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Abstract: 

We identify the key factors responsible for the general run-up of U.S. grain prices by 

extending Enders and Holt’s (2012) analysis to a time-varying multiple equation setting. 

Given that the methodology for co-breaking is in its infancy, we utilize two very 
different methodologies to examine the underlying reasons for shifts in grain prices. A 
simple VAR indicates the important effects of mean shifts in real energy prices, 
exchange rates, and interest rates on grain prices. We go on to develop a parametric 
model of structural change that allows for smoothly shifting means. In addition to the 
general rise in real energy prices, the introduction of ethanol as an important fuel source 
has contributed to the run-up in grain prices. Economic growth in emerging economies 
such as China, India, and Brazil are also identified as a possible contributing factor. 
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1. Introduction 

That primary commodity prices have, in recent years, steadily moved higher into 

uncharted territory is unassailable. As illustrated by the plot of the World Bank’s 

nominal monthly food price index shown in Figure 1, there was nearly an exponential 

increase in the overall price of food from the late 1990s through late 2008. Despite the 

so-called Great Recession, the absolute high for the food price index was 223.56 in 

February, 2011, indicating that food prices at this point were 224-percent higher than in 

2005. Prices for other primary commodities, including those for many other field crops, 

many livestock and livestock products, as well as various energy products have followed 

similar patterns in recent years.  

 The overall goal of this chapter is to identify the key factors responsible for the 

general run-up of U.S. grain prices. We do so by building on Enders and Holt’s (2012) 

analysis of the recent run-up of sixteen different commodity prices using univariate time 

series methods. Instead, we use a time-varying multiple equation model to focus on 

interactions among the prices for oil, maize, soybeans, ethanol, and ocean freight rates 

over the 1985-2011 period. In Section 2, we review some of the arguments that have 

been put forth to explain the recent price boom. We also discuss some of the modeling 

strategies that have been employed to measure the proposed explanations. In Section 3 

we discuss our data set and the rationale for selecting the variables to include in the 

analysis. Given that the methodology for co-breaking is in its infancy, we utilize two 

very different methodologies to measure the effects of shifts in the underlying causal 

variables on grain prices. In Section 4 we use a simple unrestricted vector autoregression 

(VAR) to estimate some of the key relationships between grain prices and a number of 

macroeconomic variables. The nature of the model is such that mean shifts in any one 

variable are allowed to change the means of all other variables. Given some of the 

limitations of VAR analysis, in Section 5 we discuss some of the issues involved in 
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estimating nonlinear models of shifting means. In order to determine whether the 

variables are stationary, in Section 6 we report results of nonlinear unit root tests. In 

particular, we perform unit root and stationary tests of all of the variables by employing 

a new testing procedure developed by Enders and Lee (2012). The advantage of their 

approach is that we can readily test for a unit root in the slowly evolving mean. In 

Section 7, we go on to develop a parametric model of structural change in the spirit of 

the shifting-mean vector autoregressive framework similar to that considered by Ng and 

Vogelsang (2002), but modified in a manner consistent with Holt and Teräsvirta (2012), 

to allow for the possibility of gradual or smooth shifts (as opposed to discrete breaks). 

The results are assessed by, among other things, decomposing the effects of the shifts of, 

in particular, oil prices on the prices for other commodities. The final section concludes. 

2. The Recent Commodity Price Boom: A Brief Review 

As detailed in Hamilton (2009), Wright (2011), Carter, Rausser, and Smith (2011) and 

Enders and Holt (2012), there are likely a variety of reasons underlying the recently 

observed boom-bust-boom pattern for many primary commodity prices. Clearly, the 

2000s have generally been a period of significant income growth in many developing 

countries, and most notably in China, India, and parts of South America including 

Brazil. Zhang and Law (2010) and Hernderson (2011) show that this income growth has 

led the “BRIC” countries to incorporate larger quantities of grains, meat and other 

proteins in their diets.1  

 The second notable effect of increased purchasing power in developing countries 

has been a sharp increase in the demand for energy, and most notably for petroleum. 

Hamilton (2009) reviews many of the details surrounding recent shifts in energy 

consumption and, specifically, discusses the role of the BRICs. The recent situation is 

                                     
1 BRIC is an acronym that stands for the emerging economies of Brazil, India, China, and Russia. 
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summarized in Figure 2, which shows the percent of total world oil consumption from 

1992 − 2011 by the BRIC nations. As illustrated there, in the mid 1990s consumption 

was stable at about 14-percent of global consumption. Beginning in the late 1990s and 

early 2000s, however, these countries share of total world consumption rose steadily to 

just slightly over 21-percent by 2011.  

 Of more than passing interest is that the prices for many coarse grains (and 

sugar) and crude oil are increasingly tied in new and evolving ways. Specifically, the rise 

of ethanol production and use in the U.S. and elsewhere has had a large impact on land 

use, commodity prices, and the relationship between prices for energy and non-energy 

commodities (Abbott, Hurt, and Tyner, 2008). In the United States ethanol production 

was first encouraged by the tax incentives included in the 1978 Energy Tax Act, 

providing for federal excise tax exemptions for gasoline blended with 10-percent ethanol. 

Over time other federal- and state-level subsidies were also created. As well, import 

tariffs were incorporated to limit the amount of ethanol coming into the United States 

from abroad. Furthermore, a so called Renewable Fuel Standard, which dictates that 

gasoline sold in the United States contains a certain volume of renewable fuels, was 

established as part of the Energy Policy Act of 2005. Of equal if not greater importance 

for the rise of ethanol were the state bans on Methyl Tertiary Butyl Ether (MTBE), as 

noted by Zhang et al. (2007) and Serra et al. (2011). MTBE is a widely used oxygenate 

in the gasoline production process, and is a known contaminant of water supplies. 

Ethanol is a reasonable substitute for MTBE in the refining process, with the switch 

from MTBE to ethanol gaining considerable traction in early 2006 (Serra et al., 2011).  

Perhaps nowhere has the impact of increased ethanol use been more profound 

than in the market for maize, as illustrated in Figure 3. As the Figure shows, between 

1986 and 2001 the total amount of maize used for ethanol in the United States never 

exceeded 10-percent of total maize production. A notable uptick in this pattern occurred 
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in the early 2000s, with dramatic increases being observed starting in 2006. The result is 

that by 2011 over 40-percent of the total annual maize crop was being utilized in 

ethanol production. Because in the United States maize and soy in particular can be 

produced on much of the same land base, much of the increased maize acreage 

apparently came at the expense of area planted to soy.  

 Other factors have undoubtedly played a role in the most recent surge in 

commodity prices. Carter, Rausser, and Smith (2011) and Wright (2011), for example, 

discuss the importance of stockholding behavior, both for storable field crops as well as 

for nonrenewable energy resources, in price determination. For example, shortfalls in 

crop production will result in inventories being drawn down. Moreover, even seemingly 

small production shocks are capable, given the generally inelastic nature of short-run 

consumption demands, of causing rather large price swings (see, e.g., Roberts and 

Schlenker, 2010). Certainly there is considerable evidence of weather shocks during 

much of the period in question in various producing regions of the world. Wright (2011) 

argues that much of the recent increase in nominal prices for major field crops can be 

explained by a standard model of supply and demand with storage. Specifically, Wright 

(2011) notes that during much of the mid and late 2000s stock-to-use ratios for major 

grains were, on a global level, at or near the levels observed during the previous 

commodity price boom in the mid 1970s.  

 It is also likely that general macroeconomic conditions have also had an impact 

on commodity price behavior in recent times. As Frankel (2007) discusses, there is 

evidence of linkages via monetary policy between real interest rates, exchange rates, and 

the prices for agricultural and mineral commodities. The fact that real interest rates are 

at long term lows, has decreased storage costs and induced the stockpiling of 

commodities. Moreover, declines in the real value of the dollar have made U.S. grains 

relatively less expensive to foreigners. There is ample evidence that low interest rates 
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and a weak dollar were at work in the most recent commodity price boom. For example, 

Chen et al. (2010) apply a factor model to prices for 51 traded commodities. They show 

that not only does the first, highly persistent component, mimic (nominal) exchange 

rate movements to a high degree, but the factor model also provides substantially 

improved forecasts of exchange rates relative to a random walk model. These 

macroeconomic factors, perhaps exacerbated by relatively loose monetary policy in the 

United States and elsewhere during the mid 2000s, where likely played an important 

role in the recent commodity price boom. Hamilton (2010), for example, has argued that 

the second round of quantitative easing (i.e., undertaken by the Federal Reserve in 2010 

likely helped boost commodity prices in 2010 and 2011 even after their steep but 

temporary declines following the financial crises in 2008 and 2009.2  

 What is clear is that a variety of conditions likely contributed to the recent 

commodity price boom. The evolving and changing relationship between energy and 

food, and most notably, between energy and coarse grains, is likely a contributing 

factor. So, too, are the likely effects of macroeconomic conditions tied to real interest 

rates and, relatedly, real exchange rates. As well, inventory behavior in the face of 

increasing consumption demand and supply shocks also likely played a role. Identifying 

and isolating each of these effects in a comprehensive structural model, while perhaps 

desirable, is likely not feasible. For these reasons we follow Carter and Smith (2007), 

Serra et al. (2011), Enders and Holt (2012), and others, and focus here on a set of 

reduced form time series models. Specifically, we are interested in seeing how the time 

and nature of structural shifts or breaks in set of variables identified in some sense as 

being “causal” for commodity prices (including commodity prices themselves) affected 

                                     
2 Gilbert (2010), for example, argues that a driving force behind the recent run-up in commodity prices is 
speculation, either through physically holding (and withholding) stocks or indirectly by the influence of 
index-based investment funds on futures prices. We do not consider the role of speculation as a factor in 
the longer term movements in grain prices as Irwin and Sanders (2011) provide rather convincing 
evidence that there are no obvious empirical links between index fund trading and commodity futures 
price movements. 
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commodity price behavior. While Enders and Holt (2012) examined issues of this sort in 

a univariate setting, a central innovation of this paper is to extend their analyses to a 

multivariate framework.  

3. Data 

Given the large number of factors that have been identified with the recent run-up in 

commodity prices, we focus on two estimation strategies each with its own set of causal 

variables. The first uses an unrestricted vector autoregression (VAR) to analyze the 

relationship between grain prices and a number of macroeconomic variables including 

real exchange rates, interest rates, and energy prices. The second uses shifting-mean 

vector autoregression (SM-VAR) that focuses on a larger set of agricultural commodities 

and variables more directly influencing commodity prices such as transport costs, 

climate conditions. In both analyses, all commodity prices are converted to real terms 

by deflating by the producer price index (PPI). We then further transform the data by 

converting it to natural logarithmic form.  

Data Used in the VAR  

 In the broad overview analysis, a standard VAR analysis is performed by 

focusing on relationships among real grain prices, real energy prices, the real exchange 

rate, and a measure of the real interest rate. The grain price measure is an index 

constructed by the World Bank as a composite of representative world prices for rice 

(weight of 30.2-percent), wheat (weight of 25.3-percent), maize and sorghum (weight of 

40.8 percent) and barley (weight of 3.7-percent). 3  The energy price index is also 

constructed by the World Bank; it is a composite of the prices for coal (weight of 4.7-

percent), crude oil (weight of 84.6-percent), and natural gas (weight of 10.8-percent). 

Both indices are normalized to average to 100 during 2005. The real exchange rate is 

                                     
3 A time series compilation of World Bank commodity price data may be downloaded from the url:  
http://blogs.worldbank.org/prospects/category/tags/historical-commodity-prices 
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the so called broad exchange trade-weighted exchange rate, which in turn is a weighted 

average of the foreign exchange values of the U.S. dollar against the currencies of a large 

group of major U.S. trading partners converted to real terms. The real exchange rate is 

constructed and reported by the Board of Governors of the Federal Reserve System.4 

Finally, the interest rate is the three-month Treasury bill secondary market rate 

adjusted for inflation. The inflation rate, in turn, is constructed as:  

  

where  denotes the core consumer price index, that is, the CPI adjusted by 

deleting prices for food and energy. The real interest rate measure is constructed then 

by subtracting the inflation rate from the nominal three-month Treasury bill rate.5  

Time series plots for these four monthly series, 1974-2011, are presented in Figure 

4. There we see that the real grain price index declined from 1974 through the mid 

1980s, leveled off until the mid 1990s, declined again until about until about 2000, and 

since then has generally increased. The real energy price index was generally stable from 

the mid 1980s through the mid-to-late 1990s, then declined sharply in 1999, and has 

since tended to increase rather steadily. The real exchange rate shows sharp increases in 

the eaerly-to-mid 1980s and again in the late 1990s and early 2000s, with a generally 

steep starting in about 2002. As expected, the real Treasury bill rate peaked in the early 

1980s, and has since then has generally declined, although several plateau periods have 

also been observed.  

Data Used in the SM-VAR 

 Turning to the data used in the SM-VAR analysis, we focus on interactions 

among a select set of specific commodity prices. Specifically, we focus on interactions 
                                     
4 The data may be obtained from the url:  
http://www.federalreserve.gov/releases/h10/summary/default.htm 
5 Data for core CPI and the three-month Treasury bill rate were obtained from the St. Louis Federal 

Reserve’s FRED database.  
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among monthly prices for maize, soy, crude oil (or more simply, oil), a measure of ocean 

freight transport costs, and the price of ethanol. As well, because the production and 

transport of agricultural commodities are subject to the vagaries of weather, we also 

consider a climate extremes index. The maize, soy, oil prices used in this analysis are 

reported by the World Bank. Maize prices are recorded in dollars per metric ton 

(dollars/mt), and represent U.S. number 2 yellow, f.o.b., Gulf prices. Likewise, soy 

prices are also reported in dollars per metric ton, and are U.S., c.i.f., Rotterdam prices. 

The crude oil price is recorded in dollars per barrel (dollars/bbl), and represent an 

average of spot market prices for Brent, Dubai and West Texas intermediate crude; 

crude oil prices are equally weighted in constructing the World Bank composite oil price 

measure. Additional details regarding these variables are reported in the Technical 

Appendix that accompanies Enders and Holt (2012). 

 Transport costs are a major factor in world trade of primary commodities. 

Moreover, because in the short run the fleet of transport vessels is essentially fixed, 

Kilian (2009) argues that variations in ocean freight transport costs can be viewed as a 

general measure of global economic activity, that is, as a composite measure of global 

demand for traded goods and commodities. The data were constructed by Lutz Kilian, 

and represent an average of dry bulk shipping freight rates for cargoes consisting of 

grain, oilseeds, coal, iron ore, fertilizer, and scrap metal as reported by Drewry’s 

Shipping Monthly. A composite index is then constructed in a manner described in more 

detail in Kilian (2009). In the index the value for January, 1968 is normalized to one. 

These data were obtained directly from Lutz Kilian by private correspondence. 

Importantly, unlike the data used in Kilian’s (2009) paper and reported on his website, 

the data we use for the dry bulk shipping freight rates have not been detrended. 

 Because markets for energy have evolved rapidly in recent years with the rise of 

ethanol production, there is reason to believe that prices for major field crops (and most 
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notably, maize) and energy are now linked in new and more complex ways (Abbott, 

Hurt, and Tyner, 2008). In an attempt to examine these linkages in more detail, we also 

include a measure of ethanol price. Specifically, the ethanol price used here is the F.O.B. 

Omaha rack price, quoted in dollars per gallon, and collected and reported by the 

Nebraska State Government. 6  Ethanol price data are only available beginning in 

January, 1982. 

A final measure of interest relates to climate anomalies that might affect the 

production, marketing, and transport of agricultural commodities. Although several 

alternatives are available, we use the National Oceanic and Atmospheric 

Administration’s (NOAA) National Climatic Data Center’s climate extreme index (CEI) 

for the Upper Midwest climate region.7 The index, developed by Karl et al. (1996) and 

Gleason et al. (2008), incorporates information on monthly maximum and minimum 

temperature, daily precipitation, and the monthly PDSI measures.  

 Time series plots, 1974-2011, of the data used in the SM-VAR model are reported 

in Figure 5. For our purposes, it is important to note that the real prices for maize and 

soy generally declined until the early 2000s, at which point they started to trend 

upward. A somewhat similar pattern is evident for the price of crude oil, although the 

upturn since the early 2000s has been more pronounced. The real price of ocean freight 

generally trended down from the early 1970s through the early 2000s, and experienced a 

notable upturn until the most recent recession beginning in late 2007. Since then real 

ocean freight rates have generally remained low relative to historical norms. The real 

price of ethanol also tended to trend downward from 1982 through the early 2000s, and 

then trended upward rather sharply, again, until the onset of the most recent recession. 

                                     
6  The data were obtained from the url: http://www.neo.ne.gov/statshtml/66.html. Similar data for 
ethanol were employed by, for example, Serra et al. (2011). 
7 For example, Fox, Fishback, and Rhode (2009) explored the impacts of a well-known drought measure, 
the Palmer Drought Severity Index (PDSI), along with other measures, on the price of maize, 1895-1932. 
Likewise, Schmitz (1997) examined the role of the PDSI in explaining inventory adjustments in U.S. beef 
cow breeding herd inventory adjustments.  
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Finally, the climate extreme index is apparently rather volatile, although without any 

discernable trend. Even so, it may contain a cyclical component. 

4. A VAR Analysis 

In this section we employ a vector-autoregression (VAR) to analyze the dynamic 

interrelationships between real grain prices and the key macroeconomic variables that 

have been identified as affecting the agricultural sector. As indicated in Ng and 

Vogelsang (2002), a VAR containing variables with structural breaks is misspecified 

unless the breaks are properly modeled and included in the estimated VAR. 

Nevertheless, the cobreaking literature is still in its early stages and, as we explain in 

more detail in following sections, it is not always clear how to estimate a system with 

cobreaking variables. Moreover, given that we are working with the variables shown in 

Figure 4, the breaks are likely to be smooth so that the number of breaks, the functional 

form of the breaks, and the breakdates are unknown. As such, in this section, we utilize 

the results from a VAR without incorporating an explicit parametric model of the 

breaks. The benefit of our VAR analysis is that we can measure the extent to which 

shifts in the macroeconomic variables are transmitted to real grain prices without 

having to impose any particular structural assumptions on the data. We rely on Sims 

(1980) and Sims, Stock and Watson (1990) who indicate how to conduct inference is a 

regression (or a VAR) combining stationary and nonstationary variables. Subsequently, 

we develop a more disaggregated model in which we explicitly estimate the structural 

breaks and their transmission across sectors.  

 Since an unrestricted VAR is atheoretic, we need only select the relevant 

variables to include in the model, determine the lag length, and decide on an 

orthogonalization of the regression residuals. In addition to the real price of grain, we 

began with a block of three variables that have often been credited with influencing real 

agricultural prices: the real price of energy, the real interest rate, and the real 
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multilateral exchange rate. When we used the sample period running from 1974:01 to 

2011:12, the multivariate AIC selected a lag length of 7 months for our basic four-

variable VAR. As shown by Sims, Stock and Watson (1990), it is not appropriate to 

apply Granger causality tests to nonstationary variables. Hence, we performed the 

standard block exogeneity test described in Enders (p. 318−19; 2010) but we let the AIC 

suggest which other variables we might want to add to the four-variable VAR. Even 

though the AIC is quite generous in this regard, we maintained the four-variable model 

as none of the following variables reduced the AIC: real ocean freight rates, the climate 

index, and various measures of real U.S. output including the cyclical portion of HP-

filtered U.S. real disposable income.  

 In order to avoid performing our innovation accounting using an ad hoc Choleski 

decomposition, we used the following strategy to decompose the regression residuals into 

pure orthogonal shocks. Let the subscripts i = 1, 2, 3 and 4 denote real energy prices, 

the real exchange rate, the real T-bill rate, and the real grain price, respectively. Also, 

for each period t, let eit denote the regression residual from the i−th equation of the 

VAR and let it denote the pure orthogonal innovation (i.e., the “own” shock) to variable 

i. In every period t, the relationship between the regression errors and the orthogonal 

innovations is: 

(1)      

so that in matrix form: et = Gt where the gij are parameters such that the covariance 

matrix of the regression residuals, , is  and G is the (4 x 4) matrix of 

the gij.   



12 
 

 As it stands, equation (1) indicates that each variable is contemporaneously 

affected by the innovations in every other variable. However, it is far more likely that 

some variables are causally prior to others in the sense that they are affected by others 

only with a lag. For example, since a grain price shock is unlikely to have a 

contemporaneous effect on the macroeconomic variables, the macroeconomic block 

should be causally prior to real grain prices. Moreover, without imposing some 

structural relations on the on the G matrix, the it shocks are unidentified. As described 

by Enders (pp. 325−9, 2010), exact identification of the orthogonal innovations from the 

covariance matrix requires six restrictions. The assumption that the 3 x 3 block of 

macroeconomic variables is causally prior to each other requires nine restrictions−−gij = 

0 (i ≠ j for )−−whereas the exact identification requires only six restrictions. 

However, imposing these nine restrictions (so that the system is overidentified) results 

in a sample value of 2 equal to 11.88; with three degrees of freedom, the prob−value for 

the restriction 0.0078 level. The reason for the rejection of the restriction is that the 

contemporaneous correlation between the residuals of the real exchange rate and real T-

bill equations (i.e., e2t and e3t) is 0.55. However, when we do not force g23 = 0, the 

following set of eight restrictions results in a 2 value of 0.975 which is insignificant at 

any conventional level: 

(2)  

 As such, our decomposition allows real energy, real exchange rate, and real T-bill 

shocks to contemporaneously affect grain prices and allows real interest rate shocks to 

contemporaneously affect the real exchange rate. Otherwise, the contemporaneous 

innovations in each variable are due to “own” shocks.  
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 Figure 6 shows the impulse responses of grain to a +1-standard deviation shock 

in each of the innovations given the set of shocks identified by equation (2). In order to 

make the comparisons meaningful, the magnitudes of the responses have been 

normalized by the standard deviation of the grain shock. Interestingly, the initial effect 

of a grain price innovation continues to build for three periods and, although it begins 

to decay, is quite persistent. A positive energy price shock has a positive effect on grain 

prices; by month 5, a +1-standard deviation shock in energy prices induces a 0.5 

standard deviation increase in the real price of grain. Not surprisingly, higher interest 

rates and a stronger dollar both act to decrease the real price of grain. After all, higher 

interest rates increase grain holding costs and a stronger dollar increases the price of 

U.S. grain to importers. Note that after 6 months, +1-standard deviation shocks to the 

real exchange rate and the real interest rate depress real grain prices by about 0.50 and 

0.35 standard deviations, respectively.  

 The variance decompositions suggest a modest degree of interaction among the 

macroeconomic variables and real grain prices. As shown below, almost all of the six-

month ahead forecast error variance of the real price of grain is due to its own 

innovations (92.68%). However, after one year, real energy prices, the real exchange rate 

and the real T-bill rate account for 5.64%, 9.20% and 3.87% of the forecast error 

variance, respectively. After two years, these percentages grow to 8.87%, 14.51% and 

5.93%, respectively.  

Percentage of the Forecast Error Variance for Grain 

Steps 
Ahead  Std. Error  Energy

Exchange
Rate  T‐bill  Grains 

1  0.035  0.00  0.36  1.25  98.39 
6  0.114  1.42  3.60  2.30  92.68 
12  0.152  5.64  9.20  3.87  81.30 
18  0.179  7.35  12.15  4.81  75.69 
24  0.198  8.87  14.51  5.93  70.69 
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 Nevertheless, these percentages can be misleading since there are subperiods 

during which the influence of the macroeconomic variables on grain prices was 

substantial. In order to show this, we decomposed the actual movements in real grain 

prices into the portions contributed by each of the four innovations. If we abstract from 

the deterministic portion of the VAR, each of the four variables can be written in the 

form: 

 
(3)   

 

where the Aik (k = 1, 2, 3, 4) are j−th order polynomials in the lag operator L. As such, 

the Aik(L)kT+j are the part of variable i attributable to innovations in variable k over 

the period T+1 to T+j. As such, a time-series plot of A4k(L)kT+j shows how movements 

in variable k affected the real price of grain. In essence, the plots show the 

counterfactual analysis of how variable real grain prices would have evolved had there 

been only k-type shocks.  

 The top portion of Figure 7 shows how real interest rate and real grain price 

innovations (i.e., own innovations) affected the real price of grains. The solid line in the 

figure shows the actual movement in grain prices so that it is possible to see the 

influence of each of the two variables on actual grain price movements. As can be seen 

by the short-dotted line in the figure, real interest rate movements have a small positive 

effect in the mid-1990s and a small negative effect from 1998 through most of the 

remaining sample period. Nevertheless, the downward movement in real interest rates 

(see Panel D of Figure 6) has caused the absolute value of this negative effect to 

steadily diminish. As such, it can be argued that the decline of real interest rates has 

exerted pressure for grain prices to rise relative to per-2000 levels.  Notice how shocks to 
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the price of grain (i.e., “own” shocks) accounted for the sharp movements in real grain 

prices in 1987−1988, 1995, and 2007−2009.8  

 The lower portion of Figure 7 shows the effects of energy and exchange rate 

innovations on the price of grain over the 1986:1−2011:12 period. It appears that the 

effects of energy prices and the real exchange rate on the real price of grain were 

generally offsetting. From 1986 through 1997, the real exchange rate acted to boost the 

price of grain. After all, during the period when the dollar was relatively weak, the 

foreign demand for U.S. grains is anticipated to be relatively high. Since the prices are 

in logarithms, it should be clear that in the early 1990s, the exchange rate acted to 

increase real grain prices by as much as 25%. After all, as the weak dollar stimulated 

the foreign demand for U.S. grain, the dollar price of grain was bolstered. Subsequently, 

the steady appreciation of the real value of the dollar from 1995 through 2002, induced 

a decline in real grain prices. By 1996, the overall effect of exchange rate movements on 

grain prices was negative. In contrast, high energy process had a depressing effect on 

real grain prices through 1999. However, the run-up in energy prices beginning in 1999 

acted to increase grain prices—by mid-2000, the overall effect of energy price 

innovations on grains became positive. By 2006, the effect was to increase grain prices 

by almost 20%.  

 

5. Modeling Time Series Variables with Shifting Means 

Although the VAR results are informative, it is useful to develop a complementary 

parametric model that allows us to explicitly estimate the shifting means. To begin, 

consider a stationary series , that in the present case represents a 

                                     
8 Note that the term “own” shocks for grain can be misleading since all excluded variables actually 

affecting grain prices influence 4t.  
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particular commodity price. A simple shifting-mean (SM) autoregressive model of order 

 for , that is, an , is given by: 

(4)  

where , and where under stationarity the condition all roots of the lag 

polynomial  lie outside the unit circle. In (4)  is the deterministic, 

nonlinear shift function. Following Dickey and Fuller (1979), it is standard to assume 

that  contains a time-invariant intercept and, perhaps, a deterministic linear trend 

(or quadratic trend) term. In this case  would be said to be “trend stationary.”  

 In recent years economists have focused on more detailed specifications for the 

time-varying intercept, . For example, one approach, popularized by Bai and Perron 

(1998, 2003), is to assume that shifts over time in the intercept happen in a discrete 

manner. That is, we may write  as: 

(5)  

where  is a Heaviside indicator function such that  for  and is zero 

otherwise. In equation (5) , denotes the discrete break dates. For our 

purposes, there are several problems with the specification in (5). First, the number of 

breaks or the timing of breaks are known a priori, and therefore these additional 

parameters must also be estimated as part of the modeling process. More importantly, 

the nature of the breaks in (5) is assumed to be sharp in that each break fully manifests 

itself at the date i.  However, suppose there is at least one relatively long, gradual shift 

in the evolution of , which in turn must be accounted for by . In this instance it is 
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likely that the Bai-Perron procedure would require multiple “breaks” in order to 

accurately account for what is otherwise one gradual shift. As an alternative to (5), 

then, Lin and Teräsvirta (1994) and González and Teräsvirta (2008) proposed the 

following nonlinear specification: 

(6)  

where  is the so called transition function, where . For example,  is 

often be given by: 

(7)  

where  denotes the “standard deviation” of . 9 In other words, (7) is a standard two-

parameter logistic function in the re-scaled time trend index, , where by construction 

 is strictly bounded on the unit interval. The speed with which the logistic function 

transitions from zero to one is determined by the magnitude of . For large 

values of , that is, as , it follows that  will effectively become a step 

function with properties identical to those of the Heaviside indicator functions in (5), 

where the switch date or break date is associated with . Alternatively, for 

considerably smaller values of  the transition from zero to unity will be smooth or 

gradual, and in the extreme as  the shift effectively disappears. Lin and Teräsvirta 

(1994) refer to the combination of (4), (6), and (7) as the time-varying autoregressive 

model, or TVAR. 10  The TVAR model represents a generalization of the methods 

considered by Bai and Perrron (1998, 2003) in that both smooth shifts and sharp breaks 

are accommodated. 

                                     
9 Normalizing  by  effectively renders this parameter unit free, which in turn is desirable for 
numerical reasons during estimation. 
10 More generally, Lin and Teräsvirta (1994) consider a situation where all parameters in (1) can change 
in a manner defined by the transition function, . As in González and Teräsvirta (2008) and Enders 
and Holt (2012), we restrict attention here to the case where only the intercept term varies over time. 
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 Of course (7) is not the only transition function that might be considered. Others 

include the quadratic logistic function (see, e.g., van Dijk, Teräsvirta, and Franses, 

2002) and the generalized exponential introduced by Goodwin, Holt, and Prestemon 

(2011). Considering the later, the transition function may be defined as: 

(8)  

In (8) when  the standard two-parameter exponential transition function obtains, 

which results in something analogous to a V-shaped transition function that is 

symmetric around the centrality parameter, . When  in (8) the generalized 

exponential function obtains, which generates a U-shaped time-path for the transition 

function, also symmetric around . Indeed, as  becomes large, say, typically, 4 or 5, 

the generalized exponential function approximates a pair of Heaviside indicator 

functions that are offsetting.11  Depending on the underlying properties of the data, 

combinations of logistic functions and/or the generalized exponential function provide 

considerable flexibility when modeling a combination of smooth shifts and discrete 

breaks in a univariate series.  

 Estimation of the SM-AR can be done by using nonlinear least squares (van Dijk, 

Teräsvirta, and Franses, 2002) or by using a grid search (Enders and Holt, 2012). 

Additional details regarding estimation of SM-AR models are provided by Teräsvirta, 

Tjøstheim, and Granger (2010). 

 A third alternative to modeling the intercept term, , in (4) was introduced by 

Becker, Enders, and Hurn (2004). Specifically, they propose approximating the time-

varying intercept in (4) by using low-frequency terms from a Fourier approximation of 

 in . For example, 

                                     
11 As well, a pair of logistic functions could also be used to approximate either V-shaped or U-shaped 
shifts, albeit at the expense of estimating more (nonlinear and correlated) parameters. 
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(9)  

As illustrated by Enders and Lee (2012), the combination of (9) with (4) provides 

considerable flexibility in modeling a wide array of smoothly shifting intercepts in 

univariate autoregressive models.  

 Irrespective of the method used to model the time-varying intercept in (4), the 

unconditional (shifting) mean of the series, , may be obtained by taking the 

unconditional expectation of (4) and solving, to obtain: 

(10)  

where . According to (10) the shifting mean of  will depend on the precise way 

for which  is specified, as well as the model’s autoregressive parameters.  

Shifting Means: Multivariate Methods 

In principle the above specifications can be extended to a multivariate setting in a 

straightforward manner. For example, let , index the particular 

commodity prices considered in the system. We may therefore define  

as an  vector of observations on commodity prices at time .12 The multivariate 

counterpart to (4), that is, the shifting-mean vector autoregression (SM-VAR), is given 

by:  

(11)  

                                     
12 Henceforth bolded variables are used to denote appropriately defined vectors or arrays. 
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where  is a  parameter matrix, , and where , where 

, and where  is a  positive definite covariance matrix. Assuming the 

vector autoregressive structure of the system is dynamically stable, the roots of 

 are assumed to lie outside the unit circle. In (11) 

 is a  time-varying intercept vector, where a typical 

element might be given by: 

(12)  

In (12) the  transition functions could, as in the univariate case, be given by some 

combination of (7) and/or (8). In a manner analogous to the univariate case, the system 

in (11) may be written as: 

(13)  

so as in (10), the vector-valued shifting-mean for  can be generalized such that: 

(14)  

where , an  identity matrix. Note that (13) implies that a shift in the 

series for, say, , will necessarily cause a shift in, say,  (Ng and Vogelsang, 2002). 

Indeed, the only way this is not true is either if (1) the coefficients on lagged  in the 

equation for  sum to zero or, alternatively, if (2) if prior observations on  do not 

Granger cause .  

Again, depending on the nature of causal relationships amongst the variables in 

(11), shifts in the mean of one series will necessarily result in mean-shifts not only for 
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the variable in question, but also for the remaining variables in the system. To 

underscore this issue, a simple example will suffice. Consider a “near-VAR” with data 

generating process (DGP) specified as: 

  

where presently  and , and where 

  

As specified in the DGP, the first mean shift, which is centered rather late in the 

sample, is shared by both equations. Even so, both equations have independent mean 

shifts that occur during the first half of the sample. Moreover, the DGP represents a 

near-VAR in that  is exogenous. For the above bivariate DGP, it follows that the 

shifting means are defined as: 

  

where  
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The time paths for the shifting means for  and , that is,  and , 

along with a single realization where the sample size , is fixed at 350, are plotted in 

Figure 8. Note that even though the DGP includes two shifts in the equation for , by 

virtue of the model specification the second shift in  also appears in . This result 

is illustrated in the upper panel of Figure 8, where the first down-shift in  is 

actually due to the second shift in the intercept for . As illustrated by simulation 

results in the upper panel of Figure 8, the first shift for , occurring between 

observations 80 and 100, is actually due to the corresponding shift in . It is difficult 

to know if this shift would be detected by usual univariate shift (break) identification 

and testing strategies. But as reported by Holt and Teräsvirta (2012), simulation 

evidence indicates it certainly would be identified as such in certain circumstances with 

reasonable frequency. For these reasons the methods used to test for, identify, and 

include mean shifts (breaks) in a univariate setting are generally not appropriate in a 

multivariate framework.  

Shifting Means: A Testing Framework 

An automatic question is how might the presence of shifting means be tested for, 

especially in a multivariate framework? And how many shifts, , might be required for 

each equation? Prior research has focused almost exclusively on testing in a univariate 

autoregressive (AR) context. We review the general univariate testing approach and 

then discuss how such tests can be adapted for use in a SM-VAR setting. We focus on 

the shifting-mean model where either the logistic function in (7) or the generalized 

exponential function in (8) are used to characterize mean shifts. 

Univariate Models 

Consider the following univariate AR model or order p, that is, an AR(p): 

(15)   
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where  is a  vector, and where , a  

parameter vector. Of course (15) is just a special case of the SM-AR where, in 

particular, no mean (intercept) shifts occur. The alternative to (12) might simply be  

(16)  

where  is the transition function, presumably associated with either the 

logistic function in (7) or the generalized exponential function in (8). At this point it 

would seem that (15) could be estimated and the results used to simply test the 

hypothesis . Such an approach would be invalid, however, in that (15) can be 

obtained from (16) either by restricting  or by setting  (so that the logistic 

function degenerates into a constant). The point is, when  there are unidentified 

nuisance parameters under the null, namely,  and . The result is that the estimator 

for  (and likewise, for ) will be associated with a non-standard distribution, even as 

. This general result is due to a series of papers by Davies (1977, 1987), and is 

typically referred to simply as the “Davies problem” in the literature. To circumvent the 

problem, Lukkonen, Saikkonen, and Teräsvirta (1988) proposed that the  function 

in (16) could be replaced with a reasonable Taylor series approximation, taken at . 

For example, if a third-order Taylor approximation is used, (16) may be rewritten as: 

(17)  

where  is a  parameter vector, and where  equals the original error term, , 

plus approximation error. The LM test for a constant mean can be conducted by 

regressing the residuals from (15) on the regressors in (17) and using the standard 

sample F-statistic for the null hypothesis: 

(18)  
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 Assuming that the null hypothesis of a constant mean in (18) is rejected, Lin and 

Teräsvirta (1988) go on to describe a sequence of tests that may be used in an attempt 

to identify the nature of the mean shift, that is, whether it is more likely to be of the 

logistic function of generalized exponential function variety. Specifically, if (18) is 

rejected we may take (17) as the maintained model, and then test: 

(19)  

 The idea is that if either  or  is associated with the smallest  that the 

corresponding mean-shift is more likely with a logisitic function as identified in (7). And 

of course in this case the possibility of a sharp break in the model’s intercept is not 

precluded. Alternatively, if  has the smallest , then the mean-shift is more 

likely to have occurred in a manner consistent with the generalized exponential function 

in (8).  

Escribano and Jordà (1999) consider a modification to the testing sequence 

outlined above. Specifically, they extend the testing equation in (17) to include a fourth-

order term, . That is, the testing equation they propose is: 

(20)  

The LM test for null hypothesis of no mean shifts in (20) is the sample F-value for the 

restriction: 

(21)  

Escribano and Jordà (1999) propose the following testing sequence:  
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(22)  

as an aid in identifying the form of the underlying shift (transition) function. 

Specifically, if  has the smallest , then the underlying mean-shift is most 

likely of the generalized exponential form in (8). Otherwise,  is associated with the 

smallest , then the underlying mean shift is likely associated with the logistic 

transition function in (7). 

 After completion of the testing sequence, a provisional SM-AR model may be 

specified as: 

  

where  is given by either (7) or (8). And once the parameters of the provisional 

SM-AR model have been estimated, it is desirable to perform additional diagnostic tests 

or checks. For example, it is useful to know if there is any evidence of remaining 

autocorrelation or, most importantly, if there is evidence of remaining intercept shifts. 

As described by Eitrheim and Teräsvirta (1996), the provisional SM-AR model may be 

used to perform a series of LM tests designed to address these questions. Specifically, 

define the skeleton of the SM-VAR as: 

  

where  and , where . Let  denote the estimated 

residuals from the estimated SM-AR. And let  denote the gradient of the 

skeleton of the SM-AR with respect to its parameters, that is, define 

.  
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 In order to test for remaining autocorrelation, an auxiliary regression of the form: 

(23)  

may be performed as an LM-type  test of the null hypothesis . 

Doing so constitutes a test for remaining serial correlation at lag . To test for 

remaining mean the auxiliary regression from (21) may be modified as follows:  

(24)  

where  typically equals either three or four. The null hypothesis of no remaining 

intercept shifts is . Again, this LM-test for remaining intercept 

(mean) shifts may be performed as an  test as previously described. As well, if 

necessary the testing sequence in either (19) or (22) may also be used to help identify 

the nature of the underlying transition function for any remaining mean shifts. 

Multivariate Models 

To date relatively limited research has been conducted on the general topic on of SM-

VAR models or, similarly, shifting-mean near vector autoregressive (SM-NVAR) models. 

Unlike the approaches of Anderson and Vahid (1998), Rothman, van Dijk, and Franses 

(2001) and Camacho (2004), we use the scaled time variable , and 

do not wish to impose a priori the same transition function across equations. 

Furthermore, we want to consider the possibility that a mix of logistic and generalized 

exponential transition functions might be used in the modeling exercise. Conducting 

systems tests in cases like this can quickly become unwieldy, especially when  the 

number of equations in the system, is large. For these reasons we follow Holt and 

Teräsvirta (2012) and proceed by employing univariate tests on an equation-by-equation 

basis. Provisional models for each equation may be estimated by using nonlinear least 
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squares, and model assessments performed. Once provisional models have been 

satisfactorily estimated, it is then possible to use these as starting values to jointly 

estimate the parameters in a SM-VAR of SM-NVAR. 

 A final caveat is in order. As illustrated by the previous simulation example and 

in Figure 8, it is likely not desirable to use univariate methods to identify shifting means 

if additional explanatory variables should be included in the regression. Specifically, 

using (15) where  will generally not yield the correct number of 

shifts if, in fact, additional explanatory variables should be included in the model. This 

assertion has been verified by simulation exercises reported by Holt and Teräsvirta 

(2012). Fortunately, the solution in this case is relatively straightforward. Suppose, for 

example, that the focus is on modeling  and, moreover, that  apparently Granger 

causes . In this case  can be redefined as , in 

which case the models in (15), (16), and (17) directly apply. In other words, by 

including appropriate conditioning variables in  the univariate testing and evaluation 

procedures defined previously may be readily applied. Simulation results reported by 

Holt and Teräsvirta (2012) indicate this approach tends to pick the correct number of 

shifts, , with reasonable accuracy. Moreover, this basic framework is exactly that 

described originally by Lin and Teräsvirta (1994) when considering the specification and 

estimation of TVAR models. 

6. Unit Root Tests with Shifting Mean Alternatives 

Before beginning to estimate our SM-VAR of SM-NVAR, it is necessary do determine 

whether or not the variables used in the analysis contain unit roots. As demonstrated by 

Perron (1989, 1997), in the presence of neglected structural change, standard unit root 

tests are misspecified and suffer from serious size distortions. If the breaks are sharp, it 

is possible to use dummy variables to construct a modified unit root test with good size 

and reasonable power. Nevertheless, as shown by Prodan (2008), if there are offsetting 
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or U-shaped breaks, the dummy variable approach performs poorly when estimating the 

number of breaks and the break dates. Moreover, Becker, Enders and Hurn (2004) show 

that the dummy variable approach loses power in the presence of the types of smooth 

shifts displayed by real commodity prices. In essence, to mimic a gradual structural 

break, it is necessary to combine a number of dummy variables into a single step-

function.  

 In order to control for smooth structural change, Enders and Lee (2012) augment 

the standard Dickey-Fuller test with a Fourier approximation for the deterministic 

terms. Consider: 

(25)  

where the structural breaks are approximated by the deterministic Fourier expression

, 

(26)  

 In equation (26),  is the number of frequencies used in the approximation, the 

 and  are parameters, and  is approximation error. The notation is designed to 

highlight the fact that  is a decreasing function of  such that  when 

. In the absence of structural change, , so that the linear model is 

nested in (25) and (26).  

 Note that the specification in equation (26) has a number of desirable 

econometric properties. Unlike a Taylor series approximation in the powers of  (i.e., 

), the trigonometric components are all bounded. Moreover, since a Fourier 

approximation is an orthogonal basis, hypothesis testing is facilitated in that each term 

in the approximation is orthogonal to every other term. Perhaps most important, unlike 
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a Taylor series expansion, a Fourier approximation is a global (not a local) 

approximation that need not be evaluated at a particular point in the sample space. 

Least squares and maximum likelihood estimation methods force the evaluation of a 

Taylor series expansion to occur at the mean of the series. However, this is undesirable 

in a model of structural change because the behavior of a series near its midpoint can be 

quite different from that elsewhere in the sample.  

 In order to avoid overfitting and to preserve degrees of freedom, Enders and Lee 

(2011, 2012) recommend using only a few low frequency components in the estimation. 

Since structural breaks shift the spectral density function towards zero, they are able to 

demonstrate that the low frequency components of a Fourier approximation can often 

capture the behavior of a series containing multiple structural breaks. Although the 

approximation works best with smooth breaks, it is also the case that the approximation 

with only a few low frequency components is able to detect and control for many types 

of sharp breaks.  

 The critical values for the null hypothesis of a unit root (i.e., ) depend on 

whether  is included as a regressor in (25) and on the value of  used in (26). The 

value of  can be pre-specified or selected by using a standard model selection criterion 

such as the AIC or SBC.  

 Instead of using cumulative frequencies, it is possible to reduce the number of 

parameters estimated by performing a grid search over the low-order frequencies (  = 

) and then conducting the unit root test using the single best-fitting frequency

. Another variant of the test relies on the well-known fact that the trend coefficient in 

(22) is poorly estimated in highly persistent data. In order to produce a test with 

enhanced power, Enders and Lee (2011) develop a testing procedure based on the 

Lagrange Multiplier (LM) methodology. The idea is to estimate the coefficients of the 

deterministic terms using first-differences and then to detrend the series using these 
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coefficients. The third variant is Becker, Enders, and Lee’s (2006) introduction of 

Fourier terms into the Kwiatkowski, Phillips, Schmidt, and Shin (1992) stationary test. 

As such, it is possible to test the null of a stationary series fluctuating around a slowly 

changing mean against the alternative of a unit root. Since all unit root tests suffer from 

low power, it often makes sense to confirm unit root tests with a procedure using the 

null of stationarity. 

 Table 1 reports the results of the standard Dickey-Fuller test and the four 

different Fourier tests applied to the seven series used in our analysis. Notice that the 

start of the sample period is 1974:01 for all variables save ethanol. For each series, the 

first row of the table shows the estimated value of  assuming linearity (i.e., setting 

) and the second row shows the associated -statistic for the null hypothesis 

. Given that the time trend is insignificant in each equation, the 5% critical value 

for the null hypothesis is −2.87. Notice that it is possible to reject the null hypothesis of 

a unit root for maize, soybeans, ocean freight, and the climate index, but not for oil, 

ethanol, and the real exchange rate. 

 The next three rows of the table show the results when we augment (26) with 

cumulative frequencies and use the AIC to select the value of n from the subset of 

possibilities:  = 1, 2, or 3. For example, for oil, the AIC selects a value of  = 3 and 

the estimate of  (called , to denote the use of cumulative frequencies) is −0.096. 

The -statistic for the null hypothesis  is equal to −5.50 whereas the 5% critical 

value is −5.03. Notice that the Fourier unit root suggests that every series, except the 

real exchange rate, is stationary around a slowly evolving mean. We reach the same 

conclusion with the variant of the test using the single best-fitting frequency  and 

with the LM version of the test. However, when we use the Fourier-augmented KPSS 

test, at conventional significance levels, we cannot reject the null hypothesis of 
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stationarity for any of the series. Nevertheless, given the preponderance of the evidence, 

we proceed assuming that only the real exchange rate is nonstationary. As such, it is 

excluded from our SM-NVAR. Moreover, we exclude the real interest rate as our 

unrestricted VAR indicated that it has only limited effects on real grain prices.   

7. Empirical Results: SM-NVAR Model 

The discussion in previous sections serves as an important guide to determining which 

variables to include in the SM-VAR analysis of linkages among the (real) prices for: (1) 

maize. ; (2) soy, , (3) crude oil, , (4) ocean freight 

rates,  and (5) ethanol, . 13  As well, because of the role that 

weather conditions and climate shocks play in the production and transportation of 

maize and soy, we also consider (6), the climate extreme index,  as well. Due to data 

limitations for ethanol, the period we investigate, after reserving the first 13 months for 

lag-length tests, runs from February, 1985 through December, 2011, a total of 323 

observations. 

Basic Model Specification 

The testing and estimation framework described above for univariate shifting-mean 

models are used here to investigate intercept shifts (breaks) in a select group of 

commodity prices. The approach requires that we first fit a separate transfer-type 

function (without shifts) to each variable considered. Following Zhang (2008), the lag 

length for each equation is determined by using the Hannan-Quinn (1979) criterion, 

which in turn is something of a compromise between the more liberal Akaike 

Information Criterion (AIC) and the more conservative Schwarz Crtierion (SBC). A 

series of Granger non-causality tests are performed in order to determine which 

                                     
13 More specifically, prior to estimation all real prices are normalized to a unit value for January, 1996 
and then multiplied by 100. The natural logarithm is then applied to this transformed series. 
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variables should be included in each transfer function (equation). The variables included 

in each equation also with optimal lag lengths are reported in Table 2.  

 As indicated in Table 2, the base (i.e., linear model with no shifts) model for 

maize contains two lags of its own price, as well as the prices for soy, oil, ocean freight. 

In addition, two lags of the climate extreme index are also included. Preliminary results 

indicate that ethanol price does not Granger cause maize price, a result that, moreover, 

was confirmed by using similar data by Elmarzougui and Larue (2011). As well, 

Rapsomanikis and Hallam (2006) and Balcombe and Raspomanikis (2008) reached a 

similar conclusion regarding the relationship between ethanol and sugar prices in Brazil. As 

also indicated in Table 2, the base model for soy prices contains two lags of its own price as 

well as two lags of the ocean freight rate. Of interest is that corn prices apparently do not 

Granger cause soy prices. Preliminary results indicated that oil price is apparently strongly 

exogenous; the linear model for oil includes only two lags of its own price. Again, similar 

results were reported by Rapsomanikis and Hallam (2006), Balcombe and Raspomanikis 

(2008), and Elmarzougui and Larue (2011). Over a somewhat different time period 

Kilian (2009) did, however, find evidence of the ocean freight rate, as a measure of real 

economic activity, having significant feedbacks to oil prices. The ocean freight index is 

associated with three lags of its own values and the price of oil. Likewise, ethanol price 

is also specified with three lags, and is a function of its own lagged values, the lagged 

price of maize, and the lagged price of oil. This result is also consistent with prior 

findings. Lastly, the climate extreme index is determined to be best explained by only 

one lag of its own value. 

Intercept Nonconstancy Test Results 

As explained in the methodology section, the LM testing framework for shifting 

intercepts may be applied to each equation. Specifically, the basic (linear, no-shift) 

model specifications outlined in Table 2 are used to examine the presence of intercept 
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shifts, and hence, shifting means. The results of these tests, obtained by using both 

third- and fourth-order Taylor approximations in time under the alternative, are 

summarized in Table A1 of the unpublished Appendix to this paper.  

 The result of testing intercept constancy for maize with a third-order 

approximation, that is, a test of  in (18), indicates that the null of no intercept shifts 

cannot be rejected at the 5-percent significance level, but can be rejected at the 10-

percent level. The results of the test based on a fourth-order approximation, that is, a 

test of  in (19) are more conclusive, with the null in this case being rejected at the 5-

percent level. The results of the testing sequence in this case, that is, tests of  and 

 in (22), provide support for an intercept shift in the maize price equation that is U-

shaped, that is, a shift that belongs to the family of generalized exponential transition 

functions in (8). Results in Table A1 also suggest the presence of an intercept shift for 

soy. In this case, however, the testing sequence applied to the fourth-order 

approximation is indeterminate. Alternatively, when the testing sequence in (19) is 

applied to the soy equation, the evidence points toward an intercept shift consistent 

with the logistic transition function in (7). 

 Test results for a shifting intercept in the oil price equation strongly reject the 

null of no shift when either the third- and fourth-order approximations are used. Even 

so, the testing sequence in (19) based on the third-order approximation points to a U-

shaped intercept shift, while the testing sequence in (20) points to an intercept shift of 

consistent with a logistic function specification. In the case of oil the correct 

specification will be determined by fitting both versions and then comparing results for 

overall explanatory power as well as model diagnostic test results.  

 Turning to the model for the ocean freight index, results in Table A1 indicate no 

evidence of an intercept shift when a third-order approximation is used. Alternatively, 

the null of no intercept shifts is clearly rejected when a fourth-order approximation is 

used. Moreover, the testing sequence in (22) suggests that the shift may be consistent 
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with a generalized exponential transition function, although the evidence in favor of a 

logistic-type shift is also strong.  

 Ethanol is similar to soy in that null hypothesis of no intercept shifts is 

resoundingly rejected irrespective of whether a third-order or fourth-order 

approximation is used. Even so, the testing sequence in (22) applied to the fourth-order 

approximation is non informative. Alternatively, the testing sequence in (19) applied to 

the third-order approximation strongly suggest that the intercept break in the price of 

ethanol is consistent with a logistic function shift.  

 Finally, and perhaps not surprisingly given a visual inspection of the data plotted 

in Figure 5, there was no evidence of an intercept shift, and hence no evidence of a 

shifting mean, for the climate extreme index. Alternatively, Gleason et al. (2008) report 

notable trends in regional U.S. climate extreme indices during the summer and warm 

seasons since the mid 1970s. To further investigate this possibility, we employed the 

bootstrap testing framework based on a Fourier approximation to the shifting mean as 

outlined by Becker, Enders, an Hurn (2004). Applying this test we obtain an empirical 

-value of 0.20, further confirming the results for the climate extremes index reported in 

Table A1.14   

Single Equation Shifting Mean Results 

The pre-tests for intercept constancy test results are used as a guide to fit provisional 

univariate shifting-mean model for each equation. In the case where a shifting mean 

consistent with the generalized exponential transition function in (8) is called for, a 

simple grid search over plausible values for the  parameter are employed, namely, 

. The diagnostic testing framework outlined in the methodology section, 

namely, testing for remaining autocorrelation and for remaining intercept shifts, is also 

                                     
14 Indeed, the sample employed here, that is, effectively from 1985 to 2011, may be too short to identify 
any meaningful shifts in climate extremes.  
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applied. Summary results for the preferred univariate shifting mean models are 

summarized in Table A2. 

 As reported in Table A2, with the exception of soy a single transition function 

(shift function) adequately captures the corresponding intercept shifts; in the case of soy 

two logistic transition functions are required to summarize its idiosyncratic shifts. Of 

course these results do not necessarily imply that only one or two mean shifts in the 

relevant price occurs. For example, maize has one idiosyncratic intercept shift, but in 

turn is a function of lagged prices for soy, ocean freight, oil, and climate extremes. By 

virtue of the algebraic result in (14) (and as illustrated by the simulation results in 

Figure 8), the shifting mean for maize will necessarily be a function of any (all) mean 

shifts in the right-hand-side variables as well. Alternatively, oil price, which is a 

function only of its own lagged values, will necessarily be identified as having one and 

only one mean shift.15  

 Returning to the results in Table A2, there is no strong evidence of remaining 

residual autocorrelation in any of the provisional shifting mean models. As well, tests for 

remaining intercept shifts indicate in all cases that the null hypothesis cannot be 

rejected at conventional significance levels. 

 Additional diagnostic test results for the provisional shifting mean models are 

reported in Table A3. Specifically, -values for LM tests for omitted variables in each 

equation are reported in the Table. The results of these tests effectively confirm the 

basic model structure for each equation in the SM-NVAR outlined in Table 2. Taken as 

a whole, the results reported in Tables A2 and A3 suggest that the provisional shifting 

mean models are legitimate for further investigation in the form of a shifting-mean near 

vector autoregressive model. We now turn to these results. 

                                     
15 With respect to oil, both a logistic function shift and an generalized exponential function shift were 
fitted to the data. All model fit and diagnostic test results pointed toward the model with a single logistic 
function shift. 
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Shifting Mean Near Vector Autoregression Results 

As described by Holt and Teräsvirta (2012), the parameter estimates for the single-

equation shifting-mean models described previously may be used as starting values to 

estimate the parameters of an SM-NVAR by using full information maximum likelihood 

methods (FIML). Also, following van Dijk, Strikholm, and Teräsvirta (2003) and 

Teräsvirta, Tjøstheim, Granger (2010), we constrain the speed-of-adjustment 

parameters, that is, the , in the respective transition functions when performing the 

FMIL estimations. Specifically, we constrain each  so that . As well, 

we follow Enders and Holt (2012) and restrict the values for  in each transition 

function so that , which in turn is akin to the so called “trimming 

condition” typically applied in the estimation of threshold models. Employing these 

restrictions helps alleviate numerical problems within the iterations of the FIML 

estimation framework.  

 Results for the estimated equations in the SM-NVAR are reported in Table A4, 

while summary statistics for the estimated SM-NVAR, including the estimated error 

correlation matrix, are presented in Table A5. Estimated transition functions along with 

the implied shifting means for each variable in the system are shown in Figure 9.  

 As indicated in Tables A4 and A5, the estimated SM-NVAR fits the data 

reasonably well, and it results in an improvement in fit relative to the standard 

NVAR—the system AIC and HQC measures for the SM-NVAR are lower than their 

counterparts for the corresponding NVAR that does not include mean shifts. Based on 

the system  advocated by Magee (1990), the SM-NVAR with intercept shifts 

apparently results in substantial improvement in explanatory power relative to the 

NVAR without shifts. Finally, as reported in Table A5 estimated residual correlations 

are generally small with two exceptions: (1) between maize and soy (0.527); and (2) 
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between oil and ethanol (0.305). There is also modest correlations between the residuals 

for oil and ocean freight (0.119). 

 Of interest here are the estimated mean-shift (transition) functions for each price 

equation. Results in Table A4 indicate that the idiosyncratic intercept shift for maize, a 

generalized exponential transition function, is centered around October, 2005, with the 

shift starting in late 1999 and ending in 2011. The two idiosyncratic intercept shifts for 

soy are fitted as logistic functions, with the first one being rather sharp, and centered at 

at March, 2007. In contrast the second shift for soy is evolving rather slowly (i.e., is 

close to linear), and is centered around August, 2008. The single logistic function 

intercept shift for crude oil is quite smooth, and is centered around March, 2004, with 

10-percent of the adjustment taking place by June, 2006 and 90-percent of the 

adjustment occurring by December, 2007. Regarding ocean freight rates, the estimated 

idiosyncratic intercept shift also belongs to the family of generalized exponential 

functions. This shift is centered around September, 2005, which very nearly coincides 

with the center of the idiosyncratic shift for maize. The shift for ocean freight begins in 

2002, and is complete by late 2010. Finally, the idiosyncratic shift for ethanol is also of 

the logistic function variety, and is centered around August, 2010. As with soy, this 

shift is also rather gradual throughout the sample period. 

Shifting Means 

 As already noted, the algebraic solution for the SM-NVAR shifting means in (14) 

will, in principle, incorporate the intercept shifts of several, and perhaps all, equations in 

the system. In the present case it is possible to solve for the reduced form for these 

intercept shifts and, moreover, to obtain their approximate standard errors by using a 

standard delta method approximation. The estimated shifting means for each 
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commodity price, including their constituent shifts and approximate standard errors, are 

reported in Table 3.16 

Turning first to the shifting mean for maize, with the exception of the shifts for 

soy, that is, those for  and , the estimated mean shifts are apparently 

statistically significant at usual levels. The effect of the idiosyncratic shift for maize on 

its own mean price is positive. But recall that  is U-shaped, assuming unit values 

only between 1985 and 2000, and again starting in 2011. As well, the shift in crude oil 

price had a positive effect on the unconditional mean for maize and, moreover, was 

nearly equal in magnitude to the idiosyncratic shift for maize. The shift in ocean freight 

has a negative effect on the mean for maize, but recall this shift is also U-shaped. In 

other words, during the period when  was less than one, approximately between 

2002 and 2010, the effect of the ocean freight shift on maize was mitigated. What is 

clear is the idiosyncratic shift in oil, occurring approximately between 2004 and 2007, 

had a direct effect on the unconditional mean for maize. Of course this does not mean 

that a structural shift in the real price of oil “caused” a corresponding shift in the real 

price of maize. In other words, the possibility that a common but otherwise excluded 

third factor could be the underlying driver cannot be ruled out. For example, 

expansionary monetary policy and, correspondingly, a devaluation of the U.S. dollar 

relative to other major currencies could be the underlying causal factor in this instance. 

Even so, whatever the reason, it seems that structural shifts in real prices for maize and 

oil during the 2004-2007 period coincided. 

Turning next to the shifting mean for soy, results in Table 3 reveal that only the 

idiosyncratic shifts for soy had any statistically significant effect on the unconditional 

mean for soy price. Specifically, the shifts in both crude oil price and ocean freight rates 

                                     
16 Standard errors for the shift parameters are approximate for all of the usual reasons that standard 
errors derived by using the delta method are approximate. In addition, the Davies (1977, 1987) problem 

applies equally here as well, which only further contributes to the “approximate” nature of these measures. 
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appear to have only a negligible (and insignificant) impact on the shifting mean for soy. 

In this sense while movements in oil price and ocean freight rates apparently 

contributed to short- and intermediate-run movements in soy prices, their respective 

shifts had no lasting effect on the long-run mean price for soy.  

The results in Table 3 indicate that the effect of the shift in crude oil price on 

ocean freight rates, while negative, was not statistically significant. It therefore seems 

for all practical purposes that the shifting mean for ocean freight rates, like those for 

crude oil and soy prices, really depends only on its own idiosyncratic shift. Finally, 

turning to the shifting mean for ethanol, results in Table 3 suggest that, in addition to 

the idiosyncratic shift in ethanol price, the only other factor that has a statistically 

significant effect on ethanol’s underlying mean is the price of oil. Of interest is that the 

ethanol’s own-shift, , is: (1) slowly evolving, and (2) has a negative effect on 

ethanol’s underlying shifting mean. Even so, the effect of the shift in the price of oil on 

the unconditional mean for ethanol is quantitatively and qualitatively large, and from 

approximately 2000 on more than offsets the otherwise negative shift in the price of 

ethanol. The effect of the shift in crude oil price on the mean price of ethanol becomes 

qualitatively large starting in 2003, with the effect peaking in late 2008 with the onset of 

the financial crises. As already noted, a number of policy changes occurred during this 

period of time, including the U.S. renewable fuel standard put into place in the 2005 

and the phasing out of MTBE in the gasoline production in 2006. Even so, it is likely 

that without the underlying recent shift in crude oil price that ethanol price (and 

presumably production) would be nowhere near the levels observed in recent years. 

As a final exercise, it is also possible to the delta approximation method to 

obtain point-wise approximate standard errors, and therefore, say, 90-percent confidence 

intervals, for the shifting means themselves. The results of this exercise for each 

commodity price in the estimated SM-NVAR are reported in Figure 10. As illustrated in 
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Panel A of the Figure, the shifting mean for real maize price generally drifted down 

from the mid 1980s through about 2000, at which point it dipped significantly between 

early 2000 and the middle of 2002. This trend then reversed from 2002 until the fall of 

2006. From late 2006 through late 2007 the upward trend was even more accelerated. 

From early 2008 through the middle of 2009, that is, during a period coinciding largely 

with the financial crises, the shifting mean for maize then reverse direction, drifting 

somewhat lower. Beginning in the middle of 2009 the upward trend in the mean real 

price for maize resumed. Aside from these general patterns, it is also interesting to note 

that beginning in early 2000, the approximate 90-percent confidence band for maize 

price began to widen. Moreover, the widening of this band accelerated dramatically 

starting in late 2006. The implication is that the recent shifts in the underlying 

unconditional mean for maize, while notable for both their direction and magnitude, 

were also associated with greater uncertainty.  

Panel B in Figure 10 illustrates comparable results for soy. As illustrated there, 

the shifting mean for soy price generally drifted lower from the mid 1980s until late 

2006. From the fall of 2006 through late 2007, the shifting mean for real soy prices 

increased dramatically. According to model results, the general downward trend in the 

mean for soy prices resumed at that time. But again, it is noteworthy that the 

approximate 90-percent confidence bands for soy’s shifting mean started to widen in 

2002, and widened dramatically starting in late 2008. Again, while the shifts in the 

underlying mean for real soy prices have been dramatic in recent years, they have 

apparently also been associated with a greater degree of overall uncertainty. 

Regarding the shifting mean for the price of crude oil, the plots in Panel C of 

Figure 10 reveal nothing surprising—the shifting mean started to move steadily upward 

in early 2000, rose rather dramatically from 2001 through 2008, and has increased at a 
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decreasing rate since then. The width of the 90-percent confidence bands also remained 

rather stable, although they widened slightly in the early 2000s and again since 2008. 

Regarding the shifting mean for the ocean freight index, the plot in Panel D of 

Figure 10 shows that no discernable shifts occurred from the mid 1980s through the 

early 2000s. Beginning in early 2002 the mean for ocean freight started to move higher, 

and continued to do so through the middle of 2004. At that point the trend in ocean 

freight’s mean started to edge lower, with the downward trend accelerating between 

early 2007 and late 2009. In the last several years in the sample it seems that the 

shifting mean for ocean freight rates has leveled off at a new, somewhat lower level. Of 

almost greater interest are the corresponding shifts in the 90-percent confidence bands 

for ocean freight’s shifting mean. The confidence bands widened somewhat between 

early 2003 and late 2007, and then increased dramatically in magnitude between late 

2007 and late 2009, a period that almost exactly coincides with the NBER dates for the 

most recent economic downturn (i.e., December, 2007 through June, 2009). 

The shifting mean for real ethanol price is plotted in panel E of Figure 10. As 

indicated there, the underlying mean for real ethanol price drifted lower from the mid 

1980s through late 2001. At that point ethanol’s mean started moving higher, peaking in 

late 2007. Since that time the underlying mean for real ethanol price has resumed a 

gradual downward trend. Also, while there was some widening in the confidence bands 

for this mean starting 2000s, the increase has not been dramatic.   

Effects of Shifts on Agricultural Prices 

In Figures 11 − 13, we perform a counterfactual analysis to ascertain the effects of the 

various shifts on the mean prices of maize, soy and ethanol. Similar to our VAR results, 

we plot the estimated means of the various commodity prices along with the 

hypothetical paths obtained by zeroing-out each estimated shift. By comparing the two 



42 
 

paths (and recalling that are variables are in logarithms), it is possible to directly show 

the influence of each shift. Regarding maize, it is not surprising to note that Panel A of 

Figure 11 shows that the idiosyncratic, or own, shift was especially important. Had the 

shift not occurred, the estimated mean price of maize in at the end of 2011 would have 

been about 30% less than the actual mean estimate. This is similar in magnitude to the 

results from the VAR analysis that was shown in the top Panel of Figure 7. Recall that 

the estimated “own” shift in maize can include shifts resulting from the real exchange 

rate and interest rate changes analyzed in the VAR portion of our analysis. The effects 

of the independent shifts in soy are mixed: the first mean shift for soy acted to increase 

the price of maize whereas the second acted to lower the price. What is clear (see Panel 

D) is that the recent run-up in oil prices has served to increase the price of maize by 

more than 20%. Moreover, as shown in Panel E of the Figure, the effect of the recent 

decline in the mean of ocean freight rates has had a depressing effect on maize prices of 

approximately 12%.  

 From Figure 12, it should be clear that the “own” shifts for soy were of primary 

importance in determining its time path. As with maize, the decline in ocean freight 

rates has acted to keep the mean price of soy about 11% lower than otherwise. 

Somewhat inexplicably, the effect of the run-up in oil prices had a small but negative 

effect on soy prices. As shown in Panel C of Figure 12, the estimated mean price of soy 

would have been about 10% higher had the mean price of oil not shifted. Even so, recall 

from Table 3 that the oil shift is not statistically significant in the soy price equation. 

 Panel F of Figure 13 indicates that the “own” shift had only very large effect on 

the price of ethanol. By the end of the sample, the magnitude of the effect was 

approximately 70%. Note that the shift in maize and the two shifts in soy had only 

minor effects on ethanol prices. The key result, shown in Panel D of the Figure, is that 
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the run-up in oil prices had a pronounced effect on ethanol prices. We estimate than the 

mean price of ethanol would have actually declined had the mean shift in the price of oil 

not occurred. Instead, the run-up in oil prices added approximately 60% to the mean 

price of ethanol; instead of falling by almost 50%, the mean of ethanol prices rose by 

approximately 10%.  

8. Conclusions  

Increases in energy prices, income growth in China, Brazil and India, new uses for 

ethanol, changes in storage costs, and macroeconomic factors such as exchange rate and 

interest rate changes have all been blamed for the unprecedented high levels of grain.   

Since the cobreaking literature is just emerging, we perform two polar opposite 

methodologies in order to understand the contribution of these various factors in the 

run-up of grain prices.  A simple VAR indicates that mean shifts in real energy prices, 

exchange rates and interest rates have all contributed to the higher grain prices. 

Ideosyncratic shocks have also played an important role. The second methodology 

entends Enders and Holt’s (2012) univariate analysis to a time-varying multiple 

equation setting that allows for smoothly evolving mean shifts. In addition to the 

general rise in real energy prices, the introduction of ethanol as an important fuel source 

is found to be a causal factor in the run-up of grain prices. Economic growth in 

emerging economies such as China, India, and Brazil is also identified as a contributing 

factor. 
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, Timo Teräsvirta, and Philip Hans Franses, “Smooth Transition Autoregres-
sive Models – A Survey Of Recent Developments,” Econometric Reviews, 2002, 21
(1), 1–47.

Wang, Dabin and William G. Tomek, “Commodity Prices and Unit Root Tests,”
American Journal of Agricultural Economics, 2007, 89 (4), pp. 873–889.

48



Williams, Jeffrey C and Brian D Wright, Storage and Commodity Markets,
Cambridge University Press, 1991.

Wright, Brian D., “The Economics of Grain Price Volatility,” Applied Economic
Perspectives and Policy, Spring 2011, 33 (1), 32–58.

Zhang, Ming, Artificial Higher Order Neural Networks for Economics and Business,
Hershey, PA, USA: IGI Publishing, 2008.

Zhang, Wenlang and Daniel Law, “What Drives China’s Food-Price Inflation and
How does It Affect the Aggregate Inflation?,” Working Papers 1006, Hong Kong
Monetary Authority July 2010.

Zhang, Zibin, Dmitry Vedenov, and Michael Wetzstein, “Can the U.S.
Ethanol Industry Compete in the Alternative Fuels Market?,” Agricultural Eco-
nomics, 2007, 37 (1), 105–112.

, Luanne Lohr, Cesar Escalante, and Michael Wetzstein, “Ethanol, Corn,
and Soybean Price Relations in a Volatile Vehicle–Fuels Market,” Energies, 2009,
2 (2), 320–339.

49



Table 1: Unit Root Test Results. 

 Maize Soybeans Oil Freight Rexrate Climate Ethanol

 -0.022 -0.037 -0.015 -0.048 -0.010 -0.605 -0.040

 (-2.92) (-3.54) (-1.88) (-4.27) (-1.70) (−8.22) (-0.901)

   

 3 3 3 3 3 1 1 

 -0.092 -0.099 -0.096 -0.074 -0.038 −0.610 -0.120

 (-5.43) (-5.77) (-5.50) (-5.28) (-3.491) (−8.24) (-4.86)

   

 1 1 2 3 2 3 1 

 -0.053 -0.071 -0.060 -0.073 -0.029 −0.626 -0.119

 (-4.14) (-4.93) (-4.18) (-5.17) (-3.15) (−8.36) (-4.86)

   

 −0.088 −0.099 −0.095 −0.079 −0.047 −0.589 −0.125

 (-5.30) (-5.74) (-5.34) (-4.66) (-3.79) (−8.07) (-4.97)

   

 0.0106 0.0122 0.0140 0.0127 0.0302 0.028 0.0085 

lags 2 2 4 3 3 4 3 

Start 1974:01 1974:01 1974:01 1974:01 1974:01 1974:01 1983:01

 
Note: No series contains a deterministic trend: the null that the coefficient on a trend term 
equals zero could never be rejected at conventional significance levels.  is the estimated 

parameter for the augmented Dickey Fuller test. The critical value is −2.87 at the 5% level. 
Bold figures are significant at the 5% level.  is the number of cumulative frequencies used 
in the estimation of the Fourier version of the ADF test and  is the coefficient on the 

lagged level term. The 5% critical value is −3.76 for  = 1, −4.45 for  = 2 and −5.03 for  
= 3. Bold figures are significant at the 5% level.  is the best fitting frequency and  is 

the coefficient on the lagged level term. The 5% critical values are −3.76, −3.26 and – 3.06, 
for  = 1, 2, and 3, respectively. Bold figures are significant at the 5% level.  is the 

sample value of  test for the LM version of the Fourier unit root test. The value of  is the 

same as that for the DF-version of the test. The critical values for  = 1, 2 and 3 are −4.05, 

−4.79, and −5.42, respectively.  is the sample for of the variance ratios for the 
stationary version of the Fourier test. Hence, the null hypothesis is that the series is 
stationary. The 5% critical values are 0.169, 0.102, and 0.072, for  = 1, 2, and 3, 
respectively. The null of stationarity cannot be rejected for any of the series. For the 
Climate series, the value of  selected by the Fourier KPSS test was 1. Lags denotes the 

number of lags in the model; lags−1 is the number of lags used in the ADF versions of the 
Dickey-Fuller type tests. Start is the starting date of the estimation (accounting for lags).  



 

 

Table 2: Structure of Individual Equations in the Shifting-Mean Near VAR. 

Ocean Climate

Lag Maize Soybeans Oil Freight Ethanol Extreme

Commodity Length       

Maize  2      

Soybeans   2   

Oil   2  

Ocean Freight   3   

Ethanol   3    

Climate Extreme  1  

 

Note: Lag length is determined by using the Hannan-Quinn (HQC) criterion. A  indicates that lags of the variable in the associated column are 

included in the respective equation. 

  



Table 3: SM-VAR Shifting Means for Maize, Soy, Oil, Ocean Freight, and Ethanol..  

 

 

 

 

 

 

 

 

 
Note: Approximate standard errors obtained by using the delta method are given below parameter estimates 
in parentheses.

 
 is the idiosyncratic transition function for maize;  and  are similarly defined 

for soy;  is the idiosyncratic shift for oil;  is likewise defined for the ocean freight index; and  
is the idiosyncratic shift for ethanol. Specifications for the transition functions along with their estimated 
parameters are reported in Table 6. 
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Figure 7: Historical Decompositions of Real Grain Prices with Respect to the Real
Treasury Bill Rate and Own Shocks (Top Panel) and Real Energy Price and Real
Exchange Rate (Bottom Panel).
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Panel A: y1 Simulated Series
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Panel B: y2 Simulated Series
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Figure 8: A Single Realization for the Bivariate Simulated System with ρ = 0.5:
(Panel A) y1t and (Panel B) y2t. The dashed lines indicate the shifting means of the
DGP and the dash–dot lines indicate the true transition functions.
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Panel A: Log Real Price of Maize
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Panel C: Real Log Price of Oil
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Panel E: Log Real Ethanol Price

Ocean Freight G(6)

Time

lo
g

(P
e

th
a

n
o

l/
P

P
I)

T
ra

n
s
itio

n

1984 1987 1990 1993 1996 1999 2002 2005 2008 2011
4.25

4.50

4.75

5.00

5.25

5.50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Panel B: Log Real Price of Soy

Soy Price G(2) G(3)

Time

lo
g

(P
S

o
y

/P
P

I) T
ra

n
s
itio

n

1984 1987 1990 1993 1996 1999 2002 2005 2008 2011
4.00

4.25

4.50

4.75

5.00

0.00

0.25

0.50

0.75

1.00
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Figure 9: Data and Estimated Transition Functions, 1984–2011. Maize (A), Soy
(B), Oil (C), Ocean Freight Rate (D), and Ethanol (E).
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Panel A: Log Real Price of Maize, Shifting Means, and 90-Percent Confidence Bands
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Panel B: Log Real Price of Soy, Shifting Means, and 90-Percent Confidence Bands
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Figure 10: Observed log Real Prices, Shifting Means, and 90–percent Confidence
Intervals: (Panel A) Maize,(Panel B) Soy, (Panel C) Oil, (Panel D) Ocean Freight,
(Panel E) Ethanol.
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Panel C: Log Real Price of Oil, Shifting Means, and 90-Percent Confidence Bands
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Panel D: Log Real Ocean Freight Rate, Shifting Means, and 90-Percent Confidence Bands
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Figure 10: (Continued.)
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Panel E: Log Real Price of Ethanol, Shifting Means, and 90-Percent Confidence Bands
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Figure 12: (Continued).

65



Panel A: Effect on Maize of Leaving out Own-Shift for Maize

Observed Shifting Mean Leaving out G(1)

Time

R
e

a
l 

P
ri

c
e

 o
f 

M
a

iz
e

1984 1987 1990 1993 1996 1999 2002 2005 2008 2011
3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Panel C: Effect on Maize of Leaving out Second Shift for Soy
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Panel E: Effect on Maize of Leaving out Shift for Ocean Freight
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Panel B: Effect on Maize of Leaving out First Shift for Soy
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Panel D: Effect on Maize of Leaving out Shift for Oil
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Figure 11: Comparative Dynamics of the Shifting Mean for Real Maize Price with
Excluded Shifts, 1984–2011. Excludes Maize’s Own Shift (A), Excludes First Soy
Shift (B), Excludes Second Soy Shift (C), Excludes Oil Shift (D), and Excludes Ocean
Freight Shift (E).
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Panel A: Effect on Soy of Leaving out First Own-Shift for Soy
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Panel C: Effect on Soy of Leaving out Shift for Oil
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Panel B: Effect on Soy of Leaving out Second Own-Shift for Soy
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Panel D: Effect on Soy of Leaving out Shift for Ocean Freight
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Figure 12: Comparative Dynamics of the Shifting Mean for Real Soy Price with
Excluded Shifts, 1984–2011. Excludes Soy’s First Own-Shift (A), Excludes Soy’s
Second Own-Shift (B), Excludes Oil Shift (C), and Excludes Ocean Freight Shift (D).
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Panel A: Effect on Ethanol of Leaving out Shift for Maize
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Panel E: Effect on Ethanol of Leaving out Shift for Ocean Freight
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Panel D: Effect on Ethanol of Leaving out Shift for Oil
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Panel F: Effect on Ethanol of Leaving out Own-Shift for Ethanol
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Figure 13: Comparative Dynamics of the Shifting Mean for Real Soy Price with
Excluded Shifts, 1984–2011. Excludes Soy’s First Own-Shift (A), Excludes Soy’s
Second Own-Shift (B), Excludes Oil Shift (C), and Excludes Ocean Freight Shift (D).
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Appendix Table A1: Results of Intercept Constancy Tests for Select Commodity Prices. 

Commodity        Shift Type 

Maize 0.056 0.006 0.835 0.995 0.030 0.008 0.050 Exponential

Soybeans 0.021 0.029 0.030 0.644 0.045 0.206 0.807 Logistic

Oil  0.328 0.047 0.024 Undetermined

Freight 0.792 0.332 0.764 0.955 0.027 Exponential

Ethanol  0.369 0.176 0.781 0.718 Logistic

Climate Index 0.196 0.648 0.037 0.734 0.319 0.987 0.805 —
 

Note: The column headed  includes approximate -values for a test of the null hypothesis in (15) obtained by including third-order terms in the 

trend variable in testing equation (14). Columns headed , , and  record -values for the testing sequence in (17), as proposed by Lin and 

Teräsvirta (1994). Similarly, the column headed  includes approximate -values for a test of the null hypothesis in (19) obtained by including 

fourth-order terms in the trend variable in testing equation (14). Columns headed  and  report -values for the testing sequence in (21), as 

proposed by Lin and Teräsvirta (1994) Escribano and Jordà (1999). Bolded numbers in the  and  indicate that the null hypothesis of no intercept 

shifts is rejected at the 0.05 significance level. Underlined numbers in the columns headed , , and  and, likewise,  and , indicate the minimal 

-value in the testing sequence. The final column indicates the likely nature of the intercept shift as determined from the testing sequences.  

  



Appendix Table A2: Single-Equation Model Assessment and Diagnostic Test 

Results.  

Measure   Maize Soybeans Oil Freight Ethanol

No. Shifts 1 2 1 1 1 

Shift Type GEXP LOGIT LOGIT GEXP LOGIT

 4 -- -- 2 -- 

 0.943 0.944 0.970 0.920 0.885 

 0.054 0.046 0.079 0.054 0.067 

 0.993 0.991 0.967 0.977 0.968 

AIC -2.960 -3.299 -2.224 -2.973 -2.528

HQC -2.895 -3.248 -2.197 -2.926 -2.468

AR(4) 0.714 0.595 0.568 0.753 0.388

AR(6) 0.780 0.458 0.142 0.870 0.638

AR(12) 0.333 0.590 0.076 0.056 0.797

ARCH(6) 0.959 0.458 0.142  

ARCH(12) 0.845 0.590 0.001  

 0.132 0.799 0.515 0.083 0.168 

 0.073 0.469 0.675 0.078 0.251 

LJB   105.46 121.20 181.53 324.07 16.75
 

Note: The effective sample size, T, is 323 observations. No. of Shifts indicates the number of 
intrinsic intercept shifts estimated for each equation. Shift Type indicates whether the intercept 
shift is of the generalized exponential (GEXP) or logistic (LOGIT) form.  indicates the 
estimated value for the  parameter in the generalized exponential shift function, determined by 

simple grid search.   is the unadjusted , and  is the residual standard error.  is the 
ratio of the respective standard error from the shifting-mean model relative to the constant 
intercept model. AIC is the Akaike Information Criterion, and HQC is the Hannan-Quinn 

Information Criterion. AR(j), j = 4, 6, 12, is the -value from an -version of the LM test for 
remaining autocorrelation up to lag j. Entries for ARCH(j), j = 6,12 are similarly defined for 

ARCH errors up to lag . Entries for  are -values from an -version of an LM test for 

remaining intercept shifts based on using third-order terms in . Likewise, values for  are -
values from an -version of an LM test for remaining intercept shifts based on using fourth-order 

terms in . LJB is the Lomnicki-Jarque-Bera test of normality of the residuals (critical value 

from the  distribution is 13.82 at the 0.001 significance level).     



Appendix Table A3: Single Equation Lagrange Multiplier Test Results for 
Excluded Variables.  

  Null Hypothesis -value

  
  No Lagged Ethanol Price Effects in Maize Price Eqn. 0.073

  No Lagged Maize Price Effects in Soy in Maize Price Eqn. 0.178

  No Lagged Oil Price Effects in Soy Price Eqn. 0.165

  No Lagged Ethanol Price Effects in Soy Price Eqn. 0.096

  No Lagged Climate Extreme Effects in Soy Price Eqn. 0.832

  No Lagged Maize Price Effects in Oil Price Eqn. 0.608

  No Lagged Soy Price Effects in Oil Price Eqn. 0.858

  No Lagged Ocean Freight Rate Effects in Oil Price Eqn. 0.490

  No Lagged Ethanol Price Effects in Oil Price Eqn. 0.724

  No Lagged Climate Extreme Effects in Oil Price Eqn. 0.160

  No Lagged Maize Price Effects in Ocean Freight Rate Eqn. 0.409

  No Lagged Soy Price Effects in Ocean Freight Rate Eqn. 0.072

  No Lagged Ethanol Price Effects in Ocean Freight Rate Eqn. 0.074

  No Lagged Climate Extreme Effects in Ocean Freight Rate Eqn. 0.070

  No Lagged Soy Price Effects in Ethanol Price Eqn. 0.960

  No Lagged Climate Extreme Effects in Ethanol Price Eqn. 0.250

 
Note: In all instances the null hypothesis is that lagged values of the variable indicated should be 

excluded from the equation indicated. Entries in the column headed -values are approximate 
 from an -version of an LM test of the indicated null hypothesis. All tests were 

performed in a manner consistent with the diagnostic testing framework for smooth transition 
models outlined by Eitrheim and Teräsvirta (1996).     



Appendix Table A4: SM-VAR Estimation Results 

Panel A: Maize Price,  

 

Panel B: Soybean Price,  

Panel C: Oil Price,  

 
 



Table A4: Continued 

Panel D: Ocean Freight Rate,  

 
 

Panel E: Ethanol,  

 
 

Panel F: Climate Extreme Index,  

 

 
 

Note: Asymptotic heteroskedasticity robust standard errors are given below parameter estimates in parentheses; is the squared correlation 

between actual and fitted values for each equation;  denotes the  equation’s residual at time , . 



Appendix Table A5: SM-VAR Summary Statistics.  

 
, 

 

                          , , 

 

                          ,    

 

,   

 

System Covariance Matrix:  
 
 

, where 
 
 

 

 

 
 

 
Note: AIC is the system Akaike Information Criterion and HQC denotes the system Hannan-Quinn 
Criterion. A subscripted SM-VAR refers to the model estimated as a shifting-mean vector autoregression 

and a subscripted VAR refers to a standard VAR model without intercept shifts.  denotes the likelihood 

system  defined by Magee (1990); while  indicates the relative contribution to  of the intercept 
shifts.  indicates the estimated correlation matrix, and  is a diagonal matrix with the square root of 

each equation’s estimated error variance on the main diagonal. , , 
, , , .  
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