467)  | (2.241)             | (1.053)             | (0.103)             | (-0.388)            | (1.475)            | (1.445)             |
| 1YR,FF1     | 0.739*** | 0.469***            | 0.197               | 0.0128              | -0.0744             | 0.280              | 0.343               |
|             | (8.493)  | (3.094)             | (1.173)             | (0.103)             | (-0.379)            | (1.544)            | (1.416)             |
| 1YR,FF4     | 0.880*** | 0.683***            | 0.375***            | 0.145*              | 0.0668              | 0.333**            | 0.427**             |
|             | (15.81)  | (8.201)             | (4.410)             | (1.694)             | (0.614)             | (2.176)            | (2.239)             |
| 2YR, FF4    |          | 0.778***<br>(11.80) | 0.432***<br>(5.306) | 0.169*<br>(1.839)   | 0.0848<br>(0.702)   | 0.355**<br>(1.986) | 0.483**<br>(2.141)  |
| 2YR, GSS    |          | 0.878***<br>(18.70) | 0.575***<br>(11.84) | 0.234***<br>(4.139) | 0.271***<br>(3.601) | 0.231*<br>(1.844)  | 0.350**<br>(2.049)  |

Table 1: Yield effects of monetary policy shocks (event study, daily, 1991-2012)

Robust z-statistics in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1 QE dates and crisis period are excluded, 188 observations +: 2-week cumulative changes

| Indicator & | (1)      | (2)      | (3)       | (4)        | (5)        | (6)         |
|-------------|----------|----------|-----------|------------|------------|-------------|
| Instruments | TIPS 2yr | TIPS 5yr | TIPS 10yr | Bkeven 2yr | Bkeven 5yr | Bkeven 10yr |
| FF, FF1     | 0.245    | 0.263**  | 0.149**   | 0.0427     | -0.116     | -0.109**    |
|             | (1.348)  | (2.217)  | (2.287)   | (0.596)    | (-1.553)   | (-2.081)    |
| 1YR         | 0.800*** | 0.639*** | 0.384***  | 0.282*     | -0.0932    | -0.125      |
|             | (4.141)  | (7.606)  | (6.121)   | (1.913)    | (-0.620)   | (-1.165)    |
| 1YR, FF4    | 0.804*** | 0.565*** | 0.315***  | 0.0990     | 0.00376    | -0.0738     |
|             | (5.171)  | (5.763)  | (4.136)   | (0.474)    | (0.0269)   | (-0.815)    |
| 2YR, FF4    | 0.759*** | 0.618*** | 0.344***  | 0.0935     | 0.00412    | -0.0808     |
|             | (5.090)  | (4.302)  | (3.592)   | (0.525)    | (0.0269)   | (-0.743)    |
| 2YR, GSS    | 0.754*** | 0.630*** | 0.462***  | 0.196**    | 0.189**    | 0.101*      |
|             | (7.749)  | (8.394)  | (9.350)   | (1.981)    | (2.165)    | (1.818)     |

Table 2: TIPS and breakeven inflation effects of monetary policy shocks (daily event study, 1999-2012)

Robust z-statistics in parentheses

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

QE dates and crisis period are excluded, 58 (2yr), 100 observations

+: 2-week cumulative changes

| Table 3: Effects of high-frequency instruments on the first stage residuals of the 4 variable VAR (monthly, |  |
|-------------------------------------------------------------------------------------------------------------|--|
| 1991-2012)                                                                                                  |  |

| VARIABLES    | (1)<br>1YR | (2)<br>1YR          | (3)<br>1YR         | (4)<br>1YR          | (5)<br>1YR                     | (6)<br>2YR | (7)<br>2YR         | (8)<br>2YR       | (9)<br>2YR          | (10)<br>2YR                    |
|--------------|------------|---------------------|--------------------|---------------------|--------------------------------|------------|--------------------|------------------|---------------------|--------------------------------|
| FF1          | 0.890***   |                     |                    |                     | 0.394                          | 0.533**    |                    |                  |                     | 0.174                          |
| FF4          | (4.044)    | 1.151***<br>(4.184) |                    | 1.266***<br>(4.224) | (1.129)<br>1.243***<br>(3.608) | (2.116)    | 0.779**<br>(2.272) |                  | 1.013***<br>(2.643) | (0.462)<br>1.379***<br>(3.361) |
| ED2          |            | (                   |                    | ()                  | 1.440<br>(1.244)               |            | ()                 |                  | (21010)             | 1.134<br>(0.859)               |
| ED3          |            |                     |                    |                     | -4.443***<br>(-2.635)          |            |                    |                  |                     | -4.733**<br>(-2.448)           |
| ED4          |            |                     | 0.624**<br>(2.039) | -0.167<br>(-0.476)  | 2.674**<br>(2.493)             |            |                    | 0.293<br>(0.923) | -0.339<br>(-0.863)  | 2.946**́<br>(2.465)            |
| Observations | 258        | 258                 | 258                | 258                 | 258                            | 258        | 258                | 258              | 258                 | 258                            |
| R-squared    | 0.066      | 0.078               | 0.025              | 0.079               | 0.110                          | 0.020      | 0.029              | 0.005            | 0.033               | 0.064                          |
| F-statistic  | 16.36      | 17.50               | 4.159              | 11.00               | 8.347                          | 4.477      | 5.160              | 0.851            | 3.760               | 5.162                          |

Robust t-statistics in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1