HIGH DISCOUNTS AND HIGH UNEMPLOYMENT

Robert E. Hall
Hoover Institution and Department of Economics
Stanford University

Economic Fluctuations and Growth Meeting

National Bureau of Economic Research

13 July 2013
Recessions

Stock market: Price falls more than earnings, meaning discounts rise
Recessions

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation
Recessions

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation

DMP model: Present value of margin between productivity and wage (job value, J) is the driving force of labor-market tightness and unemployment
Recessions

Stock market: Price falls more than earnings, meaning discounts rise

All types of investment fall, including job creation

DMP model: Present value of margin between productivity and wage (job value, J) is the driving force of labor-market tightness and unemployment

The rise in discounts is easily enough to explain observed large variations in unemployment, even with Nash wage bargaining.
EXISTING RESEARCH ON DISCOUNTS AND UNEMPLOYMENT VOLATILITY

- CAPM expected returns as discounts in the PV of the employer’s share of surplus: Yashiv (2000)
- Labor market amplification of productivity shocks as a source of discount vol: Kuehn, Petrosky-Nadeau, and Zhang (2013)
- Joint movements of job value and stock market assuming corps own only plant, equipment, and employment relationships: Merz and Yashiv (2007)
The DMP model makes the job value directly observable, because it is proportional to the expected duration of a vacancy, a number available from JOLTS.
Key new ideas

The DMP model makes the job value directly observable, because it is proportional to the expected duration of a vacancy, a number available from JOLTS.

Capture the high cyclical volatility of discounts.
Zero-profit condition

\[\kappa + c \frac{V}{H} \]
Zero-profit condition

\[\kappa + c \frac{V}{H} \]

\[\kappa + cT = \bar{J} \]
Zero-profit condition

\[
\kappa + c \frac{V}{H} = \bar{J}
\]

\[
\kappa + cT = J
\]
Zero-profit condition

\[\kappa + c \frac{V}{H} \]
\[\kappa + cT = \bar{J} \]
\[cT = J \]
\[J = \nabla(x - w) \]
Aggregate Job Value, 2001 through 2013
Job Value from JOLTS and Wilshire Stock-Market Index
Stock-market pricing model

\[1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i} \]
Stock-market pricing model

\[1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i} \]

32 unknown \(m_{i,i'} \)s; 9 pricing conditions
Stock-market pricing model

\[1 = \sum_{i'} \pi_{i,i'} m_{i,i'} \frac{P_{i'} + y_{i'}}{P_i} \]

32 unknown \(m_{i,i'} \)s; 9 pricing conditions

Bayesian regression with very slightly informative prior centered on 1
Definitions of Categories of the Stock Price and Corporate Profits

<table>
<thead>
<tr>
<th></th>
<th>Deflated detrended Wilshire stock-market index</th>
<th>Deflated detrended corporate profits, billions of 2005 dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1450</td>
<td>92</td>
</tr>
<tr>
<td>M</td>
<td>2411</td>
<td>130</td>
</tr>
<tr>
<td>H</td>
<td>3619</td>
<td>153</td>
</tr>
</tbody>
</table>
Stochastic Discount Factor Inferred from the Stock Market

<table>
<thead>
<tr>
<th>Origin</th>
<th>P</th>
<th>y</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>L</th>
<th>M</th>
<th>H</th>
<th>L</th>
<th>M</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>L</td>
<td>0.87</td>
<td>0.98</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>M</td>
<td>0.98</td>
<td>0.91</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>H</td>
<td>0.99</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>L</td>
<td>0.99</td>
<td>0.94</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>M</td>
<td>0.99</td>
<td>0.98</td>
<td>0.92</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>H</td>
<td>0.97</td>
<td>0.79</td>
<td>0.90</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>L</td>
<td>1.01</td>
<td>1.03</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>M</td>
<td>1.00</td>
<td>1.01</td>
<td>1.04</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>1.00</td>
<td>0.99</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Present value

\[V_i = \mathbb{E}_{i'|i} m_{i',i} y_{i'} \]
Discount factors and rates

\[V_i = D_i \bar{y}_i \]
Discount factors and rates

\[V_i = D_i \bar{y}_i \]

\[d_i = \frac{1}{D_i} - 1. \]
Discount Factors and Rates

<table>
<thead>
<tr>
<th>State</th>
<th>P category</th>
<th>y category</th>
<th>Quarterly discount factor</th>
<th>Annual discount rate, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>L</td>
<td>0.89</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>M</td>
<td>0.93</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>H</td>
<td>0.95</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>L</td>
<td>0.96</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>M</td>
<td>0.94</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>H</td>
<td>0.85</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>L</td>
<td>1.02</td>
<td>-9</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>M</td>
<td>1.03</td>
<td>-11</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>0.95</td>
<td>19</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>0.95</td>
<td>24</td>
</tr>
</tbody>
</table>
Discounting job-value flows

\[\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'}) \]
Discounting job-value flows

\[
\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'})
\]

\[
J_i = \alpha + \gamma \hat{J}_i + \epsilon_i
\]
Discounting job-value flows

\[\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'}) \]

\[J_i = \alpha + \gamma \hat{J}_i + \epsilon_i \]

\[\alpha = $661 ($87) \]
Discounting job-value flows

\[\hat{J}_i = (1 - s) \sum_{i'} \pi_{i,i'} m_{i,i'} (J_{i'} + y_{i'}) \]

\[J_i = \alpha + \gamma \hat{J}_i + \epsilon_i \]

\[\alpha = \$661 \ (\$87) \]

\[\gamma = 1.305 \ (0.375) \]
Actual and Fitted Job Values

<table>
<thead>
<tr>
<th>State</th>
<th>P category</th>
<th>y category</th>
<th>Actual job value</th>
<th>Fitted job value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>L</td>
<td>876</td>
<td>881</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>M</td>
<td>906</td>
<td>913</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>H</td>
<td>907</td>
<td>953</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>L</td>
<td>885</td>
<td>929</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>M</td>
<td>946</td>
<td>938</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>H</td>
<td>1004</td>
<td>938</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>L</td>
<td>1011</td>
<td>1023</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>M</td>
<td>1023</td>
<td>1053</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>1069</td>
<td>1001</td>
</tr>
</tbody>
</table>
Research in progress

What fraction of the observed cyclical volatility of unemployment do variations in J account for?
Research in progress

What fraction of the observed cyclical volatility of unemployment do variations in J account for?

Requires understanding of the decline in matching efficiency that started in 2009.