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Abstract
The federal crop insurance program has been a major fixture of US agricultural

policy since the 1930s. The program continues to grow in size and prominence and now
represents the most prominent farm policy instrument, accounting for more government
spending than any other farm commodity program. In 2011, over $114 billion in crop
value was insured under the program. Crop revenue insurance, first introduced in the
1990s, now accounts for nearly 70% of the total liability in the program. The plans cover
losses that result from a revenue shortfall that can be triggered by multiple, dependent
sources of risk—either low prices, low yields, or a combination of both. The actuarial
practices currently applied in rating these plans essentially involve the application of a
Gaussian copula model to the pricing of dependent risks. We evaluate the suitability
of this assumption by considering a number of alternative copula models, including
a relatively new innovation in copula modeling—the vine copula. This approach uses
combinations of pair–wise copulas of conditional distributions to model multiple sources
of risk. We find that this approach is generally preferred by model fitting criteria in the
applications considered here. We demonstrate that alternative approaches to modeling
dependencies in a portfolio of risks may have significant implications for the pricing of
such risks.
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Copula-Based Models of Systemic

Risk in U.S. Agriculture: Implications for

Crop Insurance and Reinsurance Contracts

1 Introduction

Agriculture is subject to a wide variety of risks, including many hazards arising from wide-

spread natural disasters. The U.S. federal crop insurance program, which was initially

introduced on a small scale in 1938, now carries a total liability in excess of $114 billion

and insures 262 million acres. The premiums paid by farmers in this program are highly

subsidized (in excess of 60% of the total premium) and private insurance companies also

receive significant taxpayer subsidies to operate and administer the program. Private in-

surance companies are also provided with an advantageous taxpayer–supported reinsurance

agreement. In recent years, the program has accounted for nearly $10 billion annually in

subsidies to farmers and insurance companies, making it the most expensive agricultural

commodity program. The program is currently being debated in Congress as the new 2012

Farm Bill is considered. If anything, indications are that the next farm bill may expand

federal crop insurance programs by introducing a “shallow loss” program intended to offer

higher coverage levels. Whether such a program is implemented through the federal crop

insurance program or as a component of other farm commodity programs remains to be seen.

However, all Congressional observers agree that crop insurance will continue to play a key

role in US farm policy.

A central question underlying the mammoth federal crop insurance program involves the

need and rationale for such immense taxpayer support. Observers question whether the

government is providing welfare–enhancing support because the market has failed to provide

it or, conversely, whether private insurance markets have been crowded–out by such huge

government subsidies. Advocates for government intervention frequently point to the sub-

stantial systemic risk that characterizes agriculture. In particular, the argument maintains
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that the $114 billion in liability is too large for private insurers and reinsurers to adequately

cover due to the potential systemic risk associated with natural disasters such as drought

and floods (see, for example, Miranda and Glauber (1997)).

Quantifying the degree of systemic risk is central to addressing public policy issues in-

volving the necessity of large subsidies for agricultural insurance. Of particular concern to

the debate is the role of “state–dependent” risk. Empirical evidence has demonstrated that

the spatial correlation of crop yields tends to be significantly stronger during extreme events

such as droughts than is true in a typical year (see, for example, Goodwin (2001)). Standard

models of systemic risk and insurance portfolio diversification for crop insurance nearly al-

ways assume that risks are linearly correlated and constant. In reality, the extent to which

these risks may change across various states of nature has important implications for the

pricing and availability of reinsurance.

This paper applies a variety of copula models to evaluate the extent to which weather and

natural disaster risks in agriculture tend to be systemic and state–dependent. Copula models,

though a relatively recent analytical innovation, have realized widespread use in evaluating

multivariate sources of risk in the design and pricing of insurance contracts. We apply

these models to two important data sources that measure agricultural risks—the USDA’s

extensive history on county–level crop yields and futures market assessments of expected

prices. We consider the pricing of revenue insurance contracts. Revenue coverage currently

accounts for about 70% of the total liability of the federal crop insurance program. Our

results demonstrate that the approach adopted for measuring multiple, correlated sources of

risk may have very substantial implications for the accurate measurement of portfolio risks.

The standard assumption—a Gaussian copula model—is shown to significantly underprice

risk. This may reflect the fact that this model does not allow for tail–dependence—a critical

factor when risks are state–dependent.

The next section of the paper provides a brief overview of the US federal crop insurance

program. We then discuss analytical models of risks for portfolios of insurance contracts

comprised of multiple sources of risk. In particular, we consider high–ordered copula models
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of the joint distributions of crop yield and price risks. We present an application of these

models to the case of corn and soybean revenue insurance for four prominent Illinois counties.

The paper concludes with a discussion of the implications of the models for systemic risk

in the U.S. crop insurance program. We quantify this risk and provide implications for the

federal reinsurance pool as well as private reinsurance, which also plays an important role

in the U.S. crop insurance program. Finally, we discuss the implications of our results for

the viability of private crop insurance contracts and concomitant arguments for government

support through subsidized premiums and reinsurance.

2 The US Federal Crop Insurance Program

The US federal crop insurance program has been in existence since 1938. However, it has

taken on an increasingly prominent role in US agricultural policy in recent years. The

current program exceeded $114 billion in liability in 2011 and insured 265 million acres.1

The program involves significant subsidies, both to the farmers who “purchase” the insurance

and the private crop insurance companies that administer and operate the programs. Smith

(2011) notes that the private insurance companies that operate the program receive about

$1.44 for every dollar of subsidy provided to farmers. Further, an evaluation of the program

since 1981 reveals that the typical farmer receives about $1.88 in indemnity payments for

every dollar of premium that they pay. In addition to such direct subsidies, the federal

government operates a “Standard Reinsurance Agreement” that allows private insurance

companies to retain low risks and to cede high risks to the taxpayer. The net result of

such subsidies and the advantageous treatment of the private companies that administer the

program is a very large and expensive federal program. Further, the program is currently one

of the few that ratchets up the level of support as market conditions improve. Subsidies are

largely based on total premium, such that higher commodity prices lead to higher premium

levels and therefore to larger subsidies.

1Crop insurance statistics are taken from the online “Summary of Business” database of the Risk Manage-
ment Agency (RMA-USDA). These statistics can be accessed at http://www.rma.usda.gov/data/sob.html.
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The current program consists of a large number of different insurance instruments. Most

prominent of these are the individual “yield” and “revenue” protection plans, that offer

farmers federally–subsidized coverage of their individual farm’s yields or crop revenues. In

addition, a number of group “index” plans exist that base coverage on some index or aggre-

gate indicator of crop yields or revenues. This includes the group risk program (GRP) and

the group risk income protection (GRIP) program. In both cases, coverage and indemnities

are based on county–level crop yields (or revenues). Smith and Goodwin (2010) discuss

various operational aspects of the programs and provide an overview of their history and

actuarial performance. In addition to crop insurance programs, livestock insurance coverage

and a variety of other insurance mechanisms exist. For example, plans that base coverage

on federal tax returns and satellite imagery of the “greenness” of the ground are currently

available.

Since the last Farm Bill in 2007, the federal crop insurance program has cost taxpayers

about $6 billion per year. This makes the crop insurance program the most costly farm

program (excluding nutritional assistance programs). As commodity prices have increased,

the costs associate with the federal crop insurance program have risen while other price

support programs, which have fixed target and support prices, have largely been irrelevant.

All indications arising from the current debate over the 2012 Farm Bill are that the programs

are likely to further expand, with many calling for coverage of the “shallow losses” that

comprise the deductible associated with the current programs (typically as low as 15% of

liability).

3 Econometric Framework

Copula models have recently realized widespread application in empirical models of joint

probability distributions.2 The models essentially use a “copula” function to tie together two

or more marginal probability functions that may (or may not) be related to one another.

2For details on construction and properties of copulas, see among others, Joe (1997) and Nelsen (2006).
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Much of the work on copulas has been motivated by their applicability to the issues in

risk management, insurance and financial economics (see, among others, Rodriguez (2003),

Cherubini et al. (2004), Hu (2006), Patton (2006), and Jondeau and Rockinger (2006)). In

the empirical literature, copula models have been used extensively in the design and rating

of crop revenue insurance contracts, where the inverse correlation of prices and yields plays

an important role in pricing revenue risk.

A p–dimensional copula, C(u1, u2, . . . , up) , is a multivariate distribution function in the

unit hypercube [0, 1]p with uniform U(0, 1) marginal distributions. As long as the marginal

distributions are continuous, a unique copula is associated with the joint distribution, F ,

that can be obtained as:

C(u1, u2, . . . up) = F (F−11 (u1), . . . , F
−1
p (up)). (1)

In a similar fashion, given a p–dimensional copula, C(u1, . . . up), and p univariate distribu-

tions, F1(x1), . . . , Fp(xp), the equation 1 is a p–variate distribution function with marginals

F1, . . . Fp whose corresponding density function can be written as:

f(x1, x2, . . . xp) = c(F1(x1), . . . , Fp(xp))
p∏

i=1

fi(xi) (2)

Provided that it exists, the density function of the copula, c, can be derived using equation

1 and marginal density functions, fi:

c(u1, u2, . . . up) =
f(F−11 (u1), . . . , F

−1
p (up))∏p

i=1 fi(F
−1
i (ui))

There is a large number of parametric families of copulas applied in the literature. Two

of the most commonly used copula families are elliptical copulas and Archimedean copulas.

Gaussian and t–copulas are examples of elliptical copulas while the Clayton and Gumbel are

among Archimedean copulas.

A multivariate density essentially conveys information about the distribution of individ-

ual random variables (through the marginals) and the interrelationships among individual

variables. A number of different conceptual metrics are commonly used to measure and com-

municate these interrelationships—Pearson’s linear correlation, Spearman rank correlation,
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and Kendall’s τ measure of rank correlation. Copula models differ in terms of how these in-

terrelationships are represented. For example, a Gaussian copula assumes linear correlation

and imposes zero dependence in the tails of the distributions. A t copula allows for non-zero

tail dependence (which increases as the degrees of freedom parameter falls) but imposes sym-

metry in the dependence relationships in alternative tails of the distributions. Archimedean

copulas typically allow for dependence in only one tail and often represent the dependence

relationship by using a single parameter, even when the copula includes multiple random

variables. Thus, the choice of a copula function determines the nature of the relationships

among dependent random variables. For example, while an Archimedean copula may be

used to represent a multivariate distribution, it imposes a very strong set of restrictions on

the dependency relationships among the variables. Our goal in this analysis is to achieve

as much flexibility as is possible in representing the joint distribution of a set of dependent

random variables (prices and crop yields) while, at the same time, maintaining a tractable

approach to estimation and inference in light of the significant “curse of dimensionality”

that such a multivariate problem presents. To this end, we consider multivariate versions

of common elliptical and Archimedean copulas as well as a relatively new innovation in the

representation of multivariate distributions—vine copulas.

Following Aas, et al. (2009), a joint, multivariate density function for a set of k random

variables can be written in factored form as

f(x1, x2, . . . , xk) = fk(xk) · f(xk−1|xk) · f(xk−2|xk−1, xk) . . . · f(x1|x2, . . . , xk). (3)

This density is unique for a given ordering of variables. The joint density can also be

expressed in terms of a copula function, as noted above, as

f(x1, x2, . . . , xk) = c1...k(F1(x1), . . . , Fk(xk)) ·
k∏

i=1

fi(xi). (4)

In the case of two random variables, this reduces to

f(x1, x2) = c12(F1(x1), F2(x2)) · f1(x1)f2(x2). (5)

Thus, with rearranging, a bivariate conditional density can be written as

f(x1|x2) = c12(F1(x1), F2(x2)) · f1(x1). (6)
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Following this line of reasoning, Joe (1996) demonstrated that each of the terms in

equation 3 can be decomposed into the product of a pair-wise copula and a conditional

marginal density:

f(x|v) = cx,vk|v−k
(F (x|v−k), F (vk|v−k)) · f(x|v−k). (7)

Thus, as Aas et al. (2009) demonstrate, a multivariate density can be expressed as a product

of pair-copulas. It is important to note that many different factorizations and combinations

of pair-wise copulas are possible. In the case of a canonical vine copula representation of a set

of k random variables, a total of k!/2 different specifications is possible. A vine representation

of a multivariate distribution is therefore dependent upon the specific decomposition into

pair-wise conditional copulas, which in implementation will be reflected in the ordering of

variables.

Following Joe’s (1996) observations, recent research has focused on the notion of vine

copulas as a means for representing higher-ordered distributions in terms of a combination

of individual pair-wise copula functions. Bedford and Cooke (2002) introduced a “regular

vine” representation that allows considerable flexibility in representing multivariate densities

in terms of combinations of pair-wise copulas. Kurowicka and Cooke (2006) derived two spe-

cial cases of vine copulas—the “canonical vine” and the “D-vine.” In both cases, a general

multivariate density is represented in terms of combinations of pair-wise copula functions.

Both cases afford a degree of flexibility and generality not typically available in the applica-

tion of conventional copula functions to higher-ordered problems. That said, it is important

to note that any such representation is unique only with regard to a particular ordering of

variables. Vine copulas are best represented in terms of a “tree,” where the distribution of

each variable is represented by conditional distributions at a higher level on the tree. The D–

and canonical copulas differ in terms of the decomposition used to represent a multivariate

density as combinations of pair-wise copula functions. As Aas et al. (2009) note, a D–vine

has pair-wise combinations of variables in the initial level of the tree while the canonical-vine

relates a single variable to all others in the initial level of the tree. Aas et al. (2009) note

that a D–vine is most appropriate when a particular ordering of variables is suggested (such
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as in a time series context) while a canonical–vine is suggested when variables can be ordered

according to their influence on other variables. We adopt a canonical–vine in this analysis

and use the heuristic data-driven specification selection mechanism suggested by Brechmann

and Czado (2011) in choosing the optimal ordering of data to define the vine. In particular,

we follow Aas et al. (2009), Brechmann et al. (2010) and Dißmann et al. (2011) and choose

the ordering that maximizes the dependencies in the first level of the tree. To this end,

we choose the specification that maximizes the sum of the absolute values of Kendall’s τ

statistics in the first level of the tree.

Our estimation strategy involves the application of sequential maximum likelihood es-

timation of the pair–wise canonical copula model. The optimal copula functions for each

conditional pair are chosen (again, heuristically) using the minimized value of the Akaike

information criterion (AIC). A large variety of copula functions (forty in all) are considered

for each combination. Likewise, we adopt standard maximum likelihood estimation tech-

niques to estimate the joint densities associated with higher-ordered, multivariate elliptical

and Archimedean copula models.3

The benchmark for our applied comparisons is the Gaussian copula model, which realizes

significant prominence in pricing crop revenue risk in the current federal crop insurance

program. In particular, current rating methods use the Iman and Conover (1982) method

with normal score functions to represent the correlation associated with prices and yields

in setting rates for revenue coverage. Mildenhall (2006) demonstrates that the Iman and

Conover resorting procedure, when based upon normal scores, is essentially equivalent to

the use of a Gaussian copula.

3Estimation and inferences were accomplished using the “COPULA” procedure of SAS and the “copula”
and “CDVine” packages of the R language. Details are available in Chvosta, Erdman, and Little (2011),
Schepsmeier and Brechman (2012), and Yan and Kojadinovic (2012). Excellent overviews of the R packages
and implementation issues are presented by Yan (2007) and Czado (2011).
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4 Empirical Application

The empirical application is intended to demonstrate the relevance of the techniques to the

pricing of crop insurance and reinsurance contracts and to highlight the potential conse-

quences associated with the choice of a specific representation of the joint distribution. As

we have noted above, liability in the current federal crop insurance program for most major

crops is overwhelmingly skewed toward crop revenue coverage, which involves the joint dis-

tribution of crop yields and prices. We utilize county–level crop yield data taken from the

USDA’s National Agricultural Statistics Service (NASS) databases. Relevant crop prices are

taken as the average of February closing quotes on the Chicago Board of Trade for futures

contracts that expire at harvest–time (November and December). These price quotes rep-

resent a market–based assessment made at the time of planting of the expected price after

harvest. Such price quotes are used in pricing crop revenue insurance in the US. We focus

on corn and soybeans—the two most prominent crops in the US. In 2011, these two crops

made up 67.5% of the total liability of $114 billion in the US federal crop insurance program.

We further focus on four specific counties in Illinois that are among the largest producers of

corn and soybeans in the US Corn Belt. These four counties are in a common crop reporting

district and thus are in close proximity to one another. The specific counties are McClean,

Logan, Macon, and Tazewell.4 Our data cover the 52–year period spanning 1960–2011.

An initial complication pertinent to any modeling of crop yields observed over time

involves an adjustment for the significant upward trend that has characterized crop yields.

This is commonly handled by applying a detrending process, with deviations from trend

being “recentered” or “recalibrated” to a common time period. In our case, we utilize local

quadratic regression (LOESS) to represent trends for each county–crop combination in a

nonparametric fashion. We then recenter yields on 2011 by adding the deviations to the

predicted 2011 yield. Specifically, we estimate the nonparametric trend equation

yt = g(t) + εt (8)

4In the discussion of results that follows below, we denote these four counties as 1, 2, 3, and 4. This
particular ordering reflected the prominence in terms of planted corn acreage in 2011.
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and generate a sample of detrended yields as

ŷt = ŷ2011 + εt. (9)

The nonparametric LOESS estimates are illustrated below in figure 1.

We also independently estimate parametric marginals for each of the yield and price dis-

tributions. A number of different parametric specifications have been used to represent crop

yield distributions. Common choices include the beta and Weibull distributions, both of

which can accommodate the negative skewness commonly observed for crop yield distribu-

tions. We use the Weibull here in light of its simplicity.5 In the case of prices, we adopt the

common assumption of log–normality and model the log of the ratio of planting–time and

harvest–time prices using a normal distribution. Plots of the detrended yield data and prices

are presented in figures 2 and 3. As expected, a high degree of positive dependence among

yields is apparent while negative dependence between yields and prices is also confirmed.

This is consistent with the high degree of systemic risk that is reflected in the impact on

yields of common weather conditions. Maximum likelihood estimates of the price and yield

densities are presented in figures 4 and 5, respectively. The figures serve to validate the

parametric choices for representing the marginals.

The set of 10 random variables associated with corn and soybean yields and prices in

the four counties results in 45 correlation coefficients to be estimated in the Gaussian and

t copula models. The t copula also requires estimation of an additional degrees of freedom

parameter. As the value of this parameter rises, the t copula converges to the Gaussian (they

are essentially equivalent for values above 30). In addition to estimating the Gaussian and t

copulas, we also estimate single–parameter Archimedean copulas—the Clayton and Gumbel

copulas. As noted above, these copulas provide a much more restrictive representation of

the dependency structure.

5The Weibull distribution is represented by two parameters whereas the beta requires estimation of three
or four parameters. Direct estimation of the minimum and maximum possible values for a beta can be
challenging and we therefore opt in favor of the Weibull.
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Maximum likelihood estimates and summary statistics of the Gaussian and t copulas are

presented in table 1. Parameter estimates are very similar and the degrees of freedom pa-

rameter estimate is 20.69, reflecting the similarity between the two distributions. Maximum

likelihood estimates of the two Archimedean copulas are presented in table 2. Log–likelihood

function values and values of the AIC/SBC criteria strongly favor the more richly param-

eterized elliptical copula models. A consequence of the inflexibility associated with single

parameter copula models is revealed in a consideration of the resulting dependency structure.

Table 3 presents Kendall’s τ for the actual sample and for the estimated Clayton copula. The

limited flexibility associated with the single–parameter Archimedean copulas is apparent.

We used sequential maximum likelihood procedures to estimate the canonical vine copula.

The ordering was based upon maximizing rank correlation in the first level of the vine, as

is discussed above. This criterion yielded the following ordering of variables—(C1, C4, S4,

S2, C2, CP , C3, SP , S1, S3).
6 The resulting vine copula parameter estimates along with the

pair-wise copulas chosen for each node are presented in table 4. The vine copula model has a

larger likelihood function value and smaller values of the AIC criterion, suggesting a superior

fit over the more restrictive versions considered above. However, the SBC criterion, which

applies a stronger penalty for additional parameters, narrowly favors the more parsimonious

models. The canonical tree copula model structure implied by the estimates is presented in

figure 6.

The critical question to be addressed in this research involves the extent to which pricing

of insurance contracts based upon multiple sources of risk may be affected by the approach

used to measure and represent dependence. This question is relevant on several levels. First,

revenue insurance contracts, which consider two sources of risk—yield and price—are very

common in the US federal crop insurance program. Yields and prices are, of course, inversely

correlated and such dependence must be represented in pricing a revenue insurance contract

6Herein lies one apparent weakness in the vine copula representation. The resulting estimates are not
invariant with respect to ordering. Given the set of ten random variables, 1,814,400 possible orderings exist.
Other approaches to copula models of high–ordered multivariate distributions, such as Patton’s (2012) factor
model approach, do not suffer from this shortcoming but do involve other specification issues, such as defining
the factors. Sensitivity of the estimates to such specification issues remains an important area of research.
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in order to derive an actuarially–fair rate. The US federal program also offers “whole farm”

revenue coverage for farmers growing both corn and soybeans. In this case, the total revenue

from both crops provides the basis for coverage. Rates for such coverage are lower by virtue

of the imperfect correlation of losses across crops. Finally, from a reinsurer’s perspective,

the pricing of a portfolio of risks is a critical factor in determining the terms of reinsurance

treaties and contracts for coverage. In spite of the significant federal involvement in the US

crop insurance program, reinsurance plays a very significant role in the industry. We consider

the pricing of synthetic contracts that cover all revenue risks for a single crop across the four

counties as well as pooled coverage across both crops in all counties (e.g., total revenue).

We consider two levels of coverage—75% and 95% of expected revenue. Although the rates

and loss probabilities are transparent to the commodity price for individual crop revenues,

we use prices of $5.37 per bushel of corn and $13.62 per bushel of soybeans (reflecting the

market prices at the time of the writing of this paper). Of course, the pooling of revenue

across crops is impacted by the relative prices. We do not adjust the portfolio for differences

in exposure (i.e., different levels of acreage) across the counties and therefore assume an

identical level of acreage for all counties and both crops.

Using simulated, correlated uniform variates from each respective copula model and the

estimated marginal distributions, we estimated loss probabilities and actuarially–fair pre-

mium rates for each contract. Loss probabilities are presented in table 5 and rates are

presented in table 6. As expected, the probabilities and rates reflect the lower risks associ-

ated with pooling across various risks that are not perfectly correlated. The rates generally

fall when the contract includes coverage across multiple counties and crops. The loss prob-

abilities indicate that the probabilities of a payable claim also fall as the risks are further

aggregated.

Most striking is the fact that the premium rates differ very significantly across the alter-

native copula models. For example, the rate for covering 95% of expected revenue for corn

in county 1 is 4.66% according to the vine model while a Gaussian copula implies a rate of

only 3.65%. In the case of a 95% coverage contract for total revenue, the vine copula model

12



suggests an actuarially–fair premium rate of 3.75% while the Gaussian and t copula models

imply rates of about 2.9%. To put this in perspective, total crop insurance liability for these

crops in these four counties in 2010 was $650,308,546. Thus, the rate differences, if applied

to the 2010 total crop insurance book, suggests a potential difference of over $5.5 million for

these four counties alone. Thus, assumptions underlying the representation of dependencies

among multiple sources of risk definitely have important impacts on the pricing, viability,

and profitability of crop insurance contracts. In light of the huge magnitude of the federal

program ($114 billion in liability in 2011), such seemingly small differences may translate

into very significant implications for private insurers and taxpayers.

One interesting result is that the pricing that results from the canonical vine copula

model are often closer to those implied by the very restrictive Archimedean copulas than

the more flexible elliptical copulas. The Gaussian and t copula models tend to suggest less

risk than either the vine or Archimedean models. This may reflect the “state–dependent”

nature of agricultural yield and price risk, which is not captured in the Gaussian and t copula

estimates. In particular, one expects that the imposition of zero tail dependence, as is the

case for the Gaussian and the t copula estimates (which are very close to the Gaussian) may

result in significantly underpricing portfolio risk. One expects that periods of significant

yield shortfalls, such as in a drought, may experience a higher degree of correlation among

yields in individual areas and therefore yields and prices on an aggregate level. Again, this

reflects the systemic nature of weather and the fact that weather extremes may tend to

impact a larger geographic area. Such conditions were observed in the 1988 drought and the

1993 Midwest floods, which caused widespread crop losses.

5 Concluding Remarks

The federal crop insurance program has been a major fixture of US agricultural policy since

the 1930s. The program continues to grow in size and significance and now represents the

most prominent farm policy instrument, accounting for more government spending than any
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other farm commodity program. Rising prices have expanded the scale of the program and

the introduction of revenue insurance plans and increasing government premium subsidies

have led to a program with a very high level of farmer participation.

Revenue insurance, which was introduced in the mid–1990s, involves multiple sources of

dependent risk (i.e., prices and yields). Revenue coverage accounts for nearly 70% of the total

liability in the program. The plans cover losses that result from a revenue shortfall that can

be triggered by either low prices, low yields, or a combination of both. The actuarial practices

currently applied in rating these plans essentially involve the application of a Gaussian copula

model to the pricing of dependent risks. We evaluate the suitability of this assumption by

considering a number of alternative copula models. We apply a relatively new innovation

in copula modeling—the vine copula. This approach uses combinations of pair–wise copulas

of conditional distributions to model multiple sources of risk. We find that this approach

is generally preferred by model fitting criteria in the applications considered here. We also

demonstrate that alternative approaches to modeling dependencies in a portfolio of risks may

have significant implications to the pricing of such risks. Although this point is obvious to

any observer of contemporary financial conditions, the implications for pricing crop revenue

insurance have yet to be explored. Our paper is a first step in such an exploration.

The multivariate vine copulas presented here are not without their own limitations. In

particular, the estimates are not invariant with respect to the factoring of the multivariate

density, which is reflected in the ordering of individual variables in the model. In light of

the substantial number of possible specifications that could be used to characterize depen-

dency relationships, vine copulas have an inherent curse of dimensionality problem. Future

research should explore more formal approaches to determining the most appropriate spec-

ification. Likewise, other approaches to higher–ordered copula models merit consideration

and comparison to the estimates presented here.
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Table 1: Elliptical (Gaussian and t) Copula Estimates (Data Ordered as C1, C4, S4, S2, C2,

CP, C3, SP, S1, S3)

Gaussian Copula t Copula

Parameter Standard Parameter Standard

Parameter Estimate Error Estimate Error

ρ12 0.9112 0.0170 0.9110 0.0182

ρ13 0.5253 0.0835 0.5544 0.0828

ρ14 0.5246 0.0833 0.5622 0.0829

ρ15 0.8608 0.0262 0.8631 0.0270

ρ16 -0.4709 0.0950 -0.4945 0.0977

ρ17 0.8896 0.0214 0.8934 0.0219

ρ18 -0.3281 0.1090 -0.3569 0.1139

ρ19 0.5562 0.0777 0.5827 0.0791

ρ110 0.6276 0.0684 0.6538 0.0676

ρ23 0.4406 0.0953 0.4761 0.0947

ρ24 0.4749 0.0933 0.5215 0.0929

ρ25 0.9328 0.0132 0.9342 0.0138

ρ26 -0.5025 0.0925 -0.5317 0.0945

ρ27 0.8833 0.0227 0.8898 0.0228

ρ28 -0.3574 0.1088 -0.3904 0.1137

ρ29 0.3717 0.0957 0.4054 0.0982

ρ210 0.5427 0.0804 0.5774 0.0795

ρ34 0.9082 0.0179 0.9020 0.0205

ρ35 0.4262 0.0957 0.4471 0.0953

ρ36 -0.3737 0.1079 -0.3957 0.1091

ρ37 0.4633 0.0875 0.4780 0.0888

ρ38 -0.4918 0.0941 -0.4992 0.0977

ρ39 0.8772 0.0241 0.8788 0.0259

ρ310 0.8218 0.0337 0.8091 0.0382

ρ45 0.4768 0.0926 0.5085 0.0922

ρ46 -0.3637 0.1107 -0.3775 0.1152

ρ47 0.4607 0.0862 0.4814 0.0882

ρ48 -0.4531 0.0997 -0.4524 0.1070
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Table 2: (Continued)

Gaussian Copula t Copula

Parameter Standard Parameter Standard

Parameter Estimate Error Estimate Error

ρ49 0.8373 0.0319 0.8368 0.0352

ρ410 0.8534 0.0277 0.8483 0.0307

ρ56 -0.5301 0.0873 -0.5454 0.0894

ρ57 0.8854 0.0219 0.8878 0.0225

ρ58 -0.3773 0.1046 -0.3992 0.1078

ρ59 0.3689 0.0969 0.3890 0.0988

ρ510 0.5156 0.0818 0.5352 0.0816

ρ67 -0.5161 0.0886 -0.5247 0.0911

ρ68 0.7430 0.0500 0.7427 0.0537

ρ69 -0.2850 0.1198 -0.2768 0.1244

ρ610 -0.3692 0.1089 -0.3681 0.1132

ρ78 -0.3667 0.1050 -0.3830 0.1089

ρ79 0.4347 0.0884 0.4450 0.0920

ρ710 0.6527 0.0641 0.6636 0.0648

ρ89 -0.3659 0.1113 -0.3551 0.1204

ρ810 -0.3569 0.1069 -0.3399 0.1140

ρ910 0.7679 0.0439 0.7576 0.0485

ν 20.6906 10.7926

LLF 352.5038 354.9279

AIC -615.0076 -617.8558

BIC -527.2016 -528.0986
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Table 2: Archimedean Copula Estimates (Clayton and Gumbel)

Clayton Copula Gumbel Copula

Parameter Standard Parameter Standard

Estimate Error Estimate Error

0.3903 0.0579 1.2474 0.0398

LLF 56.4828 33.9548

AIC -110.9655 -65.9096

BIC -109.0143 -63.9584
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Table 4: Canonical Vine Copula Model Estimates

Parameter 1 Standard Parameter 2 Standard

Copula Family Estimate Error Estimate Error

Rotated Gumbel 180 3.5987 0.4138

Rotated BB7 180 1.3056 0.1918 0.5354 0.2592

Rotated BB7 180 1.4271 0.2252 0.5317 0.2593

Gaussian 0.8821 0.0270

Frank -3.4179 0.9165

Rotated Gumbel 180 3.2173 0.3741

Gaussian -0.3077 0.1164

Rotated BB1 180 0.3151 0.2299 1.3606 0.1889

BB7 1.6674 0.3239 0.7501 0.2800

Rotated Clayton 180 0.0556 0.1756

Joe 1.1892 0.1635

Rotated Gumbel 180 1.8636 0.2151

Rotated Clayton 90 -0.3101 0.2136

t 0.3899 0.1399 3.3926 1.7618

Rotated Clayton 90 -0.4049 0.2091

Frank -2.4208 0.9897

Joe 1.0364 0.1230

Gaussian 0.8668 0.0262

Rotated Clayton 180 0.0431 0.1451

Rotated Clayton 90 -0.4349 0.2296

Rotated Clayton 90 -0.0630 0.1350

Rotated Gumbel 90 -1.3123 0.1444

Rotated Gumbel 180 2.7090 0.3157

Rotated Gumbel 180 2.0319 0.2368

Gaussian 0.0882 0.1338

Rotated Joe 180 1.2554 0.1907

Rotated Gumbel 90 -1.0909 0.1047

Frank 0.6035 0.9004

Gaussian 0.3767 0.1098

Frank 3.1177 0.9071

Rotated Clayton 90 -0.2784 0.1897

Rotated BB7 180 1.1134 0.1344 0.4504 0.2098

Rotated Joe 270 -1.2088 0.1637
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Table 4: (Continued)

Parameter 1 Standard Parameter 2 Standard

Copula Family Estimate Error Estimate Error

Rotated Clayton 270 -0.1519 0.1656

Rotated Clayton 270 -0.1342 0.1819

Rotated Joe 90 -1.0965 0.1685

Rotated BB1 180 0.3605 0.2559 1.5048 0.2282

Rotated Joe 180 1.2361 0.1681

Joe 1.1241 0.1579

Clayton 0.0979 0.1540

t -0.0114 0.1625 2.8130 1.3422

Gaussian 0.6083 0.0798

Rotated Clayton 270 -0.1589 0.1821

Frank 1.8188 0.8460

Rotated Joe 90 -1.2483 0.1696

LLF 365.1950

AIC -624.3899

BIC -520.9740
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Local Linear Regression of Illinois Yield Trends
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Figure 2: Empirical Distributions for Detrended Corn Yields and Price
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Figure 3: Empirical Distributions for Detrended Soybeans Yields and Price
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(a) Corn Price

(b) Soybean Price

Figure 4: Fitted Normal Distributions for Logarithmic Price Changes
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(a) Corn 1 (b) Corn 2

(c) Corn 3 (d) Corn 4

(e) Soy 1 (f) Soy 2

(g) Soy 3 (h) Soy 4

Figure 5: Fitted Weibull Distributions for Yields
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