Optimal Insurance with Counterparty Default Risk

Enrico Biffis Imperial College London

Pietro Millossovich Cass Business School

Insurance Markets and Catastrophe Risk Conference NBER May 11, 2012

OUTLINE

1 Motivation

2 Setup

3 Results

4 Conclusion

OUTLINE

1 Motivation

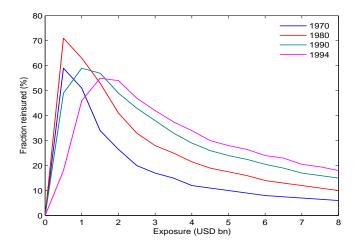
2 Setup

3 Results

4 Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

REINSURANCE PURCHASES



Source: Guy Carpenter & Co., see Froot (2001)

CDS SPREADS

TRX P&C Re Index

	Net Premiums	1Y CDS		Index
Company	(USD)	Spread	Weight	contrib
Munich Re	28,384m	26.26	28.92%	7.59
Swiss Re	23,770m	42.20	24.22%	10.22
Berkshire Hathaway	10,650m	107.36	10.85%	11.65
Hannover Re	10,640m	37.22	10.84%	4.03
Lloyd's of London	8,593m	145.86	8.76%	12.78
SCOR	7,826m	39.21	7.97%	3.13
Everest Re	3,505m	45.22	3.57%	1.61
XL Capital	2,402m	55.81	2.45%	1.37
Renaissance Re	1,354m	95.02	1.38%	1.31
Ace	1,019m	38.12	1.04%	0.40
			Index value	54.09

Source: Thomson Reuters; January 1, 2010.

RELATED LITERATURE

Limited risk sharing of large (catastrophic) risks

• Froot/O'Connell (1997), Froot (2001): market frictions, exogenous contract

Insurance cycles

• Gron (1994), Winter (1994), Cummins/Danzon (1997): insolvency risk, no contract design

Optimal insurance / risk sharing (Arrow, Borch, Raviv, etc.)

- Tapiero/Kahane/Jaques (1986): mutual insurance
- Schlesinger/Schulenburg (1987), Doherty/Schlesinger (1990): three-state model, exogenous default
- Cummins/Mahul (2003): heterogeneous beliefs, exogenous default
- Dana/Scarsini (2007): background risk

OUTLINE

1 Motivation

2 Setup

3 Results

4 Conclusion

SETUP

One-period, no discounting

Insurance buyer

- utility u (u' > 0, u'' < 0), random wealth $W \ge 0$
- insurable risk, X, valued in $[0, \overline{x}]$
- premium $P \ge 0$, indemnity I(x) on $\{X = x\}$ $(0 \le I(x) \le x)$

W - X - P + I(X)

Insurer

- risk-neutral, random assets $A \ge 0$
- receives premium P, pays I(X)

A + P - I(X)

SETUP

One-period, no discounting

Insurance buyer

- utility u (u' > 0, u'' < 0), random wealth $W \ge 0$
- insurable risk, X, valued in $[0, \overline{x}]$
- premium $P \ge 0$, indemnity I(x) on $\{X = x\}$ $(0 \le I(x) \le x)$

$$W - X - P + I(X)$$

Insurer

- risk-neutral, random assets $A \ge 0$
- receives premium P, pays I(X)

$$(A+P-I(X))^+$$

SETUP

One-period, no discounting

Insurance buyer

- utility u (u' > 0, u'' < 0), random wealth $W \ge 0$
- insurable risk, X, valued in $[0, \overline{x}]$
- premium $P \ge 0$, indemnity I(x) on $\{X = x\}$ $(0 \le I(x) \le x)$

$$(W - X - P + I(X)) \ 1_{\{A + P - I(X)\} \ge 0\}} + (W - X - P + (A + P) \ \gamma) \ 1_{\{A + P - I(X) < 0\}}, \quad (0 \le \gamma \le 1)$$

Insurer

- risk-neutral, random assets $A \ge 0$
- receives premium P, pays I(X)

$$\left(A + P - I(X)\right)^+$$

SETUP

One-period, no discounting

Insurance buyer

- utility u (u' > 0, u'' < 0), random wealth $W \ge 0$
- insurable risk, X, valued in $[0, \overline{x}]$
- premium $P \ge 0$, indemnity I(x) on $\{X = x\}$ $(0 \le I(x) \le x)$

 $\widetilde{W} := W - X - P + I(X)$

$$\widetilde{W}(\gamma) := W - X - P + (A + P) \gamma$$

Insurer

- risk-neutral, random assets $A \ge 0$
- receives premium P, pays I(X)

$$\widetilde{A} := A + P - I(X)$$

Motivation

Setup

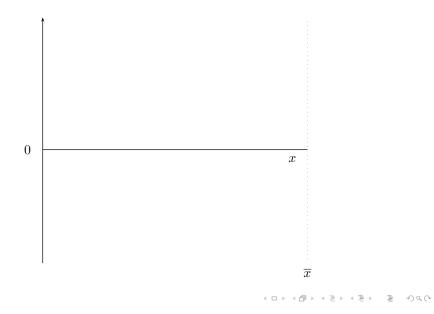
OPTIMAL INSURANCE CONTRACTS

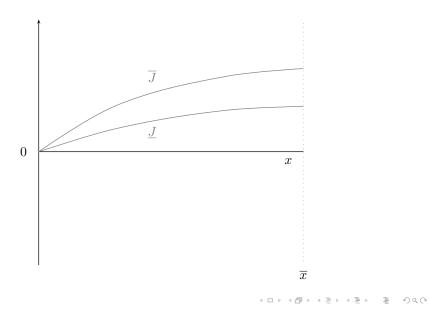
 (P^\ast,I^\ast) solution of the following problem for different values of \underline{v}

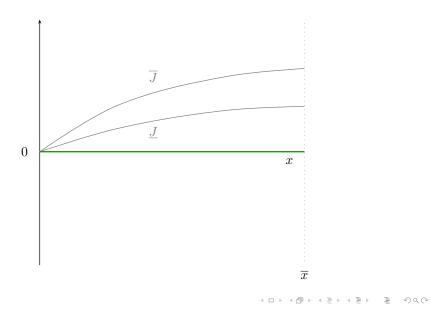
$$\begin{cases} \sup_{(P,I)\in\mathbb{R}_{+}\times\mathcal{A}} E\left(u\left(1_{\{\widetilde{A}\geq 0\}}\widetilde{W}+1_{\{\widetilde{A}<0\}}\widetilde{W}(\gamma)\right)\right)\\\\ E\left(\max\{\widetilde{A},0\}\right)\geq\underline{v}\end{cases}$$

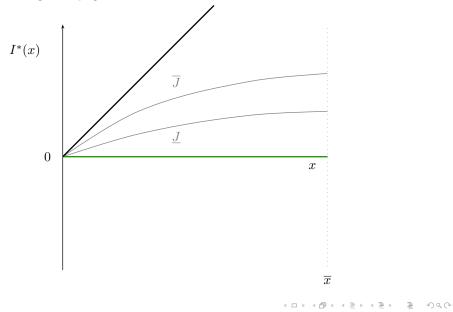
Admissible contracts

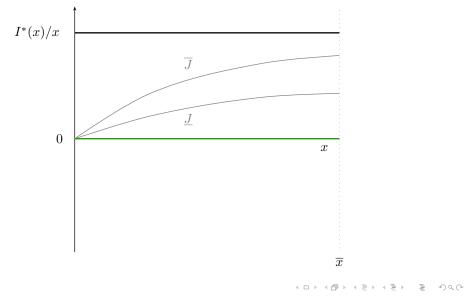
- indemnity measurable function satisfying $0 \le I(x) \le x$ for all $x \in [0, \overline{x}]$
- focus on contracts at least as good as (P = 0, I = 0)



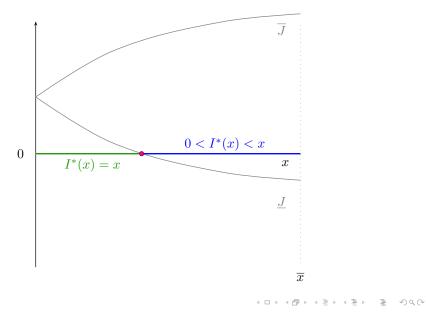




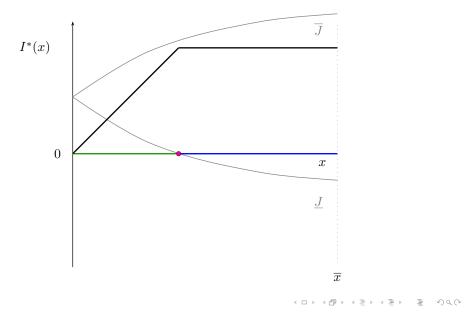




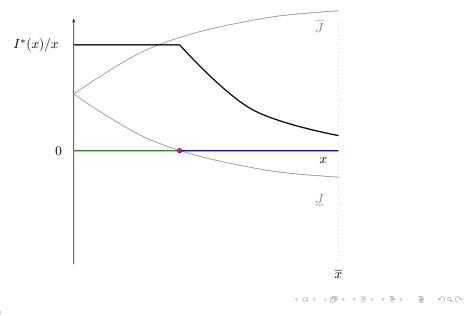
TRADITIONAL CASE (REGULATORY CONSTRAINT ON P, Raviv)



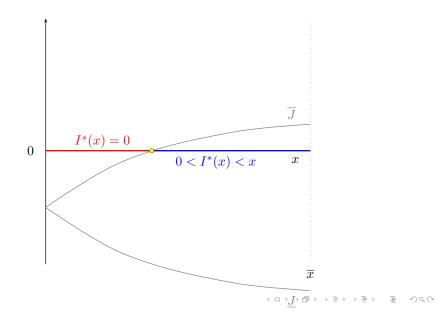
TRADITIONAL CASE (REGULATORY CONSTRAINT ON P, Raviv)

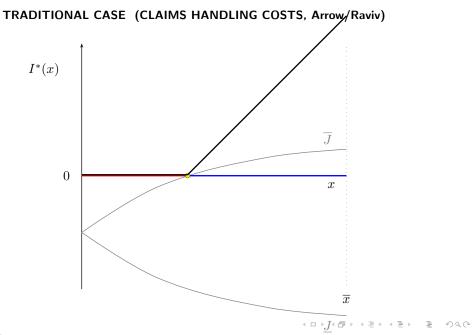


TRADITIONAL CASE (REGULATORY CONSTRAINT ON P, Raviv)

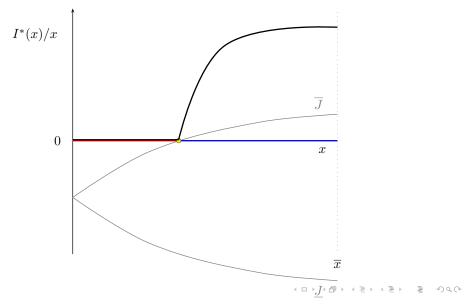


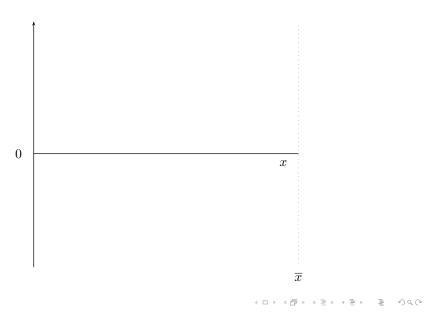
TRADITIONAL CASE (CLAIMS HANDLING COSTS, Arrow/Raviv)

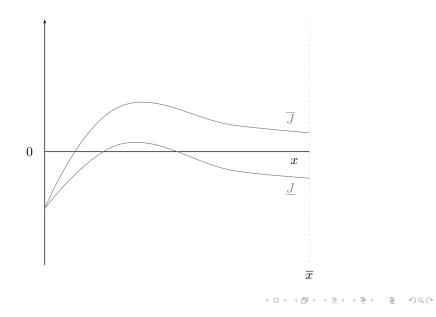


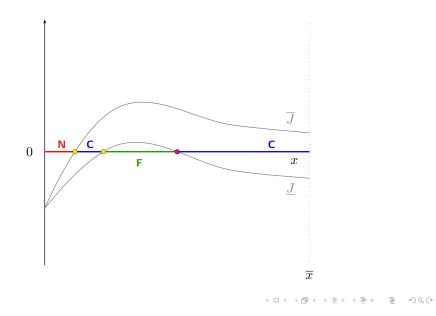


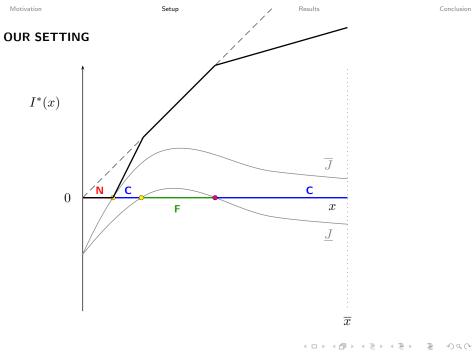
TRADITIONAL CASE (CLAIMS HANDLING COSTS, Arrow/Raviv)

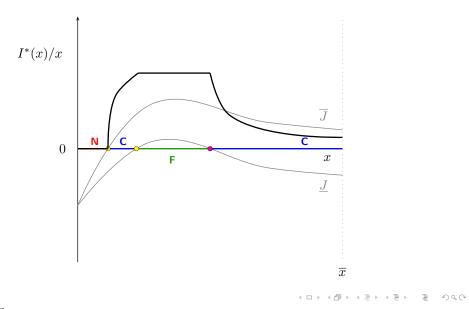












Setup

Results

Conclusion

OUTLINE

1 Motivation

2 Setup

3 Results

4 Conclusion

12/20

GENERAL INSIGHTS

Optimal contracts

• Optimal (P^*, I^*)

$$P^* = E(I^*(X)) + (\underline{v} - E(A)) - E((I^*(x) - (A + P^*))^+),$$

- If no insurance optimal, then E(u'(W-x)|X=x) is constant in x.
- With bankruptcy costs ($0 \le \gamma < 1$), any optimal contract must provide no insurance on a set of positive measure.

GENERAL INSIGHTS

Optimal contracts

• Optimal (P^*, I^*)

$$P^* = E(I^*(X)) + (\underline{v} - E(A)) - E((I^*(x) - (A + P^*))^+),$$

- If no insurance optimal, then E(u'(W-x)|X=x) is constant in x.
- With bankruptcy costs ($0 \le \gamma < 1$), any optimal contract must provide no insurance on a set of positive measure.

Implications

- * deductibles without administrative costs (Raviv, 1979) or background risk (Gollier, 1996; Dana/Scarsini, 2007)
- * upper limits without regulatory constraints (Raviv, 1979; Jouini/al., 2008) or policyholder's limited liability (Huberman/al., 1983)

THE ROLE OF DEPENDENCE

Negative dependence

If \boldsymbol{W} stochastically decreasing in $\boldsymbol{X},$ then

 Any optimal contract entails a positive deductible (0 ≤ γ < 1) or a generalized deductible followed by coinsurance and full insurance (γ = 1).

Positive dependence

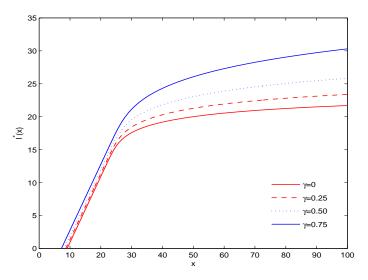
If \boldsymbol{W} stochastically increasing in $\boldsymbol{X}, \text{then}$

• Any optimal contract entails full insurance followed by coinsurance and no insurance (upper limit on coverage).

Independence, $W \perp X$

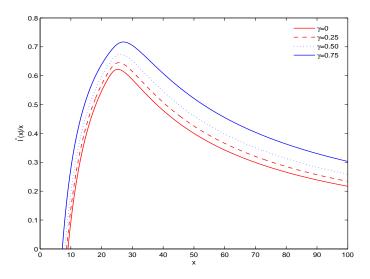
- With bankruptcy costs ($0 \le \gamma < 1$), any optimal contract entails a positive deductible.
- With no bankruptcy costs ($\gamma = 1$), full insurance is optimal.

PARTIAL RECOVERY AND INDEMNITY SCHEDULE



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへで

PARTIAL RECOVERY AND INSURED FRACTION



Setup

Results

COINSURANCE

Optimal coinsurance

When I^* differentiable and interior, it satisfies

$$I^{*'}(x) = \frac{\delta_0(x) - \delta_1(x) - h(x)(\delta_5(x,\gamma) - \delta_6(x,\gamma) + \delta_7(x,\gamma))}{\delta_0(x) - h(x)(\delta_2(x) + \delta_3(x,\gamma) + \delta_4(x,\gamma))},$$

with h(x) the hazard rate $f_A(a|x)/\mathbb{P}(A \ge a|X = x)$.

Implications

- * insured fraction may be tent-shaped
- nonmonotonicity results of Schlesinger/vonSchulenburg (1987), Doherty/Schlesinger (1990) far from surprising
- * background risk and default risk jointly shape coinsurance rates

$$I^{*\prime}(x) = \frac{\delta_0(x) - h(x)\delta_5(x,\gamma)}{\delta_0(x) - h(x)\left(\delta_3(x,\gamma) + \delta_4(x,\gamma)\right)} \quad \text{wf}$$

when A, W, X independent

Setup

Results

Conclusion

OUTLINE

1 Motivation

2 Setup

3 Results

4 Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

CONCLUSION

Main findings

- contract design with endogenous counterparty risk
- limited liability, bankruptcy costs, role of dependence
- Pareto optimal insurance contracts
- existence, necessary and sufficient conditions

Positive and normative implications

- risk sharing patterns for high layers of exposures
- insolvency risk and insurance demand "puzzles"
- optimal design of (re)insurance programs

THANK YOU

20/20