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Abstract   
 

When a bank experiences a negative shock to its equity, one way to return to target leverage is to sell 
assets. If asset sales occur at depressed prices, then one bank’s sales may impact other banks with 
common exposures, resulting in contagion. We propose a simple framework that accounts for how 
this effect adds up across the banking sector. The framework explains how the distribution of bank 
leverage and risk exposures contributes to a form of systemic risk. We compute bank exposures to 
system-wide deleveraging, as well as the spillover of a single bank’s deleveraging onto other banks. 
We use the model to evaluate a variety of crisis interventions, such as mergers of good and bad 
banks and equity injections. In our model, “microprudential” interventions, which target the 
solvency of individual banks, tend to be much less effective than “macroprudential” policies which 
aim to minimize spillovers across firms. We apply the framework to European banks vulnerable to 
sovereign risk in 2010 and 2011, and US banks between 2001 and 2010. 
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 I.  Introduction 
 
 Financial stress experienced by financial institutions can contaminate others and spiral into a 

shock that threatens the entire financial system: this is systemic risk. The measurement of systemic 

risk has been high on financial regulators’ priority list since the 2008 collapse of Lehman Brothers, 

which triggered widespread financial distress among large US financial institutions. The recent 

sovereign debt crisis and corresponding concerns about the solvency of European banks system have 

only made the need to measure system-wide stability more acute.  

There are at least two ways in which linkages between financial institutions can create 

contagion. The first relies on contractual dependencies: when two banks write a financial contract 

such as a swap agreement, a negative shock to one bank can transmit to the other party as soon as 

one of the banks is unable to honor the contract (e.g., Allen and Babus 2009, Gorton and Metrick 

2010, Giglio, 2011). Such bilateral links can create a channel for the propagation of financial 

distress, because the creditor bank may in turn default on its obligations to third parties (Duffie 2010, 

Kallestrup et al., 2011).1  

A second type of linkage comes from fire-sale spillovers: when a bank is forced to sell 

illiquid assets, it depresses prices, which in turn can prompt financial distress at other banks that hold 

the same assets. Liquidation spirals of this sort have been explored in an extensive theoretical 

literature.2 In a system of greater complexity, such spirals are believed by numerous economists and 

policy-makers to have become an important contributor to systemic risk over recent years.  

This paper proposes a parsimonious model of this fire-sales channel of systemic risk that can 

be easily estimated with available data. The model takes as given (1) the asset holdings of each 

                                                 
1 Kalemli-Ozcan(2011) investigate the impact of inter-bank linkages on business cycle synchronization. 
2 See for instance Shleifer and Vishny (1992, 2010), Gromb and Vayanos (2007), Brunnermeier and Pedersen (2009), 
Allen, Babus, and Carletti (2011), Wagner (2011). 
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financial institution, (2) an adjustment rule applied by institutions when they are hit by adverse 

shocks and (3) the liquidity of these assets on the secondary market (i.e., the ability of banks to sell 

these assets quickly with little discount). In our model, all three ingredients are exogenous, and thus 

we make no claims as to the optimality of bank behavior ex ante, appealing mostly to prior work to 

show that our assumptions are consistent with observed bank behavior. Nevertheless, combining 

these ingredients and adding up spillovers across banks yields a set of rich insights on how bank 

deleveraging may unfold following an initial shock.  

One appealing feature of the model is that we can distinguish between a bank’s contribution 

to financial sector fragility (which we call its “systemicness”), and a bank’s vulnerabilty to 

deleveraging by other banks. For example, a small but highly levered bank may be quite vulnerable 

to financial sector deleveraging, but is unlikely to be systemic because its own asset sales will be 

modest in size, thus not triggering much in the way of spillovers. 

The model delivers a number of intuitive properties concerning how the distribution of 

leverage and risk exposures across banks determines systemic risk. For instance, a negative return 

shock experienced by an asset held by relatively levered institutions has a larger aggregate impact 

than if the same asset was held by the less levered institutions. More generally, we show that the 

banking system is less stable with respect to net worth shocks when asset classes that are large in 

dollar terms are also held by the most levered banks. Assets that are both volatile and illiquid should 

be dispersed across banks, since shocks generate less price impact in a deleveraging cycle. In 

contrast, if illiquid assets have low price volatility, then it is better to isolate these assets in separate 

banks, so that they are not contaminated by other assets, which in turn are subject to larger shocks. 

Though stylized, our framework can be used to simulate the outcome of various policies. To 

be clear, our model takes as given a given bank’s behavior during deleveraging, and therefore there 
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is no presumption that capital structure is optimal in an ex ante sense. Despite this limitation, the 

model is useful for understanding how spillovers play once a deleveraging cycle is entered, at which 

point banks are up against a leverage constraint.  For example, we can evaluate the overall impact of 

the failure of a given bank on each other member of the financial system. Moreover, we can use the 

model to simulate the outcome of various policy interventions, such as a forced bank merger 

between vulnerable banks. Such a policy may affect systemic risk because it redistributes existing 

assets held by large intermediaries to other intermediaries, which may have different exposures to 

shocks, different sizes, or differ in their leverage ratios. We also explore the gains from equity that is 

optimally distributed around the most systemic banks, i.e., debt-equity swaps targeted to minimize 

the aggregate impact of deleveraging. In the context of this exercise, it should not be surprising that 

“microprudential” stabilization policies, which aim to fix insolvency at individual banks, tend to be 

inferior to “macroprudential” policies, which target the cross-bank spillovers directly. This is 

because optimal injections should not target banks that are directly exposed to shocks, but banks 

whose liquidations have the largest impact on other banks. 

We apply the model in two empirical settings. First, we calibrate the model on European 

banks during the 2010-2011 sovereign debt crisis. For a large set of these banks, we have measures 

of sovereign bond exposures derived from the European Banking Authority's (EBA) July 2011 stress 

tests. We then use these exposures to estimate the potential spillovers which could occur during bank 

deleveraging precipitated by sovereign downgrades or defaults. Our analysis uncovers some 

interesting and worrisome linkages. For example, only a few banks have direct exposure to a Greek 

sovereign default. However, a much larger group of banks are indirectly exposed, because they hold 

assets that are held by banks that are directly exposed to Greek sovereign bonds. In the extreme 

event of a bank failure of a directly exposed bank, the indirectly exposed banks would suffer 
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portfolio losses as well. Using the risk exposures as inputs, we document a correlation between our 

estimates of vulnerability and equity drawdowns experienced by European banks in 2010 and 2011. 

We then use our data to evaluate various policy interventions. We find that size caps, or forced 

mergers among the most exposed entities, do not reduce systemic risk very much. However, we 

show that modest equity injections, if distributed appropriately between the most systemic banks, 

can cut the vulnerability of the banking sector to deleveraging by more than half. 

We then apply our framework to US financial institutions between 2007 and 2009. We 

perform this second set of empirical analysis to show how the model can be useful even when we do 

not have direct measures of banks’ financial holdings. Much like Adrian and Brunnermeier (2010) 

and Acharya et al (2010), we now estimate bank’s exposures using their equity returns. We then use 

these exposures, which we obtain on a rolling basis, to calculate the financial sector’s exposure to 

deleveraging. We show that the model captures the pre-Lehman build-up in financial instability 

among banks, as well as helping explain bank stock returns during the financial crisis. These results 

obtain in spite of coarse estimates of each institution's holdings: a regulator in possession of detailed 

information on bank holdings could in principle do better.  

The remainder of the paper is organized as follows. We first develop the model, solve it, and 

build intuition for financial sector stability under different configurations of leverage and risk 

exposure across the banks. In Section III, we explain how our approach fits, and contributes to, a 

growing literature on systemic risk. In Section IV, we use commercial bank exposures provided by 

the EBA’s July 2011 stress tests to compute the vulnerability of European banks to sovereign 

defaults. In Section V, we test the basic framework on US financial institutions, where we rely on 

historical equity returns to back out exposures. The final section concludes.  
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II.  A Hydraulic Model of Bank Deleveraging 

 We start by describing the framework. We then use it to derive easy-to-implement measures 

of systemic risk, at the bank and aggregate levels.  

A. Setup 

There are two periods t=1,2, and N banks. Each bank n is financed with a mix of debt dnt and 

equity ent. At is the N×1 vector of banks’ assets so that each term ant = ent + dnt at date t. B is the N×N 

diagonal matrix of leverage ratios, such that each diagonal term bn=dnt/ent.  

Each bank n holds a portfolio of K assets: mnk is the weight of asset k in bank n’s portfolio. M 

is the N×K matrix of these weights. In each period, the vector of banks’ unlevered returns is given 

by: 

Rt=MFt,
 (1)  

where the K×1 vector Ft denotes asset returns. 

 

Assumption 1: Asset trading in response to bank return shock 

Suppose banks receive an exogenous shock R1 to their assets at t=1. Because banks are 

levered, these shocks move banks away from their current leverage. We assume that banks respond 

by scaling up or down their total assets in period 2 so as to maintain a fixed target leverage. Such 

leverage-targeting is in line with empirical evidence in Adrian and Shin (2010), who show that banks 

manage leverage to offset shocks to asset values.3 Adrian and Shin's evidence implicitly suggests 

                                                 
3 They provide evidence that commercial banks target a constant leverage ratio, while investment banks have procyclical 
leverage, which means that their leverage adjustments more than offset the changes in leverage induced by shocks to 
asset values. 
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that banks do not raise equity in response to a negative shock.4 However, the analysis that follows 

does not change much if we instead assume that banks return to target leverage using a combination 

of asset sales and equity issues in fixed proportion.  

If banks target leverage ratios given by the matrix B, then the N×1 vector of dollar net asset 

increases is simply A1BR1. When R1<0, banks with negative asset returns have to sell assets to 

deleverage. When R1>0, banks with positive returns need to borrow more to preserve leverage. The 

intuition of this formula is simple: suppose a bank with equity of 1 and debt of 9 experiences a 10% 

return on its assets, bringing its equity to 2. The bank will have to borrow an additional 9 and buy 

assets to return to the prior leverage of 9-to-1.5  

If some elements of R1 are negative and very large, then it is possible that the A1BR1 vector 

may have some negative elements that are bigger in absolute value than banks’ assets. This happens 

if the initial shock is large enough to wipe out all of the equity of the bank, in which case no amount 

of asset sales will return the bank to target leverage. To prevent this from happening, we can modify 

the vector of net asset increases by replacing it by A1.max(BR1,-1-R1), where “max” is the point-wise 

maximum matrix operator, defined by max(X,Y)=(max(Xn,Yn)). In Section IV we use this modified 

formula, because the shocks we consider in Europe are large enough to wipe out some banks. But to 

simplify the exposition that follows, for now we keep the simpler linear formula. 

Assumption 2: Target exposures remain fixed in percentage terms 

Second, we must describe how banks sell individual assets to return to target leverage. We 

make the simplest assumption that banks sell assets so as to keep their exposures constant in a 

                                                 
4 In situations where debt overhang is severe, issuing equity dilutes existing shareholders as the gains from the reduction 
in risk accrue disproportionately to debt holders. 
5 Essentially we are treating banks as similar to leveraged exchange traded funds (ETFs), which must readjust to their 
target leverage at the close of trading each day. See Greenlaw, Hatzius, Kashyap, and Shin (2008) and Adrian and Shin 
(2009) for further discussion of this point and related evidence. 
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proportional sense. More formally, this means that they sell assets in such a way as to hold the M 

matrix constant between dates 1 and 2. This assumption has been widely used in the mutual fund 

literature: investor flows have been shown to cause mutual funds to scale up and down their 

portfolios, but otherwise keep their portfolio weights constant (see Coval and Stafford, 2007, 

Greenwood and Thesmar, 2011, and Lou, 2011). In practice, banks may first sell their liquid assets. 

The constant portfolio assumption simplifies the algebra and the exposition of the model, but it is 

easy to modify the framework to account for more sophisticated liquidation rules, which we develop 

in Section IV F.  

Let  be the K×1 vector of net asset (dollar) purchases by all banks in period 2. If banks keep 

their portfolios constant, then: 

=M' A1BR1.           (2) 

To see the intuition, consider a bank with holdings of 10 percent cash, 20 percent in stocks and 70 

percent in mortgage backed securities. If the bank scales down its portfolio by ten units, it will sell 2 

units of stocks, 7 units of mortgage backed securities, and take its cash down by 1. Equation (2) 

describes this in matrix form, summed over all banks: for each bank n facing a shock R1n, total net 

asset increase will be given by anbnR1n. Net purchases of asset k by the bank will be proportional to 

its holdings of asset k, i.e., mnkanbnR1n. Equation (2) sums this expression across all n banks.  

 

Assumption 3: Fire sales generate price impact 

Third, we assume that asset sales in the second period   generate price impact according to a 

linear model:
 

 F2=L ,           (3) 
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where L is a matrix of price impact ratios, expressed in units of returns per dollar of net purchase.6 

We start by assuming that L is diagonal, meaning that fire sales in one asset do not directly affect 

prices in other assets.7  

We combine equations (1), (2) and (3) to calculate the effect of bank unlevered asset returns 

in t=1 on returns in t=2: 

R2 =MF2=ML=(MLM'BA1)R1.
  (4) 

In principle, one can iterate for multiple rounds of deleveraging, and thus incorporate more periods 

into the analysis, following an initial shock through further multiplying by the transition matrix 

MLM'BA1. For simplicity, we restrict our attention to the first round.  

 

B. Measuring Aggregate Exposures to Deleveraging (“Aggregate Vulnerability”) 

We start with a negative shock -F1=(-f1,...,-fn) to asset returns: this translates into dollar 

shocks to banks' assets given by A1MF1. The aggregate direct effect on all bank assets the quantity is 

then 1'A1MF1, where 1 is the N×1 vector of ones.  This direct effect does not involve any contagion 

between banks, it is simply the change in asset value.  

Following equation (4), To compute the dollar effect of shock F1 on bank assets through fire 

sales, we pre-multiply MLM'BA1MF1 by 1'A1. We normalize this by total bank equity pre-delevering 

E1 and define “aggregate vulnerability” as: 

  (5) 

                                                 
6 For instance, Pulvino (1998) estimates the discount associated with fire sales of commercial aircraft by distressed 
airlines. In equity markets, Coval and Stafford (2007) estimate the L coefficient using forced purchases and sales of stock 
by mutual funds (see also Ellul et al, 2011, and Jotikasthira et al, 2011 who use similar methodologies in other asset 
markets). Bank loans can also be sold on fairly liquid markets (Drucker and Puri, 2008). 
7 Greenwood (2005) develops a model in which price impact spreads across similar assets. to the extent that off-diagonal 
elements are positive, this would further amplify the effects discussed below. 

1 1 1

1

1' '
.

A MLM BA MF
AV

E

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AV measures the percentage of aggregate bank equity that would be wiped out by bank deleveraging 

if there was a shock F1 to asset returns. As a reminder, this formula omits the direct impact of the 

shock on net worth, emphasizing only the spillovers across banks. If all assets are perfectly liquid 

(i.e., all elements of the L matrix are zero), then AV=0: there is no contagion across banks because 

delivering does not involve price impact, even though there is still a direct effect of the shock on 

banks asset values given by  1'A1MF1. 

To understand the intuition behind Eq. (5), using -R1=-MF1=(-r1t,...,-rnt)', we can rearrange 

terms slightly and expand: 

  (6) 

where  measures the “connectedness” of bank n. This is the extent to which 

bank n owns large (  large) or illiquid (lk large) asset classes. Where this is the case, one 

dollar of fire sales by bank n will lead to a larger amount of the banking system’s holdings, since it 

will reduce by more the price of larger asset classes.  

Equation (6) shows that the systemic risk is large when large banks (banks with large an1) are 

levered (large bn1), exposed to the shock in question (rn1), or connected (large n). These properties 

are intuitive: if large banks are levered and/or exposed, a given shock will trigger larger asset sales. 

In addition, if exposed banks hold assets that are illiquid and/or widely held, then price impact is 

large and the overall system is more vulnerable.  

 
C. Contribution of each Bank to Deleveraging: “Systemicness” 

We can calculate the contribution that each bank has -- through contagion -- on the aggregate 

vulnerability of the banking system. To do this, we again focus on the impact of a shock F1, but 

1 1 1,n n n n
n
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
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
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
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assume it only affects bank n. In this case, it is easy to see that the impact coming from the 

liquidations of bank n on the aggregate of the banking system is: 

  (7) 

where n is the N×1 vector with all zeros except for the nth element, which is equal to 1. We call S(n) 

the “systemicness” of bank n. Systemicness can be interpreted as the contribution of bank n to 

aggregate vulnerability, as . 

As we did for aggregate vulnerability, we can develop intuition by expanding terms in 

equation (7): 

  (8) 

which is the bank-level equivalent of Equation (6). Thus, a  bank is more systemic if: 

 It is more levered (bn is bigger): a shock to a more levered bank is going to induce it to sell 
more, which generates more price-impact. 

 It is bigger (an/E1 is bigger): a given shock on a larger bank leads to more fire sales, which in 
turn leads to a large price impact. 

 It receives a bigger shock rn1  

 It is more connected (n is bigger): the bank owns assets that are both illiquid and widely held 
by other banks.  

 

D. Impact of Deleveraging on each Bank: Indirect Vulnerability 

We define a bank’s “indirect vulnerability” with respect to shock F1 as the impact of the 

shock on its equity through the deleveraging of other banks: 

 (9) 
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IV(n) measures the fraction of equity of bank n that disappears when other banks deleverage 

following shock F1. It differs from direct vulnerability, which measures the direct exposure of bank 

n’s assets to shock F1: 

 (10) 

In our empirical applications, we will systematically contrast the two measures: IV involves the 

deleveraging spiral, while DV does not. 

To understand the intuition behind IV(n), we can expand terms in equation (9): 

 (11) 

The first term stands for the pure leverage effect: a given asset shock has a bigger impact on equity if 

the bank is more levered. The second term measures the importance of connections between banks. 

. It is large when the bank is exposed to assets that are illiquid and exposed to heavy fire 

sales.  

 

E. Indirect Vulnerability to a specific bank 

Suppose one is interested in the impact of a single bank deleveraging (for example, if it were 

to fail and its assets were liquidated). In this case, we can compute IV in the special case where the 

vector of banks' returns R1=-m, i.e. assuming that bank m (and only bank m) will deleverage 

following a shock  to it assets. Then, following equation (9), the indirect vulnerability of bank n to 

this shock is: 

 (12) 
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This measure captures the interdependence through deleveraging of banks n and m. IV(n,m) is large 

when sender bank m is large and levered, when receiver bank n is levered, and more interestingly 

when the term  is big, i.e., when n and m own similar illiquid assets.  

 

F. Theoretical Properties 

i.  Heterogeneity and Systemic Risk 

One implication of equation (6) is that making the banks more similar may reduce spillovers, 

and thus AV. This contrasts with much of the existing literature on systemic risk, which assumes that 

systemic risk is high when banks have correlated stock returns. The economic intuition for this 

comes from two opposing effects. First, because banks liquidate all assets they hold when they are 

shocked, shocks to liquid assets trigger fire sales of illiquid assets when banks own both types. This 

can make it stabilizing to ring-fence the illiquid assets into specific banks. There is, however, also an 

effect that makes diversification desirable: when all banks own all assets, any shock to asset prices 

will spread the fire sales across all asset markets, which tends to reduce the total price impact. The 

diversification effect dominates when illiquid (high lk) assets receive stronger shocks (high fk): 

diversified (correlated) banks are better, because they can react to these shocks by partly selling 

liquid assets which reduces global price impact. But when liquid (low lk) assets receive bigger 

shocks (high fk), the contagion effect is more important. In this case, stability can be increased by 

isolating the illiquid assets into specific banks. 

To illustrate this intuition more formally, consider the case of N assets and N banks of 

identical size a and leverage b. Suppose that assets are equally spread across banks (heterogeneity), 

M=Id. In this case, equation (6) can be rewritten as ܸܣ ൌ ܽଶܾ ∑ ݈௜ ௜݂
ே
௜ୀଵ . In contrast, if each asset is 

exclusively held by one bank dedicated to that asset (homogeneity), we have M=(11’)/N (this is a 

n ' MLM'm
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matrix where all coefficients are equal to 1/N) and ܸܣ ൌ ܽଶܾ ∑ ݈ ݂̅ ௜
ே
௜ୀଵ  where ݈=̅ሺ∑ ݈௜ሻ/ܰ

ே
௜ୀଵ  is the 

average liquidity of assets. Thus homogeneity leads to lower AV than heterogeneity if 

∑ ሺ݈െ݈̅௜ሻ ௜݂
ே
௜ୀଵ ൐ 0, i.e. when assets with large shocks tend to be more illiquid.  

 

ii. Absence of “Too Big to Fail” effect 

Another somewhat surprising property of our framework is that AV is not directly impacted 

by the size of banks. For instance, we can prove that slicing a bank into n smaller banks, with the 

same asset mix and leverage as the original bank, leaves AV unchanged (see appendix). This is 

because each of these new banks reacts to shocks exactly as the original bank, scaled by the ratio of 

their sizes. Thus, the combined impact on the rest of the system is exactly identical to that of the 

original banks. Conversely, merging banks with same asset mix and leverage also leaves AV 

unchanged. 

 

III.  Relation to Literature  

The tradition in recent papers on systemic risk has been to infer bank linkages from 

correlations in market prices. A first set of papers seeks to estimate risk directly from bond or CDS 

(see for instance Ang and Longstaff (2011)). Giglio (2011), for example, uses the difference between 

bond and CDS spreads to estimate the joint probability of failure of large banks who are sellers of 

protection. A second set of papers measures systemic risk through comovement in the equity returns 

of financial intermediaries (Adrian and Brunnermeier (2010), Acharya, Pedersen, Philippon and 

Richardson (2010), Billio et al (2010)).  

Our framework departs from this literature by making simple assumptions about how funding 

shocks propagate across banks. To do so comes at some cost—we adopt a narrow definition of 
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systemic risk based on banks’ common exposures. On the other hand, the benefits are that our 

model-based approach can be used to do policy analysis.  

The structure of our model is similar to Acemoglu, Ozdaglar and Tahbaz-Salehi (2010), who 

study the propagation of shocks in the real economy. They derive conditions under which aggregate 

volatility remains high even when the network is large. Assuming their asymptotic approximation is 

correct for a large universe of banks, some of their insights could conceivably be applied here.  

An important feature of our model relative to existing work is that it distinguishes between a 

bank’s contribution to the risk of aggregate deleveraging (“systemicness”), and a bank’s sensitivity 

to deleveraging by other banks (“indirect vulnerability”). Adrian and Brunnermeier (2010) define 

and estimate the “CoVaR” of institution n as the Value at Risk of the whole financial sector 

conditional on bank n being in distress. In our model, “systemicness” S(n) is the equivalent of their 

CoVaR measure; the main difference is that, while CoVaR is estimated using comovement in stock 

returns, we put structure on the propagation mechanism, which could result in patterns of return 

comovement that differ from that observed during ordinary times. On the other hand, Acharya et al. 

(2010) propose a measure closer to “indirect vulnerability” IV(n). For each bank, they estimate 

average returns during the 5% worst days of market conditions. They combine this estimate with 

bank leverage to compute the “marginal expected shortfall (MES),” which captures how much 

capital a bank must raise when faced with adverse market conditions. Finally, Billio, Getmansky, 

Lo, and Pelizzon (2010) measure systemic risk using bilateral time-series dependencies between 

firms (see also Diebold and Yilmaz, 2011): Our cross-bank indirect vulnerability measure IV(n,m) 

provide a possible foundation for some of these connections.  
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Last, our analysis is closely related to policy proposals recently put forth by Duffie (2011) 

and Brunnermeier, Gorton, and Krishnamurthy (2011). Duffie (2011) proposes that a core group of 

large financial firms report for a list of stressful scenarios their gains or losses together with the large 

counterparties with whom the gain or loss for that scenario is the largest. Brunnermeier, Gorton, and 

Krishnamurthy (2011) suggest eliciting firms' sensitivities to different risk factors and scenarios. Our 

paper is an attempt to model these sensitivities, and to quantify how these stress scenarios could play 

out across the broader financial sector. 

 

IV.  The Vulnerability of European Banks 

Europe is a natural testing ground for the model because detailed holdings data per bank are 

available through the European Banking Authority (EBA) as a result of the 2011 stress tests. Given 

the role that sovereign debt has played in the European banking crises, we focus our analysis on 

banks’ sovereign bond holdings, and specifically writedowns of Greek, Irish, Italian, Portugese, and 

Spanish debt, which we henceforth abbreviate as GIIPS.  

 

A. Data 

We use the results of the European stress tests published in July 2011 on the EBA website, 

which provides harmonized balance sheet composition for the 90 largest banks in the EU27 

countries. The complete list of banks is in the Appendix.  

Matrix A1: The matrix of assets is obtained directly from the EBA data by summing over all 

banking exposures to loans of each bank n. Diagonal elements ann are the “total exposure” in euros 

of bank n. The average exposure is €260 billion. The biggest bank is HSBC (€1440bn), the smallest 

one is Caixa d'Estalvis de Pollensa (€338 million).  
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Matrix M: To calculate the exposure matrix M, we collapse the EBA data into 42 asset 

classes: sovereign debt of each of the 27 EU countries plus 10 others, commercial real estate, 

mortgages, corporate loans, retail SME and retail revolving credit lines. The M matrix is thus a 90 x 

42 matrix, where mnk is the fraction of exposure to asset k of bank m. Aggregate exposure to 

commercial real estate across the 90 banks is €1.2 tn (5% of banking sector assets); small business 

lending is €744 bn (3.2%); mortgages are €4.7 tn (20%); and corporate loans are €6.7 tn (29%). 

Sovereign bonds account for €2.3 tn (13%). 

Matrix B: The leverage matrix B is the diagonal matrix of debt-to-equity ratio. We use book 

leverage because (1) the EU data does not lend itself to the use of market leverage (half of the 90 

banks are not listed, and EBA exposure data are mostly not marked-to-market), and (2) measures of 

risk weighted leverage are strongly affected by regulatory arbitrage (Acharya, Schnabl and Suarez, 

2011). To obtain each element bnn, we divide total exposure (the ann element of A) minus book 

equity by book equity. Because some EU banks are very levered, this number has a few outliers (540 

for Allied Irish Banks, 228 for the Agricultural Bank of Greece). Because we do not want our results 

to be driven by these outliers, we cap target leverage bnn at 30: this cap is imposed on 20 banks.  

Matrix L: We assume L=10-13 x Id, where Id is a 42 x 42 diagonal matrix of ones. We 

therefore assume that all 42 assets have the same price impact. 10-13 means that €10bn of trading 

imbalances lead to a price change by 10bp. This is in the neighborhood of recent empirical estimates 

of price impact in the bond market, but probably an underestimate for some other asset classes. 

Shock F1: We study a 50% write-off of all GIIPS debt. Hence, the shock vector F1 is equal 

to zero for all 42 assets, except for the five GIIPS sovereign debts, for which we assume a return of -

50%. Given banks’ exposures, the direct effect of this shock on aggregate bank equity is given by -

1'A1MF1, which is equal to 381bn €, or 40.1% of aggregate bank equity.  
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B. Validation using stock returns during the sovereign debt crisis 

We first validate our deleveraging model using past data on bank returns during the crisis. 

Between the Between Dec 31, 2009 and September 16, 2011, European bank stocks (the subset of 

our sample which is publicly traded) fell by an average of 54%. In this Section, we ask if this 

meltdown comes from market perception of direct exposures DV(n) and indirect vulnerabilities IV(n) 

to losses on GIIPS sovereign debt. If the market prices bank interdependence via deleveraging, IV(n) 

should explain the cross-section of bank returns during the crisis, even controlling for DV(n).  

To calculate DV(n) we use equation (10). To compute IV(n), we use a modified version of 

equation (9), where we account for the fact the fire sales cannot exceed the total assets of a bank (see 

Section II.A.). This adjustment is necessary as some banks are severely hit by the large shock we 

assume, so as to entirely wipe out their equity. This leads to the following definition of IV(n): 

 

where max(X,Y) is the element-by-element max operator. In this definition, we plug in the above 

matrices and the GIIPS shock vector F1. 

Table 1 lists the top 10 banks, sorted according to IV(n). To see how IV(n) differs from more 

direct exposures DV(n), we also report direct vulnerability, along with each bank’s leverage. 

Rankings in terms of indirect and direct effect are far from being perfectly correlated: the Spearman 

rank correlation between DV and IV with respect to a GIIPS shock is 0.17, and is not significantly 

different from 0 at the 5% level. On average, the direct impact of a full-blown GIIPS crisis would be 

to wipe out 1.11 times the equity for the average bank. To this direct effect, the impact of the 

subsequent deleveraging would further wipe out some 302% of the equity of the average bank. As a 
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reminder, all estimates of the impact of deleveraging are contingent on our price impact estimate 

discussed earlier. 

We then regress cumulative returns over 2010 and September 2011 of each bank on indirect 

vulnerability, controlling for direct vulnerability, bank size (as measured by log of bank total  

exposure log(ann)) and leverage. These controls ensure that vulnerability to the deleveraging process 

IV(n) adds explanatory power beyond a bank’s direct exposure. Table 2 shows these results.  

The first three columns are simple OLS regressions. Out of 90 banks covered by the stress 

tests, only 51 are publicly listed, and we have complete returns data for 49 of them. To reduce 

sensitivity to outliers, we also report median regression results in columns 4-6. Both sets of results 

confirm that the differences in indirect vulnerabilities explain part of the cross-section of bank 

returns during the crisis. In OLS results, the R2 of indirect vulnerability alone is 9%, compared with 

14% when direct exposure is also included. The bank size control does not affect the estimated 

impact of IV(n) on returns. The direct and indirect vulnerabilities have the same explanatory power 

on the cross-section of bank returns. For two banks that are one sample standard deviation apart in 

terms of IV(n), cumulative returns drop by 5 percentage points more in the bank most exposed to 

sector-wide deleveraging.  

 

C. Systemicness  

In this Section, we briefly discuss the properties of our systemicness measure S(n) on 

European Data. As for vulnerability, we need to amend equations (7) and (8) to ensure that bank-

level total fire sales are less than total assets (see Section II.A).  
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which shows that the systemicness of bank n can be decomposed into the product of three scalars: n, 

which captures the impact of bank n on other banks through deleveraging, , which captures 

the relative size of bank n, and , which reflects the size of fire sales by 

bank n.  

Table 3 reports the systemicness ranking for the 10 most systemic banks in Europe, along 

with the three components of the decomposition above. Unsurprisingly, in the overall sample, 

systemicness is correlated with size (spearman correlation of .52, statistically significant at 1%), but 

this correlation is far from perfect, as can be seen among the 10 most systemic banks. For example, 

HSBC, the largest EU bank, does not appear in this ranking. BNP Paribas, which is the second 

largest, is only the fifth most systemic bank. Size does not explain everything because there is 

substantial heterogeneity across banks in terms of necessary fire sales. Bankia, which is relatively 

small, is among the most systemic banks because fire sales would be enormous (92% of its assets), 

and it is highly connected with the rest of the financial system through its asset holdings (its linkage 

component equals 0.42). Assuming, for instance, that Bankia had an average linkage level (0.30 

instead of 0.42), its systemicness would be equal to 0.29x0.95x0.30=0.08, which would make it the 

8th most systemic bank instead of the 6th.  

The sum of systemicness across all 90 banks is equal to 2.45, which means that through the 

deleveraging process, our model predicts that 245% of aggregate bank equity would be wiped out. 

This is sizeable, since the direct impact of the GIIPS writedown total 40.1% of EU bank equity. The 
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deleveraging effect is therefore 6 times larger than the direct shock. In what follows, we focus on 

deleveraging.8  

 

D. Policy simulations 

In this section, we use our model to evaluate a number of different policies which have the 

potential to reduce spillovers from fire sales when banks are deleveraging. As a reminder, the model 

does not take a position on whether banks are behaving optimally, and assumes that all banks face 

currently binding leverage constraints, meaning that they adjust immediately to reach new target 

leverage. Thus, the interventions that follow should be interpreted as potential ex post interventions 

that could be used in a moment of crisis. The results of the experiments are reported in Table 4. For 

each policy intervention, we calculate the aggregate vulnerability to the 50% write-down on all 

GIIPS debt.9  

Limiting Bank Size: We start by considering the effect of a cap on bank size, holding constant 

leverage. We do this as follows. Suppose a bank n holds anmnk euros of asset k. If assets an>c, where 

c is the cap, we set the bank’s assets to c, and redistribute residual asset holdings (an – c)mnk  equally 

among non-capped banks. This procedure does not affect the portfolio structure of the capped bank, 

but does affect the portfolios of the other banks, which become richer in the assets held by the 

capped bank. After one iteration, some previously uncapped banks end up with size greater than c. 

We iterate this process until all banks are below or at the size cap.  

                                                 
8 To properly calibrate this effect, we would need to amend our exercise in two directions: change the L matrix so as to 
account for the fact that assets are less liquid, and change the liquidation rule of banks so as to account for the fact that 
banks fire-sell liquid assets more. The first change would make estimates of systemic risk bigger, while the second one 
(making banks smarter) would reduce it. 
9 Similar qualitative insights obtain using alternative, "less extreme" shocks, such as a 50% write-down on Greek debt 
only, or a 50% write-down on Greece, Ireland and Portugal. 
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In calculating the new Aggregate Vulnerability, we keep leverage constant. This means we 

are implicitly assuming that receiving banks can issue enough equity to absorb the new assets, while 

capped banks reduce their equity when they downsize. The intention is to isolate the effect of size 

capping separately from deleveraging. 

We report the results of this experiment for caps of €500 bn, €900 bn and €1300 bn euro in 

the first three rows of Table 4. The table shows that capping at €500 bn requires us to redistribute 

assets out of 17 banks; only two banks would be downsized if we set the cap to be €1300 bn. The 

main lesson from this analysis is that the overall impact of size caps on aggregate vulnerability is 

small, and, if anything, tends to increase AV.  

The intuition for this can be understood by using the definition of AV and taking the 

difference before and after the policy has been implemented: 
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    (13) 

where x measures the change in x between before and after the policy, and  measures the average 

of x between before and after the policy. rn1 is the adjusted levered exposure given by 

. AV changes because the size cap reallocates assets across banks. The 

overall effect can be decomposed into three pieces. First, there is a size reallocation effect, in which 

AV is increased if banks that are more connected or more exposed/levered receive more assets. 

Second is a “connection reallocation” effect, in which AV increases when large, exposed/levered 

banks become more connected. The third effect is “exposure reallocation”, which increases systemic 

risk if it makes large connected banks more exposed. 

x

max bnn 'n MF1,1 'n MF1 
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We report this decomposition in Table 4, next to the size cap simulation. The net increase in 

systemic risk is driven by two opposing forces. These two forces are the strongest for the most 

drastic cap (€500 bn), so we focus on this one. On the one hand, average (size- and connectedness-

weighted) exposure decreases, which reduces systemic risk. This happens because large banks tend 

to be significantly less exposed: GIIPS debt accounts for 3.2% of their assets, against 5.8% for banks 

below €500 bn.10 As a result, the average large banks has less GIIPS exposure: the transfer of one 

euro from large to small banks will reduce the average exposure of smaller banks, while keeping the 

average exposure of larger banks constant. Through this effect, the €500bn cap policy reduces 

exposure at smaller banks by 10.5 percentage points, on average. This “risk dilution effect” (further 

amplified by the fact that the smaller banks get relatively larger) decreases AV.  

On the other hand, AV goes up because more exposed banks (which happen to be the smaller 

banks) receive more assets. Through this “contamination effect”, safe assets which were previously 

held by relatively sheltered institutions are now held by more exposed banks, increasing AV. Overall, 

in the €500 bn cap policy, the contamination effect dominates the risk dilution effect. 

 

GIIPS debt re-nationalization: We also look at the effect of reallocating GIIPS sovereign 

debt to banks in their home country. This exercise is motivated by two facts. First, between July and 

December 2011, under pressure of markets and regulators, GIIPS-based banks increased their 

holdings of GIIPS debt by about 1%, while non GIIPS-based banks reduced them by about 22%. 

Second, between December 2011 and January 2012, while the ECB lent about €500 bn to euro-area 

banks, Spanish banks bought about 23bn euro of government debt and Italian banks some €20 bn. A 

                                                 
10 This difference also holds for levered exposure r. A 50% GIIPS debt write-down would wipe out 35% of the book 
equity of large banks on average, against 46% for banks below the €500 bn threshold. 
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partially intended consequence of prudential and monetary policies over the fall of 2011 has thus 

been to re-nationalize GIIPS debt.  

We thus implement the reallocation of 20% of aggregate holdings of each sovereign back to 

the balance sheets of banks of its own country. First, for each sovereign k, we aggregate euro 

holdings by all banks according to sk  mnkan
n

 . For each bank n outside country k, we then remove 

 euro of sovereign k from its balance sheet. Then, for each domestic bank n' 

in country k, we inject the holdings in proportion of its holdings of the sovereign among banks of 

country k: 20%  sk 
an'mn 'k

ammmk
mdomestic

 . This reallocation never leads to negative holdings as long as 

foreign banks own at least 20% of the aggregate holdings of sovereign k, which is the case in our 

simulation.11 

Table 4 reports the results of this simulation. We find that it reduces systemic risk by about 

8%, an effect larger than the €500 bn size cap. This effect is large: the amount of sovereign debt 

reallocated in the process is only €96 bn, while the €500 bn size cap reallocates trillion of euro of 

assets. 

What drives the reduction in AV? We can break down the overall impact into three 

components. Most of the effect comes through the aggregate reduction in exposure. When 

reallocating GIIPS debt, we are reducing GIIPS exposure of non-GIIPS banks (on average, by 0.2% 

of total assets), while increasing the exposure of most GIIPS banks (on average, by some 0.03% of 

                                                 
11 The only country in our sample where domestic banks own more than 80% of the aggregate bank holdings is the UK 
(81.6%).  

20%  sk 
anmnk

ammmk
m foreign


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their total assets).12 Given that GIIPS banks are on average less levered than non-GIIPS banks (with 

a debt-to-equity ratio of 21 against 23), this implements an overall reduction in fire sales and hence 

AV.  

 

Euro-bonds: Our next intervention replicates the effect of substituting all the different 

sovereign bonds in Europe for one debt security that has the same payoff. The intuition behind the 

experiment is to break the loop between banks and their sovereigns (Acharya, Dreschler and 

Schnabl, 2010). Some recent proposals have suggested replacing part of individual sovereign bonds 

in the eurozone with the equivalent amount of a euro-level sovereign bond.13 According to these 

authors, this would make banks less sensitive to their own sovereign default. 

Suppose we could substitute the sovereign portfolio of each bank with a new portfolio of 

sovereigns which has (1) the same size and (2) weights that are the same across banks. Each bank 

thus receives an identical portfolio. More precisely, we change the exposure mnk into 

sharesovk %sovn  where sharesovk is the share of sovereign k in aggregate sovereign holdings, 

while %sovn is the share of sovereign holdings in bank n's portfolio. This reshuffling of bonds across 

banks preserves each bank’s total sovereign exposure, and aggregate exposure (holdings) to each 

sovereign. But it makes banks more similar in terms of individual country exposure. In the context of 

our model, it is as if all banks are holding Eurobonds. 

Table 4 shows that this policy involves a considerable reshuffling of assets across banks: 

some 1.6tn euro of bonds change owners. It also increases AV. As in the previous experiment, the 

reason is that exposure is reallocated to firms that are more levered, so that only the “exposure 

                                                 
12 Some GIIPS banks experience a decrease in exposure. This happens because these banks own a lot of GIIPS debt but 
relatively little of their own sovereign (for instance most Italian banks own much a lot of non-Italian debt, and relatively 
less Italian debt). As a result, the policy reduces overall exposure to GIIPS for these banks. 
13 See Delpla and Von Weizacker (2010), Brunnermeier et al (2011), Hellwig and Philippon (2011) among others. 
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change” components appears. The intuition is that non-GIIPS banks are both less exposed but more 

levered in the data. The eurobond experiment transfers GIIPS debt from GIIPS banks to non-GIIPS 

banks, and therefore increases exposure of the most levered banks.  

 

Ring-fencing risky assets: Perhaps more targeted policies can make the most systemic banks 

safer? To understand the effect of a merger, let us assume that banks indexed by n are merged 

together into a bank denoted by *. Noting that the merger preserves the quantity of each holding, it is 

straightforward to show that: 

AV 
am

E
m r*  rm 

n merged



        

  (14) 

The interpretation of this equation is simple: if banks that are larger or more connected have an 

exposure lower than the merged entity, the merger increases systemic risk. The intuition is that the 

merger creates contagion: banks who were relatively large and connected, but less exposed, were 

protected against the shock. By being merged into an entity with larger exposure, these assets 

become vulnerable to fire sales, increasing AV. 

Suppose now that the regulator merges the most exposed banks into a single large bank. For 

each bank, we define as ‘exposure’ the fraction of bank equity that would be lost directly in a 50% 

write-down of GIIPS debt. We then study three scenarios: merge all banks with exposure above 

50%, above 100% and above 150% of their own equity. This means merging respectively 47, 20 and 

9 banks.  

Table 4 shows that the effect of the bank mergers is nearly zero. The reason is that the 

policy regroups banks that have very similar exposure-to-equity rn1. And, as equation (14) 

demonstrates, the expected change in AV is small when expected leverage adjusted-exposure rn1 is 



 26

the same across merged firms. In this case, ring-fencing does not reduce systemic risk: the policy 

simply transforms several similar small banks into one big bank with the same exposure.  

 

Merging exposed banks with unexposed ones: Suppose we merge the 20 most exposed banks 

with the banks that are unexposed to the GIIPS write-down (6 of the 90 banks are unexposed). To 

isolate the impact of merging the two groups, we first merge the exposed banks together, then merge 

the unexposed banks together, and then finally perform the full merger. Merging unexposed banks 

does not change AV, because of the effect discussed in the previous experiment: they are identical 

with respect to the shock. For the same reason, merging exposed banks does not change things much 

either. Merging the two groups into one bank does, however, increase systemic risk by 20% of 

aggregate equity. The intuition is that the assets of unexposed banks, which were previously not sold 

in response to the shock, become contaminated by the poor performance of GIIPS debt. This is 

because, in the data, the measure of connectedness of bank n, , is larger for initially 

unexposed banks than for exposed banks. As a result, merging the two categories of banks exposes 

the connected balance sheet of unexposed banks to the GIIPS shock.14  

 

                                                 
14 This effect of increasing AV after merger shows up even in simulations where we assume that all banks have the same 
leverage bn and the same size an. If in equation (13) we set an=a* and bn=b*, we obtain: 

 

where . It appears from this expression that the increase in AV is positive if banks with 

above average exposure -ri1 have below average connectedness . This is the case in the data, where exposed 

banks have a connectedness level 13% below unexposed banks. 
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Leverage cap: We next study the impact of capping leverage. Here, the policy is much 

simpler: if x is the cap, then, for all banks with leverage above x, we set D/E =x. We implicitly 

assume these banks can raise equity to reach the maximum leverage, but do not change their sizes. 

Economically in our model, such a policy reduces the need for banks to fire-sell assets, so it 

unambiguously reduces AV. From Equation (6) we see that: 

 

The policy is more effective when targeted banks are either (1) bigger, (2) more exposed, or (3) hold 

large asset classes.  

We try three different caps (knowing we capped leverage to 30 in the data): 15, 20 and 25. 

We calculate the amount of equity capped banks need to raise to reach this cap: for instance capping 

leverage at 15 (25th percentile) requires banks to raise a staggering of €480 bn. The table shows that, 

to obtain a significant reduction in systemic risk, the regulator would need to set a very drastic cap. 

For instance, capping leverage at 25 (this is leverage at the 63rd percentile bank) only reduces 

vulnerability to a GIIPS shock from 245 to 238% of aggregate equity. The impact of reducing 

leverage to 20 is much larger.  

 

E. Optimizing capital injection 

The policy interventions discussed above are disappointing in that they suggest that capping 

leverage yields only modest improvements in AV, and that other policies have ambiguous, or even 

adverse, impacts on AV. In a moment of crisis, what tools can reduce contagion at minimal expense 

to the regulator? In this last exercise, we explore the power of an optimal targeted policy. Recall 

from Eq. (8) that aggregate vulnerability to a shock vector S can be written as a weighted average of 
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the debt-to-equity ratios bn’s. The weights measure the extent to which the leverage of a particular 

bank n is bad for aggregate vulnerability. This happens when the bank is large, the bank is exposed 

to shocks, and linkages are strong.  

Suppose the regulator has a given amount of cash F available to invest in bank equity, and 

cares only about reducing spillovers between banks in a deleveraging cycle. Equity injection into 

bank n is given by the vector f = (f1,…,fn), so that . When a bank receives fn euros of fresh 

equity, we assume the entire amount is used to repay existing debt, so that its debt to equity ratio 

becomes (Ei – fn)/(En + fn). 

We minimize Eq. (8) subject to the constraints that 
 
and (Ei – fn)/(Ei + fn). We also 

impose the constraint that the regulator cannot withdraw cash from equity-rich banks, so that fn>0 for 

all i. 

Optimizing equity injection across banks allows us to reduce aggregate vulnerability a lot 

more than any of the policy experiments we considered in Table 4. We can see this result visually in 

Figure 2, where we report the optimal AV obtained for various levels of aggregate investment F. 

Panel A shows the aggregate vulnerability to a GIP shock, while Panel B shows aggregate 

vulnerability to a GIIPS shock (both assuming a 50% write-down). Data from panel A shows a 

reduction by a third in systemic risk: AV declines from 47% to 31% using only €50 bn of equity. 

The marginal impact of additional euros of equity injections decreases: €200 bn leads to an 

AV of 23%; €500 bn leads to an AV of 18%. The effect on aggregate vulnerability to GIIPS is 

smaller in relative terms, and decreases more slowly, as more banks are exposed to GIIPS debt than 

to GIP debt. €50 bn only buy a reduction from 285% to 240% of aggregate equity. Still, the effect is 

large compared to previous policies considered in this paper.  

1 f F 

1 f F 
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Table 5 then reports the optimal equity injections for each bank. Here, we use the scenario 

in which the regulator invests €200 bn, and seeks to minimize aggregate vulnerability to a 50% 

write-down on GIIPS debt. Table 10 only reports the 20 largest banks, ranked by the size of their 

equity injection. This list consists mostly of Italian, Spanish and Greek banks. These banks are not 

the largest, but the most exposed to the write-down.  

By construction, optimal injection has a very strong correlation with systemicness (.91). 

Correlation with the four components of systemicness is lower: .16 (leverage), .16 (Size), 38 (direct 

exposure), .21 (linkage). This shows that when deciding to inject fresh capital into banks, the 

regulator should consider all components of systemicness to minimize taxpayers’ investment. 

 

F. Considering different liquidation rules 

Earlier we suggested that the model could be adjusted for different liquidation rules. A 

natural one to consider is one in which banks first sell off their most liquid assets. Here we focus on 

an extreme case and show its impact on the empirical results.  

Suppose that banks have the flexibility to sell their sovereign bonds, but that their other 

assets (primarily loans) are infinitely illiquid, meaning that their early disposal would yield zero 

proceeds. In this case, the banks would have to concentrate their liquidations of sovereign bonds 

alone. In this case, we can write down a modified version of the formula for aggregate vulnerability 

AV to a shock S: 

 
(15) 

where M* is a weight matrix that accounts for the fact that non-sovereigns are not liquidated. Each 

element is given by:  We only focus on factors k which corresponds to sovereign 
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holdings. Hence, elements of M* are bigger: banks will liquidate more sovereigns in response to an 

adverse shock to their balance sheets. 

A striking feature of these simulations is that aggregate vulnerability is much lower under 

this alternative liquidation rule. The aggregate vulnerability of banks to a GIIPS write-down is now 

23%, instead of 285%.  

Changing the liquidation rule has two opposite effects. On the one hand, banks liquidate 

much more sovereign bonds, which has a stronger price impact on other banks. On the other hand, 

fire sales don’t contaminate other assets, which in this case are the majority of assets held on bank 

balance sheets.  

Table 6 reports values of AV for alternative liquidation rules. We progressively add other 

asset classes to the list of liquid assets. As can be seen from Table 6, as long as the list of liquid 

assets is small enough (i.e. corresponds to less than 41% of banks' assets), aggregate vulnerability is 

reduced by illiquidity of the other assets. The intuition is that illiquidity prevents banks from 

transmitting their shocks to otherwise immune banks. When, however, sellable assets take up a 

larger fraction of the balance sheet (in our simulations, this happens as soon as we include corporate 

loans), then the fire sale concentration effect starts dominating the “ring fencing” effect: because 

banks cannot liquidate everything, they sell more liquid assets, which increases the price impact and 

therefore contagion. Table 6 illustrates the ambiguity of alternative liquidation rules on AV. 

 

V.  Measuring Vulnerability of US Banks 

In this section we use the model to measure the vulnerability of US banks between 2001 and 

2010. We start by describing the sample and how we estimate the factor exposures. We then validate 

the model by looking at the build-up of systemic risk during the 2007 pre-crisis period. We also 
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analyze the predicted effect of the Lehman Brothers failure on other banks. After these checks, we 

present three sets of outputs, including (a) the most vulnerable banks at various points in time, (b) 

the most systemic banks in terms of their contribution to potential deleveraging. 

 

A. Data 

We select the largest US-listed 100 financial firms by market capitalization in 2006 on the 

CRSP database. Financial firms have SIC codes between 6000 and 7000. The complete list is shown 

in the Appendix, and includes commercial banks, investment banks, insurance companies, and 

money managers. Citigroup and Bank of America are the largest firms in December 2006, but 

investment banks form the next group of large firms. For this sample, we collect weekly and 

monthly stock returns from January 2001 through March 2011. Because firms list, delist, and merge 

through the 2001-2011 period, the average number of firms with complete data at any point in time 

is 88. Finally, we merge financial firm stock returns data from year t with annual balance sheet data 

at the end of year t-1 from COMPUSTAT. 

To compute the systemic risk measures, we need estimates of M, L, B, and A, which we 

obtain as follows. 

At-1: We compute market value of the firm's assets (i.e., enterprise value) on a weekly basis 

by adding book assets (Compustat item AT) and the market value of equity from CRSP, and 

subtracting book common equity (Compustat item CEQ). Because the accounting data refresh 

annually, this means that our estimates of enterprise value are increasingly stale as we approach the 

end of each calendar year. For fast growing firms, this introduces some lumpiness in our measures. 

We define debt as the difference between book assets and book equity and compute market leverage 

di/ei by taking the ratio of debt to market equity. 
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B: We assume that target leverage is the same as lagged leverage. Equivalently, we assume 

that firms adjust their capital structures quickly in response to shocks. This assumption may be too 

extreme during deleveraging scenarios, particularly for the most levered firms. For example, 

consider how a bank with D/E = 19 might behave following a 2 percent drop in the value of its 

portfolio. Realized leverage increases to 31.7 (=19/(1-2%x20)). To return to target leverage of 19, 

the bank would have to sell 41% of the remaining assets in the portfolio. In practice, the bank may 

do this slowly, remaining over-levered in the short-run, and perhaps raising equity or lowering 

dividends.. In order to maintain realism and prevent our measures from blowing up, we cap target 

leverage at 20. 

L: This diagonal matrix measures for each asset, the price impact in percentage terms of a 

one dollar liquidation. For non-financial equities, one can estimate this number following previous 

research on price impact in equity markets. For each stock, we compute individual Amihud (2002) 

price impact ratios based on the first 90 trading days of 2002, and then aggregate these to yield a a 

market-wide price impact of 6.24x10-12. This means that to depress the market by one percent would 

require order flow of $16 billion, approximately 10% of weekly trading volume.15 

The most challenging part of this exercise is determining how to compute liquidity ratios for 

factors other than equity. We suspect, for example, that a bank selling a specialized loan portfolio 

might incur a larger fire sale discount than a bank selling a portfolio of liquid S&P 500 stocks. But, 

absent other data on price impact, we take a conservative approach and assign these factors the same 

price impact parameter as that of equities. This has the effect of making L matrix proportional to the 

                                                 
15 We compute the implied price impact of the complete stock market by aggregating the individual ratios according to 
the sum over all firms i of wi

2Amihudi
2 where wi is the weight of equity of stock i in the aggregate stock market. 
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identity matrix. While we view this simplification as unfortunate, we believe it to be conservative, 

and also somewhat unavoidable. 

Factor Selection and the Portfolio Matrix M: The portfolio matrix M contains, for each 

bank i the weights mnk of each asset k in the portfolio. Here we do not observe banks’ portfolios 

directly, so we estimate M with a factor model. For each bank n, we run the following regression on 

a rolling basis:  

 
(16) 

Each week, we run this regression over the past 104 weeks, thereby obtaining rolling estimates of M. 

Provided we have the full vector of asset returns Fk,t, the estimated mnk is equal to the weight of each 

asset in the bank's portfolio. To be able make this inference, Rnt has to be obtained through 

unlevering the equity returns.  Implicitly, we assume that: (1) we have the adequate set of factor 

returns to represent each bank's portfolio, (2) that holdings are fairly stable (i.e. did not move too 

much over the past 2 years), and (3) that the stock market has some understanding of each bank's 

exposure to each asset. 

In selecting factors, we adopt the following principles. First, we were careful to select a 

series of factors which were not too collinear (for example, it would be challenging to estimate a 

bank's separate exposure to AA and A bonds from a stock return regression). Second, it is important 

to select factors which proxy for the returns of the underlying assets held by each institution.16 Third, 

we sought a sufficiently large list of factors so as to be able to capture diversity in the holding of the 

different banks. These considerations in mind, the factors we use are based on the returns of (1) non-

                                                 
16 This led us to exclude, on principle, factors that were associated with bank equity returns but were unlikely related to 
the underlying assets held by the bank. For example, changes in the TED spread are significantly correlated with bank 
equity returns during the financial crisis, but are more likely related to the cost associated with the bank's liabilities rather 
than its assets. 

, ,n t nk kt n t
k

R m F  
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financial firms in the S&P 500; (2) mortgage REITs; (3) 10-year nominal US Treasuries; (4) 

Commodities, proxied using the Goldman Sachs Commodity Index; and (5) High Yield Bonds based 

on the Morgan Stanley High Yield Bond Index.17 Table 1 summarizes the five factors, both during 

the full sample and during the March 2007-June 2011 crisis subperiod. To reduce the impact of 

measurement error, we zero out elements of the M matrix for which the estimated coefficient has a t-

statistic less than 1.5. 

Since much of the cross-sectional variation between banks’ contributions to systemic risk 

comes from their different risk exposures, we have verified that there is enough interesting variation 

across firms. A simple way to see this is to compute time-series average exposures for each of the 

banks, and then compare banks. State Street bank, for example, has sample average factor exposures 

of (0.12, 0.03, 0.02, 0.00, and 0.02) while Mellon Bank has exposures of (0.25, 0.01, 0.16, 0.00, and 

0.14) The nature of the exposures differs across banks, with State Street having greater exposure to 

non-financial firm equity and Mellon Bank having higher exposure to mortgage REITs. 

 

B. Aggregate Vulnerability to deleveraging  in the US time-series 

We start by performing a series of simple exercises to validate the empirical relevance of the 

model. We start by showing time-series measures of aggregate vulnerability AV, as well as the 

contributions (the systemicness S(i)) of a few important firms such as Lehman Brothers and 

Citigroup. We show that bank-specific vulnerabilities are useful for predicting the maximum 

                                                 
17 Because these factors were chosen with hindsight bias, we perform a robustness test in which the factors are estimated 
directly from principle components of bank stock returns. The main drawback is that statistical factors are harder to 
interpret economically: factors are not “assets” so the elements of the M matrix cannot be interpreted as portfolio 
weights. This is why we rely primarily on the economic factors for most of our analysis, but show in the appendix that 
using the statistical factors estimated through PCA over 2001-2006 produces similar insights 
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drawdown of these firms during the 2007-2009 financial crisis. We then show that the model is quite 

useful for predicting how individual bank stocks respond to the failure of Lehman Brothers. 

Figure 3 shows aggregate vulnerability AV, which recall is the total (i.e., systemwide) dollar 

price impact of deleveraging resulting from a one standard deviation shock to each of the five 

factors. The series starts low in early 2001, drops in mid 2005, and then rises quickly in 2007. 

We remind the reader that while the magnitude of these results depends on the scaling 

matrix L, the time-series behavior is unlikely much affected. To the extent that we believe price 

impact went up during the crisis; or that price impact varies significantly across asset classes, the 

dollar magnitude is impacted. 

Figure 4 plots time-series of contributions to vulnerability, ie., the systemicness S(i) of six 

important banks in our sample: Wells Fargo, JP Morgan Chase, Bank of America, Citigroup, 

Lehman Brothers, and Goldman Sachs. The figure shows that many of these individual bank series 

share the common characteristic of systemicness S(i) rising through the crisis to a peak in January 

2009, subsequently falling as equity markets rebound and factor volatility drops. 

Figure 5 shows that systemicness is related to size and leverage in the cross-section, but that 

each of these variables explains less than 60 percent of the variation: differential exposures in the M 

matrix explain the rest. 

 

C. Bank Sensitivity to Deleveraging: Lehman bankruptcy 

Eq. (12) shows how to compute the impact of a shock to the assets of bank i on any other 

bank j. In this section, we study the impact of the failure of Lehman Brothers on September 15, 

2008. Before markets opened that day, Lehman Brothers announced that it would file for bankruptcy 

protection, citing debt of $768 billion and assets with a market value of $639 million. Although the 



 36

company filed for reorganization under the US bankruptcy code, market participants could have 

reasonably expected substantial liquidations of its asset portfolio. 

Taking the liquidation rule of our model literally, we would expect banks with high 

exposures to the same assets would experience reductions in their portfolio value as a fraction of 

equity. Since pre-failure, Lehman had market leverage of approximately 20-to-1, a -5% shock to its 

assets would result in complete liquidation of its portfolio. 

We then compare this predicted equity shock to the actual return. This is shown graphically 

in Figure 6. As can be seen, there is a discernible positive correlation between the predicted return 

and the actual stock return on Monday September 15, 2008. We analyze returns over a short window 

because of significant financial news the next day: on September 16, 2008, the Federal Reserve 

Board authorized lending of up to $85 billion to insurance company AIG. 

We would expect the relationship between indirect vulnerability IV(n) and realized returns 

in Figure 6 to be quite noisy, as the Lehman failure was also a significant information event, both on 

the magnitude of losses faced by the banking sector, and on the willingness of the government to 

intervene to stem those losses. Table 8 shows the results of cross-sectional regressions of realized 

stock returns on September 15, 2008 on vulnerability to Lehman deleveraging. One possible concern 

with our vulnerability measure is that it does not add much information to size and leverage, since 

large banks, or levered banks are the most adversely affected the Lehman bankruptcy. We include 

bank leverage and bank size as controls in our regressions of Table 8. 

 

D. Bank vulnerability and market performance during the crisis 

Our firm-specific vulnerability measures IV(i) might be useful for explaining the cross-

section of returns following a systemwide deleveraging shock. To operationalize this, here we study 
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the relationship between the maximum drawdown in stock returns experienced by each firm during 

the crisis. Maximum drawdown is the minimum cumulative rolling return from July 2007 through 

March 2011 (i.e., the cumulative return corresponding to the lowest price experienced during that 

period). 

Figure 7 plots this relationship, revealing a negative correlation of -28%. The corresponding 

regression, also shown in the figure, yields a t-statistics of -3.88 on bank vulnerability. Interestingly, 

this result is not driven by leverage alone. In a multivariate regression of drawdowns on vulnerability 

and bank leverage, vulnerability retains a similar coefficient and a t-statistic of -3.12. 

 

E. Outputs: Bank Contributions to Systemic Risk and Vulnerability 

The most systemic banks are large levered financial institutions which tend to have similar 

sets of exposures. Table 9 lists the top 10 systemic banks in January 2007, January 2008, and 

January 2009. In the table we show the systemicness S(n). In a separate column, we show S(n) scaled 

by AV. This rescaled numbers tells us how important a given bank is in relative contribution to 

aggregate vulnerability. Of course, a bank may have a relatively large contribution to AV when the 

level of AV is low, in which case the scaling is less meaningful. 

As can be seen, this exercise turns up the usual crowd of large levered financial institutions. 

In January 2007, AIG, JP Morgan, and Morgan Stanley are at the top of the list; by January 2009, 

the dollar impact of their deleveraging is much greater (JP Morgan rises from $1.4 billion to $16 

billion), and the rankings change somewhat, with Wells Fargo, JP\ Morgan, and Bank of American 

topping the list. 

A possible concern is that the rankings in Table 9 do not capture much more than the 

product of size and leverage. However, we find only a 0.7 correlation between S(i) and the product 
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of size and leverage in January 2009, and lower correlations still for the other two panels. We 

provide graphical evidence of such imperfect correlation in Figure 8, where we plot systemicness 

against leverage or bank size. While indeed systemicness appears correlated with both size and 

leverage, they are far from explaining the full cross section of our measure. For instance, BofA is the 

biggest bank but scores low on systemicness. 

We now turn to bank vulnerability, which is the impact of a shock to all factors on each 

single bank. We can express this in dollar terms or normalize it as a percentage of bank's equity.  

Panel A of Table 10 shows dollar vulnerability in January 2007, January 2008, and January 2009. 

We show the top 10 most vulnerable banks, meaning the ten banks which would suffer the largest 

reduction in net worth if there were a simultaneous shock to each of the factors.  According to this 

measure, AIG, JP Morgan, and Citigroup are the most vulnerable banks in early 2007; the rankings 

do not change much over time: by 2009, Wells Fargo, JP Morgan and Citigroup are the most 

vulnerable. 

Panel B of Table 10 shows vulnerability for the same set of dates, except now we scale by 

each firm's equity value. Although AIG still appears among the top banks according to this scaling, 

the list otherwise looks quite different. For example, Radian Group, a highly levered bond insurer, 

shows up as the most vulnerable institution in both 2007 and early 2008. Although it is difficult to 

generalize as to which firm characteristics land them on this list, cursory inspection reveals a number 

of insurance companies specialized in insuring mortgage-related securities. 

 

VI. Conclusions 

During the financial crisis of 2007-2009, regulators in the United States and Europe have 

been frustrated at the difficulty of understanding the complete set of risk exposures of the largest and 
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most levered financial institutions. Yet, at the time, it was unclear how such data might have been 

used to make the financial system safer. Our paper is an attempt to show how such information can 

be used in an analytically coherent way. 

The key assumption in our model is that banks use asset liquidations to return to target 

leverage. We use this assumption to predict how individual banks will behave following shocks to 

their net worth, and how the resulting fire sales may spillover to other banks. 

While the model is quite stylized, it generates a number of useful insights concerning the 

distribution of risks in the financial sector. For example, the model suggests that regulators should 

pay close attention to risks that are concentrated in the most levered banks. The model also suggests 

that policies which explicitly target bank solvency may be suboptimal from the perspective of 

controlling contagion. 

We then apply the model to the largest financial institutions in the United States and Europe, 

and use it to evaluate a number of policy proposals to reduce systemic risk. When analyzing the 

European banks in 2011, we show how a policy of targeted equity injections, if distributed 

appropriately across the most systemic banks, can significantly reduce systemic risk. 
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Appendix A. European Banks Involved in the 2011 stress tests. The sample includes the banks included in the EBA stress 
tests and thus considered in our European analysis. 

Publicly listed banks  Non-public banks  
Irish Lf.& Perm.Ghg.  Banque Et Caisse D'epargne De L'etat  
Bank Of Cyprus  Bayerische Landesbank  
Marfin Popular Bank  Bpce  
Otp Bank  Caixa D'estalvis De Catalunya, Tarragona..  
Swedbank 'A'  Caixa D'estalvis Unio De Caixes De Manll..  
Banco De Sabadell  Caixa De Aforros De Galicia, Vigo, Ouren..  
Dnb Nor  Caixa Geral De Depîsitos, Sa  
Efg Eurobank Ergasias  Caja De Ahorros Y M.P. De Gipuzkoa Y  
Bank Of Piraeus  Caja De Ahorros Y M.P. De Zaragoza,  
Bnp Paribas  Caja De Ahorros Y Pensiones De Barcelona  
Abn Amro Holding   Caja Espa„A De Inversiones, Salamanca Y ..  
Ing Groep  Dekabank Deutsche Girozentrale, Frankfurt  
Nordea Bank  Dz Bank Ag Dt. Zentral-  
Banca Monte Dei Paschi  Effibank  
Banco Popolare  Grupo Bbk  
Banco Santander  Grupo Bmn  
Banco Bpi  Grupo Caja3  
Alpha Bank  Hsh Nordbank Ag, Hamburg  
Societe Generale  Landesbank Baden  
Banco Pastor  Monte De Piedad Y Caja De Ahorros  
Banco Comr.Portugues 'R'  Norddeutsche Landesbank   
Bankinter 'R'  Nova Ljubljanska Banka   
Bbv.Argentaria  Nykredit  
Espirito Santo Financial  Oesterreichische Volksbank Ag  
Dexia  Powszechna Kasa Oszcz_Dno_Ci Bank  
Erste Group Bank  Rabobank Nederland  
Lloyds Banking Group  Raiffeisen Bank International   
Barclays  Skandinaviska Enskilda Banken Ab   
Royal Bank Of Sctl.Gp.  Westlb Ag, Dusseldorf  
Commerzbank  Wgz Bank Ag Westdt. Geno. Zentralbk, Ddf  
Allied Irish Banks    
Deutsche Bank    
Bank Of Ireland    
National Bk.Of Greece    
Kbc Group    
Hsbc Holdings    
Unicredit    
Intesa Sanpaolo    
Banco Popular Espanol    
Danske Bank    
Svenska Handbkn.'A'    
Landesbank Bl.Hldg.    
Agri.Bank Of Greece    
Credit Agricole    
Ubi Banca    
Hypo Real Estate Hldg    
Sns Reaal    
Tt Hellenic Postbank    
Caja De Ahorros Del Mediterraneo    
Bankia    
Banca Civica    
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Appendix B. US Financial firms in sample. The sample includes the largest 100 financial firms by market capitalization in 
December 2006. 

Name MV Equity Name MV 
Citigroup Inc $273,691 C I G N A Corp $13,495 
Bank Of America Corp    239,758  Northern Trust Corp   13,273  
American International Group Inc    186,296  Ameriprise Financial Inc   13,187  
Jpmorgan Chase & Co    167,551  Marshall & Ilsley Corp New   12,590  
Wells Fargo & Co New    120,049  Legg Mason Inc   12,491  
Wachovia Corp 2Nd New    114,542  Sovereign Bancorp Inc   12,007  
Morgan Stanley Dean Witter & Co      85,410  T Rowe Price Group Inc   11,597  
Goldman Sachs Group Inc      84,890  C I T Group Inc New   11,059  
Merrill Lynch & Co Inc      82,050  Aon Corp   10,944  
American Express Co      73,094  C N A Financial Corp   10,924  
U S Bancorp Del      63,617  Nymex Holdings Inc   10,788  
Federal National Mortgage Assn      57,908  Synovus Financial Corp   10,019  
Federal Home Loan Mortgage Corp      47,035  M B I A Inc    9,849  
Berkshire Hathaway Inc Del      45,920  T D Ameritrade Holding Corp    9,709  
Metlife Inc      44,861  E Trade Financial Corp    9,558  
Washington Mutual Inc      42,725  Ambac Financial Group Inc    9,450  
Lehman Brothers Holdings Inc      41,408  Comerica Inc    9,322  
Prudential Financial Inc      40,955  Zions Bancorp    8,798  
Allstate Corp      40,690  Unionbancal Corp    8,597  
Travelers Companies Inc      37,047  C B O T Holdings Inc    8,004  
Capital One Financial Corp      31,397  Coventry Health Care Inc    7,976  
Suntrust Banks Inc      29,907  Cincinnati Financial Corp    7,839  
Bank Of New York Mellon Corp      29,601  Compass Bancshares Inc    7,837  
Hartford Financial Svcs Grp Inc      29,573  Hudson City Bancorp Inc    7,742  
Franklin Resources Inc      27,932  C B Richard Ellis Group Inc    7,481  
Countrywide Financial Corp      26,365  T D Banknorth Inc    7,374  
Schwab Charles Corp New      24,469  Safeco Corp    7,222  
B B & T Corp      23,763  Unum Group    7,118  
National City Corp      23,092  American Capital Ltd    6,828  
Fifth Third Bancorp      22,767  Assurant Inc    6,818  
A F L A C Inc      22,747  Commerce Bancorp Inc Nj    6,614  
Aetna Inc New      22,540  Berkley W R Corp    6,613  
State Street Corp      22,395  Peoples United Financial Inc    6,345  
Chubb Corp      21,780  Torchmark Corp    6,253  
P N C Financial Services Grp Inc      21,754  Intercontinentalexchange Inc    6,198  
S L M Corp      19,935  Mercantile Bankshares Corp    5,872  
Bear Stearns Companies Inc      19,112  Health Net Inc    5,672  
Lincoln National Corp In      18,418  Huntington Bancshares Inc    5,593  
Progressive Corp Oh      18,221  Old Republic International Corp    5,366  
Regions Financial Corp New      17,996  Fidelity National Finl Inc New    5,223  
C M E Group Inc      17,746  First Horizon National Corp    5,200  
Blackrock Inc      17,686  M G I C Investment Corp Wis    5,192  
Mellon Financial Corp      17,504  First Marblehead Corp    5,159  
Western Union Co      17,184  Popular Inc    5,003  
Marsh & Mclennan Cos Inc      16,897  Edwards A G Inc    4,777  
Principal Financial Group Inc      15,835  New York Community Bancorp Inc    4,752  
Genworth Financial Inc      15,470  Markel Corp    4,639  
Keycorp New      15,272  Associated Banc Corp    4,495  
N Y S E Euronext      15,186  Radian Group Inc    4,344  
M & T Bank Corp      13,519  Janus Cap Group Inc    4,279  
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Figure 1. Bank mergers and aggregate vulnerability. This figure shows what happens when two banks with 
different leverage marge. The merged bank has less than or equal leverage to the asset-weighted leverage of the two 
merging banks. 
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Figure 2. Optimal Aggregate Vulnerability, as a Function of Aggregate Equity Injected (in bn euros). This 
figure reports the optimal AV to a 50% write-off on GIP debt  (Panel A), GIIPS debt (Panel B). Such optimal AV is 
obtained assuming the social planner can freely allocate €200 bn of equity into banks, keeping their sizes constant, 
so the equity injection serves to reduce debt. In Panel A, for 0bn, we obtain AV of 0.47. This means that, absent a 
capital injection, a 50% write-off on GIP debt would reduce aggregate bank equity by 47%. 
Panel A: Aggregate vulnerability to a 50% write-off to GIP debt (per euro of aggregate equity) 

 
Panel B: Aggregate vulnerability to a 50% write-off to GIIPS debt (per euro of aggregate equity) 
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Figure 3. Aggregate vulnerability, United States financial institutions. Aggregate vulnerability AV is defined 
according to Eq. (6) in the text. The sample includes the top-100 US financial firms listed on CRSP in 2006. 
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Figure 4. Contributions to time series vulnerability from various financial institutions. Vulnerability of bank i, V(i), is expressed as a percentage of the bank’s total equity 
value of all financial institutions, as in Equation (11) in text. The figure shows a few of the most important banks. 
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Figure 5. What drives individual banks’ systemicness? We plot systemicness S(i) (in January 2008) against 
leverage (Panel A), and against Size (Panel B). 
Panel A. Leverage vs. Systemicness 

 
Panel B. Size vs. Systemicness 
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Figure 6. Bank Stocks vulnerability to Lehman Brothers collapse. Vulnerability V(i,Lehman) is the dollar price 
impact of predicted deleveraging driven by an expected liquidation of Lehman Brothers holdings on September 15, 
2008.  
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Figure 7. Vulnerability and Maximum Crisis Drawdown. We plot the maximum drawdown during the crisis 
against the ranking of the bank’s vulnerability in January 2008. Maximum drawdown is the minimum cumulative 
rolling return from July 2007 through March 2011. We also show the corresponding regression, above the picture. 

Maximum Drawdown(i) = -0.65 – 2.88 Vulnerability(i) [t=-3.68] 
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Figure 8. Vulnerability and Direct Exposure. Vulnerability V(i) is a bank’s exposure to deleveraging following an 
initial shock S. Direct Exposure (called “Round-0 exposure on the picture) is the simple levered exposure to the 
initial shock. The plot is drawn based on data as of January 2008. 
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Table 1. Vulnerability to a 50% write-off on all GIIPS Debt. We compute the vulnerability of the major 
European banks to a 50% write-down on all sovereign debt of Greece, Italy, Ireland, Portugal, and Spain. In column 
1, IV(n) denotes the indirect vulnerability via sector-wide deleveraging as we define it in Equation (10), adjusted for 
the fact that total fire sales are capped by total assets (see Section II.A.). In column 3, DV(n) denotes the direct 
vulnerability to the write-down on balance-sheets, as defined in Equation (9), adjusted for maximal fire sales. Both 
measures are normalized by bank equity. In column 5, the table also reports the leverage, capped at 30. We only 
report bank-by-bank values for the 10 largest banks in terms of deleveraging vulnerability. In the last line of the 
table, we also report sample averages: Hence, a 50% write-down on all GIIPS debt would wipe out 111% of the 
equity of the average bank through the direct impact, while the indirect impact via deleveraging would create an 
additional loss of 302% of equity. 
 

Bank_Name 

Indirect 
Vulnerability as a 
Fraction of Equity 

Direct 
Vulnerability as a 
Fraction of Equity  

Leverage Ratio  

 IV(n) Rank DV(n) Rank Leverage Ratio bnn 

ALLIED IRISH BANKS PLC 35.24 1 11.9 2 
 

30 
AGRICULTURAL BANK OF GREECE 12.98 2 33.5 1 30 
WESTLB AG, DÜSSELDORF 8.80 3 0.9 25 30 
BANCA MONTE DEI PASCHI DI SIENA 5.08 4 3.7 3 30 
OESTERREICHISCHE VOLKSBANK AG 4.83 5 0.2 56 30 
SNS BANK NV 4.71 6 0.3 55 30 
CAIXA DE AFORROS DE GALICIA, VIGO 4.70 7 1.4 11 30 
NORDDEUTSCHE LANDESBANK 4.61 8 0.4 51 30 
COMMERZBANK AG 4.54 9 1.0 21 30 
CAIXA D'ESTALVIS DE CATALUNYA 4.36 10 0.8 31 30 
      
Full sample average 3.02   1.11   22.1 
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Table 2. Vulnerability to GIIPS and Cumulative Stock Returns. For each publicly listed bank in our sample, we 
calculate the cumulative return between Dec 31, 1999 and Sep 16, 2011. We then regress this return on our measure 
of indirect vulnerability, controlling for direct exposure to a 50% write-off on GIIPS debt, bank size and leverage. 
Columns 1-3 report plain OLS estimates. Columns 4-6 report median regressions to account for outliers.  
 
  (1) (2) (3) (4) (5) (6) 

VARIABLES Cumulative return: 2009/12 - 2011/9 

              
Indirect 
Vulnerability -0.017*** -0.008** -0.010*** -0.013*** -0.010** -0.010** 
 [-4.34] [-2.58] [-2.92] [-2.70] [-2.59] [-2.52] 
Direct 
Vulnerability  -0.016*** -0.010*  -0.010*** -0.003 
  [-2.93] [-1.96]  [-2.74] [-0.51] 
log(assets)   0.069***   0.081 
   [2.70]   [1.46] 
Debt to Equity   -0.001   -0.004 
   [-0.08]   [-0.33] 
Constant -0.435*** -0.441*** -0.099 -0.472*** -0.467*** -0.037 
 [-9.24] [-9.60] [-0.47] [-6.42] [-6.53] [-0.08] 
       
Observations 49 49 49 49 49 49 
R-squared 0.088 0.136 0.213       
Robust t-statistics in brackets 
*** p<0.01, ** p<0.05, * p<0.1 
Columns 1-3 report OLS estimates; columns 4-6 report median regression results. Debt-to-equity ratio is capped to 
30 
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Table 3.  Systemicness ranking in a response to a GIIPS shock. We calculate the systemicness S(n) of each 
individual bank, assuming a 50% write-off on GIIPS sovereign debt. Column 1 reports systemicness as computed in 
equation (7). We only report detailed information for the top 10 banks in terms of systemicness. Columns 2-4 report 
the element of the decomposition of systemicness as in equation (8), except that we take into account the fact that 
fire sales induced by the write-off are capped by total assets (see Section II.A.). Column 2 reports total exposure of 
each bank, normalised by aggregate equity. Column 3 reports the fraction of assets that would be fire-sold as a 
fraction of total exposure. Because of our cap, it is always smaller than 1. Column 4 focuses on the linkage effect. 
By virtue of equation (8), systemicness is the product of the elements in columns 2,3 and 4. Banks are sorted by 
systemicness. Through Santander, a GIIPS write-off would lead, through deleveraging, to a 21% reduction in 
aggregate bank equity. The last line present the aggregate sum (over the 90 banks) of systemicness, which is equal to 
Aggregate Vulnerability (equation (5)). A 50% write-down on GIIPS debt would wipe out, through deleveraging 
245% of total bank equity. 
 
Bank Name Systemicness  

S(n) 
Assets / 

Aggregate 
Equity 
(ann/E) 

Fire sales    
min(-bnn.�'nMF1, 

1+�'nMF1) 

Linkage effect 
(1'AMLM'�n) 

BANCO SANTANDER S.A. 0.21 1.06 0.58 0.34 
UNICREDIT S.p.A 0.19 0.88 0.69 0.31 
INTESA SANPAOLO S.p.A 0.19 0.62 0.95 0.33 
BBVA 0.18 0.57 0.94 0.33 
BNP PARIBAS 0.15 1.37 0.36 0.30 
BFA-BANKIA 0.12 0.29 0.95 0.42 
CAJA DE AHORROS Y PENSIONES DE 
BARCELONA 0.10 0.27 0.93 0.38 
SOCIETE GENERALE 0.07 0.75 0.32 0.32 
COMMERZBANK AG 0.07 0.66 0.48 0.23 
BANCA MONTE DEI PASCHI DI SIENA 0.06 0.22 0.92 0.32 
     
Full Sample Average 0.03 0.27 0.44 0.30 
Full Sample Total AV 2.45       
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Table 4. Impact of Various Policies on Aggregate Vulnerability of European Banking Sector. The first line reports the aggregate vulnerability of the 
European banks to a 50% GIIPS write-down: induced deleveraging would destroy 245% of aggregate bank equity. The remaining rows of the table show this 
calculation under different hypothetical policy interventions.  
 

   Aggregate Vulnerability Contribution of change in distribution of 
Policy intervention Detail Summary Statistics (deviation / benchmark) Asset Connectedness Exposure 
       
Baseline   0    
  Number of banks capped    
Size cap (bn euros) 500 17 0.06 0.16 0.00 -0,09 
 900 8 0.04 0.07 0.00 -0,03 
 1300 2 0.00 0.01 0.00 0,00 
GIIPS debt re-nationalization (bn euros) Fraction of total renationalized    
 96 0,2 -0.08 0.01 -0.01 -0,08 
Eurobonds (swap individual sov. holdings  Total amount of sovereign reshuffled (in bn €)   
  for the same basket of sovereigns) 1672 0.08 0.00 0.00 0,09 
  Number of banks merged    
Merge banks on which a GIIPS shock 50% 47 0.13    
  is at least xx% of equity 100% 20 0.01    
 150% 9 0.00    
  Number of Banks Merged    
Merge banks on which a GIIPS shock Merge exposed only 20 0.01    

 is at least 100% of equity 
Merge unexposed 
only 6 0.00    

 with banks totally unexposed Merge all 26 0.08    
  Equity Injection (in bn €)    
Leverage cap; max D/E = 15 480 -0.28    
 20 173 -0.11    
 25 45 -0.03    
Optimized equity injection (in €bn) Countries     
 200 All Europe -0.26    
 200 German banks -0.05    
 200 German + French -0.09    
  200 GIIPS -0.24       
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Table 5. Optimal Equity Allocation to Reduce Aggregate Vulnerability to a GIIPS shock. We assume the social 
planner has 200bn euros to inject, and seeks the allocation of capital increases that maximizes the reduction in 
Aggregate Vulnerability. We only report here the top 20 receivers. Column 1 reports optimal equity injection in bn 
euros. Column 2 reports systemicness as in equation (8). Columns 3-6 provide the four components of systemicness 
as in equation (9): their product equals systemicness: debt to common equity ratio (col 4), total assets relative to 
aggregate bank equity (col. 5), bank exposure w.r.t. to the GIP shock (col. 6), and the linkage term (col. 7).  
 

Bank  

Equity 
Injection    
(bn 
euros) 

Systemic
ness 

Target 
leverage 

Size           
(ai / Agg. 
E) 

Exposure 
to GIP 
shock   
(ei'MS) 

Linkage 
effect 
(1'AML
M'ei) 

Banca Monte Dei ...Siena 18.20 0.17 30.00 0.22 0.08 0.32 
Intesa Sanpaolo S.P.A 18.20 0.23 21.43 0.62 0.05 0.33 
Caja De Ahorros Y Pensiones De 
Barcelona 17.90 0.16 22.38 0.27 0.07 0.38 
Banco Bilbao Vizcaya Argentaria  17.77 0.22 20.87 0.57 0.06 0.33 
Bfa-Bankia 17.40 0.16 28.63 0.29 0.05 0.42 
Banco Santander S.A. 12.04 0.21 22.99 1.06 0.03 0.34 
Unicredit S.P.A 12.00 0.19 22.39 0.88 0.03 0.31 
Banco Popolare 8.11 0.07 30.00 0.13 0.05 0.36 
Bnp Paribas 6.04 0.15 22.62 1.37 0.02 0.30 
Banco De Sabadell 4.68 0.04 25.26 0.10 0.04 0.40 
Banco Comercial Português 4.34 0.04 27.16 0.10 0.04 0.34 
Ubi Banca 4.13 0.04 20.37 0.15 0.04 0.33 
Banco Popular Español 3.53 0.03 18.50 0.14 0.04 0.35 
National Bank Of Greece 3.52 0.03 12.64 0.11 0.09 0.28 
Efg Eurobank Ergasias  3.26 0.03 22.88 0.08 0.06 0.26 
Commerzbank Ag 3.14 0.07 30.00 0.66 0.02 0.23 
Bank Of Ireland 2.98 0.03 29.36 0.17 0.02 0.32 
Caja De Ahorros Del Mediterráneo 2.96 0.03 30.00 0.07 0.04 0.34 
Piraeus Bank Group 2.69 0.02 16.69 0.05 0.09 0.34 
Caixa De Aforros De Galicia 2.66 0.03 30.00 0.07 0.04 0.36 
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Table 6: Robustness to Liquidation Rules. We calculate the aggregate vulnerability AV to a 50% writedown of  
GIIPS debt. In line 1, we report the baseline. In line 2, we assume only sovereigns can be sold. In line 3, we assume 
sovereigns and commercial real estate only can be sold. In line 4, we add mortgages to the list of assets that can be 
sold. In line 7, we include all known assets (typically about 80 % of total exposure). Implicitly, the difference here 
with the first line is that we assume banks have no cash to adjust. 
 

 GIIPS Liquid assets / total 
Benchmark -2.85 1.00 
Sovereigns only -0.23 0.12 
 + Commercial real estate -0.47 0.18 
 + Mortgages -2.40 0.41 
 + Corporate loans -4.11 0.68 
 + Consumer loans -4.02 0.70 
 + SME loans -3.84 0.75 
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Table 7. Risk factors used to proxy for bank holdings. The factors consist of the weekly returns on S&P non-
financial firms, returns on US Mortgage REITs, returns on the US10yr Treasury, the return on the GSCI 
Commodities index, and the return on high yield bonds. The data span 2001 through March 2011. 
Panel A. Summary Statistics 
 Full sample Crisis period (March 2007-May 2009) 
 Mean Return (%) Volatility (%) Mean Return (%) Volatility (%) 
SP Returns 0.19 3.21 -0.28 4.55 
Mortgage REITs -0.01 3.64 -0.74 5.82 
US 10 yr Return -0.02 0.55 -0.05 0.69 
Commodities 0.12 3.59 -0.16 4.62 
High Yield Returns 0.15 1.26 -0.05 2.13 
 
Panel B. Correlations 
 

SP Returns 
Mortgage 
REITs

US 10 yr 
Return Commodities 

High Yield 
Returns

SP Returns 1.00     
Mortgage REITs 0.57 1.00    
US 10 yr Return 0.28 0.07 1.00   
Commodities 0.24 0.06 0.14 1.00  
High Yield Returns 0.54 0.37 0.21 0.25 1.00 
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Table 8. The impact of the Lehman Brothers failure on other banks. We regress stock returns on September 15, 
2008 on V(I,Lehman) which is the impact of Lehman induced fire sales on each bank. T-statistics are shown in 
brackets. 
 

 Dep. Var = Return on 
September 15, 2008 

Predicted Return from deleveraging V(i, Lehman) 1.48 1.31 
 [3.04] [2.44] 
Log(Size)  -0.01 
  [-1.86] 
Log(Leverage)  -0.09 
  [-0.11] 

R2 0.10 0.16 
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Table 9. Top 10 Systemic Banks, selected dates. We show S(i) as well as S(i)/AV. S(i) is systemicness, and is the impact of each bank on aggregate 
vulnerability AV. It is defined in Equation (9). 
 

Jan-07 Jan-08 Jan-09 

Name S(i) 
S(i)/AV 
% of total Name S(i) 

S(i)/AV 
% of total Name S(i) 

S(i)/AV 
% of total 

AIG 0.07% 19.6% Citigroup Inc 0.66% 17.4% Wells Fargo 1.60% 20.4% 

Jpmorgan Chase  0.05% 13.6% Goldman Sachs 0.49% 12.9% Jpmorgan Chase 1.26% 16.0% 

Morgan Stanley  0.03% 7.0% Jpmorgan Chase  0.36% 9.4% Bank Of America 0.88% 11.3% 

Goldman Sachs  0.02% 5.7% FNMA 0.33% 8.6% Citigroup 0.74% 9.4% 

Lehman Brothers   0.02% 4.4% Bank Of America 0.19% 5.0% Intercontinentalexchange  0.23% 3.0% 

Metlife Inc 0.02% 4.2% AIG 0.17% 4.5% BONY Mellon 0.18% 2.2% 

Wachovia Corp  0.01% 3.3% American Express 0.13% 3.5% Merrill Lynch & Co Inc 0.18% 2.2% 

FNMA 0.01% 3.1% FHLM 0.13% 3.4% Goldman Sachs  0.15% 1.9% 

Merrill Lynch 0.01% 2.7% Lehman Brothers 0.10% 2.5% Regions Financial  0.15% 1.9% 

State Street Corp 0.01% 2.6% Metlife Inc 0.09% 2.4% Capital One Financial 0.14% 1.8% 
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Table 10. Top 10 Vulnerable Financial Institutions, selected dates. We show vulnerability expressed as a percentage of equity value. Vulnerability is the impact of an aggregate 
shock to all factors on each single bank. We a;sp sjpw the direct exposure of each bank to the shocks considered. For each date and in each panel, we show the 10 most vulnerable 
banks in the sample. Banks are ranked by Vulnerability V(i) 
 

2007 2008 2009 

Name 
Round 0 
Exposure V(i) % Name 

Round 0 
Exposure V(i) % Name 

Round 0 
Exposure V(i) % 

Radian Group 2.31% 1.19% Radian Group 20.33% 19.43% M G I C Investment  Wis 38.09% 30.49% 

AIG 1.06% 1.18% Federal National Mortgage 3.27% 11.68% Intercontinentalexchange 19.00% 24.18% 
M G I C Investment  
Wis

1.75% 1.15% C B Richard Ellis Group 7.57% 9.09% American Capital Ltd 21.27% 23.94% 

Sovereign Ban 0.86% 1.10% Citigroup 2.87% 8.23% C B Richard Ellis Group 11.46% 23.18% 

M B I A 1.88% 0.95% Federal Home Loan Mortgage 2.07% 7.95% C M E Group 6.20% 16.47% 

Ambac Financial Group 1.12% 0.84% American Capital Ltd 3.01% 7.24% Fifth Third Ban 10.18% 15.78% 

Metlife 1.26% 0.79% E Trade Financial 11.38% 6.96% Legg Mason 10.80% 14.14% 

State Street 1.80% 0.76% Synovus Financial 1.90% 6.88% Regions Financial  New 14.06% 13.94% 

C B Richard Ellis Group 4.32% 0.75% Goldman Sachs Group 4.72% 6.65% Wells Fargo  New 9.43% 13.87% 

Jpmorgan Chase 1.35% 0.74% Fifth Third Ban 2.11% 6.57% M B I A 8.57% 13.66% 
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APPENDIX 

 

We prove below that when some banks have similar leverage and similar asset mix, merging them 

has no impact on aggregate AV. Equivalently, dividing a bank into several banks having the same 

levels of leverage and the same asset mix has no impact on AV. 

The proof is the following: Assume there are N+s-1 banks and that the last s banks all have same 

leverage ܾே and same portfolio weights ݉௡,௞. Since they have the same mix of assets, they also have 

same asset returns ݎே 

Developing formula (6) yields: 

ܸܣ ൈ ଵܧ ൌ ෍ ෍ ෍ ܽ௠݉௠,௞݈௞݉௡,௞ܾ௡ܽ௡ݎ௡
௠∈ሾଵ,ேା௦ሿ௞∈ሾଵ,௄ሿ௡∈ሾଵ,ேା௦ሿ

 

ܸܣ ൈ ଵܧ ൌ ෍ ෍ ෍ ܽ௠݉௠,௞݈௞݉௡,௞ܾ௡ܽ௡ݎ௡
௠∈ሾଵ,ேିଵሿ௞∈ሾଵ,௄ሿ௡∈ሾଵ,ேିଵሿ

൅ ෍ ෍ ෍ ܽே݉ே,௞݈௞݉ே,௞ܾேܽ௡ݎே
௠∈ሾே,ேା௦ሿ௞∈ሾଵ,௄ሿ௡∈ሾே,ேା௦ሿ

 

ܸܣ ൈ ଵܧ ൌ ෍ ෍ ෍ ܽ௠݉௠,௞݈௞݉௡,௞ܾ௡ܽ௡ݎ௡
௠∈ሾଵ,ேିଵሿ௞∈ሾଵ,௄ሿ௡∈ሾଵ,ேିଵሿ

൅ ෍ ቌ ෍ ܽ௠	
௠∈ሾே,ேା௦ሿ

ቍ 				݉ே,௞݈௞݉ே,௞ܾே ቌ ෍ ܽ௡
௡∈ሾே,ேା௦ሿ

ቍ ேݎ
௞∈ሾଵ,௄ሿ

 

This expression is strictly identical to the AV of a system where the first N-1 banks are similar to the 

previous system ( ෤ܽ௠ ൌ ܽ௠;݉ ∈ ሾ1, ܰ െ 1ሿ	) and the last one, bank N, is the combination of the 

previous last s banks: ൫ ෤ܽே ൌ ∑ ܽ௡௡∈ሾே,ேା௦ሿ ; 	 ෨ܾே ൌ ܾே;	 		 ෥݉ே,௞ ൌ ݉ே,௞൯.  


