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To identify molecular mechanisms by which early life social condi-
tions might influence adult risk of disease in rhesus macaques
(Macaca mulatta), we analyze changes in basal leukocyte gene ex-
pression profiles in 4-mo-old animals reared under adverse social
conditions. Compared with the basal condition of maternal rearing
(MR), leukocytes from peer-reared (PR) animals and PR animals pro-
vided with an inanimate surrogate mother (surrogate/peer reared,
SPR) show enhanced expression of genes involved in inflammation,
cytokine signaling, and T-lymphocyte activation, and suppression of
genes involved in several innate antimicrobial defenses including
type I interferon (IFN) antiviral responses. Promoter-based bioinfor-
matic analyses implicate increased activity of CREB and NF-κB tran-
scription factors and decreased activity of IFN response factors (IRFs)
in structuring the observed differences in gene expression. Transcript
origin analyses identify monocytes and CD4+ T lymphocytes as pri-
mary cellular mediators of transcriptional up-regulation and B lym-
phocytes as major sources of down-regulated genes. These findings
show that adverse social conditions can become embedded within
the basal transcriptome of primate immune cells within thefirst 4mo
of life, and they implicate sympathetic nervous system-linked tran-
scription control pathways as candidate mediators of those effects
and potential targets for health-protective intervention.
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Exposure to adverse social environments during early life is
associated with increased risk of disease in adulthood (1–5),

but the biological mechanisms producing such effects remain poorly
understood. One possible explanation suggests that neural and
endocrine responses to adversity in childhood affect the develop-
ment of health-relevant molecular systems (i.e., a “defensive pro-
gramming” of the developing body) (4, 6–10), rendering the body
more vulnerable to subsequent pathogen challenges in adulthood
(11, 12). Given the transience of most neuroendocrine responses,
however, it remains unclear how the extraorganismic social con-
ditions that do “get into the body” during early life could “stay
there” over decades to impact the risk of disease in adulthood (13).
One molecular mechanism that could potentially create a per-

sisting biological impact of early life socio-environmental con-
ditions involves the complex systems behavior of the gene
transcriptional networks that govern cell growth, differentiation,
and function (14, 15). Gene regulatory networks show dynamic
landscapes in which the system’s responses to external perturba-
tions converge on a small number of stable “attractor”modes that
can subsequently self-perpetuate (16). These self-perpetuating
dynamics are sustained in part by the fact that the mRNA “out-
put” of the system at one point in time (i.e., the genome-wide
transcriptional profile) constitutes an “input” to the system at
subsequent time points because translated mRNA shapes the
cell’s response to future environments (17). Mathematical models
of human development that capture such recursive dynamics show
that small exogenous influences early in life can significantly alter
the course of subsequent life trajectories (18–20). What is not

known is which specific genes might be sensitive to such early
life environments.
Several recent studies have linked adverse social conditions in

early life with adult differences in gene expression in cells of the
nervous and immune systems (8–10, 21, 22). Early life social ad-
versity has also been associated with adult cell differences in
transcription-related epigenetic features such as DNA methylation
(23–25). To determine whether these adult transcriptional alter-
ations might potentially stem from a biological reprogramming of
the developing immune system during early life, we analyze the
genome-wide transcriptional profile of circulating leukocytes in in-
fant rhesus macaques (Macaca mulatta) after 4 mo of experimen-
tally imposed social adversity (peer vs. maternal rearing) (26). To
the extent that adverse social conditions become rapidly embedded
into the gene regulatory regime of the developing immune system,
we expect that (i) surrogate/peer-rearing (SPR) and peer-rearing
(PR) conditions increase the expression of genes involved in in-
flammation while decreasing expression of genes involved in type I
IFN-mediated innate antiviral responses [i.e., the “conserved tran-
scriptional response to adversity” previously observed in adults (9,
27–32)] and (ii) these effects are structured by transcription control
pathways linked to stress-responsive “social signal transduction”
pathways such as the sympathetic nervous system (SNS) and hy-
pothalamus–pituitary–adrenal (HPA) axis (10, 13, 17, 32). These
hypotheses are tested by coupling microarray-based assessment of
the entire macaque transcriptome with recent advances in compu-
tational bioinformatics (33) and multiple-hypothesis testing (34–36)
tomap large ensembles of differentially expressed genes into a small
number of higher-order biological themes regarding their regulatory
causes (e.g., transcription factor activity) (37), cellular contexts (e.g.,
originating leukocyte subtype) (30), and functional consequences
(e.g., Gene Ontology functional annotations) (38).

Results
Effects of Surrogate/Peer Rearing. Previous studies have identified
substantial increases in adult health risk in macaques exposed to
SPR conditions in early life (5). Our initial analyses compare
leukocyte transcriptional profiles in peripheral blood mononuclear
cells (PBMCs) from 4 mo-old SPR animals (n = 4) relative to
those from maternally reared (MR) animals (n = 5). Genome-
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wide transcriptional profiling identified 249 transcripts showing
a twofold or greater difference in average expression levels (85 up-
regulated in SPR vs. MR and 164 down-regulated). Fig. 1 displays
these transcriptome differences. Dataset S1 lists specific up- and
down-regulated genes.
GeneOntology analyses (Dataset S2) characterize the genes up-

regulated in PBMCs from SPR animals as being involved in mul-
tiple biological processes mediating immune activation, including
metabolic activation (e.g., oxidation/reduction and glycogen me-
tabolism), cytokine signaling (e.g., Interleukin 27, Leukemia In-
hibitory Factor, Ciliary Neurotrophic Factor, Notch, and STAT1/
STAT3 signaling), and T-cell proliferation. EntrezGene annota-
tions for several up-regulated genes also indicate a common role in
inflammation and tissue remodeling (e.g., Dataset S1: IL8,MMP1,
CCR3, and CCL2/MCP1) (39). Down-regulated genes are char-
acterized by involvement in innate immune response functions,
such as antigen processing and presentation, antimicrobial defense
responses (e.g., to bacteria and fungi), and liver development
(Dataset S2). SPR down-regulated genes also include multiple
transcripts identified in previous research as being involved in type
I IFN-mediated innate antiviral responses (e.g., Dataset S1:GBP1,
IFIT1, IFIT2, IFITM3, and IRF7) (39–42). Consistent with these
functional bioinformatic results implicating T-cell activation and
altered innate immune responses, transcript origin analyses iden-
tify monocytes and CD4+ T lymphocytes as major cellular sources
of SPR up-regulated genes and B lymphocytes as major sources
of SPR down-regulated genes (Fig. 1B).
To test the hypothesis that the observed differences in gene

expression might be mediated by reciprocal up-regulation of
proinflammatory NF-κB family transcription factors and down-
regulation of IFN response factor (IRF) family transcription fac-
tors, we carry out Transcriptional Element Listening System
(TELiS) bioinformatic analysis of transcription factor-binding
motifs in the promoters of differentially expressed genes. As in
previous studies of social adversity (9, 27–29, 31, 32, 43), NF-κB
target motifs are significantly overrepresented within the promoter
sequences of up-regulated genes and IRF motifs are significantly
enriched within the promoter sequences of down-regulated genes
(Fig. 1C). To determine whether such dynamics might be struc-
tured by social signal transduction pathways involving the SNS and
the HPA axis (10, 13, 17, 32, 44), TELiS analyses also examine

motifs associated with the CREB transcription factors involved in
β-adrenergic signaling by SNS catecholamines and glucocorticoid
response elements (GREs) associated with HPA-axis signaling
through the glucocorticoid receptor (GR).Results show significant
enrichment of CREB sites within promoters of up-regulated
genes, but no significant difference in GRE prevalence (Fig. 1C).

Effects of Peer Rearing. To determine whether similar dynamics
might emerge in PR animals that lacked access to an inanimate
surrogate mother and spent more time in contact with peers, we
also compare PBMC gene expression profiles in PR animals (n =
4) vs. MR animals (n = 5). Analyses identify 256 transcripts
showing a twofold or greater difference in average expression (105
up-regulated in PR vs. MR and 151 down-regulated; Fig. 2 and
Dataset S3). Gene Ontology analyses again identify up-regulated
genes as being involved inmetabolic activation (ATP synthesis and
electron transport chain, oxidation/reduction, and glycogen me-
tabolism), gene translation, cytokine signaling (Interleukin 27,
Leukemia Inhibitory Factor, Ciliary Neurotrophic Factor, Notch,
and STAT1/STAT3 signaling), and T-cell proliferation (Dataset
S4). Down-regulated genes are again characterized by involvement
in innate immune response functions, including antigen processing
and presentation and antimicrobial responses to bacteria, fungi,
and viruses. Prominent among down-regulated transcripts are
multiple genes involved in type I IFN-mediated innate antiviral
responses (e.g., Dataset S3: GBP1, IFI27, IFIT1, IFIT2, IFITM3,
IRF7, MX1, and MX2) (39–42). Gene Ontology annotations also
link down-regulated genes to liver development and fat cell dif-
ferentiation (Dataset S4). Transcript origin analyses identify
monocytes and CD4+ T lymphocytes as cellular mediators of PR
up-regulated genes (Fig. 2B) and B lymphocytes as cellular medi-
ators of down-regulated genes. TELiS promoter-based bioinfor-
matics again implicate a reciprocal increase in activity of NF-κB and
decrease in activity of IRF transcription factors in structuring the
observed differences in immune response gene expression (Fig. 2C).
TELiS analyses also indicate increased CREB activity, but provide
no evidence of decreased GR-mediated transcription (Fig. 2C).

Comparison of Peer and Surrogate/Peer Rearing. The qualitative
similarity in effects of SPR and PR conditions is underscored
by the fact that relatively few genes show a twofold or greater
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Fig. 1. Differential gene expression in leukocytes from mother-reared vs. surrogate/peer-reared macaques. (A) Heat plot representation of gene expression
values for 249 transcripts showing a twofold or greater difference in average expression between peripheral blood mononuclear cells (PBMCs) from sur-
rogate/peer-reared (SPR) rhesus macaques and those from maternally reared (MR) rhesus macaques. Rows, animals; columns, gene transcripts; red, up-
regulated gene expression; green, down-regulated gene expression. (B) Transcript origin analyses assessing cellular origins of differentially expressed genes
within specific PBMC subsets. (C) Relative prevalence of binding motifs for NF-κB, IRF, CREB, and GR transcription factors within promoters of genes up-
regulated in PBMCs from SPR vs. MR animals.
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difference in average expression in direct comparison of these
two groups (n = 48 up-regulated and 31 down-regulated, or less
than one-third the number of differences observed in compar-
isons of each group with MR gene expression profiles; Dataset
S5). Both SPR and PR groups show similar patterns of tran-
scriptional differentiation from MR animals, with 49% (42/85) of
SPR up-regulated transcripts also up-regulated by PR and 48%
(79/164) of SPR down-regulated transcripts also down-regulated
by PR (both exceeding the <0.1% overlap expected by chance;
P < 0.0001). Gene Ontology analyses also identify few differences
in the functional characteristics of SPR and PR PBMC tran-
scriptomes (Dataset S6). Among the few functional differences that
are identified is a comparative up-regulation of genes involved in
antigen presentation (including proteolysis and antigen processing)
in SPR animals relative to that in PR animals. No Gene Ontology
annotations are identified as significantly up-regulated in PBMCs
from PR animals relative to those from SPR animals.

Discussion
The results of this study show that adverse social conditions can
become embedded in the basal transcriptome of primate im-
mune cells within the first 4 mo of life. Compared with PBMCs
from MR rhesus macaques, those from peer-reared animals
(both SPR and PR) show enhanced expression of genes involved
in inflammation and T-lymphocyte activation and reduced ex-
pression of genes involved in type I IFN-mediated innate anti-
viral responses and other pathogen-specific innate antimicrobial
responses. This pattern of enhanced inflammatory gene expres-
sion and inhibited antiviral gene expression parallels the con-
served transcriptional response to adversity (CTRA) observed in
previous correlational studies of humans confronting adverse life
circumstances (9, 27–32, 43). The experimental manipulation of
early life social conditions in this study demonstrates that social
adversity can play a causal role in activating CTRA dynamics and
can do so during the earliest stages of postnatal immune system
development. To the extent that such environmentally mediated
transcriptome remodeling persists to affect immune responses to
pathogens encountered later in life [e.g., inhibiting immune
responses to viral infections (45, 46) or amplifying allergic in-
flammation (43)], the present findings provide a molecular
framework for understanding the long-observed epidemiologic
association between social adversity and reduced host resistance
to disease (47–50), as well as more recently recognized effects of

early life social conditions on adult immune function (10, 12, 13,
51) and disease risk (1–5).
These data provide additional insights into the specific immune

cell subtypes that are most sensitive to socio-environmental reg-
ulation and the neural and endocrine pathways that may mediate
such relationships. Transcript origin analyses link SPR/PR-in-
duced transcriptional up-regulation to monocytes and CD4+ T
lymphocytes and transcriptional down-regulation to B lympho-
cytes. These findings parallel previous primate studies doc-
umenting altered CD4/CD8 T-lymphocyte ratios as a function of
social vs. nonsocial housing conditions (52, 53) and defining leu-
kocyte subset alterations as a key mechanism of social influences
on the aggregate leukocyte transcriptome (54). These findings are
also consistent with previous studies indicating monocyte-derived
gene activation in humans confronting adversity (30, 31). On the
basis of the known functions of these specific cell subtypes (30),
SPR/PR animals might be expected to show reduced antibody
responses (mediated by B cells, e.g., in response to vaccines or
infections) and increased chronic inflammation (initiated by
monocytes and perpetuated by CD4+ T lymphocytes, e.g., in
responses to injury or infection). Additional research will be re-
quired to directly assess these specific immune system functional
alterations, but the present results are broadly consistent with the
increased disease risk observed in SPR/PR animals (5).
Also consistent with previous observations are results from

promoter-based bioinformatic analyses implicating increased ac-
tivity of proinflammatory NF-κB transcription factors and de-
creased activity of IRF family transcription factors in structuring
the observed gene expression differences (32). These analyses also
implicate CREB family transcription factors as potential molecu-
lar mediators of PR/SPR effects on the basal leukocyte tran-
scriptome. CREB factors play a central role in mediating the
transcriptional effects of SNS activation via β-adrenergic receptors
(55), and β-adrenergic signaling can also activate NF-κB (56), up-
regulate transcription of proinflammatory cytokine genes (57), and
inhibit IRF transcription factors and type I IFN gene expression
(46, 58) [i.e., the same proinflammatory/anti-antiviral transcrip-
tional shift observed here and in other adversity studies (32)]. A
potential increase in SNS-induced β-adrenergic signaling would
parsimoniously account for many of the transcriptional dynamics
observed here and provide a specific social signal transduction
pathway by which early life social adversity alters basal leukocyte
gene expression profiles and immune cell function (51, 52, 59, 60).
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Fig. 2. Differential gene expression in leukocytes frommother-reared vs. peer-reared macaques. (A) Heat plot representation of gene expression values for 256
transcripts showing a twofold or greater difference in average expression between PBMCs from peer-reared (PR) rhesus macaques and those from maternally
reared (MR) rhesus macaques. (B) Transcript origin analyses assessing cellular origins of differentially expressed genes within specific PBMC subsets. (C) Relative
prevalence of binding motifs for NF-κB, IRF, CREB, and GR transcription factors within promoters of genes up-regulated in PBMCs from PR vs. MR animals.
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Parallel bioinformatic analyses provide little support for the hy-
pothesis that reduced glucocorticoid-mediated transcription plays
a major role in structuring the effects observed here [as has pre-
viously been observed in studies of long-term adversity in adults (9,
27, 28, 54)]. It is possible that the effects of early life adversity do
not involve changes in cortisol signaling or GR function [e.g., as
previously observed (12)]. However, it is also possible that GR-
related functional alterations may have been present, but remain
undetected due to the limited statistical power available in this
study. Alternatively, the SNS/β-adrenergic/CREB-related transcrip-
tional dynamics observed here at 4 mo of age may constitute the
initial phase of a long-term regulatory trajectory that subsequently
induces GR desensitization and propagates systemic inflammation
into adulthood. Ongoing longitudinal analyses of gene expression
dynamics in the cohort studied in this paper will help clarify
the possibilities. If analyses continue to indicate a role for SNS/
β-adrenergic/CREB signaling in structuring the CTRA gene ex-
pression dynamics observed here, pharmacologic inhibition of
that pathway [e.g., with β-adrenergic antagonists (55–58)] might
represent one potential strategy for mitigating the transcriptional
dynamics and health risks associated with social adversity (13, 32).
Gene products that act recursively on the transcriptome (e.g.,

transcription factors and chromatin regulators) also show marked
changes in expression in response to early life social adversity.
Recursive dynamics can help to explain how transient periods of
environmental adversity in early life propagate over time to in-
fluence adult health many years later. To the extent that transient
environmental perturbations alter the expression of genes that
control the basal dynamic equilibrium of the leukocyte tran-
scriptome and/or alter the expression of molecules that mediate
social signal transduction, early life social conditions may estab-
lish a long-lasting propensity to respond to challenges (either
socio-environmental or microbial) that becomes manifest in
health vulnerability only when the organism is challenged later
in life (10–12). Quantitative modeling of such recursive de-
velopmental systems shows that corrective interventions are likely
to be far more effective when deployed early in life than when
delivered later in adulthood (16, 18–20, 61). The present study’s
observation that adverse social conditions can alter basal gene
expression profiles in circulating immune cells within the first 4
mo implies an opportunity to remediate the biological impact of
adverse environments shortly after they initially manifest and well
before these gene regulatory regimes consolidate to drive the
emergence of frank disease (e.g., late-life “diseases of aging” such
as cardiovascular, neurodegenerative, or neoplastic disease) (62).
The scope of the present findings is limited in several important

respects. First, this study does not include any direct measure of
immune system functional activity [e.g., response to a pathogenic
challenge (11, 12)], so the health significance of the present results
remains to be determined in future studies. However, recent
analyses have shown that macaques exposed to same adverse
conditions in early life show significantly elevated physical and
mental health problems in adulthood (5). The present study also
focuses on circulating leukocytes, and implications for the more
disease-relevant cells in peripheral tissues and lymphoid organs
will require additional studies. Both of these limitations may be
addressed to some extent by the fact that the type I IFN inhibition
observed here parallels that observed in previous studies of social
stress effects on macaque IFN responses to viral infection in
lymph nodes (46). This study is also limited in its focus on a one-
time analysis of immune cell gene expression after 4mo of adverse
social conditions in a small sample of animals. Replication of
these findings in larger study samples with extended follow-up
will be important to gauge the generalizability of these findings.
Despite the fact that this small sample limits statistical power,
the present analyses were nevertheless able to detect the proin-
flammatory and anti-antiviral transcriptional dynamics that have
previously been observed in larger studies of social adversity in

adult humans and macaques (54). Future longitudinal analyses
will be required to determine how rapidly such transcriptional
alterations emerge, how long they persist, and whether or how
quickly theymight reverse following the cessation of environmental
adversity. Previous analyses of the macaque SPR/PR paradigm
have documented an enduring impact on other biobehavioral
phenotypes (63), raising the possibility that the transcriptional
alterations observed here may persist as well [e.g., due to self-
perpetuating transcriptional dynamics (15–17)]. However, until
more information is available regarding the longitudinal trajectory
of the transcriptome dynamics documented here and their impact
on cellular function and liability to disease, these findings should be
considered the first steps toward addressing the question of mo-
lecular pathways by which early life social conditions affect sub-
sequent health trajectories. Bioinformatic indications that SNS/
β-adrenergic/CREB activation may mediate the observed effects
are consistent with previous experimental results (46, 56, 57), but
future pharmacologic inhibition studies will also be required to
decisively confirm the role of SNS signaling in the present para-
digm. It is also important to note that the present findings can be
interpreted only in the context of immune function, and the CNS
neurobiological mechanisms of the present effects represent an
important topic for future research (10, 21, 64, 65).
A major strength of this study is its ability to clearly map causal

effects of early life social conditions on immune cell gene ex-
pression profiles in the context of a randomized experiment. Fu-
ture analysis of larger samples and longitudinal trajectories from
this paradigm hold great promise for clarifying the specific envi-
ronmental conditions that mediate and moderate social genomic
dynamics. For example, we observe particularly strong expression
of IFN-related genes in MR animals reared in outdoor field cages
(although laboratory-reared MR animals also showed elevations
relative to SPR/PR animals). Such findings suggest that the
physical environment may interact with the social environment to
shape transcriptional adaptation. A larger sample of field-reared
MR animals would be required for any definitive conclusion. The
potential health significance of field vs. laboratory MR conditions
also remains to be defined because previous epidemiologic anal-
yses of this paradigm have excluded field-reared animals (5).
Thus, ongoing longitudinal analyses of the rhesus macaque peer-
rearing paradigm will provide valuable information with which to
dissect the physical, behavioral, neural, and molecular pathways
through which early life social conditions affect adult health and
well-being (5).

Methods
Social Conditions. Newborn rhesus macaques were randomized to MR, PR, or
SPR, as previously described in ref. 26. MR infants were housed in social
groups approximating natural conditions (i.e., 8–10 adult females including
the infant’s mother, 2 adult males, and other similar-aged infants), with 2
of the 5 MR animals raised in 5-acre outdoor field cages and 3 reared in
14.6-m2 indoor/outdoor laboratory enclosures (26). [Note that this distri-
bution differs from the sample recently analyzed by Conti et al. (5), which
did not include any MR animals reared in field cage environments.] Infants
assigned to PR and SPR conditions were removed from their mothers be-
tween birth and 2 d of age and taken to a neonatal nursery, where they
were housed individually with an inanimate surrogate mother for 37 d,
after which they either entered a permanent group of four age-matched
peers (PR) or continued individual housing with a surrogate mother sup-
plemented by 2 h/weekday play sessions in groups of four age-matched
peers (SPR) (26). (The PR monkeys also had a surrogate mother in the cage
until they were 4 mo old.)

At 4mo of age, peripheral bloodmononuclear leukocytes (i.e., monocytes,
dendritic cells, B lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, and
NK cells) were isolated by standard Ficoll density gradient centrifugation of
venipuncture blood samples obtained under resting conditions from a con-
secutive series of 14 healthy animals (8 females and 6 males) in the course of
routine veterinary health examinations. Additional procedural details are
provided in SI Methods. All procedures were carried out at the National
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Institutes of Health Animal Center (Poolesville, MD) and approved by the
Institutional Animal Care and Use Committee.

Gene Expression and Transcriptional Bioinformatics. Genome-wide transcrip-
tional profiling and bioinformatic analyses were carried out essentially as
described in previous studies (27, 30, 57), using Affymetrix Rhesus Genome
Arrays. Detailed methods are provided in SI Methods, and data are deposited
as Gene Expression Omnibus series GSE35850. Briefly, raw expression values
for 52,024 probes assessing ∼47,000 distinct macaque mRNA transcripts (in-
cluding 7,185 distinct named macaque genes) were quantile normalized and
log2-transformed to identify genes showing twofold or greater differences in
average expression levels across groups. Functional characteristics of differ-
entially expressed genes were identified through National Center for Bio-
technology Information (NCBI) EntrezGene annotations (66) and Gene
Ontology (GO) annotations in the Affymetrix Rhesus Genome Array anno-
tation file (i.e., both testing for significant differences in average levels of
gene expression across rearing conditions, using small-sample permutation-
based inference, and correcting for multiple-hypotheses testing using the
stepdown algorithm of Romano andWolf as developed and applied in ref. 34,
and for overrepresentation of annotations in differentially expressed gene
lists relative to the sampling frame of all genes present on the microarray, as
outlined in SI Methods). Activity of specific transcriptional control pathways
was assessed by TELiS bioinformatics analysis of transcription factor-binding
motifs (TFBMs) in the promoters of differentially expressed genes (www.telis.
ucla.edu) (37, 57). Promoter sequences derived from the M. mulatta genome

sequence were analyzed for TFBMs corresponding to NF-κB (TRANSFAC V
$NFKAPPAB65_01 motif), IRFs (V$IRF1_01), CREB (V$CREB_01), and the glu-
cocorticoid receptor (V$GR_Q6), using PromoterScan and PromoterStats
algorithms as previously described (37). Differential prevalence was quanti-
fied by the ratio of TFBM frequency in promoters of genes up-regulated in
one group vs. another and summarized by the geometric mean ratio com-
puted over nine parametric variations of promoter length (−300 bp relative to
transcription start site, −600 bp, and −1,000 bp to +200 bp) and TFBM de-
tection stringency (mat_sim = 0.85, 0.90, 0.95). Geometric mean ratios were
tested for statistical significance, using a single-sample t statistic with boot-
strap-derived SEs (37). Transcript origin analyseswere conducted as previously
described (30) to identify specific leukocyte subsets contributing to the ob-
served PBMC transcriptome alterations.
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SI Methods
Gene Expression and Transcriptional Bioinformatics. For genome-
wide transcriptional profiling of circulating immune cells, 3-mL
peripheral blood samples were obtained from a consecutive series
of fourteen 4-mo-old infant rhesus macaques (mean age 4.5 mo,
range 3.7–5.3, with at least 4 animals from each rearing condition:
MR, PR, and SPR) as the animals were undergoing routine vet-
erinary health examinations. Examinations included a period of
chemical restraint induced by intramuscular injection of 10–20
mg/kg (0.1–0.2 mL/kg) ketamine hydrochloride, during which
blood samples were collected from the femoral vein into EDTA-
coated vacutainer tubes. Whole-blood samples were subject
to standard Ficoll density gradient centrifugation (1) to isolate
peripheral blood mononuclear cells (PBMCs; i.e., monocytes,
dendritic cells, B lymphocytes, CD4+ T lymphocytes, CD8+ T
lymphocytes, and NK cells). Total RNA was extracted from
PBMC samples (RNeasy; Qiagen), tested for integrity by capillary
electrophoresis (Agilent Bioanalyzer 2100), quantified by spec-
trophotometry (Nanodrop ND1000; Thermo Scientific), and as-
sayed by Affymetrix Rhesus Genome Arrays according to the
manufacturer’s suggested protocol (Affymetrix), as previously
described (2, 3). Thirteen of the 14 samples met basic quality
criteria (RNA quantity and purity) and were retained for final
analysis. Low-level expression measures for 52,024 probes as-
sessing ∼47,000 macaque gene transcripts (including 7,185 dis-
tinct namedMacacamulatta genes) were obtained fromAffymetrix
Expression Console software, quantile normalized using robust
multiarray averaging (RMA) (4), and expressed as log2-trans-
formed values for statistical analysis. Differentially expressed
genes were first identified by a twofold or greater difference in
average expression value across groups, on the basis of previous
results showing that fold-difference criteria yield more replicable
gene lists than do P value-based criteria (5–10). Then, we used
permutation-based inference procedures to address the problem
of the small size of our sample, which called into question the
validity of classical tests based on asymptotic inference. We fur-
ther applied the general stepdown methodology of Romano and
Wolf (11) as implemented in Heckman et al. (12) to assess family-
wise error rates (FWER) defined over groups of differentially
expressed genes showing common association according to spe-
cificGeneOntology Biological Function annotations. Specifically,
let the set of all relevant permutations of the treatment assign-
mentD (i.e., MR, SPR, and PR) be represented by {g1, . . ., gJ}. By
relevant permutations we mean permutations that change the
vector of treatment assignments; that is, gD ≠ D. Let gJ+1 be the
identity permutation. Permutation P values are based on the mid-
P value of the prepivoting statistic, defined as

p≡
1

2ðJ þ 1Þ

 XJþ1

l¼1

1
�
T l ≥ T Jþ1�þXJþ1

l¼1

1
�
T l >T Jþ1�!;

where Tj ¼PJþ1
l¼1 1½Δj ≥Δl�=ðJ þ 1Þ is the prepivoted statistic and

the Δj is the t-statistic computed for the permuted treatment
assignment gjD. See Beran (13) for the statistical benefits of
the prepivoting statistic. Under the randomization hypothesis,
any real-valued statistic of the permuted data (i.e., pj, Tj; j =
1, . . . , J + 1) that provides J + 1 distinct values as g varies in
G is uniformly distributed across these J + 1 values. Lehmann
and Romano (14) show that the mid-P value constitutes a valid
level-α test; that is, Prob(Reject H0) = Prob(P < α) = α. We use
this test statistic in the stepdown algorithm of Romano and Wolf

(11) as implemented in Heckman et al. (12). Our type I error for
the multiple-hypothesis testing is the FWER, which is the prob-
ability of rejecting any true null hypothesis. To illustrate the
stepdown procedure, consider the null hypothesis of no treat-
ment effect for a set of K joint outcomes, where the complement
of this set is that there exists at least one hypothesis of K that we
reject. The procedure starts by considering a joint test of all null
hypotheses for the set of K hypotheses by comparing the maxi-
mum of the set of statistics associated with the hypotheses being
jointly tested with the α-quantile of its distribution (α is the level
of family-wise error rate that we want to control) to determine
whether this first joint hypothesis is rejected or not. If we fail to
reject the joint null hypothesis, then the algorithm stops; if we
reject it, then we iterate and consider successive joint hypotheses
that exclude the outcomes with the highest associated test sta-
tistics. Therefore, the procedure steps down, and at each succes-
sive step, it is implemented on a set of K − 1 null hypotheses.
The process iterates until only one hypothesis remains. Romano
and Wolf (11) show that the stepdown algorithm exhibits strong
FWER control; that is, the FWER is held at or below a specified
level regardless of the true configuration of the full set of hy-
potheses. Importantly, this procedure allows for the relaxation of
the commonly made assumption in multiple-testing corrections
of independence of the expression level of each gene of that of
the other genes in the microarray.
Functional characteristics of differentially expressed geneswere

identified throughNationalCenter forBiotechnology Information
(NCBI) EntrezGene RefSeq annotations (15) and differential
representation analysis of Gene Ontology (GO) annotations (16)
in the Affymetrix Rhesus Genome Array Annotation File. Dif-
ferential representation analyses compared the proportion of
differentially expressed genes tagged with a specific GO Bi-
ological Function annotation (i.e., pD = nD/ND, with nD repre-
senting the number of differentially expressed genes associated
with a specific GO annotation, ND representing the total number
of differentially expressed genes, and pD representing the pro-
portion of differentially expressed genes tagged by that annota-
tion) with the proportion observed across the sampling frame of
all Rhesus Genome Array-assayed genes (i.e., pG = nG/NG, with
nG representing the number of microarray-assayed genes associ-
ated with a specific GO annotation, NG representing the 6,962
total assayed named and GO-annotated genes, and pG repre-
senting the proportion of assayed genes associated with that an-
notation), using a one-tailed Fisher’s exact test of equality of
proportions.
To evaluate the role of specific transcription control pathways

in structuring the observed pattern of differential gene expres-
sion, the promoters of differentially expressed genes were scan-
ned by the Transcription Element Listening System (TELiS)
transcription factor search engine (www.telis.ucla.edu) to identify
differential representation of transcription factor-binding motifs
(TFBMs) reflecting pathway activation (17). Promoter TFBMs
were detected using TRANSFAC position-specific weight ma-
trices (18) and the mat_sim match statistic (19). Promoter
TFBM distributions were derived from the M. mulatta genome
sequence, using PromoterScan and PromoterStats algorithms as
previously described (3, 17). Differential TFBM prevalence was
quantified by the ratio of frequencies in promoters of genes up-
regulated in one experimental condition vs. another, averaged
over nine different analytic stringencies involving parametric
variations of promoter length (−300 bp relative to transcription
start site, −600 bp, and −1,000 bp to +200 bp) and TFBM match

Cole et al. www.pnas.org/cgi/content/short/1218253109 1 of 4

http://www.telis.ucla.edu
www.pnas.org/cgi/content/short/1218253109


stringency (mat_sim = 0.85, 0.90, 0.95) (17). Average log ratios
were tested for statistical significance, using a single-sample t test
(after confirming that the distribution of log ratios was approx-
imately Gaussian, as implied by the Central Limit Theorem)
(20), and accuracy of the resulting P values was verified by
a randomization test as previously described (2, 5). The ran-
domization test involved 10,000 cycles in which (i) a random set
of genes equivalent in number to those found to be empirically
up-regulated and down-regulated in a given comparison was
sampled from the population of macaque genes assayed by the
Affymetrix Rhesus Genome Array and (ii) the TFBM preva-
lence ratio was calculated for each random sample. The two-
tailed achieved significance level was computed as 2 × (1 − p),
where p denotes the percentile of the empirically observed log
ratio within the null hypothesis distribution derived from 10,000
randomly sampled ratios. To identify specific leukocyte subsets
contributing to the observed differences in PBMC gene expres-
sion, we conducted transcript origin analyses as previously de-
scribed (21).

SI Datasets S1, S2, S3, S4, S5, and S6: Notes
Notes for Dataset S2: Gene Ontology Analysis and Single- and
Multiple-Hypothesis Testing (Surrogate Peer-Reared vs. Mother-
Reared Up-Regulated Genes). The first column in Dataset S2
identifies the cluster, defined according to the GO Biological
Function of the gene. The second column provides the name of
the probe set from the Rhesus Macaque Genome Array by Af-
fymetrix. The third column provides the t-statistic based on the
difference in means between the treatment and the control group.
The fourth column shows the rank statistic associated with the t-
statistic. We define this statistic below. Bigger values of the test
statistic provide evidence against the null hypothesis H0 of no
treatment effects. The fifth column gives the one-sided single-
hypothesis P value based on a small-sample permutation test. The
last column provides the stepdown P value for the multiple-hy-
pothesis testing according to ref. 11. Clusters of variables used in
the multiple-hypothesis testing are separated by horizontal lines.
We describe our inference method below.
Let the set of all relevant permutations of the treatment as-

signment D be represented by {g1, . . . , gJ}. By relevant permu-
tations we mean permutations that change the vector of
treatment assignment; that is, gD ≠ D. Let gJ+1 be the identity
permutation. Single P values in column 5 are based on the mid-P
value of the prepivoting statistic, defined as

p≡
1

2ðJ þ 1Þ

 XJþ1

l¼1

1
�
T l ≥T Jþ1�þXJþ1

l¼1

1
�
T l >T Jþ1�!;

where Tj ¼PJþ1
l¼1 1½Δj ≥Δl�=ðJ þ 1Þ is the prepivoted statistic and

the Δj is the t-statistic computed for the permuted treatment
assignment gjD. See ref. 13 for the statistical benefits of the
prepivoting statistic. Under the randomization hypothesis, any
real-valued statistic of the permuted data (i.e., pj, Tj; j = 1, . . . ,
J + 1) that provides J + 1 distinct values as g varies in G is
uniformly distributed across these J + 1 values. Ref. 14, Chap.
15, shows that the mid-P value constitutes a valid level-α test;
that is, Prob(Reject H0) = Prob(P < α) = α. We use this test
statistic in the stepdown algorithm of ref. 11. Our type I error for
the multiple-hypothesis testing is the FWER, which is the prob-
ability of rejecting any true null hypothesis. Ref. 11 shows that
the stepdown algorithm has strong FWER control; that is, the
FWER is held at or below a specified level regardless of the true
configuration of the full set of hypotheses.

Notes for Dataset S2: Gene Ontology Overrepresentation Analysis.
Surrogate peer-reared vs. mother-reared, GO annotations associated with
up-regulated genes. The first column in Dataset S2 shows the GO

annotation for the biological function of the gene. The second
column nG shows the number of genes on the microarray with
that function among those annotated with a biological process;
the third column pG shows their proportion, where pG = nG/NG
and NG (= 6,962) is the total number of genes in the microarray
annotated with a GO Biological Function category. The fourth
column nD shows the number of genes on the microarray with
that function among those that are differentially expressed and
have the GO Biological Function annotation; the fifth column pD
shows their proportion, where pD ¼ nD=ND   pD and ND (= 25) is
the total number of up-regulated genes with a GO Biological
Function annotation for the mother- reared vs. peer-reared
comparison. The last column shows the one-sided P value for the
Fisher’s exact test for the equality of proportions against the al-
ternative hypothesis of overrepresentation. Dataset S2 includes
only annotations with nD > 1.
Surrogate peer-reared vs. mother-reared, GO annotations associated with
down-regulated genes. The first column in Dataset S2 shows the
GO annotation for the biological function of the gene. The
second column nG shows the number of genes on the microarray
with that function among those annotated with a biological
process; the third column pG shows their proportion, where pG =
nG/NG and NG (= 6,962) is the total number of genes in the
microarray annotated with a GO Biological Function category.
The fourth column nD shows the number of genes on the mi-
croarray with that function among those that are differentially
expressed and have the GO Biological Function annotation; the
fifth column pD shows their proportion, where pD = nD /ND and
ND (= 38) is the total number of down-regulated genes with
a GO Biological Function annotation for the mother-reared vs.
peer-reared comparison. The last column shows the one-sided P
value for the Fisher’s exact test for the equality of proportions
against the alternative hypothesis of overrepresentation. Dataset
S2 includes only annotations with nD > 1.

Notes for Dataset S4: Gene Ontology Analysis and Single- and
Multiple-Hypothesis Testing (Peer Reared vs. Mother Reared). The
first column in Dataset S4 identifies the cluster, defined ac-
cording to the GO Biological Function of the gene. The second
column provides the name of the probe set from the Rhesus
Macaque Genome Array by Affymetrix. The third column pro-
vides the t-statistic based on the difference in means between
treatment and control group. The fourth column shows the rank
statistic associated with the t-statistic. We define this statistic be-
low. Bigger values of the test statistic provide evidence against the
null hypothesis H0 of no treatment effects. The fifth column gives
the one-sided single-hypothesis P value based on a small-sample
permutation test. The last column provides the stepdown P value
for the multiple hypothesis testing according to ref. 11. Clusters of
variables used in the multiple-hypothesis testing are separated by
horizontal lines. We describe our inference method below.
Let the set of all relevant permutations of the treatment as-

signment D be represented by {g1, . . . , gJ}. By relevant permu-
tations we mean permutations that change the vector of
treatment assignment; that is, gD ≠ D. Let gJ+1 be the identity
permutation. Single P values in column 5 are based on the mid-P
value of the prepivoting statistic, defined as

p≡
1

2ðJ þ 1Þ

 XJþ1

l¼1

1
�
Tl ≥T Jþ1�þXJþ1

l¼1

1
�
T l >T Jþ1�!;

where Tj ¼PJþ1
l¼1 1½Δj ≥Δl�=ðJ þ 1Þ is the prepivoted statistic and

the Δj is the t-statistic computed for the permuted treatment
assignment gjD. See ref. 13 for the statistical benefits of the
prepivoting statistic. Under the randomization hypothesis, any
real-valued statistic of the permuted data (i.e., pj, Tj; j = 1, . . . ,
J + 1) that provides J + 1 distinct values as g varies in G is
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uniformly distributed across these J + 1 values. Ref. 14, Chap.
15, shows that the mid-P value constitutes a valid level-α test;
that is, Prob(Reject H0) = Prob(P < α) = α. We use this test
statistic in the stepdown algorithm of ref. 11. Our type I error for
the multiple-hypothesis testing is the FWER, which is the prob-
ability of rejecting any true null hypothesis. Ref. 11 shows that
the stepdown algorithm has strong FWER control; that is, the
FWER is held at or below a specified level regardless of the true
configuration of the full set of hypotheses.

Notes for Dataset S4: Gene Ontology Overrepresentation Analysis.
Peer-reared vs. mother-reared GO annotations associated with up-
regulated genes. The first column in Dataset S4 shows the GO
annotation for the biological function of the gene. The second
column nG shows the number of genes on the microarray with
that function among those annotated with a biological process;
the third column pG shows their proportion, where pG = nG/NG
and NG (=6,962) is the total number of genes in the microarray
annotated with a GO biological function category. The fourth
column nD shows the number of genes on the microarray with
that function among those which are differentially expressed and
have the GO biological function annotation; the fifth column pD
shows their proportion, where pD ¼ nD=ND   pD and ND (=25) is
the total number of up-regulated genes with a GO biological
function annotation for the Mother- Reared vs. Peer-Reared
Comparison. The last column shows the one-sided P value for
the Fishers exact test for the equality of proportions against the
alternative hypothesis of over-representation. The table only
includes annotations with nD > 1.
Peer-reared vs. mother-reared GO annotations associated with down-
regulated genes. The first column in Dataset S4 shows the GO
annotation for the biological function of the gene. The second
column nG shows the number of genes on the microarray with
that function among those annotated with a biological process;
the third column pG shows their proportion, where pG = nG/NG
and NG (= 6,962) is the total number of genes in the microarray
annotated with a GO biological function category. The fourth
column nD shows the number of genes on the microarray with
that function among those that are differentially expressed and
have the GO biological function annotation; the fifth column pD
shows their proportion, where pD = nD /ND and ND (= 38) is
the total number of down-regulated genes with a GO bio-
logical function annotation for the mother-reared vs. peer-reared
comparison. The last column shows the one-sided P value for the
Fisher’s exact test for the equality of proportions against the
alternative hypothesis of overrepresentation. Dataset S4 includes
only annotations with nD > 1.

Notes for Dataset S6: Gene Ontology Analysis and Single- and Multiple-
Hypothesis Testing (Peer Reared vs. Surrogate Peer Reared). The first
column in Dataset S6 identifies the cluster, defined according to
the GO Biological Function of the gene. The second column
provides the name of the probe set from the Rhesus Macaque
Genome Array by Affymetrix. The third column provides the t-
statistic based on the difference in means between the treatment
and the control group. The fourth column shows the rank statistic

associated with the t-statistic. We define this statistic below. Big-
ger values of the test statistic provide evidence against the null
hypothesis H0 of no treatment effects. The fifth column gives the
one-sided single-hypothesis P value based on a small-sample
permutation test. The last column provides the stepdown P value
for the multiple-hypothesis testing according to ref. 11. Clusters of
variables used in the multiple-hypothesis testing are separated by
horizontal lines. We describe our inference method below.
Let the set of all relevant permutations of the treatment as-

signment D be represented by {g1, . . . , gJ}. By relevant permu-
tations we mean permutations that change the vector of
treatment assignment; that is, gD ≠ D. Let gJ+1 be the identity
permutation. Single P values in column 5 are based on the mid-P
value of the prepivoting statistic, defined as

p≡
1

2ðJ þ 1Þ

 XJþ1

l¼1

1
�
T l ≥T Jþ1�þXJþ1

l¼1

1
�
T l >T Jþ1�!;

where Tj ¼PJþ1
l¼1 1½Δj ≥ Δl�=ðJ þ 1Þ is the prepivoted statistic

and the Δj is the t-statistic computed for the permuted treatment
assignment gjD. See ref. 13 for the statistical benefits of the
prepivoting statistic. Under the randomization hypothesis, any
real-valued statistic of the permuted data (i.e., pj, Tj; j = 1, . . . ,
J + 1) that provides J + 1 distinct values as g varies in G is
uniformly distributed across these J + 1 values. Ref. 14, Chap.
15, shows that the mid-P value constitutes a valid level-α test;
that is, Prob(Reject H0) = Prob(P < α) = α. We use this test
statistic in the stepdown algorithm of ref. 11. Our type I error for
the multiple-hypothesis testing is the FWER, which is the prob-
ability of rejecting any true null hypothesis. Ref. 11 shows that
the stepdown algorithm has strong FWER control; that is,
FWER is held at or below a specified level regardless of the true
configuration of the full set of hypotheses.

Notes for Dataset S6: Gene Ontology Overrepresentation Analysis
(Surrogate Peer-Reared vs. Peer-Reared GO Annotations Associated
with Up-Regulated Genes). The first column in Dataset S6 shows
the GO annotation for the biological function of the gene. The
second column nG shows the number of genes on the microarray
with that function among those annotated with a biological
process; the third column pG shows their proportion, where pG =
nG/NG and NG (= 6,962) is the total number of genes in the
microarray annotated with a GO Biological Function category.
The fourth column nD shows the number of genes on the mi-
croarray with that function among those that are differentially
expressed and have the GO Biological Function annotation; the
fifth column pD shows their proportion, where pD ¼ nD=ND   pD
and ND (= 25) is the total number of up-regulated genes with
a GO Biological Function annotation for the mother- reared vs.
peer-reared comparison. The last column shows the one-sided P
value for the Fisher’s exact test for the equality of proportions
against the alternative hypothesis of overrepresentation. Dataset
S6 includes only annotations with nD > 1.
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