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The summer of 2012 has seen continued press coverage of the extremely hot and dry

conditions in the Midwestern United States. Commodity prices, especially corn, have risen

sharply. Since corn is a feedstock for many animals, meats and eggs are projected to become

more expensive according to USDA.1

The recent price spike is on top of a significant increase in commodity prices since 2005.

Many factors have been attributed to this trend, e.g., the increased demand for calorie-

intensive meats as emerging countries become richer, an increased demand for basic com-

modities to meet biofuel mandates, as well as supply shocks due to weather events (drought

in Australia or Russian wildfires). Simulating the effect of shifts in both demand and supply

and the effect on food commodity prices requires an estimate of demand and supply elas-

ticities of commodities. Since these commodities are traded internationally, it is the global

supply and demand elasticity that matter.

There have been various approaches to identify demand and supply elasticities. Haus-

mann, Auffhammer & Berck (Forthcoming) and Carter, Rausser & Smith (2012) use vector

auto-regression to estimate the effect of the US ethanol mandate on US corn prices. The

former finds that the US ethanol mandate is responsible for roughly 27% of the observed

price increase in the 2006/2007 boom year, while the latter finds that the US ethanol man-

date resulted in prices that are roughly 30% higher corn price than they would have been

without the mandate. In both approaches, lagged variables are allowed to influence futures

prices. One potential concern behind the VARs is that some shocks are anticipated (e.g.,

pest outbreaks), and hence both lagged price and past futures prices can be endogenous.

In earlier work, we used an IV approach where futures prices were instrumented using

yield shocks (deviation from a deterministic trend) or observable lagged weather variables

(Roberts & Schlenker 2009, Roberts & Schlenker 2012). Instead of zooming in on one crop

in one country (e.g., the United States), we examine the global demand and supply of the

four major staple commodities (maize, rice, soybeans, and wheat), which together account

for roughly 75% of the calories humans consume. The idea behind our identification is to use

past shocks, which shift past inventories and thereby the combined market demand curve in

the current period (through the demand to refill / deplete inventory levels). These “shifts”

in the demand curve can be used to trace out the supply curve. This is the mirror image

of the work by Wright (1928), who used weather-induced supply shifts to identify demand.

While the use of lagged weather variables is more defensibly exogenous, the first stage is less

1Meat prices might initially fall as livestock producers are selling of their herds, leading to an increase in
supply.
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significant than if we use deviations from a trend. Our baseline specification therefore relies

on country-and-crop specific deviations from a trend and argues that they are predominately

due to weather. One potential concern of this approach is that there might be unobserved

demand or supply shifts that are serially correlated, which would undermine the IV strategy.

The first major contribution of this paper is to extend the reduced-form IV approach and

allow for serially correlated unobservables in Section 1. We introduce recent advances in the

IO literature, that use observed decisions as proxies for the unobserved serially correlated

states (Olley & Pakes 1996). Different modeling strategies are discussed in Section 1.1. The

data is briefly summarized in Section 1.2 and the results are shown in Section 1.3.

The second contribution is to examine the effect of the 2012 heat wave on predicted US

production in Section 2. While it has been hot and dry, climate change predict a new normal

that will be much warmer. Predicted yield declines are slightly less than in 1988, the year

with the largest production decline in the last 60 years.

The third and final contribution in Section 3 is to discuss how supply shortfalls will

interact with the ethanol mandate. On the one hand, the ethanol mandate requires that

corn be diverted for fuel, thereby limiting the amount that is available for food which can

amplify production shocks. On the other hand, a portion of the ethanol mandate (up to 20%)

can be banked between periods, which allows for smoothing of shocks. Finally, Section 4

concludes.

1 Identifying Demand and Supply Elasticities

A basic model of demand and supply tells us that an outward shift in demand by ∆q (in

percent) will increase the equilibrium price by 1
βs−βd

∆q percent, where βs and βd are the

supply and demand elasticity, respectively. An estimate of the demand and supply elasticity

is hence all we need to obtain the multiplier 1
βs−βd

, which translates quantity shifts in demand

into equilibrium price shifts.

In the following we generalize the model of Roberts & Schlenker (2012) to obtain es-

timates of βs and βd that are consistent under a weaker set of assumptions. We simplify

our characterization of world food commodity market by transforming quantities of maize,

wheat, rice, and soybeans into caloric equivalents and then aggregating them (Roberts &

Schlenker 2009).2 Aggregating crops facilitates a simple yet broad-scale analysis of the supply

2Cassman (1999) attributes two-thirds of world calories to corn, wheat, and rice. Adding soybean calories
brings the share to 75 percent.
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and demand of staple food commodities on a worldwide scale. Prices for all four commodities

tend to vary synchronously. For example, the recent Russian wildfires that impacted global

wheat production influenced maize prices almost as much as wheat prices.

1.1 Model

In the following we introduce three models of yields that become successively less restrictive.

Roberts & Schlenker (2012) relied on Model 1 to obtain yield shocks, while we will follow

Model 3 below in this paper.

1.1.1 Model 1: Yield as a Function of Trend and Weather

The first model is the simplest model of technology and weather. In this model yields are

given by

yit = hi(t, θ) + ǫit (1)

where yit is log yield in country i at time t, hi(t, θ) is a flexible time-trend parameterized by

θ (capturing the effects of technology) and ǫit represents the unmeasured effects of weather

that causes fluctuations around the mean. It seems plausible to assume that weather is

difficult to predict at time t− 1 and we might assume formally that

E[ǫit |Jt−1] = 0, (2)

where Jt−1 is a set of lagged variables that do not predict next year’s weather.

Equation (1) can be estimated by a standard OLS regression of log-yields on a flexible

time trend, recovering “weather” as the residual of the equation. This is the approach we

follow in Roberts & Schlenker (2012). Restriction (2) can be tested, and we find no evidence

that past (estimated) weather does predict future weather. While we were unable to reject

the simple technology/weather model, a lack of a rejection is not a proof of absence.

1.1.2 Model 2: Yield as a Function of a Trend, Price, and Weather

The second model includes price as an additional explanatory variable besides the trend.

This model is

yit = hi(t, θ) + ηpet + ǫit, (3)

where pet is the log of the expected harvest price at the time farmers are making planting

decisions. The parameter η is the yield-price elasticity, which is to be estimated. In this
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model, we still assume that ǫit is serially uncorrelated weather.

There are several classic ways of estimating (3), which are sensitive to particular timing

assumptions. One is to assume that the uncorrelated weather term is not observed until

after pet is observed. This would justify OLS estimation of (3). Obviously, this is incorrect

if farmers make yield-influencing decisions late in the crop-year, so that weather is at least

partly observed or predictable. It would also be problematic if there are know supply states

that influence both futures prices and yields, e.g., the presence of soybean rust in the early

2000s.

A second classic assumption is that assume that ǫit is at least partly predictable when

pet is observed, but that a lagged price pet−1 is [a] uncorrelated with ǫit but [b] correlated

with pet−1. In this case, lagged price can be used as an instrument for current price. Note

that if ǫit was serially correlated, this approach would not work as lagged price would be

likely correlated with current ǫit. Again, technological breakthroughs or persistent pest

problems could induce such correlation. The classic “lagged price as instrument” is justified

by assuming that lagged price is an element of the set Jt−1 in (2).

Our “uncorrelated weather” test can be thought of as following from an assumption that

lagged weather is an element of Jt−1. Since ǫt−1 is assumed to be unobserved, this does not

lead to a simple IV strategy. However, it does lead to a natural “moment” restriction in a

GMM context (Hansen 1982). In particular, one can impose the moment

E[ǫit, ǫi(t−1)] = E
[

yit − hi(t, θ)− ηpet , yi(t−1) − hi(t− 1, θ)− ηpet−1

]

= 0 (4)

One could identify the price-coefficient η either by using (4) alone, or by combining that

restriction with other IV-style restrictions (such as the “lagged price as instrument restric-

tion.”) Combining restrictions would tend to result in more precise estimates.

1.1.3 Model 3: Correlated (Non-weather) Errors

The relatively simple models of the prior discussion all rely on the idea that the “true” error

is serially uncorrelated. We now introduce two explicit sources of serial correlation. The

idea will be to isolate the “weather” shock even in the presence of the serially correlated

errors. As in the Olley-Pakes production function literature (Olley & Pakes 1996), we will

use observed decisions as proxies for the unobserved serially correlated states. This is also

closely related to the working paper by Ackerberg, Caves & Frazer (2006).

At the time of supply, there are known states of demand and supply, denoted νt and ωt
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respectively. We assume that that the relavent state variables in the market are these states

of demand and supply together with the amount of land area cultivated in the prior period,

ai(t−1), any observed exogenous input prices rt, and the trending level of technology, τ . As

usual τ is modeled as a smooth function of time t.

The states (νt, ωt) can be arbitrary serially correlated. Assume that all market partici-

pants, including the farmers and traders in futures markets, observe νt and ωt at the time

of planting, although the econometrician does not.

The futures market observes all the state variables and sets the futures price (using

at = {a1t, a2t, . . . , ant}, i.e., the set of planting areas of all countries i)

pet = f(at−1, at, rt, νt, ωt, t) (5)

Farmers make two decisions based on these states: they first choose land area, ait, and then

non-land inputs, kit according to the decision rules:

ait = h(at−1, rt, νt, ωt, t) (6)

kit = g(at, rt, νt, ωt, t) (7)

Note that ait and kit depend on all the states that determine pet , so this model nests a model

where the inputs (ait, kit) depend directly on price.

The land and non-land inputs, together with the technology shock determine expected

yield:

E[yit| ait, rt, ωt] = ȳi(ait, kit, ωt, t). (8)

After planting, weather (and any deviation of tecnology from trend) is realized and actual

observed yields are

yit = ȳi(ait, kit, ωt, t) + ǫit (9)

where ǫit is by construction uncorrelated with the states at planting time t. Furthermore, we

assume that while the states (ω, ν) can be arbitrarily serially correlated, ǫit is itself uncorre-

lated with the future evolution of the market. This is consistent with the interpretation of

ǫ as weather, but ǫ could also include other transitory supply shocks.

The problem with estimating (9) is that [i] we don’t see the persistent supply state, ωt

and [ii] we don’t necessarily see all the non-land inputs kit. To get around the latter problem,
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we substitute the non-land input equation (7) into the expected yield equation (8) and get

yit = ȳi(at, rt, νt, ωt, t) + ǫit (10)

Now the problem is that we don’t observe ωt and t, but we will solve for the unobserved

demand and supply shocks via a generalization of Olley & Pakes (1996).

In particular, we treat the observed futures price and the land choice as two equations

in the (two) unknown demand and supply states. Specifically, we assume that (5) and (6)

can be inverted to solve for the two unknown states:

ωt = z1(at−1, at, p
e
t , rt, t) (11)

νt = z2(at−1, at, p
e
t , rt, t) (12)

Plugging these two back into the yield equation (10) gives

yit = ỹi (at−1, at, p
e
t , rt, t) + ǫit (13)

Because ǫit is unpredictable from the arguments of ỹ, we can estimate (13) to uncover ǫit

as the residual from the regression. The function ỹ has no particular interpretation, it is a

kind of reduced-form equation. The important point is that residual ǫit has the properties

of our earlier “deviation from yield” weather variable under a weaker set of assumptions,

specifically allowing for serially correlated supply and demand states. The residual can be

used as an instrument in the same way.

Specifically, we run a regression for each country and crop that on averages produces at

least 0.005percent of global supply (countries are given in Tables 1 and 2).

yit = β0 + β1ai(t−1) + β2ait + β3p
e
t + β4rt + f(t) + ǫit (14)

where yit is the log yield in country i in year t, ai(t−1) and ait are the lagged and concurrent

log growing area of the crop in country i, pet is the futures prices at the Chicago Board of

trade at the beginning of the growing season,3 and rt is an index of fertilizer prices in the

United States in March/April of year t.

The whole argument of this subsection allows us to carry forward exactly in the manner

3The months in which the futures prices are evaluated are given in the first column of Tables 1 and 2. In
case the month is September, e.g., the case of winter wheat or other crops grown in the Southern hemisphere,
we evaluate the futures contract in September of the year preceding the harvest.
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of Roberts & Schlenker (2012), except that instead of using yield “deviations from trend”

as the “weather” variable, we use the residuals of the (explicitly motivated) “kitchen sink”

regression in (14). The observed variables (at−1, at, p
e
t) have both [a] potential direct (causal)

effects on yield together with [b] “proxy” effects in controlling for the serially correlated

shocks. I.e., once we obtained the global production shock ωt by summing over all ǫit

(countries and crops) in (14), we run:

Supply: qst = αs + βspst + γsωt + fs2(t) + ut (15)

pst = δs + µs0ωt + µs1ωt−1 + fs1(t) + ξt (16)

Demand: qdt = αd + βdpdt + fd2(t) + vt (17)

pdt = δd + µd0ωt + fd1(t) + ηt (18)

Log quantities supplied and demanded are denoted by qst = log(st) and qdt = log(st−1+xt−1−

xt), respectively. The amount consumed (demanded) is the difference between carryover from

last period (new production st−1 plus the amount stored xt−1) and the amount xt that is

stored for the next period. The supply equation uses the log of future price pst = log (pt|t−1)
4,

while the demand equation uses log futures prices during the month of delivery pdt = log(pt).

Intercepts αs, αd, δs, and δd are allowed to evolve over time according to time a trend fi(t).

1.2 Data

We use the same data as in Roberts & Schlenker (2012): World production and storage

data are publicly available from the Food and Agriculture Organization (FAO) of the United

Nations (http://faostat.fao.org/) for the years 1961-2010. The data include production, area

harvested, yields (ratio of total production divided by area harvested), and stock variation

(change in inventories) for each of the four key crops. The last variable is only available until

2007. In our model estimates below, we stop all series in 2007 because quantity demanded

(which depends on changes in inventory) is not available after 2007. In a sensitivity check, we

also use data from the Foreign Agricultural Service (FAS) by the United States Department of

Agriculture (http://http://www.fas.usda.gov/) that has data for 1961-2010 for all variables,

including stocks.5 Variables are converted into edible calories using conversion factors by

Williamson & Williamson (1942), which specify edible calories per output quantity of various

4We use futures prices in December of period t − 1 with a delivery in December of year t for corn and
wheat and a November delivery for soybeans and rice.

5FAS reports production for marketing years.
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crops. Consumption (quantity demanded) is calculated as production minus the net change

in inventories.

Our model uses futures prices from the Chicago Board of Trade with a delivery month

of December for maize and wheat, and November for soybeans and rice.6 We construct

the demand price pdt as the log of the average futures price during the month when delivery

occurred, e.g., in December of the delivery year for corn. Futures price in the supply equation

pst = pt|t−1 is the log of the average futures price in December one year prior to delivery.7 All

prices are deflated by the Consumer Price Index.8 Prices for each commodity are converted

to their caloric equivalent, with the world calorie price taken as world production-weighted

averages of the four commodities.

1.3 Empirical Results

We will first replicate the analysis of Roberts & Schlenker (2012) before we present the new

revised results.

1.3.1 Replication of Roberts and Schlenker (2012)

Table 3 is taken out of Roberts & Schlenker (2012) for comparison.9 Results include IV and

3SLS estimates, each with multiple specifications of the time trend. Elasticity estimates are

reasonably stable across models, varying between 0.086 and 0.114 for supply and -0.028 and

-0.067 for demand. F-statistics for first-stage instruments, lagged yield shocks ωt−1, for the

case of supply, and concurrent yield shocks ωt, for the case of demand, are given at the bottom

of the table. All F-values are greater than 10. Comparison of the coefficients on ωt−1 in the

futures-price regression (panel A) and ωt in the current-price regression (panel B) imply

shocks affect futures prices nearly as much as current prices. This is consistent with storage

theory wherein transitory shocks are smoothed over time, giving rise to autocorrelation in

prices. It is also interesting that ωt is statistically significant in some of the futures price

6We use futures price for “No. 2 yellow” for corn, “No. 1 yellow” for soybeans, “No. 2 soft red” for
wheat, and “Rough Rice #2” for rice. Rice futures did not trade before 1986, so we prorate the price of rice
by the change in rice spot data. For example, if the spot data in 1980 was 70% of 1986, we set the futures
price data in 1980 as 70% of the futures price in 1986.

7In some cases the time series of a contract does not extend back to the previous December so we take
the average price in months closest to previous December.

8We deflate prices before we take logs. We use the CPI for all urban consumers:
ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt

9Recall that the model used deviations from a trend as yield shocks.
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regression. This indicates that shocks are at least partially forecastable.10

There is a tradeoff between the two estimation methods (IV or 3SLS). For IV specifica-

tions we report robust standard errors throughout the paper (unless noted otherwise) that

account for arbitrary forms of heteroscedasticity and autocorrelation in the error term. The

3SLS results are more efficient than IV estimates, but 3SLS standard errors may be biased

if the error terms are not iid.

Table 3 also includes implied effects of the US ethanol mandate on world commodity

prices. A shift in demand ∆q changes equilibrium price by ∆q

βs−βd

. We therefore define a

price multiplier 1

β̂s−β̂d

using point estimates for the supply and demand elasticity, which

translates outward shifts in demand (changes in quantities) into price changes. Multipliers

range from 5.80 to 7.85, which imply that a 5% shift in demand food into fuels increase price

of the four staple commodities by 29%-39%. Our preferred estimate uses the more efficient

three-stage least squares estimator and more flexible time trends to account for the repeated

spikes in the data: the baseline estimate is an approximately 30% price increase, which is

on the conservative end of the range.

An unbiased estimate of the price increase needs to adjust for the fact that the expecta-

tion of an inverse of a random variable does not equal the inverse of its expectation. To find

the expected price increase we take one-million random draws from the estimated joint dis-

tribution of estimated supply and demand elasticities and find the price multiplier for each

one.11 Expected price changes, taken as the average of the one-million simulated multipliers,

are larger, because the price multiplier is a convex function of the sum of two elasticities, and

the expected value of a convex function is larger than the function evaluated at the argu-

ment’s expected level. For the same reason, the 95% confidence interval of the bootstrapped

multiplier is positively skewed.

An estimated price increase of 30% implies a decline in food consumers’ surplus equal

to 180 billion dollars annually. We obtain this number from the trapezoid formed by (i)

expected supply (along the trend line) is the equivalent of feeding 7.92 billion people for a

year on 2000 calories per day of raw grains and oilseed; (ii) prices in 2010 were 77 dollars per

person per year; and (iii) the ethanol mandate had increases prices by 30%. About two thirds

of ethanol production come from new production and about one third comes from reduced

10Partial forecastability of current shocks does not create bias in the supply equation because current
shocks are not excluded from the second stage.

11Another approach would be to use shrinkage estimators to obtain more efficient estimates of the inverse
ratio. Since the elasticities are interesting in their own right, we decided to stick with standard OLS estimates,
as a shrinkage estimator would result in biased estimates of these elasticities.
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food consumption, i.e., 1.67% of global production given that the supply elasticity tends to

be twice the size of the estimated demand elasticity. The reduction in food consumption is

equivalent to the annual caloric requirement of 132 million people.

There will also be an offsetting increase in producer surplus. Some argue that the ethanol

mandate increases fuel supply, thereby lowering fuel cost, which in turn benefits consumers

(Rajagopal et al. 2007). The full welfare analysis therefore requires an assumption on the

elasticity of supply of fuels, which is beyond the scope of this paper. Otherwise, the policy

largely amounts to a shift from consumer surplus to producer surplus.

The baseline scenario assumes byproducts from ethanol production are not fed to animals.

We report estimates assuming zero recycling because studies differ in what fraction can be

recycled, and the demand shift can be easily adjusted to any assumed recycling ratio. For

example, if one third of the calories could be recovered as feed stock, the demand shift and

price increase would be multiplied by two-thirds, dropping the price increase to 20% rather

than 30%.

1.3.2 Revised Estimates Allowing for Serial Correlation

Table 4 replicates Table 3 except that the yield shocks ωt are no longer deviations from trends

but estimated via equation (14). Note how the estimated impacts are roughly comparable.

For the three-stage least square results (columns (2a)-(2c)), the estimates supply elasticities

are slightly larger, while the estimated demand elasticities are slightly smaller in magnitude.

The overall price multiplier 1
βs−βd

in panel C is very robust. The most notable changes are

the drop in the first-stage F-statistic.12

Searchinger et al. (2008) and others argue that ethanol production drives up food com-

modity prices, which, in turn, causes greater conversion of forest and pasture into crop

production. Because land use conversion (mainly deforestation) already accounts for up to

20% of global CO2 emissions, these indirect land-use changes might offset or even reverse

apparent CO2 emission savings derived from substituting ethanol for traditional gasoline.

Thus, an interesting policy question is whether new corn ethanol supply comes from the

intensive or extensive margin. We investigate this issue in Table 5. The first three columns

regress the log of growing area (for maize, rice, soybeans, and wheat) on the instrumented

price to measure responses on the extensive margin. The last three columns use the log of

total fertilizer, one of the major inputs that can be adjusted to increase production on the

12Appendix Table A1 gives the results using the FAS data set.
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intensive margin.13 The regressions are identical to the IV regression in our baseline model,

except log growing area or log fertilizer use replaces log quantity. The estimated area elas-

ticity is 0.09-0.1, while there is no significant response for fertilizer use—the point estimate

is negative. This suggests that new supply likely comes from the extensive, not the intensive

margin.

The estimated land-area elasticity is slightly smaller than the overall supply elasticity.

There will be less than a one-to-one relationship between output increases and land area

increases if higher-productivity countries happen to be more responsive to prices than low-

productivity countries. Although our land area elasticity for Brazil is comparable to Barr

et al. (2010) in magnitude, our estimate for the US is significantly larger. Agricultural

programs of the US government have historically driven the US area response. In times

of low prices, farmers received subsidies in exchange for setting previously cropped land

idle (called set asides). At the same time, the US government scaled up programs that pay

farmers to idle land for purposes of reducing soil erosion and protecting wildlife, water quality,

and addressing other environmental concerns. During periods of high prices, set asides and

conservation programs have been scaled back. When we regress the log of the growing

area plus government-mandated set-asides and land-retirement programs on instrumented

price (panel C of Table 5), the estimated US elasticity drops sharply. Thus, much of the

land supply response in the US derives partly, and perhaps mainly, from agricultural policy

responding to prices. During the recent price spike, however, conserved lands declined only

modestly.14 Given the relatively subdued responses of recent US agricultural policy and

that the US figures so prominently in world production of staple grains and oilseeds, supply

response today might be somewhat less than our estimates, which would make the price and

welfare impacts larger. However, land in US set aside and conservation programs is thought

to be significantly inferior to land under cultivation, so it is not clear how much smaller the

supply elasticity may be.

Using our estimated elasticities, total caloric production would increase by roughly 3.3

percent, or 190 trillion calories. In 2010, worldwide planting area for the four commodities

was 1.6 billion acres. Using an elasticity of 0.075 from Table 5 on the predicted 30 percent

price change, total acreage is predicted to have increased by 2.3 percent, or 36 million acres,

13FAO does not provide crop-specific fertilizer use. The data is hence for all crops, not just the four staples.
The data is limited to 1961-2002 since reporting practices changed in 2003.

14Set asides ended with the Federal Agriculture Improvement and Reform Act of 1996. Since the first
Renewable Fuel Standards in 2005, land enrolled in the Conservation Reserve Program has fallen from about
37 million acres in 2008 to about 29 million acres today (Hellerstein & Malcolms 2011).
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which is the size of the total land area (not agricultural area) of the US state of Iowa.

Our identification relies on exogenous price variation due to last period’s production

shock. One concern is whether we are estimating a short-run elasticity that is a lower bound

for the long-run elasticity. Two facts speak against this: first, prices show a large degree

of persistence, so farmers can expect temporary production shocks to have long-run price

effects. This is manifested in the relationship between crop and farmland prices. The recent

run-up in commodity prices resulted in an almost proportional increase in farmland prices.

Since farmland prices are forward looking, this is only efficient if farmers expect commodity

prices to stay high, which would seem unlikely if a longer-run supply response were to erode

the price shock. Second, Table 6 replicates the analysis but includes two lags in the supply

equation, where prices are again instrumented with last period’s weather shock. The table

displays the coefficients on the futures price in the current period βs,t and lagged futures

prices (βs,t−1, βs,t−2) as well as the sum of the three coefficients, which is the combined long-

run impact. The sum of coefficients is slightly larger, but very close to our baseline estimate

in Table 3 where we only consider futures prices in the current period. This suggests our

estimates are reasonable proxies for the long-run response.

2 Impact of 2012 Weather on US Corn Supply

There has been significant media coverage of weather outcomes in the Midwestern United

States. To put the magnitude of the predicted production shortfall into perspective of the

US ethanol mandate, we present a simple regression framework that links yields to weather

outcomes (Schlenker & Roberts 2009). Specifically, we estimate a model of the form:

yit = ci + β1GDDit + β2HDDit + β3pit + β4p
2
it + fs(t) + ǫit

where yit are log yields in county i and year t. County fixed effects ci account for baseline

differences between counties. We include four weather variables that are season totals: GDD

are growing degree days between 10 and 29◦C,15 HDD are heating degree days above 29◦C,

and p and p2 are total precipitation and total precipitation squared. We also include state-

specific time trends fs to capture technological progress.

15Degree days are just a truncated temperature variable that only counts temperatures between thresholds
for each day of the growing season. For example, degree days 10-29◦C counts all temperatures below 10C as
zero, temperatures between 10◦ and 29◦ as the difference to 10 (e.g., a temperature of 11◦C gives 1 degree
day, a temperature of 12◦C gives 2, etc), and temperatures above 29◦C as 19 degree days.
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The data underlying these regression is constructed using daily fine-scaled weather mea-

sures on a 2.5x2.5 mile grid for the contiguous United States. We follow the same algorithm

of Schlenker & Roberts (2009), but update the data until August 6, 2012. We only use

counties east of the 100 degree meridian (except Florida) in the regression, as the response

function might be different for highly irrigated areas. Our subset of counties account for

roughly 85% of the corn that is produced in the US.

Regression results are shown in Table 7, where different columns allow for various time

trends. Errors are clustered at the state level to adjust for spatial correlation. The estimated

coefficients are insensitive to the chosen time control. Degree days 10-29◦C are beneficial

for yields as they allow for longer-maturity crops, degree days above 29◦C are harmful for

yields, and precipitation has a hill-shaped function suggestion that too much or too little

precipitation is harmful.

The years 2012 has been exceptionally warm and dry. This had both good and bad effects.

First, Figure 1 shows cumulative degree days 10-29◦C over the 184 days of the growing season

for the United States. The variable is the weighted average of all counties in the contiguous

United States, where the weights are predicted yields along a trend times actual area. Since

this variable is non-negative, it can only go up over time. Historic exposures for the years

1960-2011 are shown as grey dashed lines. The outcome for 2012 is shown as a thick red

line. Note the early uptick in March 2012, which indicates a warm spring that allowed early

planting, which is beneficial.

Second, Figure 2 shows the season total for harmful degree days above 29◦C and precipi-

tation. Note the sharp increase in degree days above 29◦C in July as well as the low amount

of precipitation. The year that has been hottest and driest in the historic 1960-2011 data is

1988.

Anomalies of degree days above 29◦C as well as season-total precipitation are shown in

Figure 3 for all counties east of the 100 degree meridian (except Florida) that grow corn.

There is significant spatial heterogeneity: highly productive areas like Iowa, Illinois, and

Indiana were hit hard, while some areas in Minnesota had above normal rainfall.16

The predicted yield impacts are shown in Figure 4. They are derived by pairing the

observed weather data from March 1st, 2012 - August 6th, 2012 with the average outcomes

for the rest of he growing season (August 7th - August 31st). The top panel show relative

impact, while the bottom panel shows absolute impacts in million bushels. While some

16There are a few outlier that are due to data errors, i.e., the one county in Texas that shows a very cold
summer is likely due to a weather station that is reporting incorrectly and has not been flagged. However,
since this county produces so little corn, the results on the overall impact are negligible.
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countries see declines of up to 80 log points, overall total production is predicted decrease is

1.6 billion bushels, a 14% decline for the study area. The estimate needs to be updated once

the remaining data for August is in. If it continues to stay warmer and drier han usual, the

impact will be even larger.

Hansen, Sato & Ruedy (2012) look at the frequency of extreme temperatures around the

world and argue that it is predicted to increase significantly with climate change. The paper

finds that the United States is one of the few areas that has been “lucky” so far, in the sense

that it has not seen a significant increase in observed extremes. The current year might

hence be soon the new normal. This is consistent with earlier work, where we found using

the same statistical model and data that climate change will result in overall production

reduction by much more than the 14% that is predicted to occur this year (Schlenker &

Roberts 2009).

3 Policy Implications

The ethanol mandate has direct implications for the food prices. First, the additional calories

needed to meet the mandate will drive up steady state equilibrium prices. Second, the

mandate will also impact price volatility due to random production shocks to the system.

The predicted production shortfall in the previous Section is a little less than half of the

maize production used to meet the ethanol mandate. Future climate change is predicted to

lead to increased yield variation (Diffenbaug et al. 2012), which will translate into increased

price volatility. The authors argue that the link to the fuel market will dampen volatility if

the mandate is not binding and exacerbate it if the mandate is binding. If a certain fraction

of the maize production has to be used for ethanol, the (smaller) remaining fraction has to

be used to counterbalance production shocks.

Given the predicted decrease in maize production, both academics (Carter & Miller 2012)

and the directorgeneral of the Food and Agricultural Organization (da Silva 2012) have

recently advocated to temporarily lift the mandate. On the other hand, Scott Irvin and

Darrell Good point out that some ethanol is required in gasoline to meet octane requirements

as well as a substitute of MTBE,17 i.e., even without the mandate there would be a demand

for ethanol, although at a lower level of less than half.18

The particular way the ethanol mandate is implemented has further interesting impli-

17http://www.farmdocdaily.illinois.edu/2012/08/ethanoldoes the rfs matter.html
18We are grateful to Barrett Kirwan who pointed us towards their blog post.
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cations: refiners and ethanol producers can trade Renewable Identification Numbers (RIN)

to meet the mandate. Up to 20% can be banked between years, and it is estimated that

currently we are at that limit.19 The ethanol mandate can be met by relying on “permits”

that were previously produced. As long as these excess permits are used to clear the market,

production shocks can be offset with banked RINs. There are now two “storable” commodi-

ties: physically storing corn as well as storing RINs to meet the ethanol mandate. It is not

clear to us at this point where the 20% banking limit comes from.

It might be desirable to increase it to allow for better smoothing of production shocks.

Banking excess RINs implies that ethanol production occurred before the mandate required

it. While there is an active discussion whether ethanol does indeed reduce CO2 emissions,

if we assume for now that it does at least somewhat, obtaining the “CO2 reduction” earlier

would be desirable. Moreover, unlike carrying crops year-to-year, which results is loss and

inventory cost, the cost of carrying RINs is limited. Using RINS to smooth production

shocks might hence reduce price volatility and be desirable.

4 Conclusions

This paper makes three contributions. First, we extend the reduced-form IV approach of

Roberts & Schlenker (2012) by allowing for serially correlated unobservables. Our model

relies on recent advances in the IO literature that use observed decisions as proxies for the

unobserved serially correlated states (Olley & Pakes 1996). While the model requires much

less stringent assumptions, it does result in comparable estimates of the demand and supply

elasticities. The 2009 Renewable Fuel Standard is predicted to have increased commodity

prices by roughly 30%, not counting the recycling of distillers grains. If one third can

recycled, the price increase is 20%.

Second, we model the impact of the 2012 heat wave / drought. While some areas are

severely hit, the overall predicted impact is a 14% decline in production, or a little less than

50% of the corn that is required to meet the ethanol mandate. This estimate is preliminary

and assumes that weather in August equals historic averages - if the year continues to be

warmer than usual, the predicted impacts will be more severe.

Finally, we briefly outline how bankable RIN permits can be used to smooth production

shocks between years, i.e., a RIN (or permit) from a previous year can be used to satisfy

this year’s ethanol mandate. There is currently a 20% limit on bankable RINs. Lifting this

19http://www.farmdocdaily.illinois.edu/2012/08/an update on rin stocks and im.html
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limit might be an easy way to reduce price volatility.
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Figure 1: Degree Days 10-29◦C in 2012 Relative to 1960-2011
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Notes: Panel shows cumulative total of degree days 10-29◦C for the United States. The weather measure is

the weighted average of all counties in the United States, where the weights are predicted production along

a trend line (restricted cubic spline with 3 knots). Cumulative totals for the years 1960-2011 are added as

thin dashed lines, while 2012 is shown as a thick solid line.
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Figure 2: Degree Days Above 29◦C and Precipitation in 2012 Relative to 1960-2011
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Notes: Top panel show degree days above 29◦C, and bottom panel shows precipitation. Both panels show

cumulative totals over the growing season for the United States. Weather measures are weighted averages of

all counties in the United States, where the weights are predicted production along a trend line (restricted

cubic spline with 3 knots). Cumulative totals for the years 1960-2011 are added as thin dashed lines, while

2012 is shown as a thick solid line.

19



Figure 3: Spatial Distribution of Degree Days Above 29C and Precipitation in 2012

Notes: Spatial distribution of weather anomalies over the growing season March 1 - August 6, 2012. Top

panel shows degree days above 29◦C, while the bottom panel shows precipitation totals.
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Figure 4: Predicted Yields in 2012

Notes: Predicted yield and production impacts in 2012 by county. Regression uses observed weather data

for March 1, 2011 - August 6, 2012 plus the historic average for August 7 - August 31 to get season totals.

The top panel shows changes in predicted yields in 100 log points, while the bottom shows predicted changes

in total production (using the average area of 2007-2011 as growing area).
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Table 1: Countries Used to Derive Maize and Soybean Yield Shocks
Month Data from FAO Data from FAS

Futures Production Share Years in Data Production Share Years in Data

Country Price Avg Min Max N Min Max Avg Min Max N Min Max

Panel A: Maize Yields

United States of America Mar 41.76 30.55 48.11 50 1961 2010 45.09 32.98 50.50 50 1961 2010

China Mar 15.96 7.95 21.72 50 1961 2010 17.03 9.77 23.56 50 1961 2010

Brazil Sep 5.29 3.45 7.49 50 1961 2010 5.71 3.66 7.79 50 1961 2010

USSR Mar 3.52 1.98 8.35 31 1961 1991 3.96 2.11 8.66 26 1961 1986

Mexico Mar 3.00 2.02 3.94 50 1961 2010 3.06 1.66 4.41 50 1961 2010

Yugoslav SFR Mar 2.47 1.39 3.25 31 1961 1991 2.65 1.48 3.46 31 1961 1991

Argentina Sep 2.35 1.03 3.52 50 1961 2010 2.53 1.11 3.78 50 1961 2010

France Mar 2.29 0.91 3.65 50 1961 2010 . . . . . .

Romania Mar 2.08 0.49 3.29 50 1961 2010 2.61 1.37 3.73 38 1961 1998

South Africa Sep 1.98 0.61 3.62 50 1961 2010 2.12 0.66 3.88 50 1961 2010

India Mar 1.93 1.26 2.82 50 1961 2010 2.09 1.35 3.02 50 1961 2010

Italy Mar 1.51 0.96 1.93 50 1961 2010 . . . . . .

Hungary Mar 1.37 0.51 2.10 50 1961 2010 1.57 0.80 2.19 38 1961 1998

Indonesia Sep 1.31 0.72 2.17 50 1961 2010 1.14 0.76 1.79 49 1961 2010

Canada Mar 1.16 0.36 1.71 50 1961 2010 1.23 0.38 1.84 50 1961 2010

Serbia And Montenegro Mar 0.89 0.50 1.19 14 1992 2005 0.95 0.55 1.20 14 1992 2005

Egypt Mar 0.89 0.70 1.09 50 1961 2010 0.95 0.78 1.16 49 1961 2010

Ukraine Mar 0.80 0.27 1.42 19 1992 2010 1.03 0.29 2.34 24 1987 2010

Philippines Mar 0.77 0.59 1.10 50 1961 2010 0.83 0.61 1.23 50 1961 2010

Thailand Mar 0.67 0.29 1.16 50 1961 2010 0.71 0.30 1.23 50 1961 2010

Nigeria Mar 0.65 0.12 1.34 50 1961 2010 0.71 0.32 1.44 50 1961 2010

Spain Mar 0.58 0.34 0.89 50 1961 2010 . . . . . .

North Korea Mar 0.52 0.14 0.89 50 1961 2010 . . . . . .

Bulgaria Mar 0.50 0.04 0.96 50 1961 2010 0.64 0.18 1.03 38 1961 1998

Kenya Mar . . . . . . 0.53 0.28 0.78 50 1961 2010

Rest Of World Mar 9.09 6.95 12.04 50 1961 2010 8.22 6.30 11.64 50 1961 2010

Panel B: Soybeans Yields

United States of America Mar 55.55 33.17 73.48 50 1961 2010 58.22 32.88 100.00 50 1961 2010

Brazil Sep 15.11 1.01 27.23 50 1961 2010 17.29 1.59 29.59 46 1965 2010

China Mar 12.63 5.77 27.26 50 1961 2010 11.83 5.64 27.47 47 1964 2010

Argentina Sep 7.31 0.00 21.61 50 1961 2010 8.05 0.05 22.03 46 1965 2010

India Mar 1.79 0.02 4.99 50 1961 2010 1.89 0.03 4.27 42 1969 2010

Paraguay Sep 1.09 0.01 2.85 50 1961 2010 1.11 0.03 2.75 46 1965 2010

Canada Mar 1.07 0.44 1.90 50 1961 2010 1.09 0.44 1.85 47 1964 2010

USSR Mar 0.94 0.46 1.75 31 1961 1991 0.89 0.48 1.61 23 1964 1986

Indonesia Sep 0.94 0.27 1.63 50 1961 2010 0.91 0.24 1.65 47 1964 2010

Italy Mar . . . . . . 0.76 0.01 1.69 10 1981 1990

Rest Of World Mar 3.93 2.52 6.72 50 1961 2010 3.25 0.01 5.84 48 1963 2010

Notes : Tables displays countries used to derive yield deviations, sorted from largest producer to smallest

producer. The first column gives the month when the futures price in equation (14) is evaluated. The next

six columns summarize the data from FAO, the last six columns from FAS. Within each data set, the first

three give average, minimum, and maximum annual share of global production, respectively, while the last

three give the number of years for which we have data as well as the first and last year, respectively.
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Table 2: Countries Used to Derive Wheat and Rice Yield Shocks
Month Data from FAO Data from FAS

Futures Production Share Years in Data Production Share Years in Data

Country Price Avg Min Max N Min Max Avg Min Max N Min Max

Panel A: Wheat Yields

USSR Sep 21.23 12.68 31.10 31 1961 1991 26.54 15.35 35.94 26 1961 1986

China Mar 14.23 6.43 20.10 50 1961 2010 17.25 7.71 24.52 50 1961 2010

United States of America Sep 11.91 7.60 16.86 50 1961 2010 14.52 10.00 19.90 50 1961 2010

India Sep 8.73 3.42 13.04 50 1961 2010 10.58 4.01 16.92 50 1961 2010

Russian Federation Sep 7.07 4.55 9.33 19 1992 2010 8.96 5.54 11.99 24 1987 2010

France Sep 5.35 3.72 6.78 50 1961 2010 . . . . . .

Canada Mar 4.75 2.78 8.44 50 1961 2010 5.80 3.46 10.25 50 1961 2010

Turkey Sep 3.44 2.60 4.37 50 1961 2010 3.42 2.56 4.12 50 1961 2010

Australia Mar 3.14 1.70 4.67 50 1961 2010 3.84 2.03 5.87 50 1961 2010

Germany Sep 2.94 1.99 4.02 50 1961 2010 . . . . . .

Ukraine Sep 2.76 0.64 3.87 19 1992 2010 3.85 0.81 6.12 24 1987 2010

Pakistan Sep 2.54 1.29 3.80 50 1961 2010 3.09 1.51 4.74 50 1961 2010

Argentina Mar 2.20 1.25 4.19 50 1961 2010 2.70 1.74 5.10 50 1961 2010

United Kingdom Sep 2.02 1.06 2.92 50 1961 2010 . . . . . .

Italy Sep 2.00 0.92 3.79 50 1961 2010 . . . . . .

Kazakhstan Sep 1.88 0.80 3.23 19 1992 2010 2.44 0.96 3.85 24 1987 2010

Iran Sep 1.56 0.98 2.59 50 1961 2010 1.89 1.14 3.23 50 1961 2010

Poland Sep 1.38 0.93 1.79 50 1961 2010 1.62 1.10 2.16 38 1961 1998

Yugoslav SFR Sep 1.29 0.90 1.78 31 1961 1991 1.55 1.08 2.16 31 1961 1991

Romania Sep 1.25 0.44 2.25 50 1961 2010 1.64 0.64 2.79 38 1961 1998

Spain Sep 1.14 0.58 2.09 50 1961 2010 . . . . . .

Czechoslovakia Sep 1.05 0.66 1.41 32 1961 1992 1.25 0.81 1.71 31 1961 1991

Hungary Sep 0.96 0.45 1.44 50 1961 2010 1.24 0.64 1.76 38 1961 1998

Bulgaria Sep 0.76 0.31 1.11 50 1961 2010 1.00 0.37 1.37 38 1961 1998

Egypt Sep 0.73 0.35 1.37 50 1961 2010 0.90 0.43 1.76 49 1961 2010

Uzbekistan Sep 0.68 0.16 1.03 19 1992 2010 0.69 0.08 1.26 24 1987 2010

Mexico Sep 0.67 0.37 1.04 50 1961 2010 0.77 0.50 1.06 50 1961 2010

Czech Republic Sep 0.66 0.47 0.80 18 1993 2010 . . . . . .

Afghanistan Sep 0.57 0.25 1.02 50 1961 2010 0.70 0.33 1.23 50 1961 2010

Brazil Mar 0.56 0.17 1.21 50 1961 2010 0.64 0.05 1.45 50 1961 2010

Morocco Sep 0.56 0.20 1.05 50 1961 2010 0.66 0.23 1.34 50 1961 2010

Serbia And Montenegro Sep . . . . . . 0.51 0.31 0.74 14 1992 2005

Syria Sep . . . . . . 0.56 0.19 1.10 50 1961 2010

Rest Of World Sep 7.04 4.67 9.83 50 1961 2010 4.94 2.86 6.96 50 1961 2010

Panel B: Rice Yields

China Sep 34.08 26.07 39.13 50 1961 2010 34.74 25.61 39.66 50 1961 2010

India Mar 20.59 16.77 24.81 50 1961 2010 20.59 16.52 24.33 50 1961 2010

Indonesia Sep 7.61 4.68 9.88 50 1961 2010 7.64 5.35 9.03 50 1961 2010

Bangladesh Mar 5.56 4.66 7.34 50 1961 2010 5.58 4.63 7.40 50 1961 2010

Thailand Sep 4.33 3.32 5.17 50 1961 2010 4.15 3.27 4.70 50 1961 2010

Vietnam Sep 4.08 2.54 6.03 50 1961 2010 4.03 2.50 5.86 50 1961 2010

Japan Mar 3.55 1.55 7.49 50 1961 2010 3.83 1.72 7.71 50 1961 2010

Myanmar Sep 3.23 2.39 4.94 50 1961 2010 2.50 2.12 3.11 50 1961 2010

Brazil Sep 2.06 1.33 2.98 50 1961 2010 2.07 1.47 2.87 49 1961 2010

Philippines Mar 1.90 1.48 2.47 50 1961 2010 1.84 1.36 2.43 50 1961 2010

South Korea Mar 1.55 0.86 2.26 50 1961 2010 1.68 0.96 2.41 50 1961 2010

United States of America Mar 1.44 1.01 2.02 50 1961 2010 1.52 1.05 2.16 50 1961 2010

Pakistan Mar 1.09 0.72 1.51 50 1961 2010 1.08 0.71 1.54 50 1961 2010

Egypt Sep 0.76 0.44 1.07 50 1961 2010 0.75 0.41 1.14 50 1961 2010

Nepal Sep 0.68 0.43 0.98 50 1961 2010 0.69 0.44 0.96 49 1961 2010

Cambodia Sep 0.65 0.14 1.23 50 1961 2010 0.63 0.13 1.18 50 1961 2010

North Korea Sep 0.58 0.25 0.90 50 1961 2010 0.59 0.31 0.77 50 1961 2010

Madagascar Sep 0.53 0.41 0.71 50 1961 2010 0.50 0.40 0.68 50 1961 2010

Taiwan Sep . . . . . . 0.70 0.22 1.34 49 1961 2010

Rest Of World Mar 5.74 4.54 7.16 50 1961 2010 4.98 3.87 6.42 50 1961 2010

Notes : Table displays countries used to derive yield deviations, sorted from largest producer to smallest

producer. The first column gives the month when the futures price in equation (14) is evaluated. The next

six columns summarize the data from FAO, the last six columns from FAS. Within each data set, the first

three give average, minimum, and maximum annual share of global production, respectively; the last three

give the number of years for which we have data as well as the first and last available year.
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Table 3: Replication: Supply and Demand Elasticity in Roberts and Schlenker (FAO Data)

Instrumental Variables Three Stage Least Squares
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A: Supply Equation
Supply Elast. βs 0.100∗∗∗ 0.094∗∗∗ 0.086∗∗∗ 0.114∗∗∗ 0.109∗∗∗ 0.096∗∗∗

(0.024) (0.024) (0.019) (0.019) (0.020) (0.018)
Shock ωt 1.176∗∗∗ 1.222∗∗∗ 1.206∗∗∗ 1.239∗∗∗ 1.270∗∗∗ 1.234∗∗∗

(0.141) (0.133) (0.103) (0.108) (0.098) (0.089)
First Stage ωt−1 -3.980∗∗∗ -3.703∗∗∗ -3.873∗∗∗ -3.590∗∗∗ -3.182∗∗∗ -3.254∗∗∗

(1.153) (0.954) (0.926) (0.808) (0.719) (0.745)
First Stage ωt -2.898∗ -2.248∗ -2.338∗ -2.857∗∗∗ -2.316∗∗∗ -2.379∗∗∗

(1.656) (1.302) (1.302) (0.981) (0.830) (0.837)

Panel B: Demand Equation
Demand Elast. βd -0.028 -0.055∗∗ -0.055∗∗ -0.035 -0.063∗∗∗ -0.067∗∗∗

(0.021) (0.025) (0.023) (0.023) (0.023) (0.021)
First Stage ωt -5.547∗∗∗ -4.626∗∗∗ -4.732∗∗∗ -5.312∗∗∗ -4.388∗∗∗ -4.264∗∗∗

(1.493) (1.297) (1.257) (1.388) (1.210) (1.189)

Panel C: Effect of Demand Shift
Multiplier 1

β̂s−β̂d

7.85 6.70 7.09 6.75 5.80 6.13

Exp. Multiplier 8.49 7.14 7.46 7.00 5.98 6.31
(95% Conf. Int.) (5.3,15.4) (4.6,12.2) (5.0,12.0) (5.0,10.5) (4.4,8.6) (4.6,9.0)

F1st-stage Supply 11.91 15.08 17.49
F1st-stage Demand 13.81 12.73 14.17
Observations 46 46 46 46 46 46
Spline Knots 3 4 5 3 4 5

Notes : Tables show regression results for the supply and demand of calories in Roberts & Schlenker

(2012). The first three columns (1a)-(1b) use instrumental variables, while columns (2a)-(2c) use three

stages least squares. Columns (a), (b), and (c) include restricted cubic splines in time with 3, 4, and 5

knots, respectively. Panel A gives results for the supply equations (15) and (16), i.e., coefficients above the

vertical line give the results for log quantity, while coefficients below the line give first stage results of log

price. Similarly, panel B gives results for demand equations (17) and (18). Coefficients on time trends are

suppressed. Panel C gives the effect of a demand shift on commodity prices: multipliers translate percentage

changes in demand into percentage changes in equilibrium price. Stars indicate significance levels: ∗∗∗ : 1%;
∗∗ : 5%; ∗ : 10%.
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Table 4: Supply and Demand Elasticity (FAO Data) using Model 3

Instrumental Variables Three Stage Least Squares
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A: Supply Equation
Supply Elast. βs 0.121∗∗ 0.114∗ 0.097∗∗ 0.128∗∗∗ 0.129∗∗∗ 0.117∗∗∗

(0.050) (0.059) (0.047) (0.035) (0.042) (0.037)
Shock ωt 1.201∗∗∗ 1.222∗∗∗ 1.211∗∗∗ 1.223∗∗∗ 1.260∗∗∗ 1.265∗∗∗

(0.269) (0.234) (0.204) (0.209) (0.204) (0.188)
First Stage ωt−1 -3.983∗∗ -3.327∗∗ -3.726∗∗∗ -3.519∗∗∗ -3.024∗∗∗ -3.217∗∗∗

(1.477) (1.286) (1.270) (1.088) (0.921) (0.966)
First Stage ωt -2.958∗ -2.090 -2.342∗ -3.009∗∗ -2.119∗ -2.381∗∗

(1.693) (1.251) (1.268) (1.359) (1.145) (1.130)

Panel B: Demand Equation
Demand Elast. βd -0.017 -0.052 -0.052 -0.017 -0.053∗ -0.056∗∗

(0.032) (0.036) (0.033) (0.028) (0.030) (0.027)
First Stage ωt -5.288∗∗∗ -4.082∗∗ -4.347∗∗ -5.295∗∗∗ -4.055∗∗ -4.206∗∗∗

(1.848) (1.677) (1.666) (1.852) (1.609) (1.570)

Panel C: Effect of Demand Shift
Multiplier 1

β̂s−β̂d

7.24 6.04 6.71 6.92 5.48 5.77

Exp. Multiplier 14.44 7.56 8.17 7.65 6.07 6.27
(95% Conf. Int.) (3.8,32.4) (3.2,25.5) (3.7,24.7) (4.4,15.7) (3.5,12.0) (3.8,11.7)

F1st-stage Supply 7.28 6.69 8.61
F1st-stage Demand 8.18 5.92 6.81
Observations 45 45 45 45 45 45
Spline Knots 3 4 5 3 4 5

Notes : Table replicates Table 3 except that the yield shocks ωt are no longer deviations from trends but

estimated via equation (14). The first three columns (1a)-(1b) use instrumental variables, while columns

(2a)-(2c) use three stages least squares. Columns (a), (b), and (c) include restricted cubic splines in time

with 3, 4, and 5 knots, respectively. Stars indicate significance levels: ∗∗∗ : 1%; ∗∗ : 5%; ∗ : 10%.
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Table 5: Growing Area and Fertilizer Use As a Function of Instrumented Prices (FAO Data)

Log Growing Area Log Fertilizer
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A: World
Futures Price pt|t−1 0.101∗∗∗ 0.097∗∗∗ 0.085∗∗∗ -0.048 -0.042 -0.064

(0.028) (0.035) (0.025) (0.091) (0.097) (0.096)

Panel B: US
Futures Price pt|t−1 0.324∗∗∗ 0.312∗∗∗ 0.313∗∗∗ 0.041 0.033 0.144

(0.098) (0.113) (0.102) (0.167) (0.101) (0.101)

Panel C: US Growing Area + Set-Asides
Futures Price pt|t−1 -0.046 0.001 -0.070

(0.080) (0.080) (0.049)

Panel D: Brazil
Futures Price pt|t−1 0.376∗∗ 0.301 0.236 -0.268 -0.297 -0.112

(0.174) (0.201) (0.152) (0.655) (0.259) (0.267)
Observations 46 46 46 41 41 41
Spline Knots 3 4 5 3 4 5

Notes : Table presents IV regression results. The regressions are equivalent to the IV results in Table 4

except that the second-stage dependent variable is different: columns (1a)-(1c) use log growing area and

columns (2a)-(2c) log fertilizer. Columns (a), (b), and (c) include restricted cubic splines in time with 3, 4,

and 5 knots, respectively. Stars indicate significance levels: ∗∗∗ : 1%; ∗∗ : 5%; ∗ : 10%.
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Table 6: Supply and Demand Elasticity - Lagged Supply Price (FAO Data)

Instrumental Variables Three Stage Least Squares
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A: Supply Equation
Supply: βs,t 0.039 0.027 0.037 0.072 0.067 0.080

(0.062) (0.071) (0.065) (0.054) (0.058) (0.055)
Supply: βs,t−1 0.066 0.064 0.061 0.006 -0.007 -0.003

(0.068) (0.066) (0.062) (0.054) (0.051) (0.047)
Supply: βs,t−2 0.055 0.050 0.037 0.033 0.038 0.036

(0.083) (0.079) (0.080) (0.027) (0.032) (0.029)

Combined
∑2

τ=0 βs,t−τ 0.160∗∗∗ 0.141∗∗∗ 0.135∗∗∗ 0.112∗∗∗ 0.098∗∗ 0.113∗∗∗

(0.034) (0.047) (0.038) (0.027) (0.041) (0.039)

Panel B: Demand Equation
Demand: βd -0.001 -0.058 -0.052 -0.020 -0.048∗∗ -0.032

(0.028) (0.041) (0.042) (0.023) (0.020) (0.020)

Panel C: Effect of Demand Shift
Multiplier 1

β̂s−β̂d

6.22 5.03 5.36 7.57 6.85 6.90

Exp. Multiplier 6.94 5.87 6.21 8.14 8.14 7.92
(95% Conf. Int.) (4.0,13.5) (3.1,12.7) (3.4,13.1) (5.1,14.3) (4.2,17.7) (4.3,17.3)

Observations 43 43 43 43 43 43
Spline Knots 3 4 5 3 4 5

Notes : Table replicates Table 4 except that it includes two lags of the price in the supply equation. Columns

(a), (b), and (c) include restricted cubic splines in time with 3, 4, and 5 knots, respectively. Stars indicate

significance levels: ∗∗∗ : 1%; ∗∗ : 5%; ∗ : 10%.
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Table 7: The Effect of Weather on Maize Yields 1950-2011

(1a) (1b) (1c) (2a) (2b) (2c)
Degree Days 10-29◦ C (1000 Degree Days) 0.314∗∗∗ 0.301∗∗∗ 0.303∗∗∗ 0.346∗∗∗ 0.343∗∗∗ 0.361∗∗∗

(0.068) (0.066) (0.063) (0.082) (0.079) (0.074)
Degree Days Above 29◦ C (100 Degree Days) -0.622∗∗∗ -0.616∗∗∗ -0.625∗∗∗ -0.580∗∗∗ -0.583∗∗∗ -0.584∗∗∗

(0.068) (0.066) (0.065) (0.069) (0.068) (0.067)
Precipitation (m) 1.028∗∗∗ 1.016∗∗∗ 1.029∗∗∗ 1.092∗∗∗ 1.061∗∗∗ 1.095∗∗∗

(0.212) (0.208) (0.198) (0.217) (0.216) (0.209)
Precipitation (m) Squared -0.806∗∗∗ -0.800∗∗∗ -0.818∗∗∗ -0.807∗∗∗ -0.787∗∗∗ -0.814∗∗∗

(0.165) (0.160) (0.153) (0.163) (0.161) (0.156)
R2 0.7734 0.7784 0.7810 0.7920 0.7955 0.7972
Observations 115205 115205 115205 115205 115205 115205
Counties 2276 2276 2276 2276 2276 2276
Spline Knots 3 4 5 3 4 5
Year Fixed Effects No No No Yes Yes Yes

Notes : Table regresses county-level log maize yields for areas east of the 100 degree meridian in the year 1950-2011 on four weather variables

as well as time controls. Columns (a), (b), and (c) include state-specific restricted cubic splines in time with 3, 4, and 5 knots, respectively.

The last three columns also additionally include year fixed effects. Errors are clustered at the state level. Stars indicate significance levels:
∗∗∗ : 1%; ∗∗ : 5%; ∗ : 10%.
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A1 Appendix

Table A1: Supply and Demand Elasticity (FAS Data)

Instrumental Variables Three Stage Least Squares
(1a) (1b) (1c) (2a) (2b) (2c)

Panel A: Supply Equation
Supply Elast. βs 0.146∗∗ 0.126 0.132∗ 0.119∗∗ 0.111∗ 0.113∗

(0.066) (0.079) (0.078) (0.049) (0.062) (0.059)
Shock ωt 1.225∗∗∗ 1.269∗∗∗ 1.256∗∗∗ 1.185∗∗∗ 1.264∗∗∗ 1.247∗∗∗

(0.224) (0.179) (0.181) (0.197) (0.175) (0.181)
First Stage ωt−1 -2.859∗ -2.120∗ -2.233∗ -2.471∗∗ -2.299∗∗ -2.387∗∗

(1.616) (1.168) (1.179) (1.082) (0.987) (0.994)
First Stage ωt -1.182 -0.349 -0.511 -1.291 -0.340 -0.504

(1.838) (1.217) (1.244) (1.558) (1.189) (1.185)

Panel B: Demand Equation
Demand Elast. βd -0.047 -0.107∗ -0.092 -0.039 -0.109 -0.094

(0.068) (0.061) (0.058) (0.063) (0.069) (0.061)
First Stage ωt -3.775∗∗ -2.839∗∗ -2.976∗∗ -3.941∗∗ -2.800∗∗ -2.944∗∗

(1.721) (1.334) (1.328) (1.818) (1.415) (1.395)

Panel C: Effect of Demand Shift
Multiplier 1

β̂s−β̂d

5.20 4.29 4.46 6.33 4.55 4.84

Exp. Multiplier 6.59 5.27 4.40 7.60 5.75 12.41
(95% Conf. Int.) (2.2,30.5) (2.2,19.3) (2.3,20.6) (3.1,31.5) (2.3,22.0) (2.5,21.1)

F1st-stage Supply 3.13 3.30 3.59
F1st-stage Demand 4.81 4.53 5.02
Observations 49 49 49 49 49 49
Spline Knots 3 4 5 3 4 5

Notes : Table replicates Table 4 except that it uses FAS data instead of FAO data, which runs through 2010.

Columns (a), (b), and (c) include restricted cubic splines in time with 3, 4, and 5 knots, respectively. Stars

indicate significance levels: ∗∗∗ : 1%; ∗∗ : 5%; ∗ : 10%.
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