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Abstract

We model the allocation of capital to mutual funds by rational risk-averse investors

who are uncertain about both managers’ skill and the funds’ risk loadings. Uncertainty

about risk loadings arises because fund portfolios are not continuously observed. Under

these assumptions, investors learn more about alpha in downturns than in upturns.

The reason is that, in downturns, the noise coming from the loading on aggregate risk

is smaller, which increases the signal-to-noise ratio and thus simplifies the inference

about skill. As a result, in downturns investors reallocate more wealth between funds

and the flow-performance sensitivity is higher than in upturns. We test the model’s

cross-sectional and difference-in-difference predictions across fund types and market

states, as well as its nonlinear predictions, and find supporting evidence.
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1 Introduction

Economists have long been concerned with the allocation of capital to mutual funds, and

specifically with the question of whether mutual fund flows follow rational patterns, for at

least three reasons. First, U.S. households invest 23% of their financial assets and more than

50% of their retirement savings through IRAs and 401(k)s in mutual funds (ICI, 2012). It

could be a major concern from a welfare perspective if irrational forces were driving savings

decisions of that magnitude. Second, US mutual funds own a substantial share of financial

assets in the economy: the $6 trillion invested in equity mutual funds (end of 2012) correspond

to close to one half of US stock market capitalization (ICI, 2012). Given the large share of

institutional asset ownership, an efficient allocation of capital to intermediaries seems crucial

for efficient pricing of securities and, therefore, for the allocative efficiency in the economy

(Shleifer and Vishny, 1997). Third, mutual fund flows directly affect funds’ assets under

management. Fund flows therefore are at the core of debates about manager compensation,

incentives, and their effect on investment policy. For the above reasons, understanding the

frictions leading to and possibly impeding fund flows are at the center of evaluating normative

prescriptions for the organization of the money management industry.

A considerable body of theoretical literature has developed to explain the observed pat-

terns of fund flows and returns. Famously, Berk and Green (2004)’s (BG) model features

Bayesian investors who allocate more capital to funds with high relative performance as a

result of their learning process about manager skill. The model explains lack of performance

persistence by assuming decreasing returns to scale and rent extraction by skilled managers.

Huang, Wei, and Yan (2007) add participation costs to generate a convex shape of the flow-

performance relation (see also Lynch and Musto (2003)). Elaborating on the BG model,

Huang, Wei, and Yan (2012) derive cross-sectional predictions on the flow-performance sen-
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sitivity (FPS) in an economy in which Bayesian and performance-chasing investors coexist.

We add to this literature’s efforts to build a general theory of rational fund flows. One

dimension that has been left unexplored is uncertainty about fund risk loadings. Notably, BG

model fund returns in excess of a benchmark, implicitly assuming that benchmark loadings

are perfecly observable by investors, or homogeneous across funds, or stable over time. There

seem to be good reasons to relax this assumption given that infrequent reporting of holdings

combined with portfolio rebalancing and the lack of high frequency fund returns prevent

investors from perfectly learning fund betas. Supporting this view, Kacperczyk, Sialm, and

Zheng (2008) show that a large amount of portfolio rebalancing between reporting dates is

concealed from investors. Also, in contrast to stocks for which quasi-continuous observation of

returns allows investors to infer second moments arbitrarily fast (Merton, 1980), mutual fund

returns are observed at most daily, which hinder perfect inference of risk loadings. Motivated

by these considerations, we study the implications of uncertain risk factor loadings for fund

flows.

We develop a rational model of mutual fund flows with no frictions other than parameter

uncertainty that predicts variation of the flow-performance sensitivity across market states.

In the model, investors rationally learn about manager skill (alpha), but their inference is

complicated by uncertainty about risk loadings (betas). Based on these assumptions, we show

that investors react more strongly to relative performance in downturns than in upturns.

The intuition for this result is simple. In upturns, the informativeness of fund returns about

manager skill is dimished because uncertainy about beta constitutes noise that is magnified

by the positive realization of the market. In downturns, the noise arising from uncertain

betas is dampened by the poor realization of the market. As a result, in bad markets, the

signal-to-noise ratio is higher, and the rational investors react more strongly to performance.
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This key model prediction about the variation of the sensitivity of flows to performance

across states of the economy finds robust support in the data. The FPS is more than twice

as high in downturns than in upturns. Table 1 gives a summary of that finding.

Table 1: Summary of the Main Empirical Result. Upturns and Downturns are defined, respec-
tively, as the top and bottom 25% of periods according to the distribution of the CRSP value-
weighted index since July 1926 as in Glode, Hollifield, Kacperczyk, and Kogan. The table
reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter
mutual fund rank by style-adjusted performance. The last column reports the difference in
coefficients between Downturns and Upturns. T-statistics are reported in parentheses.

Upturns Downturns Down-Up

Flow-Performance Sensitivity 0.020*** 0.045*** 0.025***
t-stat (3.489) (5.551) (2.564)

We verify our predictions about the variation of the FPS across market states in more

detail with a difference-in-differences approach. Specifically, our model correctly predicts the

difference-in-differences for the FPS between upturns and downturns and across fund types,

which helps eliminate endogeneity concerns that are present in estimations of the time-series

prediction alone. In particular, our estimates of the upturn-downturn FPS-difference might

be driven by the allocation of new capital that flows into the sector in upturn and flows out

of the sector in downturns, rather than by the re-allocation of capital within the sector, or

it might be that investors are less scrupulous in their investment decisions in upturns than

in downturns for behavioral reasons. The double-difference approach distinguishes these al-

ternative explanations from our theory of rational learning. We first predict cross-sectional

differences of the FPS similar to BG and other existing learning theories. When investors

have less precise prior beliefs about funds’ performance parameters (e.g., because the funds
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are small, young, have a new manager, or follow a particularly active investment style), each

observation leads to a more pronounced updating of prior beliefs, resulting in a higher FPS

for these funds. Second, and unique to our model, is the prediction that these cross-sectional

differences vary across states of the economy: funds that have a steeper unconditional FPS

(funds associated with less precise prior beliefs) are predicted to have a higher FPS-difference

between upturns and downturns. Such predictions for cross-sectional differences in the time

variation of the FPS cannot be easily generated with inflows into the sector as a whole.

Similarly, behavioral theories that might have the potential to explain the upturn-downturn

difference do not easily explain the cross-sectional differences in the upturn-downturn differ-

ence at the same time.

Both the time-series and difference-in-differences predictions for the FPS are borne out

in the data as well. We empirically proxy for investors’ dispersion in beliefs using measures

of active share and tracking error that are drawn from Cremers and Petajisto (2009). In

particular, we take what these authors call “Concentrated funds,” that is, those ranking high

by both active share and tracking error, as examples of funds for which investors have less

precise prior beliefs. (Similar results obtain for young funds, funds with managers with low

tenure, etc. .) Figure 1 illustrates the empirical results comparing the FPS of Concentrated

funds to all other funds in different states of the economy. As predicted by the model, the

flow-performance relation of Concentrated funds is steeper on average, and the difference of

slopes across downturns and upturns is larger, compared to other funds. This difference-in-

differences is highly significant.

Both the model and empirics are robust to whether the flow-performance relation is

convex or linear – a long-dating question (Chevalier and Ellison, 1997; Sirri and Tufano,

1998) recently reinvestigated by Spiegel and Zhang (2012): our theoretical model can be

4



-‐0.05	  

-‐0.03	  

-‐0.01	  

0.01	  

0.03	  

0.05	  

0.07	  

0.09	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

Flows	  (concentrated	  funds,	  upturns)	  

Flows	  (concentrated	  funds,	  downturns)	  

Flows	  (other	  funds,	  upturns)	  

Flows	  (other	  funds,	  downturns)	  

Figure 1: Flow-performance relation in upturns and downturns for “Concentrated funds”
and all other funds (difference-in-differences results). The horizontal axis is the fractional
rank of fund i in period t with respect to funds in the same style category. On the vertical
axes are percentage flows into fund i at time t+ 1.

combined with participation costs, which generate convexity (Huang, Wei, and Yan, 2007),

and our empirical results hold in both linear and convex specifications.

Finally, we provide parametric and non-parametric nonlinear estimation results that es-

tablish an even closer link between the model predictions and the data. Aside from providing

a more direct validation of the theoretical predictions, these results also help rule out alter-

native theories that could potentially predict similar cross-sectional and time-series patterns

of the flow-performance sensitivity as our model and that linear estimation approaches could

potentially not reject.

The paper proceeds as follows. Section 2 describes the relation of our model and empirical

results to the existing literature. Section 3 presents the model. Section 4 describes the data,

defines variables, and explains the empirical strategy. Section 5 gives the empirical results.

Section 6 concludes.
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2 Related Literature

We first describe the relation of our model to the existing theoretical literature and, in

particular, to the benchmark model of BG. Then, we describe the differences from the prior

literature that concern both our theory and empirical results. Finally, we focus on the unique

aspects of our empirical methodology and results.

Similar to BG, our model features: investors that provide capital to mutual funds in

competitive ways; heterogeneity in the performance parameters of fund managers; decreasing

returns to scale; and investors who rationally learn from past returns according to Bayes’

law. A key difference from BG is that we allow for heterogeneous exposure of funds to time-

varying benchmark returns and uncertainty of investors’ about that risk loading. Moreover,

we model investors who explicitly maximize a risk averse utility function rather than expected

returns over a risk-adjusted benchmark.

Aside from risk aversion, the key new assumption of our model is that investors do not

have perfect knowledge about the extent to which funds’ cash flows load on the market

return, i.e. systematic risk. This assumption may seem counterintuitive at first, as it is well-

known that second moments can be learned arbitrarily fast when returns are continuously

observed (Merton, 1980). However, estimating performance parameters of mutual funds is

necessarily less precise because fund returns are not continuously observed and cannot be

easily constructed as the portfolio is often rebalanced (Kacperczyk, Sialm, and Zheng, 2008).

Thus, while our model makes useful predictions about asymmetries in mutual fund flows, a

similar asymmetry should not be expected to hold for learning about stock returns.

In an effort to focus on the model’s new predictions, we draw tighter boundaries than BG

along a few dimensions. In particular, we do not derive the optimal compensation contract

for the fund managers (Holmström, 1999), we do not endogenize the fee structure of the
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fund, and we do not explicitly discuss entry and exit from the mutual fund sector (Berk

and Green, 2004). Given little evidence of capital withdrawals from the sector in downturns

(Lubos Pastor and Taylor, 2013) and our identification efforts, we think that withdrawals

and additions to the sector will have but a marginal impact on estimation results that speak

to our research question.

Elaborating on the BG model, Huang, Wei, and Yan (2012) derive cross-sectional predic-

tions on the flow-performance sensitivity in an economy in which Bayesian and performance-

chasing investors coexist. Like these authors, we exploit heterogeneity in prior uncertainty

across funds to identify our model. However, our model relies on rational investors alone and

focuses on the implications of risk aversion and parameter uncertainty on the dependence of

the flow-performance relation on market states.

Li, Tiwari, and Tong (2013) develop a model with ambiguity averse investors who receive

multiple signals of unknown precision about fund performance. Investors’ flows react more

strongly to the most negative signal. This prediction holds empirically when the multiple

signals are proxied by fund ranking over different horizons. Our contribution differs from

this model in that it is entirely cast within a bayesian framework. Like us, these authors find

stronger evidence among retails funds, for which the degree of uncertaintly is likely higher.

While we may be the first to jointly allow for uncertainty with respect to both alpha

and funds’ factor loadings, we are not the first to allow for uncertainty in more than one

parameter. Pastor and Stambaugh (2012) allow for uncertainty with respect to the decreasing

returns to scale parameter, which is assumed to be a known constant in our model. Their

model explains the size of the actively managed fund industry, while ours focuses on cross-

sectional and time-series differences in the sensitivity of investor flows to fund returns.1

1Outside of the mutual fund literature, Adrian and Franzoni (2009) also postulate that investors learn
about unobservable risk factor loadings for stocks and show that this mechanism can explain part of the
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We model investor behavior in response to mutual fund performance in a given state of

the economy, taking funds’ performance parameters as given. In principle, the theoretical

results obtain with any model of how assets are priced in the economy. Hence, the model does

not take a stance on which asset pricing model fund managers use, whether managers are

perfectly or only limitedly rational as in Kacperczyk, Nieuwerburgh, and Veldkamp (2012),

whether they generate abnormal performance by market timing or stock picking (Kacper-

czyk, Van Nieuwerburgh, and Veldkamp, 2012), and whether the parameter distributions we

assume are the result of strategic choice by managers or whether they are endowed with

them, as our model assumes.2 Also, we do not model the fund-manager matching process

(Gervais and Strobl, 2013), but we take the outcome as given.

Several authors have used the insight that risk-averse investors value mutual fund returns

more in downturns than in upturns to study implications of the time-variation in the value of

active management as a whole (e.g., Moskowitz (2000); Kallberg, Liu, and Trzcinka (2000);

Kosowski (2006); Sun, Wang, and Zheng (2009); Glode (2011)). Our contribution is to study

the implications of the same insight for the cross-sectional reallocation of capital within the

mutual fund sector, which is reflected in the flow-performance relation.

Empirically, we complement the literature on the flow-performance relation (see Spiegel

and Zhang (2012)) by documenting that the FPS, which reflects within-sector flows across

funds among retail mutual funds, is twice as steep in downturns than in upturns.

value premium under specific conditions on the learning process.
2A further distinction from Kacperczyk, Nieuwerburgh, and Veldkamp (2012) is that there is no asym-

metric information in our model and that we do not assume parameter distributions or risk aversion to vary
exogenously as the state of the economy changes. The latter element clarifies that asymmetric fund flows
obtain in our model even if there is no asymmetry in the model parameters.
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3 Model

This section provides a rational model featuring Bayesian learning by mutual fund in-

vestors about managers’ skill, which allows for uncertainty in factor loadings. We draw

inspiration from Schmalz and Zhuk (2013) who model learning about the value of assets

from cash flow news. Aside from Bayesian learning, the model does not feature any frictions

such as liquidity constraints or limited rationality of investors. Compared to BG, the cru-

cial difference is that we explicitly allow for time-varying benchmark returns, heterogeneous

exposure of funds’ returns to that benchmark, and risk-averse investors who dislike such

exposure to systematic risk over and above what they get compensated for. Technically, this

introduces a second parameter in investors’ inference problem compared to BG.

3.1 Setup

There is a large number of funds, i = 1, 2, ..., N . The cash that fund i returns at time t

from every dollar invested at time t − 1 is denoted Y i
t . While the true return process may

have different drivers, the returns can be decomposed as

Y i
t = 1 + αi + βi (φ+ ξt)−

1

η
Sit−1 + εit (1)

where εit ∼ N (0, σ2
ε) are idiosyncratic shocks; Sit−1 is the size of the fund resulting from the

investors’ capital allocation in period t − 1 ; η > 0 is an efficiency parameter, such that

1
η

indicates decreasing returns to scale; ξt is a market-wide shock or risk factor with zero

expected value that is normally distributed and iid over time, ξt ∼ N (0, σ2
ξ ); and βi is a fund-

specific, time-fixed correlation with the risk factor; φ is the compensation for systematic risk
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exposure3; αi is a fund-specific, time-fixed performance parameter indicating a manager’s

skill to generate returns in excess of the benchmark, given fund size. The risk-free rate is

assumed to be zero without loss of generality. Investors are uncertain about the precise

value of both αi and βi, but they know both parameters are sampled from a jointly Normal

distribution with known mean, variance, and covariance that is identical for all funds of a

given category

N


 ᾱ

β̄

 ,

 σ2
α σαβ

σαβ σ2
β


 . (2)

While investors are not sure about the precise values of fund-level alphas and betas, we re-

quire that their prior beliefs have to be consistent with the true distribution of parameters in

the cross section given by equation (2). (Time subscripts are ommitted.) A further discussion

of the above assumptions follows.

3.2 Discussion

While not necessary for the model predictions, it can be assumed that β̄ = 1. What

is necessary is that the market risk premium is positive, which obtains as long as risk-

averse investors as a group are exposed to market risk. While it is necessary that there is a

compensation φ for taking systematic risk ξt, it is not assumed that the CAPM is used or

holds. Relatedly, we do not require that investors cannot short the market or undo their risk

exposure. It is only required that they cannot do so at zero cost, which is satisfied as long

as the risk premium is positive.

While the model can easily be solved allowing for non-zero correlations between α and β,

3We implictly assume that the risk premium in the asset market is the same as in the market for mutual
funds capital. This assumption is not necessary but dramatically simplifies the exposition. The general case
of the model with no assumptions about the risk premium in the asset market is available on request.
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this generalization unnecessarily complicates the model. We will thus assume that σαβ = 0.

Also, while the parameters may be the outcome of a game between managers and investors,

here we assume that fund investors take both αi and βi as exogenous.

αi can be interpreted as either stock picking skill or market timing skill. The stock picking

interpretation is straightforward. To gain intuition on market timing, one can assume for a

moment that the βi of manager i, is allowed to vary over time in a systematic fashion,

while the manager has no stock picking skill. In particular, suppose βit is always positive

in upturns (when ξt > 0) and always negative in downturns (when ξt < 0) . This manager

generates high average returns Y i
t with zero market correlation. To an investor running the

regression (1) that constrains market exposure to be time-fixed βi, this manager appears

to have high static αi and zero static βi. To the investor, this manager’s performance is

therefore observationally equivalent, and equally valuable, to the performance of a manager

without timing ability but with stock picking skill. In fact the investor is indifferent to how the

manager generates returns. The investor merely evaluates cash flows which are appropriately

weighted by her marginal utility in the state of the world in which the cash flow occurs. This

example illustrates that the investor can be assumed to remain ignorant about the particular

sources of skill of the manager. In sum, equation (1) is not necessarily the true cash flow

process of funds, nor do investors need to believe that it is. It is merely one possible, and

convenient, description of cash flows that is sufficient to describe the inference problem that

is relevant to the investors’ utility maximization problem.

While the model is generally compatible with any strategy managers may employ to gen-

erate returns, including stock picking and market timing, it is of course possible to construct

cases in which the assumption of normality of the parameter distributions is violated. For

example, if managers systematically have skill only in particular states of the economy, in-
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vestors could not reasonably believe that the parameter distributions are normal. However,

we deliberately assume symmetric parameter distributions to emphasize that asymmetric be-

havior across states of the economy obtains as an outcome of the model, even if parameters

and their distributions do not change as a function of the state of the economy. For example,

allowing for higher macro volatility in downturns than in upturns, i.e., a negatively skewed

ξt, or increased risk aversion in downturns, would presumably strengthen the predictions. Of

course, analytical solutions would be difficult or impossible to obtain for such cases.

3.3 Timing

The investor holds funds of equibrium size Sit−1 consistent with prior beliefs α̂it−1 and

β̂it−1 about the true parameters αi and βi according to equation (2). Returns Y i
t are realized

and observed by investors, from which they can infer ξt. Conditioning on ξt, investors then

compute posterior beliefs α̂it and β̂it and thus determine new equilibrium fund sizes Sit (derived

below). The change of fund sizes determines the between-fund-flows. Relating these flows to

performance Y i
t yields the flow-performance sensitivity.

3.4 Equilibrium

We model mutual fund investors as overlapping generations of groups of investors with

identical, risk-averse preferences.4 Further, there is a risk-free asset that returns R = 1 + r.

Without loss of generality, we set the risk-free rate to zero, r = 0. Equalizing the investors’

marginal expected utility across funds yields the equilibrium fund size.

4Assuming an OLG economy is not necessary. Schmalz and Zhuk (2013) show that an equivalent result
obtains when an infinite-horizon representative investor with CARA utility is assumed. Here we assume
the OLG agent to stress that the results do not depend on a specific utility function, but only require risk
aversion, and because the algebra is simpler.
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Lemma 1. Fund i’s equilibirum size Sit, based on the investors’ belief α̂it at time t about skill

αi is given by

Sit = η · α̂it. (3)

All proofs are in the appendix. The intuition of the lemma is straightforward. Investors

determine allocations to funds so that the expected utility of a marginal dollar in each

fund equals the outside option of zero. In doing that, the value of expected fund returns,

1 + αi + φβi − 1
η
Sit , is adjusted for the fund’s sensitivity to the risk factor, βi, multiplied by

the factor risk premium φ, which represents how much investors dislike risk exposure, thus

canceling the φβi term. While with exponential utility, φ takes a simple tractable form (not

shown here), no particular utility function is needed for the general result to obtain.

3.5 Fund Flows

3.5.1 Intuition

Equation (3) combined with (1) conveys the intuition of the model. The quantity of

interest is αi, while investors observe Y i
t = ...+αi+βi (φ+ ξt)+ ...+εit, i.e., their quantity of

interest plus diffent kinds of noise. In downturns, e.g. when ξt = −φ, the only noise preventing

investors to directly infer αi is εit. In contrast, in upturns of symmetric magnitude, ξt = +φ,

there is an additional element of noise βi (φ+ ξt) = 2βiφ that obscures the inference. If βi

were known, investors would just need to subtract a constant from the fund’s returns. With

βi unknown, however, investors do not know what exactly to subtract from any particular

fund i’s return to calculate its risk-adjusted performance. Hence, they have to treat the

additional term as noise. Thus, the signal-to-noise ratio is higher in downturns than in

upturns – a component of the noise is “switched off” in downturns. The intuition carries
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over to any other magnitude x for upturns ξt = +x and downturns ξt = −x.

3.5.2 Formal results

The main insight of the model is that the sensitivity of flows, F i
t , to unexpected per-

formance, Y i
t − Et−1[Y i

t ], depends on the state of the market, ξt. In particular, the flow-

performance sensitivity is larger for negative market shocks than for positive market shocks.

Lemma 2.

F i
t := Sit − Sit−1 = η · λ(ξt) · (Y i

t − Et−1[Y i
t ]) (4)

where

λ(ξt) =
σ2
α

σ2
α + σ2

β (φ+ ξt)
2 + σ2

ε

(5)

Recall that σ2
α and σ2

β denote the dispersion of parameters αi and βi within a particular

category of funds, according to (2), and thus the degree of uncertainty about these param-

eters. λ(ξt) is the flow-performance sensitivity (FPS) and corresponds to the signal-to-noise

ratio.5 Note also that Y i
t essentially are percentage returns (dollars returned for every dollar

invested), and Sit is fund size normalized to that benchmark. Thus, λ(ξt) is closely linked to

its empirical anologue.

The intuition is straightforward. First, consider the case that there is no uncertainty

about risk exposure, σ2
β = 0. Then, the flow-performance sensitivity λ does not depend on

the state of the economy, ξt. In particular, there is no asymmetry in the flow-performance

relationship between upturns and downturns, and the BG intuition obtains. One familiar

result that also obtains in BG is that the more dispersed cash-flow alphas are believed to be,

i.e. the higher σ2
α, the stronger the reaction to news, i.e., the steeper the FPS. Intuitively, if

5For the difference in fund sizes Si
t − Si

t−1 to correspond to between-fund flows, it is implicitly assumed
that each fund i distributes the net return Yi,t − 1 at the end of period t.
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very high and low fund returns are deemed realistic and attributable to exceptionally high

or low skill, rational investors are less prone to attribute abnormal returns to random noise.

This may be the case for particularly young funds, or funds with a manager of low tenure.

In the main empirical analysis, we proxy this higher degree of paramter uncertainty by using

Concentrated funds, as defined below. Conversely, if signals are less informative, i.e., if σ2
ε

is higher relative to σ2
α, then one-time abnormal performance of a given size triggers lower

flows. The ratio of σ2
α to σ2

ε is a sufficient description of the signal-to-noise ratio in that case.

Let us now introduce uncertainty about βi, σ2
β > 0. This makes the FPS λ(ξt) depend

on the state of the economy, ξt. In particular, a positive σ2
β dampens the FPS, in particular

in upturns. This is the driver of our empirical predictions.

While the following empirical predictions focus on implementation with linear estimation

techniques, we also provide nonlinear estimation results that directly test for the functional

form of the flow-performance relation predicted by equation (5). Doing so, we can rule

out alternative theories that could also drive to the empirical predictions that follow. For

example, a steeper FPS in downturns also arises when σ2
β = 0 (so the mechanism proposed

in this paper is shut off) but σ2
α is higher in downturns than in upturns. In that case, λ is

a monotonically decreasing function of ξt. In contrast, in the case of time-invariant σ2
α and

positive σ2
β discussed above, λ is not monotonous. That will allow us to distinguish the two

alternative theories empirically.

3.6 Empirical Predictions

We make empirical predictions about variations of the FPS across market states and in

the cross-section of funds, as well as for the difference-in-differences across market states

and fund types. The upturn-downturn predictions do not require additional assumptions.
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The only additional assumption needed for the cross-sectional and difference-in-difference

predictions is that investors have less precise prior beliefs about returns of funds that display

higher ex-post dispersion of fund returns and return correlations with the market, e.g. funds

with higher tracking error, a particularly active investment style, or simply young funds, as

discussed above.

3.6.1 Upturn-Downturn Difference of Flow Performance Sensitivity

The first testable prediction is that the flow-performance sensitivity (FPS) is larger in

downturns (DT) than in upturns (UT).

Proposition 1. Flow-performance sensitivities are larger in downturns than in upturns of

equal magnitude. That is, let x > 0, then

λ (ξt = −x)− λ (ξt = x) > 0.

3.6.2 Difference-in-Differences Prediction for FPS

When there are differences in the precision of the investors’ ex ante beliefs across fund

types, cross-sectional variation of the FPS across these fund types arises. In particular, for

some constant k > 1, define

σ2
α,Concentrated = k · σ2

α,Other (6)

σ2
β,Concentrated = k · σ2

β,Other (7)

where Concentrated indexes funds that have both high active share and high tracking error

as in Cremers and Petajisto (2009) and Other stands for all other funds. Table 2 shows that
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this assumption is likely to be verified empirically to the extent that estimated (ex-post)

volatility of risk loadings and alphas corresponds to ex-ante dispersion of prior beliefs. There

is significantly more variation among both estimated alphas and betas for Concentrated

funds compared to Other funds. This statement remains true also after controlling for the

Carhart (1997) factors. It is important for the interpretation of the cross-sectional difference

results that both types of funds have similar investor bases. We do not want the results to

be driven by differences in the inherent flow-performance sensitivity of one investor group

versus another. To that end, we use the insight by Christoffersen and Musto (2002) that

fees reflect the performance sensitivity of investors in a given fund. We compare the total

expense ratio for Concentrated and Other funds and find that they are both 0.0137, with

a standard deviation of 0.0040 and 0.0051, respectively. We conclude that investor types do

not significantly differ across these types of funds.

It follows immediately from the λ(ξt) expression in lemma 2 that investors react with

higher flows to a given piece of news if it pertains to Concentrated funds. (A similar pre-

diction obtains from established models of funds flows such as BG in comparing funds with

higher parameter uncertaint to funds with lower uncertainty, such as young and old funds.)

Proposition 2. Keeping everything else constant, the flow-performance sensitivity is higher

for Concentrated funds than for Other funds in the same state of the market.

λConcentrated − λOther > 0.

Note that the proposition relies on differences in the distributions of parameters intro-

duced in equation (2), while it assumes that both funds have investors with similar prior

beliefs. Thus, it should hold across types of funds that are held by similar investors, but it
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need not hold across funds with investors with distinct sets of beliefs. For example, we would

not necessarily expect the proposition to hold across funds that are predominantly held by

retail investors versus funds that are predominantly held by institutions, which are likely to

be more informed about underlying parameters, or across mutual funds and hedge funds.

We can now state the second main empirical prediction, the difference in FPS-differences

across market states and fund types.

Proposition 3. The difference in flow-performance sensitivities between downturns (DT)

and upturns (UT) is larger for Concentrated funds than for Other funds.

(λDT − λUT )Concentrated − (λDT − λUT )Other > 0.

The intuition is that while learning about risk-adjusted performance is easy in downturns

and more difficult in upturns for all types of funds, learning about alpha in upturns is

particularly difficult for fund types with a high variance of prior beliefs about alpha and

beta.

The difference-in-differences prediction in proposition 3 is unique to our model. If this

prediction finds support in the data, we will say the model is “identified” in the sense

of ruling out several alternative explanations for the upturn-downturn difference predicted

in proposition 1. For example, one might otherwise conjecture that the upturn-downturn

difference obtain because “everybody is happy in upturns” and investors do not check fund

performance, while investors scrutinize fund performance in downturns. However, such a

behavioral theory would not easily explain why the upturn-downturn difference would differ

across different types of funds. In section 5, we describe alternative theories in more detail.
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3.7 Model limitations

The first limitation is that the model is essentially static. Taking the model as is seems

to imply that after sufficiently many observations, investors learn parameter values well

enough for the FPS first to fall, and then for all flows to disappear. A more realistic model

would assume that funds periodically disappear (for exogenous reasons or because they

perform below a threshold) and get replaced with new ones, about which little is known.

Similarly, in reality, there is turnover in fund managers, which introduces new uncertainty

about underlying parameters.

A related limitation results because our model of cross-sectional learning is tractable

only because there is no learning about the stochastic discount factor at the same time. To

our knowledge, no existing model is able to track both the cross-sectional and time-series

dimension at the same time. One observation about dynamics is in place however. When

the model is modified in a way that parameters get periodically re-assigned for a fraction

of funds, the average precision of beliefs about fund value is highest following downturns,

compared to following downturns. As a result, fund sizes most closely match a first-best

allocation without parameter uncertainty following downturns. We view this as reminiscent

of Schumpeter’s assertion that recessions have a cleansing effect on the economy, as applied

to the funds sector.

The second main limitation is that the parameters αi and βi are exogenous in the model.

There are several reasons for this modeling choice. First is that the key predictions would

be very difficult to obtain if the parameters were endogenous and a result of fund managers’

choice. Second, including the managers’ choice would come at the expense of having to make

assumptions about their preferences and incentives, which would obscure which part of our

results comes from assumptions about investor preferences, which from assumptions about
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managers’ incentives, and which from investor behavior. We want to make clear that the

present model is about investor behavior alone. It is not precluded in the model, however,

that the parameter distributions are already the outcome of an optimization on behalf of the

fund managers. Studying the interaction of investor and manager behavior when skill αi is

exogenously distributed and known to the manager but uncertain to investors, and βi is a

strategic choice of the manager and likewise uncertain to the investor, may be an interesting

subject for future research.

A third observation is that any cross-sectional predictions, and namely the difference-in-

difference prediction on the FPS, rely on a homogenous set of investors across different types

of funds – recall the key role of dispersions of prior beliefs in equation 5, which determines the

extent of upturn-downturn differences of the FPS. The model predictions should therefore

only hold true within a set of funds with a reasonably homogenous investor base.

4 Description of the Data

The primary data source for this study is the CRSP Survivorship Bias Free Mutual Fund

Database. These data contain fund returns, total net assets (TNA), investment objectives,

and other fund characteristics. Following the prior literature, we select Domestic Equity

open-end mutual funds and exclude sector funds using the CRSP objective code (which

maps Strategic Insights, Wiesenberger, and Lipper objective codes). Because the reported

objectives do not always indicate whether the fund is balanced, we exclude funds that on

average hold less than 80% of their assets in stocks. Given that the focus of this study is on

actively managed mutual funds, we also exclude index funds.

To address the potential bias resulting from the fact that the fund incubation period is
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also reported, we exclude observations for which the data is prior to the reported starting date

of the fund, similar to Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012). As incubated

funds tend to be smaller, we exclude observations with reported assets under management

smaller than $5 million in the prior quarter.

Mutual funds in CRSP include both retail and institutional share classes. The predictions

of our model are based on a homogenous set of investors. So, pooling two classes of investors

would blur the empirical tests of the model predictions. Besides, institutional funds are

subject to a number of constraints in terms of minimum investment size, long term investment

agreements, and limited choice set whenever they are offered to individuals through a 401(k)

plan. These arguments prompt us to restrict our empirical analysis to mutual funds that are

sold to retail investors and exclude institutional funds. The retail-fund indicator is available

in CRSP starting in December 1999. For the prior years, we backward impute the retail

indicator whenever available and we use the names of share classes to identify institutional

funds. The funds for which no information can be gathered on whether they are retail or

institutional are excluded from the sample. While this choice has the potential to induce

a selection bias, we show that our results also hold – and indeed are stronger and more

significant – in the subsample in which the retail indicator is available. Thus, the imputation

introduces noise that leads to attenuation bias, but does not lead to a bias in favor of our

hypothesis.

The sample spans the years from 1980 to 2012, when complete information on investment

objectives is available. Since CRSP does not report monthly TNA until 1990, we follow

the existing literature and use quarterly data for the flow-performance sensitivity analysis

(Huang, Wei, and Yan, 2007).

Using the quarterly net asset values and returns from CRSP, we compute net flows
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according to the literature standard as

Flowsi,t =
TNAi,t − TNAi,t−1 (1 +Ri,t)

TNAi,t−1

(8)

where TNAi,t is total net assets in quarter t for fund i and Ri,t is the quarterly return, which

are obtained from cumulating monthly returns. Elton, Gruber, and Blake (2001) point out

a number of errors in the CRSP mutual fund database that could lead to extreme values of

returns and flows. For this reason, following Huang, Wei, and Yan (2007), we filter out the

top and bottom 2.5% tails of the the returns and net flows distributions.

Between 1980:Q1 and 2012:Q4, we have 144,382 mutual fund-quarter observations with

valid information on returns and TNA in quarter t and quarter t+ 1, corresponding to 5,763

funds.6 The other variables that are used in the analysis, and for which we require availability

for sample inclusion, are the expense ratio, the portfolio turnover ratio, and return volatility,

which is computed over the prior twelve months. These variables are winsorized at the

1st and 99th percentiles. We compute fund age as the time (in quarters) since the first

appearance of the fund in the overall CRSP sample. Table 3 reports summary statistics for

these variables. From Panel A, we notice that the average (median) fund has a size of $678

million ($82 million). The maximum fund size is about $109 billion. Fund age ranges from five

to 151 quarters. Our sample is comparable to other studies in terms of return volatility, asset

turnover, and expense ratio (see Huang, Wei, and Yan (2007)). The performance persistence

analysis is run on a monthly version of the above-described sample.

Part of our study makes use of data on active share and tracking error, which are defined

6Starting in the 1990’s, some funds offer multiple share classes that represent claims to the same portfolio.
Some authors aggregate different share classes at the portfolio level (see, e.g., Glode, Hollifield, Kacperczyk,
and Kogan (2012)). Following Huang, Wei, and Yan (2007), we abstain from this aggregation as our purpose
is to study fund flows, which differ at the share class level. Nevertheless, our results are not materially
impacted by this choice.

22



as in Cremers and Petajisto (2009) and Petajisto (2013).7 These variables are constructed

using information on portfolio composition of mutual funds as well as their benchmark in-

dexes. The stock holdings of mutual funds come from the CDA/Spectrum database provided

by Thomson Financial. The authors currently make their data available between 1980:Q1

and 2009:Q3.

To define upturns and downturns, we procede as in Glode, Hollifield, Kacperczyk, and

Kogan (2012) and use the distribution of the excess return on the market up to quarter t. A

quarter is denoted as an upturn if the excess return on the CRSP value weighted index for

that quarter lies in the top 25% of the distribution of the quarterly excess market returns

up to quarter t. Symmetrically, a quarter is a downturn if the realization of the market in

that quarter is in the bottom 25% of the distribution. In computing the distribution of the

market excess return, we use the history going back to the third quarter of 1926. As a result,

out of the 131 quarters in our sample, 32 are upturns and 30 are downturns. When using

monthly data, we proceed similarly in defining upturns and downturns. Panels B and C of

Table 3 have summary statistics on the relevant variables at the quarterly frequency in the

subsamples of upturns and downturns. As expected, returns and flows are on average larger

in upturns, while other variables are similar in magnitude across market states.

5 Empirical Methodology and Results

Next, we turn to the empirical analysis. We describe the variation of the flow-performance

sensitivity across states of the economy and fund types, as well as the difference-in-differences

of the FPS, which identifies the model in the sense of ruling out a variety of alternative

explanations. Finally, we estimate the non-linear functional form of the FPS as a function

7We are grateful to Antti Petajisto for making the data available on his website: www.petajisto.net
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of the market state with parametric and non-parametric methods.

5.1 Empirical Methodology

5.1.1 Estimating the FPS

The predictions of the model are expressed in terms of the difference in slope of the

relation between flows and performance (flow-performance sensitivity, FPS) between up-

turns and downturns. The most direct way to test these predictions is through a linear a

specification. Then, our focus is on the slope b in the regression:

Flowsi,t+1 = a+ b · frank stylei,t + εi,t (9)

where frank styleit is the fractional rank of fund i in period t with respect to funds in

the same style. For mutual funds, the style is defined by the CRSP Objective variable. We

estimate the regression in equation (9) using the Fama and MacBeth (1973) methodology.

A large body of literature, (starting with Ippolito (1992), Gruber (1996), Chevalier and

Ellison (1997) and Sirri and Tufano (1998), identifies a convex flow-performance relation.

More recently, other authors (Spiegel and Zhang, 2012) argue that convexity originates from

a mispecified empirical model, and that the relation between flows and performance is truly

linear. This paper does not intend to contribute to this debate, given that our predictions on

the state-dependency of the flow-performance relation are insensitive to the shape of this re-

lation. Still, to assess the robustness of our predictions to alternative empirical specifications

of the shape of the flow-performance relation, we also estimate a piecewise linear relation

Flowsi,t+1 = a+ b1 · trank style1i,t + b2 · trank style2i,t + b3 · trank style3i,t + εi,t (10)
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where trank style1i,t = min(1
3
, frank stylei,t), trank style2i,t = min(1

3
, frank stylei,t −

trank style1i,t), and trank style3i,t = min(1
3
, frank stylei,t−trank style1i,t−trank style2i,t).

5.2 Empirical Results

5.2.1 Linear Estimation Results

Table 4 presents the main results for the linear FPS-regression specification. This analysis

provides a test of proposition 1 which states that the flow-performance relation is steeper

in downturns than in upturns. The table describes the variation of FPS across states of the

economy. The first three columns give results that do not include additional controls, as in

equation (9). Column (1) reports a significant FSP of 0.043, without conditioning on the

state of the market. The FPS is more than twice as large in downturns (0.051) compared to

upturns (0.021) for the average fund, emphasizing the economic significance of the result.

The difference is also highly statistically significant (bottom of column (3)). Columns (4)-(6)

include all controls suggested by Spiegel and Zhang (2012). These are the aggregate flows in

quarter t+ 1 into the funds that have the same objective as fund i, the total expense ratio,

the logarithm of TNA, the portfolio turnover ratio, the return volatility over the prior twelve

months, and the logarithm of the fund’s age. Given that flows display some persistence, we

also include the fund’s flows in quarter t. After adding these controls, the magnitudes as well

as the statistical significance of the upturn/downturn difference (bottom of column (6)) are

preserved. Overall, this evidence provides an empirical validation of proposition 1.

Table 5 has the estimates for the piecewise linear specification in equation (10). Consistent

with the prior literature, we find evidence of convexity of the flow-performance relation

(columns (1) and (4)). More relevant for our purposes, the evidence strongly supports the

predictions of the model. In each interval of the domain of the piecewise linear specification,
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the FPS is larger in downturns than in upturns (columns (2) and (3)). This result holds

also when we include the controls (columns (5)-(6)). At the bottom of columns (3) and (6),

we report p-values from a chi-squared test for the equality of the three slopes b1, b2, and b3

between upturns and downturns. The test rejects the null hypothesis. Given the consistency

of the conclusions between Tables 4 and 5, we feel legitimized to proceed with the linear

specification, which more easily allows us to test the difference-in-difference predictions of

the model.

The next step is to test the difference-in-difference prediction across fund types and

market states given in Proposition 3. Econometrically, the double-difference result rules out

a number of alternative theories that could drive the variation in the FPS across market

states. For example, suppose that new capital that flows into the mutual fund sector gets

primarily allocated with medium performers, possibly attenuating our upturn-FPS estimate,

while outflows from the sector primarily hit underperformers, which might steepen the FPS-

estimate. Taking the difference across fund types of the upturn-downturn difference would

eliminate such an effect.

The first step to construct the difference-in-differences test is to define what constitutes

the cross-sectional variation. To proxy for the heterogeneity in degree of ex ante uncertainty

about a particular fund’s parameters (captured by the model parameters σa and σb) we use

the variables constructed by Cremers and Petajisto (2009) and Petajisto (2013). In detail, we

conjecture that, for the funds that these authors label ‘Concentrated,’ investors have higher

uncertainty about risk loadings and skill. According to the authors, Concentrated funds

are those that rank highest by both active share and tracking error. In our application,

a Concentrated fund is one that appears in the top half of the distribution of these two

variables. Our intutition is that the extent of active management that characterizes these
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funds, both in terms of stock picking and sector rotation, makes it more difficult for investors

to precisely know the underlying parameters of the distribution of these funds’ returns. We

confirm this intuition by comparing the standard deviation of alphas and factor loading

estimates between Concentrated and Other funds in Table 2. Similar results obtain when

other proxies for less certain distributions are chosen, such as younger funds or smaller

funds. We report results for younger funds in the robustness checks. The second step is to

calculate the upturn-downturn differences for each of these types of funds, and then taking

the difference in differences.

Table 6 summarizes the variation of the FPS across funds and differences of that vari-

ation across market states. The first column shows that the flow-performance relationship

is almost 50% steeper for Concentrated funds (coefficient on the interaction frank style ×

concentrated), as predicted by proposition 2. The difference is statistically significant (t-

stat=2.015). Columns 2 and 3 show that the cross-sectional difference is entirely driven by

downturns: the FPS for Concentrated funds in downturns is 0.12 compared to the FPS for

Other funds of 0.045, whereas the FPS in upturns is not significantly different across fund

types. The difference between the FPS of Concentrated and Other funds is therefore much

higher in downturns than in upturns. In other words, the difference-in-difference (between

downturns and upturns and between Concentrated and Other funds) is 0.111 and is highly

significant (p-value<0.01, see the test at the bottom of columns 2 and 3). This result confirms

the prediction made in proposition 3. Columns 4-6 report qualitatively and quantitatively

similar results after the introduction of controls.
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5.2.2 Non-linear Estimation Results

The previous section tested propositions 1 to 3 using linear tests. Yet, one of the key

features of the model is the predicted non-linear (and non-monotonic) shape for the FPS as

a function of the state of the market, as per lemma 2. In this subsection, we formally test this

prediction by providing two non-linear estimation results. First, we assume that the shape

specified in equation (5) is correct and estimate the parameters of the function λ (ξt + φ).

Because σα, σβ, and σε are identified up to a common constant, with divide numerator and

denominator of equation (5) by σ2
α and, using non-linear least squares, we estimate

σβ
σα

, σε
σα

,

and φ in the following specification

FPSt =
1

1 +
σ2
β

σ2
α

(φ+ ξt)
2 + σ2

ε

σ2
α

+ ut (11)

where FPSt is the flow-performance sensitivity in quater t, ξt is the de-meaned excess return

on the market, and ut is the error term. Second, we estimate the shape itself using a non-

parametric local polynomial regression to show that forcing the shape to the one predicted

in lemma 2 is reasonable.

Figure 2 shows the results from the non-linear least squares estimation specified in equa-

tion (11), plotting the estimated FPS over market excess returns, including 95% confidence

intervals. Table 7 presents the conditional parameter estimates and confidence intervals.8

Two observations are in order. First, the peak of the curve falls to the left of zero with

confidence. Formally, the estimate of φ is estimated to be negative with high statistical

significance. The fact that the peak is on the left of zero is the driver of the upturn-

8The confidence intervals for the fitted values are computed conditioning on the realization of ξt. Also,
we use the asymptotic normality of the estimators and the result that a non-linear function of X tends to
the same class of distributions as X (Proposition 7.4 in Hamilton (1994)).
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downturn difference predicted and tested above with linear regressions models.9 Second,

the shape displays a pronounced non-monotonicity: the FPS as a function of the market

excess return first increases and then decreases. This fact rules out alternative explanations

of the upturn-downturn difference, such as that the dispersion of skill conditional on down-

turns is higher than the dispersion of skill in upturns. That assumption would predict a

monotonously decreasing FPS as a function of the market excess return. Note that this

specific non-monotonicity is not mechanically implied by the regression specification either.

Figure 3 gives the non-parametric estimates of the FPS as a function of the market

state as well as 95% confidence intervals. It shows that when no constraints are imposed on

the functional form, a similar hump-shaped FPS as a function of the market excess return

is obtained as the one imposed in the parametric specification above. Specifically, we run a

local polynomial regression of degree zero (i.e. we estimate a constant) with an Epanechnikov

kernel bandwidth of 5%.10

In sum, the non-linear estimation results strongly confirm the predictions of lemma 2,

which is the basis for the empirical predictions. The results clarify that the two key predic-

tions and drivers of the linear estimation results are: (i) the asymmetry of the peak of the

FPS with respect to zero market excess returns, and (ii) the FPS decreases with the absolute

value of deviations of the market excess returns from the reference point given by negative

the market risk premium.

9Note that an entirely different shape of the curve would obtain for different parameter values. The
hump-shape is not forced by equation (11).

10In Stata, we use the command lpoly for kernel-weighted local polynomial smoothing. For a complete
treatment, see Fan and Gijbels (1996).
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5.3 Robustness Checks

This section establishes that the linear estimation results are robust to (i) sample selec-

tion, (ii) the imputation of the retail/institutional indicator, (iii) the measure of precision of

ex ante beliefs about parameters, and (iv) whether monthly rather than quarterly data are

used, both in the linear and convex specifications.

Table 8 replicates the main results on upturn-downturn difference of the flow-performance

sensitivity (FPS) using the subsample of the years 2000-2012, rather than the whole sample

from 1980-2012. The flow-performance relation is steeper in downturns than in upturns also

in the latter part of the sample. The importance of establishing robustness with respect to

the sample is that the retail vs. institutional ownership variable is available only following

the fourth quarter of 1999, and imputed for the prior years in the regressions shown in

the main paper. This imputation might introduce a selection bias in the regressions on the

whole sample. The results in Table 8 show that our results are not in any way driven by

this imputation. In fact, the upturn-downturn difference is larger and more significant using

the shorter sample, consistent with the imputation introducing measurement error only but

no bias. Table 10 shows that the result also obtains using the shorter sampler and using a

piecewise-linear specification, which is the standard in the literature to capture the convexity

of the flow-performance relation.

Table 9 replicates the FPS double-difference between upturns and downturns and Concentrated

versus Other funds on the shorter sample. The results are stronger than with the longer sam-

ple, consistent with the imputation introducing measurement error only but no bias.

Table 12 shows by the example of young vs. old funds that the double-difference result

is robust to using measures of dispersion of beliefs other than Concentrated and Other.

The prior literature has used young funds as examples of funds with more widely dispersed
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beliefs. We show in Table 11 that this is indeed the case. Young funds should therefore have

a higher FPS difference between upturns and downturns than old funds, as documented in

Table 12.

The last two tables show that the FPS results are robust to the choice of sampling

frequency. While our main results are based on quarterly frequencies to be consistent with

the existing literature, we show here that the results also obtain at the monthly frequency.

Table 13 replicates the qualitative results from Table 8 at the monthly frequency, while Table

14 replicates the results from Table 10 at the monthly frequency.

6 Conclusion

We provide a rational model with parameter uncertainty as the only friction that explains

key regularities left unexplained by existing models of the allocation of capital to mutual

funds. In particular, our model predicts that rational investors re-allocate less capital be-

tween funds following upturns than following downturns, leading to lower flow-performance

sensitivity in upturns, compared to downturns. We show that the model predictions about

the flow-performance sensitivity in different states of the economy, across types of funds, and

about the difference-in-differences are strongly confirmed empirically: the flow-performance

relation is more than twice as steep following market downturns than following market

upturns. Furthermore, we show parametric and non-parametric results that confirm the pre-

dicted shape of the flow-performance sensitivity as a function of the market state.

We view our results as providing a formalization of why downturns can have a cleansing

effect on the economy in the sense of improving the cross-sectional efficiency of capital

allocation. In particular, we show that no behavioral or other frictions are necessary but
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that Bayesian learning about uncertain parameters is sufficient to generate the asymmtry

between upturns and downturns with respect to risk-averse investors’ ability to distinguish

good from bad projects.
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Appendix

It is useful to derive an additional lemma before proving Lemma 1.

Lemma 3. Based on current beliefs, investors value each dollar invested in the fund according

to

pit = 1 + α̂it −
1

η
Sit . (12)

Proof of Lemma 3 (Fund Value)

First, we derive the stochastic discount factor in the economy. Then we use this result

to derive the value of a fund, conditional on beliefs and its equilibrium size. Assuming a set

of overlapping generations mutual fund investors with homogeneous preferences allows us to

obtain analytic solutions for cross-sectional learning, because we do not need to keep track

of learning about the aggregate economy. (See Schmalz and Zhuk (2013) for a more detailed

explanation.)

We derive first order conditions by considering marginal deviations from equilibrium for a

representative agent. The representative agent framework is homogenous to a framework with

a group of investors with identical preferences. Assume the agent consumes the aggregate

payoff of the economy Yt+1 at t + 1. Consider the case in which this agent borrows at the

risk free rate to buy x additional units of t + 1 fund flows Zt+1, which cost pz per unit at

timet. Then, the expected utility of the agent is

U(x) = Et[u(Yt+1 + x(Zt+1 −Rpz))].

For the agent to decide not to deviate from equilibrium, the agents’ utility must be maximized
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when x = 0

0 = U ′(x)|x=0 = Et[u
′(Yt+1)(Zt+1 −Rpz)].

This can be rewritten as

0 = Et[u
′(Yt+1)Zt+1]− Et[u′(Yt+1)]Rpz

pz =
1

R

Et[u
′(Yt+1)Zt+1]

Et[u′(Yt+1)]
.

Define the stochastic discount factor (SDF) to be

mt+1 =
1

R

u
′
(Yt+1)

Et[u
′(Yt+1)]

.

Then, the standard pricing equation obtains

pz = Et [mt+1Zt+1] . (13)

Notice that given our assumption of zero net risk free rate, i.e. R = 1, we have

Et [mt+1] = 1

The aggregate source of risk in this economy is ξ, which is defined in equation (1) to have

zero mean. Also from equation (1), the compensation for this source of risk is φ. Which can

be interpreted as a risk premium on systematic risk, as the net risk free rate is zero. Then,
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applying standard results in asset pricing (see Cochrane (2001)), it has to be the case that

φ = −Cov [mt+1, ξt+1]

= −Et [mt+1ξt+1] (14)

where the last step follows because ξ has zero mean.

Finally, apply equation (13) to the cash flows from fund i

pit = Et
[
mt+1Y

i
t+1

]
= Et

[
mt+1

(
1 + αi + βi (φ+ ξt+1)− 1

η
Sit + εit+1

)]
= 1 + α̂it + β̂itφ+ β̂itEt [mt+1ξt+1]− 1

η
Sit

= 1 + α̂it −
1

η
Sit

where α̂it and β̂it are the time t beliefs for αi and βi. The last step follows from equation (14).

�

Proof of Lemma 1 (Fund Size)

The equilibrium condition is that the marginal utility from the last dollar invested in

each fund must be equal to the marginal utilty invested in the risk-free asset. As the risk-

free rate is normalized to zero, it must be that the value of a dollar invested in each fund i

is one dollar. Combining this equilibrium condition with lemma 3, pit = 1 + α̂it − 1
η
Sit = 1,

immediately yields the result. �
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Proof of Lemma 2 (Fund Flows)

Given our assumptions of normality, the beliefs about fund returns, conditional on the

market shock ξt, are normally distributed. As a result, the standard formulas for Bayesian

updating of beliefs apply. Bayesian updating occurs according to

α̂it = α̂it−1 + cov
[
α, Y i

t |ξt
] (Y i

t − E[Y i
t ])

var[Y i
t |ξt]

with

var[Y i
t |ξt] = σ2

α + σ2
β(φ+ ξt)

2 + σ2
ε ,

cov
[
α, Y i

t |ξt
]

= σ2
α.

The updating formula essentially replicate investors’ learning from past performance, i.e.

regressing alpha on innovations in returns. Next, recall from the previous lemma that

Sit = η · α̂it.

Flows, or changes in fund size, are then implied by how much is learned about alpha.

Sit − Sit−1 = η · (α̂it − α̂it−1)

= η · cov
[
α, Y i

t |ξt
] (Y i

t − E[Y i
t ])

var[Y i
t |ξt]

= η · σ2
α

σ2
α + σ2

β (φ+ ξt)
2 + σ2

ε

.
(
Y i
t − E[Y i

t ]
)

36



which yields the desired expression for λ(ξt). �

Proof of Proposition 1

Notice that var[Y i
t |ξt] from the previous lemma is larger in downturns than in upturns

of equal magnitude. To be precise, we wish to prove

λ(ξt = −x) > λ(ξt = +x) (15)

for any x > 0, where λ(ξt) = σ2
α

σ2
α+σ2

β(φ+ξt)
2+σ2

ε
. By simply replacing x for ξ into the expression

for λ, one needs to prove

σ2
α

σ2
α + σ2

β (φ− x)2 + σ2
ε

>
σ2
α

σ2
α + σ2

β (φ+ x)2 + σ2
ε

which simplifies to

(φ+ x)2 > (φ− x)2

or, computing the squares,

φ2 + 2xφ+ x2 > φ2 − 2xφ+ x2

and, after simplifications, one obtains

x > −x

which is verified because x > 0 by assumption.
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�

Proof of Proposition 2

We wish to show that λConcentrated > λOther when

σ̄2
a,Concentrated = k · σ̄2

a,Other

and

σ̄2
a,Concentrated = k · σ̄2

a,Other

with k > 1. Plugging in equations (6) and (7) into expression (5) yields:

λConcentrated =
σ2
α,Concentrated

σ2
α,Concentrated + σ2

β,Concentrated (φ+ ξt) + σ2
ε

=
kσ2

α,Other

kσ2
α,Other + kσ2

β,Other (φ+ ξt) + k σ
2
ε

k

=
σ2
α,Other

σ2
α,Other + σ2

β,Other (φ+ ξt) + σ2
ε

k

>
σ2
α,Other

σ2
α,Other + σ2

β,Other (φ+ ξt) + σ2
ε

= λOther.

�
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Proof of Proposition 3

Using the expression λ(ξt) = σ2
α

σ2
α+σ2

β(φ+ξt)
2+σ2

ε
and assuming symmetric values for upturns

and downturns of absolute magnitude x > 0, we can write

λDT − λUT =
σ2
α

σ2
α + σ2

β (φ− x)2 + σ2
ε

− σ2
α

σ2
α + σ2

β (φ+ x)2 + σ2
ε

=
4σ2

ασ
2
βφx(

σ2
α + σ2

β (φ+ x)2 + σ2
ε

) (
σ2
α + σ2

β (φ− x)2 + σ2
ε

)
=

4σ2
ασ

2
βφx(

σ2
α + σ2

βφ
2 + σ2

βx
2 + σ2

ε

)2 − 4σ4
βx

2φ2
.

Using (6) and (7), when k > 1, we have

(λDT − λUT )Conc =

=
4σ2

α,Concσ
2
β,Concφx(

σ2
α,Conc + σ2

β,Concφ
2 + σ2

β,Concx
2 + σ2

ε

)2 − 4σ4
β,Concx

2φ2

=
4k2σ2

α,Otherσ
2
β,Otherφx

k2

[(
σ2
α,Other + σ2

β,Otherφ
2 + σ2

β,Otherx
2 + σ2

ε

k

)2

− 4σ4
β,Otherx

2φ2

]
=

4σ2
α,Otherσ

2
β,Otherφx(

σ2
α,Other + σ2

β,Otherφ
2 + σ2

β,Otherx
2 + σ2

ε

k

)2

− 4σ4
β,Otherx

2φ2

>
4σ2

α,Otherσ
2
β,Otherφx(

σ2
α,Other + σ2

β,Otherφ
2 + σ2

β,Otherx
2 + σ2

ε

)2 − 4σ4
β,Otherx

2φ2

= (λDT − λUT )Other.

�
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Figures
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Figure 2: Parametric estimation results from a non-linear least squares regression of estimates
of the flow-performance sensitivity on the market return in excess of the risk-free rate, in
which the functional form is forced to conform to the specification in equation (5), with 95%
confidence intervals.

44



0.00

0.02

0.04

0.06

0.08

0.10

-25 -20 -15 -10 -5 0 5 10 15 20

Figure 3: Non-parametric estimation results from a local polynomial regression of estimates of
the flow-performance sensitivity on the market return in excess of the risk-free rate, without
imposing a functional form, with 95% confidence intervals.
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Tables

Table 2: Summary statistics of alpha and risk factor loadings by fund type. For each fund, a risk model is estimated using

the entire history of monthly returns. The table reports the F-test for the null hypothesis of equal standard deviations between

subsamples of funds by fund type.

Panel A: CAPM
Concentrated Others F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha 0.0009 0.0045 -0.0003 0.0039 0.0000
Beta 1.0823 0.2479 1.0044 0.2037 0.0000

Panel B: CARHART MODEL
Concentrated Others F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0005 0.0035 -0.0009 0.0029 0.0000
Mkt - Rf 1.0376 0.1706 1.0012 0.1335 0.0000

HML 0.0440 0.3660 0.0518 0.3226 0.0000
SMB 0.4223 0.3245 0.1533 0.3253 -0.9490
UMD 0.0401 0.1652 0.0151 0.1246 0.0000
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Table 4: Flow-Performance Sensitivity Main Results. The table reports slopes from Fama and MacBeth (1973) regressions

of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style) and controls. T-statistics are

reported in parentheses. At the bottom of the table, we report the test statistic and p-value (assuming normality) for the test

of the null hypothesis that the difference between dowturns and upturns in the slopes on frank style is zero. The sample ranges

from 1980:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according

to the distribution of the CRSP value-weighted index since July 1926.

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

frank style 0.043*** 0.021*** 0.051*** 0.034*** 0.020*** 0.045***
(12.188) (2.771) (6.178) (11.498) (3.489) (5.551)

flows style 0.222* -0.281 0.295***
(1.780) (-0.596) (3.116)

fee -0.248 0.116 -0.155
(-1.070) (0.191) (-0.332)

logsize -0.001* -0.001 0.001
(-1.917) (-0.942) (0.765)

turn ratio -0.003** -0.009*** -0.000
(-1.992) (-2.881) (-0.087)

vol 0.028 -0.326* 0.410*
(0.310) (-1.801) (1.704)

logage -0.011*** -0.015*** -0.024***
(-3.717) (-2.819) (-2.766)

flows 0.500*** 0.530*** 0.464***
(24.744) (12.816) (8.853)

Constant -0.016*** -0.002 -0.023*** 0.032*** 0.079*** 0.055*
(-6.385) (-0.452) (-4.742) (2.893) (3.447) (1.778)

Observations 144,382 30,850 35,758 144,382 30,850 35,758
R-squared 0.044 0.027 0.058 0.439 0.467 0.397

Number of groups 131 32 30 131 32 30

z-stat 2.623 2.564
p-val 0.00872 0.0103
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Table 5: Flow-Performance Sensitivity Main Results (Piecewise Linear Specification). The table reports slopes from Fama

and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance and

controls. The rank variable is defined to separately capture performance between 0 and 1/3 (trank style1), between 1/3 and

2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution. T-statistics are reported in parentheses. At

the bottom of the table, we report the p-value (assuming normality) for the test of the hypothesis that the differences between

dowturns and upturns in the slopes on trank style1, trank style2, and trank style3 are jointly zero. The sample ranges from

1980:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the

distribution of the CRSP value-weighted index since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

trank style1 0.042*** 0.005 0.040** 0.030*** 0.020 0.033
(4.282) (0.189) (2.486) (2.972) (0.748) (1.219)

trank style2 0.032*** 0.037 0.049** 0.029*** 0.025 0.047**
(3.699) (1.481) (2.591) (3.167) (0.876) (2.315)

trank style3 0.062*** 0.011 0.066*** 0.047*** 0.015 0.053**
(5.929) (0.406) (3.034) (5.215) (0.698) (2.749)

flows style 0.225* -0.268 0.297***
(1.805) (-0.568) (3.145)

fee -0.208 0.242 -0.132
(-0.839) (0.462) (-0.201)

logsize -0.001* -0.001 0.001
(-1.829) (-1.348) (1.103)

turn ratio -0.002* -0.009*** 0.000
(-1.947) (-3.037) (0.049)

vol -0.005 -0.375* 0.367
(-0.050) (-1.832) (1.461)

logage -0.012*** -0.021*** -0.023**
(-4.009) (-3.424) (-2.711)

flows 0.499*** 0.522*** 0.468***
(24.039) (11.869) (8.753)

Constant -0.015*** 0.000 -0.021*** 0.039*** 0.103*** 0.052
(-4.768) (0.060) (-3.629) (3.477) (4.963) (1.663)

Observations 144,382 30,850 35,758 144,382 30,850 35,758
R-squared 0.072 0.068 0.086 0.460 0.501 0.424

Number of groups 131 32 30 131 32 30

p-val(χ2) 0.0348 0.0456
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Table 6: Flow-Performance Sensitivity Double-Difference Results. The table reports slopes from Fama and MacBeth (1973)

regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style) and controls. The

rank variable is interacted with a dummy variable denoting “Concentrated” funds, which are the funds with above-median

levels of active share and tracking error. T-statistics are reported in parentheses. At the bottom of the table, we report the test

statistic and p-value (assuming normality) for the test of the null hypothesis that the difference between dowturns and upturns

in the slope on frank style×concentrated is zero. The sample ranges from 1980:Q1 to 2009:Q3. Upturns and Downturns are

defined, respectively, as the top and bottom 25% of periods according to the distribution of the CRSP value-weighted index

since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × concentr. 0.022** -0.036 0.075*** 0.015 -0.023 0.063**
(2.015) (-1.449) (2.833) (1.334) (-0.872) (2.321)

frank style 0.050*** 0.041*** 0.045*** 0.039*** 0.032* 0.034***
(9.173) (2.974) (3.632) (7.330) (2.028) (3.249)

concentrated 0.001 0.029 -0.018* -0.001 0.009 -0.016
(0.098) (1.308) (-1.837) (-0.160) (0.308) (-1.615)

flows style 0.248*** 0.209 0.250**
(3.933) (1.703) (2.716)

fee 0.602 2.449** 0.092
(1.351) (2.260) (0.087)

logsize -0.001 -0.000 -0.000
(-1.185) (-0.187) (-0.026)

turn ratio -0.003 -0.017 0.006
(-0.909) (-1.488) (1.306)

vol 0.087 0.183 0.268
(0.304) (0.157) (0.848)

logage -0.023 -0.071 -0.009
(-1.606) (-1.214) (-0.587)

flows 0.539*** 0.523*** 0.529***
(16.734) (9.058) (5.912)

Constant -0.018*** -0.008 -0.020*** 0.076 0.272 0.006
(-6.065) (-0.965) (-3.303) (1.453) (1.301) (0.076)

Observations 19,577 3,540 4,881 19,577 3,540 4,881
R-squared 0.119 0.111 0.138 0.430 0.473 0.410

Number of groups 117 27 27 117 27 27

p-val 0.00219 0.0232
z-stat 3.063 2.270
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Table 7: Non-linear estimation results. The table reports pararmeter estimates of the parameters in equation (5) from a

non-linear least squares regression of the estimates of the flow-performance sensitivity on the market return in excess of the

risk-free rate. T-statistics are reported in parentheses. The sample ranges from 1980:Q1 to 2009:Q3.

σβ φ σε

Estimate 0.343*** 6.558*** 4.389***
t-stat (4.315) (2.992) (11.565)

Observations 131
R-squared 0.522
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Table 8: Flow-Performance Sensitivity Main Results: Robustness to Sample Selection. The table reports slopes from Fama and

MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance (frank style)

and controls. T-statistics are reported in parentheses. At the bottom of the table, we report the test statistic and p-value

(assuming normality) for the test of the null hypothesis that the difference between dowturns and upturns in the slopes on

frank style is zero. The sample ranges from 2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top

and bottom 25% of periods according to the distribution of the CRSP value-weighted index since July 1926.

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

frank style 0.042*** 0.014** 0.050*** 0.031*** 0.019*** 0.038***
(-10.525) (-2.795) (-7.726) (-14.129) (-6.227) (-8.875)

flows style 0.510*** 0.302** 0.639***
(8.018) (3.111) (4.206)

fee -1.190*** -1.222*** -1.258***
(-10.258) (-5.840) (-3.921)

logsize -0.001*** -0.000 -0.001*
(-4.350) (-0.587) (-1.815)

turn ratio -0.002*** -0.003** -0.000
(-3.195) (-3.049) (-0.086)

vol -0.066 -0.387*** 0.097
(-1.030) (-5.720) (0.677)

logage -0.007*** -0.008*** -0.005***
(-12.026) (-8.323) (-7.100)

flows 0.592*** 0.600*** 0.588***
(37.194) (20.846) (18.315)

Constant -0.030*** -0.015*** -0.035*** 0.036*** 0.063*** 0.021
(-10.377) (-3.350) (-5.309) (8.258) (11.588) (1.759)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.038 0.006 0.048 0.468 0.465 0.422

Number of groups 51 11 14 51 11 14

p-val 1.07e-05 0.000324
z-stat 4.402 3.595
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Table 9: Flow-Performance Sensitivity Double-Difference Results: Robustness to Sample Selection. The table reports slopes

from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted performance

(frank style) and controls. The rank variable is interacted with a dummy variable denoting “Concentrated” funds, which are

the funds with above-median levels of active share and tracking error. T-statistics are reported in parentheses. At the bottom

of the table, we report the test statistic and p-value (assuming normality) for the test of the null hypothesis that the difference

between dowturns and upturns in the slope on frank style×concentrated is zero. The sample ranges from 2000:Q1 to 2009:Q3.

Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the distribution of the

CRSP value-weighted index since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × concentr. 0.030*** 0.006 0.041** 0.017** -0.012 0.028*
(4.058) (0.388) (3.006) (2.470) (-1.911) (1.931)

frank style 0.052*** 0.031 0.050*** 0.043*** 0.045*** 0.048***
(10.136) (1.799) (7.987) (10.918) (8.707) (7.284)

concentrated -0.005 0.004 -0.004 -0.000 0.007* -0.002
(-1.181) (0.370) (-0.483) (-0.137) (2.128) (-0.217)

flows style 0.506*** 0.003 0.658***
(4.326) (0.008) (5.772)

fee -0.732** -0.069 -0.542
(-2.200) (-0.068) (-0.710)

logsize -0.003*** -0.003 -0.002*
(-4.030) (-1.142) (-2.025)

turn ratio -0.002 -0.002 0.001
(-1.258) (-0.535) (0.272)

vol -0.038 -0.786 0.313
(-0.240) (-1.858) (1.028)

logage -0.007*** -0.010* -0.003
(-5.029) (-2.483) (-1.373)

flows 0.625*** 0.633*** 0.645***
(21.562) (11.236) (11.202)

Constant -0.022*** 0.000 -0.025*** 0.035*** 0.086** -0.009
(-6.452) (0.052) (-5.367) (3.285) (3.151) (-0.390)

Observations 13,462 1,865 4,142 13,462 1,865 4,142
R-squared 0.054 0.021 0.054 0.318 0.334 0.276

Number of groups 38 6 12 38 6 12

p-val 0.102 0.0114
z-stat 1.634 2.531
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Table 10: Flow-Performance Sensitivity Main Results (Piecewise Linear Specification): Robustness to Sample Selection.

The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by

style-adjusted performance and controls. The rank variable is defined to separately capture performance between 0 and 1/3

(trank style1), between 1/3 and 2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution. T-statistics

are reported in parentheses. At the bottom of the table, we report the p-value (assuming normality) for the test of the hypothesis

that the differences between dowturns and upturns in the slopes on trank style1, trank style2, and trank style3 are jointly zero.

The sample ranges from 2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of

periods according to the distribution of the CRSP value-weighted index since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

trank style1 0.046*** -0.006 0.048*** 0.032*** 0.013 0.038***
(7.729) (-0.533) (6.656) (8.971) (1.734) (5.824)

trank style2 0.022*** 0.016 0.022** 0.014*** 0.013** 0.015**
(4.128) (1.659) (2.421) (5.258) (2.623) (2.729)

trank style3 0.075*** 0.030*** 0.108*** 0.063*** 0.039*** 0.082***
(11.435) (3.502) (9.088) (13.225) (4.760) (10.064)

flows style 0.491*** 0.295*** 0.583***
(8.096) (3.405) (4.187)

fee -1.134*** -1.188*** -1.172***
(-10.640) (-6.385) (-3.971)

logsize -0.001*** -0.000 -0.001
(-3.772) (-0.323) (-1.592)

turn ratio -0.001*** -0.002*** -0.001
(-3.535) (-3.260) (-0.810)

vol -0.084 -0.420*** 0.083
(-1.288) (-5.922) (0.563)

logage -0.007*** -0.008*** -0.005***
(-12.176) (-8.531) (-6.753)

flows 0.579*** 0.585*** 0.576***
(37.159) (21.134) (18.312)

Constant -0.030*** -0.011** -0.032*** 0.037*** 0.066*** 0.021*
(-9.430) (-2.498) (-4.533) (8.233) (11.040) (1.843)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.041 0.008 0.053 0.466 0.462 0.421

Number of groups 51 11 14 51 11 14

p-val(χ2) 1.97e-08 0.00150
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Table 11: Summary statistics of alpha and risk factor loadings by fund type (Old vs. Young). For each fund, a risk model

is estimated using the entire history of monthly returns. The table reports the F-test for the null hypothesis of equal standard

deviations between subsamples of funds by fund type.

Panel A: CAPM
Old Young F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0012 0.0030 -0.0008 0.0032 0.0480
Beta 1.0619 0.2009 1.0246 0.3187 0.0000

Panel B: CARHART MODEL
Old Young F-test (St. Dev.)

Mean St. Dev. Mean St. Dev. p-value

Alpha -0.0014 0.0029 -0.0013 0.0027 0.0570
Mkt - Rf 1.0211 0.1233 0.9949 0.2826 0.0000

HML -0.0405 0.3050 -0.0114 0.2998 0.6760
SMB 0.2068 0.3351 0.1932 0.3472 0.4420
UMD 0.0323 0.1311 0.0042 0.1226 0.1160
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Table 12: Flow-Performance Sensitivity Double-Difference Results: Robustness to Sample Split Criteria. The table reports

slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by style-adjusted

performance (frank style) and controls. The rank variable is interacted with a dummy variable denoting “young” funds, which

are the funds with below-median levels of age. “Old” funds are defined symmetrically. T-statistics are reported in parentheses.

At the bottom of the table, we report the test statistic and p-value (assuming normality) for the test of the null hypothesis

that the difference between dowturns and upturns in the slope on frank style×concentrated is zero. The sample ranges from

2000:Q1 to 2012:Q4. Upturns and Downturns are defined, respectively, as the top and bottom 25% of periods according to the

distribution of the CRSP value-weighted index since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters UT DT All quarters UT DT

frank style × young 0.010*** -0.005 0.014*** 0.006*** -0.002 0.006*
(3.913) (-1.233) (3.908) (3.704) (-0.609) (1.909)

frank style 0.038*** 0.017** 0.044*** 0.028*** 0.020*** 0.036***
(10.845) (3.077) (6.735) (13.722) (5.661) (8.504)

Young 0.023*** 0.028*** 0.018*** -0.000 0.003 -0.000
(15.257) (8.323) (6.502) (-0.399) (1.403) (-0.003)

flows style 0.510*** 0.304** 0.641***
(8.053) (3.126) (4.262)

fee -1.178*** -1.208*** -1.244***
(-10.168) (-5.760) (-3.920)

logsize -0.001*** -0.000 -0.001*
(-4.173) (-0.416) (-1.805)

turn ratio -0.002*** -0.003** -0.000
(-3.153) (-3.068) (-0.078)

vol -0.061 -0.383*** 0.101
(-0.936) (-5.545) (0.699)

logage -0.005*** -0.007*** -0.004***
(-8.157) (-5.624) (-3.587)

flows 0.591*** 0.600*** 0.587***
(36.996) (20.867) (18.135)

Constant -0.040*** -0.027*** -0.043*** 0.031*** 0.056*** 0.014
(-15.279) (-6.289) (-7.370) (6.676) (9.480) (1.230)

Observations 129,482 25,941 33,832 129,482 25,941 33,832
R-squared 0.074 0.035 0.079 0.469 0.466 0.422

Number of groups 51 11 14 51 11 14

p-val 0.000476 0.063
z-stat 3.494 1.859
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Table 13: Flow-Performance Sensitivity Main Results: Robustness to Sampling Frequency. The table reports slopes from

Fama and MacBeth (1973) regressions of monthly flows on prior-month mutual fund rank by style-adjusted performance

(frank style) and controls. T-statistics are reported in parentheses. At the bottom of the table, we report the test statistic

and p-value (assuming normality) for the test of the null hypothesis that the difference between dowturns and upturns in the

slopes on frank style is zero. The sample ranges from January 2000 to December 2012. Upturns and Downturns are defined,

respectively, as the top and bottom 25% of periods according to the distribution of the CRSP value-weighted index since July

1926.

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

frank style 0.009*** 0.000 0.012*** 0.006*** 0.003*** 0.006***
(8.991) (0.141) (5.619) (18.236) (4.586) (9.199)

flows style 0.323*** 0.315*** 0.301***
(14.251) (8.712) (6.172)

fee -0.286*** -0.184*** -0.319***
(-11.239) (-4.127) (-4.209)

logsize -0.000** -0.000 -0.000**
(-2.525) (-0.564) (-2.685)

turn ratio -0.000*** -0.001*** -0.000
(-3.332) (-2.910) (-0.141)

vol -0.034*** -0.079*** -0.013
(-3.236) (-4.193) (-0.571)

logage -0.003*** -0.003*** -0.002***
(-22.967) (-12.643) (-10.249)

flows 0.606*** 0.597*** 0.582***
(72.923) (40.362) (32.706)

Constant -0.005*** 0.001 -0.008*** 0.015*** 0.017*** 0.012***
(-7.705) (0.646) (-4.777) (18.279) (11.549) (5.535)

Observations 431,437 79,593 108,911 369,549 65,362 92,088
R-squared 0.019 0.008 0.026 0.459 0.450 0.414

Number of groups 155 30 42 155 30 42

p-val 3.80e-05 0.00410
z-stat 4.119 2.870
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Table 14: Flow-Performance Sensitivity Main Results (Piecewise Linear Specification): Robustnes to Sampling Frequency.

The table reports slopes from Fama and MacBeth (1973) regressions of quarterly flows on prior-quarter mutual fund rank by

style-adjusted performance and controls. The rank variable is defined to separately capture performance between 0 and 1/3

(trank style1), between 1/3 and 2/3 (trank style2), and between 2/3 and the top (trank style3) of the distribution. T-statistics

are reported in parentheses. At the bottom of the table, we report the p-value (assuming normality) for the test of the hypothesis

that the differences between dowturns and upturns in the slopes on trank style1, trank style2, and trank style3 are jointly zero.

The sample ranges from January 2000 to December 2012. Upturns and Downturns are defined, respectively, as the top and

bottom 25% of periods according to the distribution of the CRSP value-weighted index since July 1926.

Panel A: No controls Panel B: With controls

Flows (t+1) All quarters Upturns Downturns All quarters Upturns Downturns

trank style1 0.010*** -0.002 0.011*** 0.006*** 0.001 0.007***
(7.124) (-0.594) (3.906) (8.000) (0.774) (3.529)

trank style2 0.003*** -0.002 0.005** 0.001* 0.001 0.000
(2.656) (-0.776) (2.327) (1.669) (0.830) (0.152)

trank style3 0.019*** 0.008*** 0.025*** 0.015*** 0.010*** 0.018***
(11.929) (3.188) (7.001) (14.401) (7.598) (5.972)

flows style 0.327*** 0.320*** 0.303***
(14.158) (8.746) (6.187)

fee -0.293*** -0.187*** -0.332***
(-11.091) (-4.167) (-4.165)

logsize -0.000*** -0.000 -0.000***
(-2.644) (-0.534) (-3.137)

turn ratio -0.000*** -0.001*** -0.000
(-3.542) (-2.933) (-0.290)

vol -0.037*** -0.083*** -0.010
(-3.477) (-4.434) (-0.434)

logage -0.003*** -0.003*** -0.002***
(-21.741) (-12.881) (-7.891)

flows 0.603*** 0.596*** 0.575***
(68.562) (40.332) (27.862)

Constant -0.007*** 0.000 -0.008*** 0.015*** 0.018*** 0.013***
(-8.927) (0.005) (-5.011) (18.880) (11.072) (5.903)

Observations 369,549 65,362 92,088 369,549 65,362 92,088
R-squared 0.024 0.011 0.036 0.461 0.451 0.418

Number of groups 155 30 42 155 30 42

p-val(χ2) 9.32e-05 0.0104
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