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Abstract

This paper proposes a test for the presence of a bubble in the price of

an exhaustible resource. A bubble is accompanied by a rise in the storage-

to-consumption ratio: Consumption peters out, and a fraction of the original

stock is held forever. The test suggests there is a bubble in the price oil and

in the market for high-end Bordeaux wines, but other explanations are also

possible. A bubble reduces welfare regardless of whether there are other stores

of value, particularly fiat money.

1 Introduction

A non-reproducible durable good that is in fixed supply is a potential candidate for

a bubble. Exhaustible resources are such durables; an inflating bubble on such goods

cannot defeat itself by eliciting supply that exceeds what asset holders want to hold.

The paper proposes a test for bubbles designed for assets that are depleted via

consumption. The test tracks the ratio of the resource stock relative to its consump-

tion. The price of the resource contains a bubble if the ratio in question rises over

time. When there is no bubble the ratio should remain constant or decline. The test

suggests that the price of oil contains a bubble, as do the prices of some high-end

wines.

The paper starts with Hotelling’s (1931) model which has a continuum of bubble

equilibria; in Hotelling’s world the price of the resource must rise at the rate of

interest even without the bubble, and so one designate a fraction of the resource as
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destined for eternal storage. This raises the initial price of the resource, and the

bubble is identified not by prices but by storage. The paper then shows that the

storage-to-consumption ratio does not rise when there is no bubble.

Next, the paper considers oil and high-end wine in turn, and the test suggests that

bubbles exist in both markets. Oil reserves relative to consumption have doubled over

the last 30 years. As for vintage wine, there are no data on the amount stored, but

after a few decades, very little wine sells at consumption outlets such as dealers,

yet there is continued and active trading in the asset at auctions run by Christie’s,

Sotheby’s, etc..

Finally in a general equilibrium overlapping-generations setting along the general

lines of Samuelson (1958), Wallace (1980) and Tirole (1985), the paper looks at the

welfare effects of a bubble on an exhaustible resource with and without the presence

of outside money. A bubble reduces welfare because it needlessly retards the con-

sumption of the resource; this remains true when other assets are available as stores

of value, in particular outside money. An exception – real enough in the case of oil

— arises if consuming the resource entails a negative external effect, in which case the

bubble can raise welfare by correcting the externality.

Plan of paper.–Section 2 presents the partial equilibrium, one-capital “Hotelling”

version which also contains the main argument. The strategy is to present the simplest

case first, and then modify it as we go along. Section 3 looks at the counterfactual —

what do we expect to see when there is no bubble. Sections 4 and 5 apply the model to

the case of oil and vintage wine in turn. Section 6 studies an OG environment where

a bubble does arise, with and without fiat money. Section 7 concludes the paper, and

the Appendix contains several modifications of the model, and it describes the data

in more detail.

2 Bubble equilibria

This section uses a partial equilibrium setting; it assumes that enough saving is

forthcoming to absorb the rising value of the bubble. Section 6 will complete the

discussion to general equilibrium and will draw out the welfare implications.

Consider a non-renewable resource, or “capital,” that does not depreciate, and

that cannot be augmented via investment or discovery. Hotelling’s (1931) version of

the problem goes as follows. Let the interest rate be , and let the market demand for

consuming the capital be  =  ()  Capital can be delivered to consumers costlessly.1

Suppose that  ()  0 for all  ∞, implying an unbounded willingness to pay at
small levels of consumption, which translates into an Inada condition on the utility

function.2 The capital must then be consumed at every date for, if at some date it

were not consumed, its price would at such dates be infinite. But if supply is to be

1This assumption is dropped in Section 4 when we discuss oil prices.
2We relax this in Section 3.2.
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Figure 1: The determination of the equilibria

positive at each date, we must have

 = 0


for some 0  0
3

Hotelling’s equilibrium.–To solve for 0, Hotelling requires that the resource be

fully exhausted:

0 =

Z ∞

0


¡
0


¢
 (1)

Since  is strictly monotone, the solution for 0 is unique and so, therefore, is equi-

librium, and also the social optimum.4 Moreover, at each date the price, , of the

asset equals the present value of the stream of dividends to which it is a claim.

Bubble equilibria.–We replace (1) by two conditions. The first states that 0 is

divided into a stock,  that will at some point be consumed, and a stock, ∞, that
speculators hold for ever:

0 =  + ∞ (2)

3We interpret  as net of any convenience yield or carrying costs of holding the asset. We analyze

storage costs and convenience yield when we discuss wine prices in Section 5.
4The GE version of the Planner’s problem is analyzed in Section 4.
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Figure 2: The evolution of , and of consumption

The second states that  is eventually exhausted:

 =

Z ∞

0


¡
0


¢
 (3)

Hotelling’s equilibrium is the one for which  = 0. We say that a bubble exists if

∞  0.

Figure 1 shows how the initial prices 0 are determined — the Hotelling equilibrium,

H0 is the lowest, and in a bubble equilibrium the date-zero prices, 

0 , are higher. Any

∞ ∈ [0 0) is valid as long as the economy can absorb the bubble. Future sellers
and speculators earn the same present value of revenues at each date, and there is no

gains to arbitrage between the two markets. Figure 2 plots  in the left panel and

the relation between consumption and .

We conclude that if there is a bubble,  must rise and approach infinity. But

the rise if need not be monotonic. In particular,  () may, for some range of prices,

have a highly inelastic portion. As  rises and passes through that range,  would

remain constant, but  would continue to fall, so that the ratio  would temporarily

decline.
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2.1 Symmetric mixed strategy bubble equilibria

These connect our bubble test to statistical reliability theory, and to the usual test

for bubbles. The owner of a unit of  can follow the mixed strategy “Sell a unit of 

to consumers at date  with probability  (0) , where

 (0) ≡  (0
)

0
 (4)

and where the realizations are independent over agents so that there is no aggregate

risk. Define the consumption hazard

 ≡ 

1− R 
0


(5)

Bubbles and defective waiting-time distributions.–A waiting-time distribution is

“defective” if the probability that the event never occurs is positive, i.e.,
R∞
0

 (0)  

1 (Feller 1966, p. 115, note 13). We then have

Proposition 1 If a bubble exists, the waiting-time distribution implied by the sym-

metric mixed-strategy equilibrium is defective. In particular,Z ∞

0

 =


 + ∞
and ∞  0⇒  → 0 (6)

Proof. Integrating the numerator in (4) and applying (2) and (3) delivers the first

claim, and the second is a property of any defective distribution.

The convergence of  can be non-monotonic: 

= 2

³
1− R 

0


´−2
+ 0

0
 =¡

 + 0


¢
 ≷ 0

2.2 Re-statement in terms of the standard test for bubbles

The standard test compares the asset’s price to the stream of earnings to which it is a

claim, its “fundamental.” When the fundamental is mismeasured, one may infer that

a bubble exists when in fact it does not, as Hamilton and Whitman (1985) stress.

The probability of consuming the asset at date    conditional on not having yet

consumed it is
³
1− R 

0


´−1
. Then the fundamental at  is

 =

R∞


−(−)

1− R 
0


=

R∞




1− R 
0


, (7)

Defined in the standard way (see LeRoy 2004), the bubble is

 ≡  −  =
1− R∞

0


1− R 
0


 (8)

We then have
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Proposition 2 The unconditional expectation of  grows at the rate of interest,

0 = 0
 (9)

whereas conditionally on not the asset not having been consumed before , the bubble

grows faster:



ln =  +  →  (10)

Proof. Differentiating the RHS of (8), 

ln = 


ln  + 

³
1− R 

0


´−1
and

using (5) yields (10). Now (10) implies that 0 = 0 exp
³
+

R 
0


´R∞


.

But since
R∞


 = exp
³
− R 

0


´
 (9) follows.

Stochastic-bubble equilibria.–Thus (9) and (10) describe the evolution of the bub-

ble the surviving resource stock, and while each individual unit has its own random

lifetime, aggregates are deterministic. Additionally, equilibria exist in which the ag-

gregate bubble is random, but we defer their discussion to Section 4 when discussing

the price of oil.

3 The behavior of  when there is no bubble

According to Figure 2, a bubble causes  →∞. Since we shall later show evidence
that this happens in fact with oil and with wine, it is reasonable to ask whether, given

reasonable utility functions, such behavior can arise even without bubbles. The latter

is easily done, because the assumed absence of a bubble allows us to have the standard

infinitely lived agents whose savings behavior satisfies transversality. Therefore, let

us study the behavior of  in an infinite-horizon, representative-agent economy in

which a bubble cannot happen. The answer turns out to be that with standard CRRA

preferences,  is a constant (see [14]), and with CARA preferences it declines (see

[18]).

Consider the cake-eating problem that we shall treat this as the baseline case:

max
()

Z ∞

0

− ()  s.t.

Z ∞

0

 ≤ 0

The Lagrangian is Z ∞

0

− () + 

µ
0 −

Z ∞

0



¶
 (11)

The optimality conditions are

− 0 () =  ⇒  0


=  0, (12)

i.e., that the marginal utility grows at the rate . We show, by example, that without

a bubble,  is constant in the CRRA-utility case or linearly declining in the CARA

case.
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3.1 CRRA utility

When there is no bubble and when the utility function is homothetic, the fraction

of the resource that is optimally consumed is constant. We shall show this for the

CRRA case for which  () = 1
1− 

1− Then (12) implies

̇


= −


⇒  = 0

− 


and  = 0−

Z 

0

 = 0−0


³
1− 

− 


´
→ 0 (13)

Eventual exhaustion of 0 implies that 0 =



0, and therefore, the reserve-consumption

ratio is



=

1

0
− 



∙
0 − 0





³
1− 

− 


´¸
=




≈ 2

005
= 40 (14)

a constant. Exhaustion takes for ever. At the standard values for  and ,




=




≈ 2

005
= 40

which is not a bad prediction of the average of this ratio that we shall plot in Figure

3 below.

3.2 CARA utility

Let  () = 1 − − This utility function is not homothetic. We no longer have
the Inada condition and we therefore must impose the non-negativity condition on 
because exhaustion will occur in finite time, at date  .5 The criterion becomes

max
()

Z 

0

− ()  s.t.

Z 

0

 ≤ 0 and  ≥ 0

The Lagrangian isZ 

0

− () + 

µ
0 −

Z 

0



¶
−
µZ 

0



¶
 (15)

The FOC w.r.t.  says that − (1− − ) = (+  )   so that

− = 1− (+  ) 
  (16)

5Because  is a variable, we need that the utility of zero consumption for  ∈ [0 ] is the same as
the post exhaustion utility. Hence, in a utility function of the form − −, we must have  = 1.
Koopmans (1974) studies a related problem where consumption was constrained not by zero but by

a positive subsistence level  ≥ ̄  0, for  ∈ [0  ].
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While (16) is consistent with  = 0. Now,  must decline along the optimal path,

and so  = 0 for all  ∈ [0  ). The FOC w.r.t.  then says that for all  ∈ [0  ],
−− =  ⇒

 =  − 


 and

 =





Finally, to solve for  (i.e., for ), we use the constraint

0 =

Z 

0

 =  − 

2
 2 =




2 − 

2

µ




¶2
2 =



2
2 ⇒  =

p
20 (17)

Therefore

 = 0 −
Z 

0

 = 0 −
p
20+



2
2

and so6




=
p
0 −

µ
1−

r


2

¶
 (18)

which declines linearly in  as long as  ≤ 2, i.e., for all reasonable discount rates.
Appendix 2 shows how Hotelling’s model is modified to handle bounded willingness

to pay.

4 Oil

According to Figure 2, a bubble exists if consumption converges to zero while storage

remains positive so that the ratio  rises without bound. Figure 3 shows world

reserves per capita, world consumption per capita (both normalized to 100 in 1980)

and the ratio of the two (read off the right axis), the empirical counterpart of ,

has risen steadily, nearly doubling over the past 30 years.7

Can we therefore conclude that there is a bubble in oil prices? There have, how-

ever, been discoveries of oil over time and one wonders if, thanks to the flow of

discovery such a steady rise in  could have occurred even if there was no bubble.

We study this question next.

6




=

0 −
√
20+ 2 − 

2
2√

20 − 
=

0 − 
2
2√

20 − 
−  =

³√
0 +

√
√
2

´³√

0 −
√
√
2

´

√
20 − 

− 

=

1√
2

¡√
20 + 

¢
1√
2

¡√
20 − 

¢
√
20 − 

−  =
1√
2

³p
20 + 

´
−  i.e. (18)

7Oil Proved world reserves and world consumption data are taken from BP (2012) and Population

data from the United Nations Statistical Division.
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Figure 3: Reserves, Consumption and their ratio, 1981-2011.

4.1 Discovery and the time-path of 

Suppose a discovery flow ()
∞
0 is perfectly foreseen at date zero.

8 The law of motion

for  changes to



=  − 

Let ∗ ≡ R∞
0

  ∞ denote the sum of all discoveries, assumed finite since the

resource is exhaustible. Then (11) becomesZ ∞

0

− () + 

µ
0 + ∗ −

Z ∞

0



¶
+

Z ∞

0



µ
0 +

Z 

0

−
Z 

0



¶


(19)

This Lagrangian now includes the continuum of constraints stating that  ≥ 0 for
each , with the multiplier .

Let us first assume the  are all zero, compute the solution, and then check that

 ≥ 0 ex post. This works when most of the discovery comes early; the agent then
behaves as if he had the stock 0 + ∗ and does not violate any constraints.
Then (19) becomes the same as (11) except that in place of 0, we have 0 +

∗. Then (12) applies except that  is smaller. Since for the case where  () =

8A one-time discovery at an unknown Poisson future date but known size could be analyzed along

lines similar to Salant and Henderson (1978). When future discoveries are unknown, the problem

becomes similar to the one Loury (1978) studies, in which the size of the reserve is unknown.
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1− (1− ) 

 = 0 +

Z 

0

− 0




³
1− 

− 


´


and since  → 0, 0 =



(0 + ∗)  which means that

 = 0 +

Z 

0

 − (0 + ∗)
³
1− 

− 


´
= (0 + ∗) −



 −

Z ∞





i.e., that




=

1

0
− 



∙
0 +

Z 

0

 − 0




³
1− 

− 


´¸
=





Ã
1− 




R∞






(0 + ∗)

!
 (20)

Then




µ




¶
 0 ⇐⇒ 







Z ∞



  0 (21)

but this conclusion hinges on  = 0 for all , and we need to verify this, and the

latter requires that for all 






Z ∞



 ≤



(0 + ∗)  (22)

The task will be easier if we specialize  and  further, as we shall do next.

Example–Let  = −, so that ∗ = 1 and
R∞


 = −. Discovery is more
frontloaded when  is high, and that is when we expect (20) to be valid. Substituting

into (20) yields




=





⎛⎝1− exp
³h




− 

i

´




(1 + 0)

⎞⎠
and (22) reads

(


−) ≤ 


(0 + 1)

for all . This is possible only if

 



(23)

so that discovery is sufficiently front loaded, but this also implies 


¡



¢
 0 Thus we

conclude that if the optimal path entails   0 for all , the rise in  that Figure

3 shows could have been the result of discovery if (23) holds.

More generally, there will be dates at which at some dates   0 ⇐⇒  = 0 in

which case we still would expect a discovery to raise in . We also would expect

 to fall in periods when there is no discovery, and Figure 3 suggests that this may

have happened once or twice. Just prior to Sec. 3.1, however, we noted that such
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temporary declines can happen in the Hotelling model even without discovery and, in

particular, that they can happen if there is a bubble. We have also omitted cyclical

reasons why  may fall; in a recession, fewer people drive to work, and the demand

for gasoline declines; thus we would expect  to rise during recessions.

4.2 Explaining oil prices since 1861

Whether oil prices contain a bubble or not, Hotelling’s model explains these prices

pretty well. We simply need to add extraction costs that decline over time due to

technological progress. This yields a U-shaped equilibrium price path for the resource.

Let the extraction cost per barrel be  and let there be exogenous technological

progress at the rate  so that

 = 0
−

Profits per barrel extracted then are  =  − , and intertemporal arbitrage now

states that

 = 0
 (24)

Since 0 = 0 − 0, this gives the equilibrium price path

̂ = (0 − 0) 
(−0) + 0

−(−0) (25)

where 0 is the “initial date”.

We have 160 years of oil-price data since 1861 ≡ 0.
9 We interpret  as the

combined cost of drilling, extraction, and delivery, each of which has declined over

the past 160 years. We assume perfect foresight, and use the series ()
2011

=1861 to

estimate the parameters 0 0  and  by non-linear least squares:

0 0  

63.2 61.43 0.024 0.033
= arg min

00

2011X
=1861

( − ̂)
2 (26)

Slade (1982) shows that most other commodities have a similar U-shaped price evo-

lution; Aluminum, copper, iron, nickel, silver, and natural gas. See Krautkramer

(1998) and Hamilton (2011) for more discussion.

Figure 4 gives the best-fitting price path. But the shape of the price path looks the

same whether a bubble exists or not. We plot three additional equilibrium possibilities

indexed by 0 = 62 65 and 67. All these time paths look alike and it is impossible to

tell whether the path that fits the best (the thickest of the four lines that starts at

0 = 632) is a bubble path or not.

9Prices for1861-1944 are US average; for 1945-1983 Arabian Light posted at Ras Tanura, and for

1984-2011 Brent dated. Source: BP Annual Statistical Review 2012.
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Figure 4: Oil prices and model fit at 0 = 632.
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Figure 5: Equilibrium prices for 0 ∈ {62632 65 67}
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5 Wine

Let us now apply the model to vintage wines. We shall assume that wine from

a given chateau-(i.e., label-)vintage pair is homogeneous and distinct from other

chateau-vintage pairs. Thus we interpret 0 as, say, the total amount of the 1870

Lafite bottled in 1870. The stock is not renewable — different vintages of a given wine

are imperfect substitutes, judging by the vastly different prices at which they sell.

Since each chateau-vintage type of wine faces competition from close substitutes that

appear each year, we extend Hotelling’s model to many capital goods in Appendix

1 and show that bubbles can exist on some subset of the menu of vintages available

to the consumer. A chateau has a monopoly on its wine which is regarded as dis-

tinct from other wines, but each vintage soon passes out of its hands10 and into the

cellars of many dealers, restaurants and private individuals, so that the chateau can

focus on producing its next vintage. Thereafter, the competitive model seems to be

appropriate.

According to Figure 2, a bubble exists if  rises over time. One virtue of wine

over oil is that aside from the appearance of counterfeits (a negligible inflow by all

accounts), there is no discovery of new quantities of a given vintage and therefore a

rise in  does signal a bubble and not discovery. In contrast to oil, however, we do

not have data on . We shall therefore try to infer these magnitudes indirectly from

the frequencies with which a wine is offered for sale in three different modes — by

auctions, by dealers, and by restaurants. A wine sold by a dealer or by a restaurant

is usually consumed. By contrast, the sale of a wine at auction is likely to be stored.

We can thus hope to learn how much of a particular wine is consumed and how much

of it is stored, by comparing the frequency with which the wine is offered for sale at

these three venues.

Age distributions.–Figure 6 shows the age distribution of wine offered for sale

by dealers and restaurants, and wine actually sold at auction (we have transactions

only for auctions). Until a few years ago, vintage wines were sold mainly at auction

and not by dealers.11 Not surprisingly, therefore, the wines offered for sale by dealers

are considerably younger than those sold at auctions. On the other hand, the wines

offered for sale at restaurants are significantly older than the ones sold at auction.12

We cannot take the restaurant numbers at face value, however. First, while auc-

10except for a stock that a chateau may keep to re-top old bottles, although this practice is in

decline because re-topped bottles look more like counterfeits.
11Market structure has been changing recently and dealers have started to hold auctions. Dealers

now offer wines that they do not necessarily store themselves. The oldness of the vintages offered

for sale today by the Antique Wine Company and described in Figure 8 is a new phenomenon.

For most of the 20th Century, one of the world’s most prestigeous dalers, Berry Brothers & Rudd,

offered wines that were at most 40 years old.
12At auction, a bottle of wine need not actually change hands physically; in models of commodity

money the point has been raised that if  (the commodity) is a store of value, it does not have to

circulate. Claims to  can circulate.
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Figure 6: Ages of wines offered by auctions, dealers, and restaurants.

tions prices are transactions prices, the dealer and restaurant prices are list prices.

A vintage wine will often appear on a restaurant’s wine list without ever being sold.

Therefore neither the restaurant nor the dealer age distributions pertain to the dis-

tribution of ages of wine actually consumed. Second, even as a distribution of listed

prices, the restaurant data are biased towards the older vintages because (in contrast

to a dealer’s list) a restaurant wine list typically does not provide a wine’s vintage

for the young wines. The unidentified vintages were excluded from the data which,

therefore, heavily oversample the older vintages. Therefore, while the restaurant age

distributions lie to the right of those for auction sales, this does not prove that the

wines consumed in restaurants are older than those traded at auction. The reverse is

highly probable.

If we fix a chateau-vintage pair, we still reach a similar conclusion. Figure 7

shows the history of prices for a bottle of the 1870 Lafite, prices at auction, prices

in restaurants, and prices offered by dealers. The data for this wine are incomplete

as they are for all the wines in my sample, but the Figure describes fairly well what

the entire sample shows: Consumption occurs early, and later transactions mainly

reallocate assets. Consumption demand is typically met by dealers and restaurants,

and not by purchases at auction where the buyers are restaurants, dealers and private

collectors. The wine’s average rate of price increase is 5.29 percent (auctions), 5.15

percent (restaurants) and 4.54 percent (dealers). The point of the graph is that the

red and green squares predominate in the early years of the wine’s life, whereas the

blue dots are spread out more evenly and predominate in the more recent period.

Dealers offered the 1870 Lafite for sale in the first few decades of its life, and more

14



Figure 7: The time series: The price of a bottle of the 1870 Lafite, in
year-2000 dollars

recently it has shown up at many auctions. Moreover, the dots connected by the solid

blue line represent actual transactions, whereas the other dots are list prices; they

indicate that the wine was offered for sale on a wine list, but not necessarily sold.13

This pattern is typical of the wines in the sample, and similar graphs for nine other

popular wines are reported in the Appendix.

Evidently the solid line wiggles a lot and this reflects within-chateau-vintage het-

erogeneity. Second, there are counterfeit versions of at least some famous vintages.

But in fact, even within a vintage-chateau pair there is significant heterogeneity that

can be detected by inspection and that therefore affects prices at which the bottles

sell. The buyer has two main concerns: Is the bottle authentic, and has it been prop-

erly stored.14 (Although the quantities are thought to be negligible, if the counterfeits

are indistinguishable from the real versions and if their inflow is known, the effect

on  would be the same as that of discovery, as analyzed in Section 3.1). Thus

the series in Figure 7, or in the Figures in the Appendix, do not all represent the

movement in the prices of a claim to a given bottle, although as the vintage becomes

old, it is ever more likely that the same bottle appears on a restaurant’s wine list or

13In particular, the cluster of red dots in the years 2003-7 represents the sale price at the same

(Chicago’s Charlie Trotter’s) restaurant where the bottle has been offered for sale (but presumably

has not sold). See the Appendix table for an account of all the data plotted in Figure 7.
14Some bottles were stored improperly which affects the level of the wine in the bottle and the

sedimentation, some bottles are stored by reputable dealers and some not, some have a reputable

distributors and some not, some have been re-corked or “reconditioned” and some not, etc.. Coun-

terfeiting is on the rise for the old, valuable vintages.
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a dealer’s list, and ever more likely that the same bottles will be traded again and

again at auction..

To sum up, in line with Figure 2, evidence shows that it is high priced wines like

the Bordeaux wines in my sample that survive a long time and continue to be traded.

Low-priced wines disappear rather quickly. This indicates that these wines acquire

the properties of an asset to be held as an investment rather than as a consumable

item, i.e., that there is a bubble on the price of these old wines.

5.1 Convenience yield

An alternative explanation that may apply to wine and oil alike is that the owner

of the asset may derive pleasure from holding it (or showing it off to friends, e.g., in

the case of wine) or may draw a convenience yield from holding it (as a deterrent for

wartime purposes, e.g., in the case of oil). Wine is also used as a collateral,15 Can

this explain why an asset asymptotically would cease to be consumed with significant

reserves held in perpetuity? Let utility depend on both consumption, , storage,

. That is, let utility be  ( )  with  increasing, differentiable, and concave

in both of its arguments, and let  be the discount rate.16 For now, assume that

lim→0  = +∞, and to simplify further, consider a representative agent setup in
which every agent chooses the same ( ) pair.

The price of capital and the marginal utility of consuming another unit of it must,

at each date, equal the marginal utility of lifetime storage:

 =  ( ) =

Z ∞



−(−) ( )  (27)

The RHS of (27) insists that there is no bubble and that the value of the asset is, at

each date, equal to the discounted flow of its fundamentals. Differentiating the RHS

of (27) and applying (27) to the result, we have the ODE




= −  ( )  (28)

Therefore  grows more slowly than at the rate , and may even decline.

Now, convenience yield for old wines is indisputably higher than for young wines.

Therefore, whether a bubble exists or not, Hotelling’s model implies that price should

be appreciating more slowly for the older vintages. This implication is refuted by

Figure 8 which shows prices per bottle at which the Antique Wine Co., a wine

dealer, offered various vintages of six Bordeaux wines for sale in 2007. Average real

appreciation as a function of vintage is 2.2 percent per year and the oldest vintages

15See David Andolfatto’s blog http://andolfatto.blogspot.com/2012/03/turning-wine-into-

liquidity.html
16which, in an economy with no growth, would equal the rate of interest.
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Figure 8: The cross section: April 2007 dealer prices per bottle for
various vintages

are in fact above the regression line, indicting a faster appreciation in that age range.
17 Adding a quadratic term confirms this claim, as shown in Figure 9, casting doubt

on convenience yield as an explanation for why  appears to rise.

All that notwithstanding, as it ages, wine undoubtedly acquires the status of

a collectible, of an antique. This convenience yield is almost surely highest among

restaurants. The sommelier of a famous New York restaurant said this about the

most expensive wines on his wine list: “I don’t want to sell this wine. It makes the

list look better.” No doubt this helps explain why Figure 6 shows restaurants as listing

older wines. Indeed Figure 10 below shows some evidence that among restaurants,

older bottles entail a convenience yield.

Dealers and most private individuals probably do not have as large a convenience

yield, which explains why, until quite recently, dealers did not hold wines older than

30 or 40 years. Instead dealers would leave the market for older wines altogether, and

sell it to those agents who derive pleasure or other forms of gain from simply holding

them. This is another way to interpret the data in Figure 6. Restaurants are holding

17The data were collected in 2007. Not in the data is the 1787 Lafite for which the record price was

set at 1985 at a Christies auction by Malcolm Forbes, the late publisher, when he paid US$156,450

for it. Analysis then showed that the bottle was at least half full of the 1962 vintage of the same

wine. It was, in other words, later discovered to be a counterfeit. Including that data point would

strengthen the conclusion that older vintages appreciate faster, contrary to the convenience-yield

hypothesis.
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Figure 9: Older wines appreciate faster

on to older wine, and not selling it. This only reinforces the general impression that

old wine is simply being stored and not consumed.

Can the storage patterns be explained by convenience yield? The summary sta-

tistics concerning the distribution of annual growth rates are shown in Table 1:

Stat Auctions Restaurants Dealers

Mean 8.8 5.07 13.7

Min -96 -87 -99

Max 1630 669 5838

Std 48.9 16.6 138

Skew 12.8 19.9 25.8

Kurt 282 674 964
.

Table 1: The distribution of annual growth rates of prices

First off, we note the return to holding even the oldest wines (i.e., those from which

the largest convenience yield would presumably flow) seems comparable to the stock

market, and hence the non-pecuniary return is probably small. Nevertheless, there are

rate-of-return differentials which may reflect a rising convenience yield and, hence, a

falling equilibrium return, as a function of wine age. If dealers hold only young wines

as Figure 6 shows, we could see the pattern in Table 1. When we hold the wines
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Figure 10: Ratio of restaurant prices to auction prices as a function
of the age of the bottle.

constant and look at the prices charged in restaurants and at auction, we find the

pattern portrayed in Figure 10. To be included in that plot, the bottle must have

the same label, year and vintage at an auction and in a restaurant. There are 530

data points and they show that even for the same set of wines, restaurant prices do

grow more slowly than auction prices, perhaps indicating a convenience yield. As eq.

(28) would suggest, wines in the possession of restaurants appear to have appreciated

more slowly.

6 General equilibrium and welfare

Except for Section 3 that dealt with an infinite-horizon representative-agent model

in which no bubbles could arise, we have been working with various versions of the

partial equilibrium model of Hotelling, and have so far been assuming that a rational

bubble can exist in the economy at large. Aside from , we now assume that there is

a second perishable good, , which can be produced at constant returns to scale using

labor only, and which acts as the numeraire. We shall assume a constant population

of two-period-lived agents. The only real asset and the only durable good is , and

its initial stock is held by the date-zero old generation. There are no bequests.

An agent has a unit labor endowment when young. Consumption of  occurs

19



when old, and that of  in both periods of life. An agent born at date  has lifetime

utility

 +  (+1 +  [+1])  (29)

where  and +1 denote his consumption of  in youth and old age, and  is his

consumption of capital.

Production of the perishable good.–The technology is

 = 0
 (30)

where  is labor services employed. We assume   −1 so that there is technological
progress at a rate faster than the discount rate.

Evolution of capital.–Capital evolves as

+1 =  − . (31)

Resource constraint.–Consumption of  per old agent (there are ) of them must

equal output per old agent

 + 

 = 0

 (32)

At full employment  = 1, and therefore aggregate output is

 = 0
 =  (33)

where  is the wage the young receive from the competitive firms that earn zero

profits.

It is much simpler to proceed with an economy in which the only asset is . After

we solve for the equilibrium, adding money will be transparent.

6.1 Equilibrium with no outside money

With no money in the economy, we let the numeraire be . In terms of  the gross

rate of interest must be −1. Let  be the price of  in terms of  Storing  must

yield a gross return of −1 and therefore

 = 0
− (34)

Budget constraint of young:

+1 + 

 =  (35)
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Budget constraint of old :

 =  +  (36)

At an interior optimum,

 =  0 () ⇒  = (
0)−1 ()

which, combined with (31) and (34) yields

+1 =  − ( 0)−1
¡
0

−¢ (37)

with the one-parameter family of solutions for 

 = 0 −
X

=0

( 0)−1
¡
0

−¢  (38)

The equilibrium selection parameter, 0, is arbitrary, and indexes the size of the

bubble. The bubble must not be larger than the young agents’ willingness to save:

Bubble cannot be too large.–The young must hold +1 Since   −1, the bubble
shrinks relative to output over time, and so if it is not too large initially, it is never

too large. Since date zero output is 0, it is necessary and sufficient that 01 ≤ 0.

Since 1 is endogenous, we eliminate it to get the necessary and sufficient condition

0

³
0 − ( 0)−1 (0)

´
≤ 0 (39)

There must initially be enough output, 0, to draw forth the savings needed to absorb

the capital.

A non-monetary equilibrium is a price sequence ̃ = ̃0
− — the price of  in

terms of  — for which (34)-(39) hold for all . Thus the equilibrium is fully described

by just one number, ̃0, which cannot be too large. Denote by max the largest that

0 can be. That is, let max as the
18 solution to (39) when it holds with equality:

max

³
0 − ( 0)−1 (max)

´
= 0 (40)

18We say “the” solution because The solution for max is unique because the RHS of (39) is strictly

increasing in 0:
 (RHS)


= 1 − 

³
( 0)−1

´0
()  0

because  0 is a decreasing function and so is ( 0)−1. E.g.,

 () =
1−1 − 1
1− 1 =⇒  0 () = −1 =⇒ ( 0)−1 () = −

where   0. Then (39) reads 0
¡
0 − 

−
0

¢ ≤ 1
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Then the admissible solutions are all those for which ̃0 ∈
£
H max

¤
, where the

Hotelling price, H, solves

0 =

∞X
=0

( 0)−1
¡
0

−¢ 
Welfare.–A rise in 0 raises the welfare of the current old while it lowers the

welfare of all future generations. As 0 varies between 
H
0 and max = 100, it traces out

a utility frontier between the current old (who are the best off at max) and all future

generations (who are the best off at H). But the bubble equilibria are inefficient:

A feasible Pareto improvement exists in that ∞ could be consumed at some dates

without reducing any generation’s consumption of  and . This conclusion echoes

those in the commodity-money literature.

6.1.1 Example

In the following example,  will converge to its limit geometrically. For   0, take

 () =
1− − 1
1− 

=⇒  0 () = − =⇒ ( 0)−1 () = −1

Then (38) yields the one-parameter family of solutions

 = 0 − 
−1
0

−1X
=0

 = 0 − 
−1
0

1− 

1− 1

→ 0 − 
−1
0

1− 1
≡ ∞

whereas (40) reads

max
¡
0 − −1max

¢
= 0 (41)

The Hotelling equilibrium, H0 has ∞ = 0 ⇒

H0 = 
−
0

³
1− 1

´−
and H = 0



As for the bubble equilibria, the higher is ∞, the higher is 0:

0 = (0 − ∞)
−
³
1− 1

´−
. (42)

Simulated example.–Set 0 =  = 1,  = 097, and 0 = 99 Then (40) implies
19

max = 1 + 0 = 100, and H0 =
1

1− 
= 333

19We had to assume that 1 + 0  (1− )
−1
, otherwise we would have H0  max and no

equilibrium would exist because even H0 would imply a greater carryover of capital than the young

are willing to hold.
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Figure 11 plots the solution for ∞ = 1
3
(red line) and ∞ = 2

3
(blue line).

6.2 Equilibrium with outside money

We now add constant stock of money, ̂ , in the possession of the date-0 old. All

prices are now denominated in terms of money. Let  denote the price of  and 
the price of . Zero profits now imply a nominal wage of

 ≡ 0


The decision problem of the young.–Let +1 ≡  the number of units of  that

you buy when young,20 and  the number of dollars. The two budget constraints

are now written in terms of dollars:

(youth)  = 

 +  + (43)

(old age) +1 + = +1

+1 + +1+1. (44)

20An individual does not face the aggregate resource constraint 0 =  −  and so we use  to

keep that clear.
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The Lagrangian now is

L = + ( +  [])+1 ( − 
 −  −)+2 ( + +1 − +1

 − +1)

The FOCs are

 : 1− 1 = 0 (45)

 : 2 − 1 = 0 (46)

 : 2+1 − 1 = 0 (47)

 :  − 2+1 = 0 (48)

 :  0 (+1)− 2+1 = 0 (49)

From (46) and (45) we have 1 = 2 = −1 . Then (47) implies that the nominal

price of  is constant:

+1 =  ≡  (50)

Then (48) implies that  declines at the rate of discount:

+1 =  ⇒  = 0 (51)

which ensures that agents are be willing to postpone consumption of  in order to

hold money. The rate of deflation equals the rate of discount, and money offers the

same real rate of return as does . Thus the “Friedman rule”21 emerges endogenously.

Finally (49) implies

 0 (+1) =


+1

⇒  0 () =


0
− =



0
−(+1) (52)

Equilibrium.–As before, the equilibrium conditions are



 +  = 0

 (53)

 +




 =




 +
̂



(54)

Comparison to the model without money

First we show that in the monetary economy, all the old equilibria except one survive

as limiting cases when money is driven out. Then we show that money adds equilibria

not attainable without it.

21which says that the rate of deflation should equal the rate of return on other assets, in which

case the nominal interest rate should be zero.
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6.2.1 Limiting case of 0 →∞
Let ̃ ≡  = ̃0

− denote the price of  in terms of . The solution for  and,
hence, for all the other variables become the same as before if



0
= ̃0 and 0 →∞ (55)

As money loses value we get back to a world in which there is effectively only one

asset

Bubble cannot exceed income condition.–At date , the condition reads,

+1 + ̂ ≤ (56)

i.e., using (51),



0
−+1 + −

̂

0
≤ 0

 (57)

Since    the RHS of (57) rises faster than the LHS of (57) and therefore it is

necessary and sufficient that



0
1 +

̂

0
≤ 0

and since 1 = 0 − ( 0)
³



0

´
, it is necessary and sufficient that



0

µ
0 − ( 0)−1

µ


0

¶¶
≤ 0 − ̂

0
 (58)

If we impose (55), this too becomes the same condition as before, except that the

weak inequality becomes a strong one:



0

µ
0 − ( 0)−1

µ


0

¶¶
 0 (59)

Strictly speaking, since 0  0 for any 0  0 no matter how large, it means that

̂1  0− for every   0 no matter how small. Thus this set of equilibria is open,

i.e.,


0
∈ [H0  max)

Equilibria when 0 ∞
Now we ask if when 0, new possibilities are introduced for the equilibrium allocations

of consumption: Let

 ≡ (    )∞0 
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and let

 ≡ { |  solves the no-money version (34)-(39)} (60)

and let

M ≡ { |  solves the monetary model (43)-(54)} (61)

Keeping the notation ̃ for the equilibrium price of capital in the no-money case,

let us use tilder notation for the no-money allocations ̃ ≡ (̃  ̃  ̃)∞0 

() We already established that there is a point in  that is not in M, namely

the least efficient set of allocations corresponding to 0 = max at which the bubble

is at its largest possible.

() Are there points in M that are not in ? I.e., is there an  ∈ M but  6∈ ?

If so, at what prices ( )
∞
0 ?

Yes. The allocations are different. Let us compare that point ̃ ∈  with the

corresponding point  ∈ M that has the same initial price of  in terms of the

consumption good so that

̃0 =


0
⇒ ̃ =





(62)

Then () ()
∞
0 is the same in the two equilibria, and therefore so is (). But ()

the young now save more so that they can absorb the money stock as well, and this

means that



 = ̃


 − −

̂

0

because



 = 0

 − 1



³
+1 + ̂

´
 ̃


 = 0

 − ̃+1 = 0
 − 



+1

and consequently they spend more on +1 in old age:

+1 = ̃+1 + −(+1)
̂

0

because

+1 +


+1

+1 =


+1

³
+1 + ̂

´
 ̃0+1 =



+1

+1

Of course, in this way we have the current old over-consuming as much as the current

young under-consume:

 − ̃ = − ( − ̃

 ) 

The new equilibria of the monetary economy do not change welfare, they only

redistribute consumption from youth into old age. If (62) holds, the welfare of each
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generation is the same; the difference is simply that the young get −1 more con-
sumption in old age than they give up in youth. The set of attainable welfare levels

is therefore the same, except for the exclusion of the welfare pertaining to the worst

equilibrium. The young do not care if they postpone consumption as long as this

they get −1 as much back next period. Therefore the welfare of generation born at
 is

 (̃0) = 0
 + max



©
 ()− ̃0

−
ª

and the only welfare level not attainable in a monetary equilibrium is  (̃max)  If 

was not available as a store of value, money would raise welfare since only the young

are endowed with labor.

6.3 Money and welfare.

Money can remove the dynamic inefficiency entailed in the bubble. Without money,

the old are made worse off if the bubble is removed. But in the monetary economy,

they can be given a transfer of money equal to the size of the bubble. This would be

compatible with (58) which depends only on the sum 0
0
+ ̂

0
 and which therefore

would remain unchanged. In this sense we can say that removing the bubble entails

a Pareto improvement.

We thus reinforce the conventional wisdom, first expressed by Friedman (1960),

that commodity money wastes resources and that its displacement by fiat money

should raise welfare by freeing up the resources for other uses. Keeping total saving

fixed, if the introduction of fiat money displaces a fraction of the date-zero bubble,

̃0 − ̃H0 but keeps total saving the same, then the bubble at   0 i.e., ̃ − ̃H
shrinks by the same proportion and welfare goes up because a larger flow of  can be

consumed. This is true for any ̃0  ̃H0 , and corresponds to a shift of  from a path

above the Hotelling path to another closer to it. In this sense, there is no conflict

with received wisdom regarding welfare and commodity money: A bubble reduces

welfare for the same reason that commodity money does.

6.4 Discussion

A feature of our OG model is that  and  are in fixed supply, not augmentable

by private agents, and  is consumable. Most models of commodity money endow

agents with a production function that allows them to convert labor or goods into the

storable commodity. Thus, Kiyotaki and Wright (1988) Burdett, Trejos and Wright

(2001) and Lagos and Rocheteau (08) all have reproducible commodity money and

study only steady states in which the price of the commodity is constant.

Closest to the OG version of our model is Sargent and Wallace (1983) who, in

Section 3.3, study the case in which the commodity money is not reproducible. In-

stead of technological progress they feature population growth that must be rapid
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enough to absorb the bubble. Their Prop. 6 asserts uniqueness for the gross return

on storage but they do not raise the possibility of multiple solutions for the level of

the price of gold, which would be the analog of the multiple bubble solutions that we

have here.

Among other related models, Dasgupta and Heal (1979, Ch. 8) assume exogenous

savings so that issues like transversality do not come up. Tirole (1985, sec. 7[b])

connects their argument to the existence of bubbles. The condition   1 guarantees

the existence of the bubble and it implies the Santos-Woodford (1997) condition that

the present value of aggregate consumption must be infinite.

A bubble on the exhaustible resource can raise welfare if there is a negative ex-

ternal effect on its consumption, and this may be the case with oil. Friedman’s claim

about commodity money would also need modification in that case. Olivier (2000)

has a positive welfare effect of a bubble on equity; in his model there is a positive

knowledge spillover and a bubble raised the incentives to implement ideas via IPOs.

Finally, is our use of the term “bubble” conventional? Does the term “bubble”

mean that the difference between price and fundamentals is positive in the GE ver-

sion? Does this relate to money being “essential” in the sense defined by Wallace?

And when an asset’s higher price serves to relax borrowing constraints, should the

benefits from such a relaxation ought to be included in the fundamental?

7 Conclusion

When it comes to bubbles on a consumable exhaustible resource, two things are

special. First, it is easier for the bubble to form and, second, detecting the bubble

is easier, requiring simply that the asset-to-consumption ratio rise over time. Using

this simple test, we have found that it is possible that a bubble exists in the price

of oil and in the prices on some vintage wines, but we also entertained some other

hypotheses such as discovery and convenience yield.

The model may apply to certain other assets. Land is in fixed supply but is not

consumed, and the same is true of art and other collectibles. Gold, and silver have

a significant salvage value even after being converted into jewelry, so they are asset

that appear to carry a large convenience yield that lower their equilibrium returns

towards zero.
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8 Hotelling’s model with many capital goods

The point of this section is to show that Hotelling’s analysis and our extension of it

to bubbles, new continue to hold when there are many goods. This is relevant to the

application to wines where substitutes are born each year. Each vintage is then a

different non-renewable capital type.22 Let  ∈  denote the vintage of the capital.

Write the demand for this vintage as

 ( ) 

where  is the infinite-dimensional price vector for all the other vintages, past, present

and future. Once again, we assume an unbounded willingness to pay at small quan-

tities, and so arbitrage across dates requires that under perfect foresight, the price of

vintage  should satisfy for all 

 = 
(−) (63)

where  is the initial price of the vintage- capital, so that we define  : 2 →
+ ∪ {∞} by

 =

½


(−) if  ≥ 

+∞ if   


Hotelling’s equilibrium in many dimensions.–The initial stock of each vintage

can be written as . Instead of just one number, 0, as we had above, we now

have to solve for the vector ()∈ of the initial prices of each vintage. To solve
for it, acting in the spirit of Hotelling we write the simultaneous equation system of

resource-exhaustion conditions:

22Different vintages trade at vastly different prices. Some of the great vintages are 1865, 1870,

1900, 1929 and 1961. See Figure 2 of Jovanovic (2001) for estimates of vintage effects in wine prices.
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 =

Z ∞

0

 ()   ∈ , (64)

which is to be solved for the vector ()∈.

Bubble equilibria in many dimensions.–As before, we replace (64) by the two

conditions

 =  + ∞ (65)

and

 =

Z ∞

0

 ()  (66)

both holding for all  ∈ . A no-bubble equilibrium is the one for which  = 
for all . The rest are bubble equilibria on at least some of the vintages.

Example.–Consider the following static allocation problem of the consumer. His

utility function depends on an array of capital goods ()≤ and on an outside good
 in the following way:


£
()≤  

¤
=  +

where  =
¡R∞
0




¢1

denotes the ‘aggregate’ capital good that, at date , takes

on the value

 =

µZ 

0





¶1


The consumer’s date- income is  and his budget constraint is

 =  +

Z 

0



The price of vintage- capital at date  is given by (63). The Lagrangian is

 =  + − 

µ
 −  −

Z 

−∞


¶


The first-order condition are  = 1 (for an interior optimumw.r.t. ), and 
−1
 

1−
 =

, for each  ∈ [0 ]. Together with (63), the latter yield the demand functions

 =

µ




¶1(−1)


(−)(−1) (67)

Suppose that the time path of  is determined. We now show that some vintages

of capital can carry large bubbles while others need carry no bubbles. Suppose that

vintage  = 0 is priced according to its fundamental alone, i.e., that

0 =

µ
0

0

¶1(−1) Z ∞

0


(−1)
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whereas vintage  has a bubble, so that

 = ∞ +

µ




¶1(−1) Z ∞




(−)(−1)

Let  be small and suppose that the fundamentals of capital  and capital 0 are the

same, i.e., that 0 = , and that 0 = . As → 0, however,



0
→
µ
1− ∞

0

¶−1


which means that the prices can be quite different, depending on the magnitude of

∞ — the price ratio is unbounded. The difference between 0 and  is due entirely

to bubbles.

9 Bounded willingness to pay

Relating to the CARA utility treatment in Section 4, here we show how Hotelling’s

model extends to this case. Bounded willingness to pay for the resource removes the

Inada condition at zero consumption, and this implies exhaustion in finite time. and

Let ̄ be maximal willingness to pay, so that ̄ is the smallest  for which

 () = 0. (68)

We continue to assume that  is continuous.23 Hotelling’s equilibrium now entails

exhaustion of the resources in finite time,  . Thus his equilibrium is a price path

 = H0 
 for  ∈ £0 H¤, where ¡0  

¢
solves the pair of equations

0 =

Z 

0


¡
0


¢
 (69)

and

0
 = ̄ (70)

for
¡
H0  

H
¢
.

Bubble equilibria.–A bubble equilibrium also entails the cessation of consumption

in finite time, given by

 =
1


ln

µ
̄

0

¶
(71)

Formally, equilibrium is a pair (0 ∞) where 0 ∈
£
H0  ̄

¤
and ∞ ∈ [0 0) that solves

(70)

0 − ∞ =
Z 

0


¡
0


¢
 (72)

in which  is given by (71). Once again there is a continuum of solutions for 0for

As ̄→∞ we recover the original equilibrium set.

23The CARA utility function fits this case if we restrict  ≥ 0. If  () = 1− − willingness to
pay for an additional unit is  0 () = − ≤  0 (0) = , with  () ≡ 1


ln ().
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10 Hotelling (1931) with depreciation of 

Let  depreciate so that



= − −  (73)

where  is consumption. Bubble equilibria remain, but now  must always converge

to zero. Storage of wine now requires that price appreciate at  + :

 = 0
(+).

We now have  = 
¡
0

(+)
¢
for some unknown constant 0. The solution to (73)

for  is

 = −0 −
Z 

0

−(−)
¡
0

(+)
¢
 (74)

A “Hotelling equilibrium”, 0 should be the smallest 0 for which  → 0. Any

smaller 0 will cause  to eventually become negative. Before solving for 

0 note

that there is again a continuum of bubble equilibria indexed by 0  0 , but that

now they all entail  → 0. The simple test of the time-path of consumption relative

to that of trading such as is depicted on the right panel in Figure 2 will not work.

EXAMPLE:  () = − with   1 (the elastic demand case). Below, we shall

show that Hotelling’s equilibrium 0 is

0 =

µ
1

0

¶1 µ
1

 + ( − 1) 
¶1

 (75)

and the Hotelling sequence for  is just

0
−(+) (76)

Because depreciation raises the growth rate of  and because demand is elastic,

holding 0 constant, a higher  reduces consumption by more than , and the net

effect is to lower 0 . For 0 = 1  = 2, and  =  = 01, Figure 12 plots the evolution

of  in Hotelling’s equilibrium and in a bubble equilibrium. It also plots an infeasible

path for  one that would be implied by a price lower than 0 .

Derivation of (75) and (76).–Let us analyze first the example in Section 2.2.1.

The example was  () = − with   1. ThenZ 

0

−(−)
¡
0

(+)
¢
 = 

−
0

Z 

0

−(−)−(+)

= 
−
0 −

Z 

0

−[+(−1)]

= 
−
0 −

1− −[+(−1)]

 + ( − 1)  
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Figure 12: Paths for  when   0

Substituting into (74),

 = −
µ
0 − 

−
0

1− −[(+)−]

 + ( − 1) 
¶
 (77)

whence we see that the smallest 0 that keeps the RHS of this equation non-negative

for all  is in (75). Substituting 0 for 0 into (77), we get (76).

11 The data

The data include only incomplete histories of the various wines. Each data point

includes: label, vintage, year offered for sale, quantity, size, price and currency. Three

kinds of prices were collected:

1. Auctions.–1766-2007. About 100,000 observations. All are transactions prices.

2. Dealers.–Mid 1800s-2007. About 4,000 observations. For the 19th century,

main source is the Guildhall Library, London. For most of the 20th Century, Berry

Brothers and Rudd, London, and on-line sources. All are list prices.

3. Restaurants.–Mid 1800s-2007. About 5000 observations. For the pre-WW2

period, main source is the NY Historical Society. A handful from the U.S. Library of

Congress and the NY Public Library. All are list prices.
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Wines included.–Only 9 Chateau wines were selected: Haut Brion (1), Lafite

Rothschild (2), Latour (3), Margaux (4), Mouton Rothschild (5), Ausone (6), Cheval

Blanc (7), Petrus (8), D’Yquem (9). All are from the Bordeau region in France which,

for the past 200 years has supplied most of the highest-priced wines.

No data are available on the stock of wine by vintage.
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Main data sources and # observations

Dealer Obs.

Berry Bros. 2702

FARR 1167

21 Club(?) 54

B&S 12

J.D.C 11

W.C&C 2

Day Watson 1

Restaurant Obs.

21 Club 490

Berns Stk Hs, Tampa 490

Charlie Trotters, Chi. 318

Name unknown 283

Cru, NYC 223

Le Cirque, NYC 83

Morrell Bar, NYC 27

Antoine’s, New Orl. 22

Harry Waugh D Rm 19

LF 17

Taillevent, Paris 12

Canlis, Seattle 11

Locke Ober 7

Simpson’s, Edgbstn 4

Auctioneer Obs.

Chicago Wine Co. 32962

Christie’s, London 25600

Sotheby’s, London 17904

Zachy’s/Christie NY 7965

S. Lehman/Sthby NY 6604

Butterfield, SF 5202

David and Co., Chi. 3788

Morrell and Co. NY 3455

Christie’s, Chi. 3357

Christie’s, Amstrdm 1254

Christie’s, LA 883

Christie’s, Geneva 819

Sotheby’s, Chicago 669

Acker Merril, New York 411

Sotheby’s, New York 214

W.T. Restell, London 205

Christie’s, Bordeaux 99

Christie’s, NY 8

Conversion table.–All prices are per bottle and in year-2000$ U.S. The conversion

between different-sized bottles is described in the following table:

Code Conversion Description

B 1.0 Bottle

M 2.0 Magnum

DM 4.0 Double magnum

IP 0.0 Imperial pint

MJ 3.0 Marie-Jeanne

TM 6.0 Triple magnum

QM 8.0 Quadruple magnum

J 6.0 Jeroboam

R 6.0 Rehaboam

I 8.0 Imperial

1/10 0.5 One-tenth (of a gallon)

H 0.5 Half bottle

1/5 1.0 One-fifth (of a gallon)

Pint 0.5 Pint
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11.1 The history of the 1870 Lafite-Rothschild

Amajor concern with a wine that old is that it is undrinkable, that it has “turned into

vinegar.” But the evidence is that if properly stored, wines retain their quality even af-

ter they are 100 years old. Notes on some recent tastings are at http://www.vintagetastings.com/.

The last known (to me) tasting of the 1870 Lafite was in 1970, and was or-

ganized by Michael Broadbent, the then head of Christie’s wine department. De-

scribing his experience of tasting the 1870 Lafite at age 100, Broadbent said: “I

am very often asked by journalists which is my favorite wine. This, I believe, is

the most spectacular and memorable one.” A detailed write-up of the event is at

http://www.empireclubfoundation.com/details.asp?. A more recent, 2002 tasting of

an 1870 Château Cos d’Estournel (not in my sample) showed that the flavor was still

good.

The following three tables provide the details of each data point in Figure 7. For

some years, more than one auction- and restaurant-price observation was available.

In that case, the observations were averaged for the purpose of the plot.

Following the tables documenting the history of the 1870 Lafite, we shall display a

collection of plots for certain other vintages and other labels. The Table and the plots

should provide a fairly accurate feel for the kind of coverage that the data provide,

and for the patterns that these data show.
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The 1870 Château Lafite-Rothschild

AUCTIONS

Auction Loc Year Age Price

Christie’s, London UK 1889 19 22

Christie’s, London UK 1889 19 17

Christie’s, London UK 1892 22 17

Christie’s, London UK 1895 25 23

Christie’s, London UK 1895 25 22

Christie’s, London UK 1895 25 19

Christie’s, London UK 1896 26 19

Christie’s, London UK 1908 38 21

Christie’s, London UK 1937 67 52

Restell, London UK 1941 71 905

Christie’s, London UK 1971 101 341

Christie’s, London UK 1973 103 675

Christie’s, London UK 1976 106 696

Christie’s, London UK 1977 107 1809

Christie’s, London UK 1978 108 1747

Butterfield and Butterfield US 1989 119 660

Butterfield and Butterfield US 1989 119 903

Sotheby’s, London UK 1990 120 643

Christie’s, London UK 1990 120 316

Christie’s, London UK 1990 120 1248

Christie’s, London UK 1990 120 3626

Christie’s, London UK 1991 121 580

Christie’s, Chicago US 1991 121 1011

Christie’s, London UK 1992 122 302

Christie’s, London UK 1993 123 894

Christie’s, London UK 1993 123 894

Christie’s, London UK 1993 123 894

Christie’s, London UK 1993 123 894

Christie’s, London UK 1993 123 894

David & Co. US 1994 124 2789

David & Co. US 1994 124 2789

David & Co. US 1995 125 3616

Christie’s, New York US 1995 125 3955

David & Co. US 1995 125 3616

The Chicago Wine Company US 1996 126 1866

Christie’s, London UK 1996 126 2055

Christie’s, London UK 1996 126 2055

Sherry Lehman/Sotheby’s US 1997 127 2468
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Auction Loc Year Age Price

Morrell & Co. US 1997 127 9656

Zachy’s/Christie’s US 1998 128 1336

Morrell & Co. US 1998 128 11621

Zachy’s/Christie’s US 1998 128 3645

Sherry Lehman/Sotheby’s US 1998 128 2219

Morrell & Co. US 1998 128 11621

Christie’s, London UK 1999 129 8434

Christie’s, London UK 1999 129 1756

Zachy’s/Christie’s US 1999 129 3101

Christie’s, London UK 1999 129 6689

Sherry Lehman/Sotheby’s US 1999 129 5685

Zachy’s/Christie’s US 1999 129 3101

Sherry Lehman/Sotheby’s US 1999 129 2247

The Chicago Wine Company US 2000 130 5200

The Chicago Wine Company US 2001 131 7195

Zachy’s/Christie’s US 2006 136 3611

Zachy’s/Christie’s US 2006 136 20063

Christie’s, London UK 2006 136 7507

The 1870 Lafite — RESTAURANTS

Restaurant Loc Year Age Price

Fest-Essen, Dusseldorf GE 1889 19 32

CentralStelle, Dusseldorf GE 1895 25 35

Charlie Trotters, Chicago US 2003 133 7931

Charlie Trotters, Chicago US 2003 133 8891

Charlie Trotters, Chicago US 2004 134 8660

Charlie Trotters, Chicago US 2004 134 7726

Charlie Trotters, Chicago US 2005 135 7367

Charlie Trotters, Chicago US 2005 135 8258

Charlie Trotters, Chicago US 2006 136 8111

Charlie Trotters, Chicago US 2006 136 7235

Charlie Trotters, Chicago US 2006 136 8111

Charlie Trotters, Chicago US 2007 137 12806

Charlie Trotters, Chicago US 2007 137 14941

The 1870 Lafite — DEALERS

Dealer Loc Year Age Price

Day Watson UK 1873 3 22

Berry Bros. & Rudd UK 1907 37 583

Berry Bros. & Rudd UK 1928 58 980

Berry Bros. & Rudd UK 1932 62 771

Berry Bros. & Rudd UK 1935 65 1232

Berry Bros. & Rudd UK 1937 67 1182

CellarBrokers.com US 2007 137 9074
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11.2 The histories of some other wines
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