

GWAS Fertility Phenotypes

aociology

Melinda Mills, Nicola Barban, Jornt Mandemakers, Harold Snieder, Dalton Conley, SSGAC

Department of Sociology, University of Groningen, The Netherlands

Motivation for fertility GWAS

- evidence genetic component to biological fecundity (menopause, menarche) (Stolk et al. 2009; He et al. 2009)
- heritability age at first birth (twin-design) & number of children ~40% (Kohler et al. 1999)
- no research on genetic influences on reproductive choice
- fertility widely measured, highly harmonized, comparable traits

Trait definitions

Number of children ever born (NEB)

Age at first birth (AFB)

- continuous measure
- example of question:
 - How many children have you given birth to?
 - Often possible to distinguish between biological, adopted or step-children
 - Several cohorts only asked of women

- continuous measure
- example of question:
 - How old were you when you had your first child?
 - What is the date of birth of your first child?

Sample inclusion criteria

Number of children ever born (NEB)

Age at first birth (AFB)

- a. Assessed for NEB at or after age 45 for women, age 55 for men
- have given birth to a child (parous) and who have not (nulliparous);

For both NEB & AFB:

- European ancestry;
- All relevant covariates are available for the individual;
- successfully genotyped genome-wide (recommended individual genotyping rate >95%)
- passed the cohort-specific standard quality controls, e.g., excluding individuals who are genetic outliers in the cohort.

a. Assessed for AFB and have given birth to a child (parous);

Models

NEB / AFB: (OLS) regression for men NEB / AFB: (OLS) regression for women *Family-based studies:* NEB / AFB: (OLS) regression for pooled sample

Covariates:

- The number of reference alleles of each SNP;
- Additional covariates necessary to **control for population stratification**, for example ancestry principle components. (Price *et al.*, 2006) ;
- Birth year of the cohort member, represented by: [(birth year 1900)/10], [(birth year 1900)/10]² and [(birth year 1900)/10]³ to control for non-linear birth cohort effects.
- Extra study specific covariates such as discrete site indicator variables included if appropriate.

Current progress

- Analysis plan distributed April 2012
- Deadline uploading:
 - descriptives May 2012
 - GWAS results June 2012
- Future work: Quality control

Current progress (May 15 2012)

Total cohorts:

STATUS	Ν	%
contacted	162	
confirmed participation	45	27.8
confirmed <u>NOT</u> participating	42	25.9
in replication sample	9	5.6
sent reminder	66	40.7

Estimated sample size: ~100,000+

Meta-analysis

• Analysts

- Nicola Barban & Jornt Mandemakers (Sociology, University of Groningen)
- Ilja Nolte (Unit of Genetic Epidemiology & Bioinformatics, University Medical Center Groningen)
- Niels Rietveld (Economics, University of Rotterdam)
- **Methodological advisor**: Harold Snieder (Unit of Genetic Epidemiology & Bioinformatics, University Medical Center Groningen)
- Quality control: Barban, Mandemakers & Nolte

Questions, discussion

- Additive allelic effect may be small even with large N
- Potential follow-up study:
 - go beyond additive GWAS models, to run **dominant models**
 - estimate polygenic heritability (Yang et al 2011; So et al. 2011); use
 GCTA (Yang et al. 2010/Nat Gen) but requires raw data possible?