The Impact of the Internet on Advertising Markets for News Media

by

Susan Athey, Emilio Calvano and Joshua S. Gans*

First Draft: October, 2009
This Version: July 2011

In this paper, we explore the hypothesis that an important force behind the collapse in advertising revenue experienced by newspapers in the past decade is the greater consumer switching facilitated by online consumption of news. We introduce a model of the market for advertising on news media outlets whereby news outlets are modeled as competing two-sided platforms bringing together heterogeneous, partially multi-homing consumers with advertisers with heterogeneous valuations for reaching consumers. A key feature of our model is that the multi-homing behavior of the advertisers is determined endogenously. The presence of switching consumers means that, in the absence of perfect technologies for tracking the ads seen by consumers, advertisers purchase wasted impressions: they reach the same consumer too many times. This has subtle effects on the equilibrium outcomes in the advertising market. One consequence is that multi-homing on the part of advertisers is heterogeneous: high-value advertisers multi-home, while low-value advertisers single-home. We characterize the impact of greater consumer switching on outlet profits as well as the impact of technologies that track consumers both within and across outlets on those profits. Somewhat surprisingly, superior tracking technologies may not always increase outlet profits, even when they increase efficiency. In extensions to the baseline model, we show that when outlets (e.g. blogs) that show few or ineffective ads steal readers from traditional outlets, the losses are at least partially offset by an increase in ad prices. Introducing a paywall does not just diminish readership, but it furthermore reduce advertising prices (and leads to increases in advertising prices on competing outlets).

* Harvard (Athey), Bocconi (Calvano), University of Toronto (Gans). This paper was previously circulated with the title “Will the Internet Destroy the News Media?” We thank participants at the ZEW Platforms Conference (Mannheim), Toulouse Network Conference (Seattle), 2010 Media Economics Workshop (CUNY), Annual IO Theory Workshop (Duke), Conference on Internet and Software (Toulouse), 2011 International Industrial Organization Conference (Boston), 2011 CRES Conference (St Louis) and at seminars at Dartmouth, Harvard, Yale, Virginia, Toronto, Chicago, Columbia, George Mason, London School of Economics, Boston College, Google, Microsoft Research, Harvard Business School, MIT and Berkeley for helpful comments. Special thanks to Michael Riordan and Francisco Ruiz-Aliseda for helpful discussions. We thank Jing Xia for outstanding research assistance. Financial support from the Toulouse Network on Information Technology is gratefully acknowledged. Responsibility for all views expressed lies with the authors and not with any affiliated organization. The latest version of this paper is available at research.joshuagans.com.
1 Introduction

The issue of whether the Internet will destroy the news media is currently a big news topic. The news industry as a whole has seen large declines in advertising revenue, while traditional media has simultaneously faced increased competition for attention from new media (including web-only news, blogs and news aggregators). Policy-makers have expressed concerns that declining revenue per consumer as well as fragmentation in the media might undermine incentives to invest in quality journalism.

While new technologies and competition can often explain why revenue may be redistributed among industry players, the adverse impact of the Internet on the news media is widespread: industry-wide revenue has declined.\(^1\) This represents an economic puzzle because, in many respects, the fundamental drivers of supply and demand appear to be as favorable for the industry if not more favorable than before. We argue that this is true despite assertions to the contrary in the popular press that advertising revenues are being destroyed by the Internet because of the flood of available advertising space. From the New York Times,

... online ads sell at rates that are a fraction of those for print, for simple reasons of competition. “In a print world you had pretty much a limited amount of inventory — pages in a magazine,” says Domenic Venuto, managing director of the online marketing firm Razorfish. “In the online world, inventory has become infinite.” (Rice, 2010)

While there may be space for every advertiser on the Internet, those ads must still be viewed by an actual consumer. The attention of those consumers is still limited, and scarcity limits the

\(^1\) According to the Newspaper Association of America (www.naa.org), since 2000 total advertising revenue earned by its member US newspapers declined by 57% in real terms to be around $27 billion in 2009. Much of this decline was in revenue from classifieds but total display advertising revenue fell around 40%. In contrast, circulation over the same period declined by 18%. Ad revenue as a share of GDP also declined by 60%. According to ComScore, total US display advertising revenue online was around $10 billion in 2010 which includes all sites and not just newspapers.
available advertising capacity. Since advertisers compete for scarce consumer attention, it is unlikely that the price of ads will go to zero.

It has been observed that internet-provided services (such as classified ads and movie listings) have displaced revenue streams from services that previously were provided by newspapers. However, the decline in advertising revenue is much larger than the loss due to classifieds. Another change brought on by the internet that could be considered as a problem for newspaper advertising revenues is that the Internet had created new types of advertising opportunities (e.g., internet search ads). However, observers and regulators have noted that these new forms of advertising are complements rather than substitutes for the kinds of advertising typically used by the news media.

On the positive side of the equation, the internet has enabled improved measurement of advertising performance and created new opportunities to improve the targeting of advertising to consumers (Evans, 2009). Another change in fundamentals is that the delivery of content and advertising has become less costly. Although cost reductions are favorable for a fixed industry structure, they may lead to entry. However, as we explain below, the benchmark model of media economics predicts that advertising prices should not fall in response to entry.

The benchmark models of media economics (e.g., Anderson and Coate, 2005) have media outlets competing for consumers by showing fewer ads (a force that will not be the focus of our analysis). Consumers are assumed to single-home (view just one outlet in a relevant time period), and so once an outlet has attracted consumers, it acts as a monopolist on the advertising

2 According to the Newspaper Association of America (www.naa.org), since 2000, newspaper ‘display’ advertising revenue independent of classified ads, has declined almost 40 percent in real terms.

4 Some hypothesize that online or digital ads are far less effective than ads that are on paper. However, to date, the evidence is not consistent with that hypothesis (see Dreze and Hussiherr, 2003; Lewis and Reiley, 2009; Goldfarb and Tucker, 2010).
side of the market when selling advertisers access to those consumers. Thus, advertising revenue reflects monopoly prices, independent of the number of outlets. Indeed, competition amongst media outlets in this model would lead to higher ad prices, as those outlets scale back levels of annoying advertising as they compete to attract consumers. In contrast to the predictions of the model, however, there is evidence that competition is associated with falling ad prices including mergers that increase them (Anderson, Foros and Kind, 2010).

Another prediction of the benchmark model is that ad revenue per consumer should equalize across outlets (that is, attention is worth the same regardless of where it is allocated); in contrast, there is evidence that larger outlets command a premium.\(^5\) Finally, rather than welcome policy moves to require public broadcasters to raise revenue from ads rather than be subsidized, existing media outlets have typically opposed the lifting of advertising restrictions.\(^6\) All of these factors suggest that competition in advertising markets is not working in the manner that traditional media economics predicts.

This paper presents a formal analysis of the prospects for advertising-funded content on the Internet. Our analysis is grounded by carefully accounting for the fundamentals of supply and demand: our model set-up (in Section 2) holds fixed the total supply of consumer attention as well as the constant demand from advertisers for that attention. We then derive advertising revenue from a market equilibrium.

We demonstrate that there are two model elements – imperfect consumer tracking \textit{and} increased consumer switching – that can together lead to outcomes that match the stylized facts described above. First, consider the problem of consumer switching.

\(^5\) Recently, this has been referred to as the “ITV Premium Puzzle” (Competition Commission, 2003). However, the relationship has been noticed previously by Fisher et.al. (1980) and Chwe (1988).

\(^6\) Ambrus and Reisinger (2006) document the opposition of German broadcasters to allowing public television broadcasters to show advertisements after 8pm.
Newspaper readers are “better” than Web visitors. Online readers are a notoriously fickle bunch, and apparently are getting more so by the day. Web visitors barely stick around, yet they are counted in broad traffic statistics as if they were the same as the reader who lingers over his Sunday paper. (Farhi, 2009)

This reflects the proposition that the web enables consumers to more readily switch between outlets. In the offline world, consumers of print and other media would face some constraints in accessing news and other content from multiple sources. This is not to say that consumers literally allocated all of their attention to one outlet, but just that their ability to switch between outlets and bundle a variety of content was limited in comparison to their options today. Thus, while consumers may have spent 25 minutes reading the morning print newspaper, they may spend on average 90 seconds on a news website (Varian, 2010). This is not a reduction in the amount of consumption, but instead a reduction in ‘loyalty’ to any one outlet. Web browsers make it easy for consumers to move between outlets while free access removes other constraints. But, going beyond this, intermediaries such as search engines, aggregators and social networks facilitate switching. Indeed, we examined empirically the news consumption patterns of several million internet users, and found that among users who consumed at least 10 news articles per week, the concentration of a user’s consumption among different news outlets, as measured by a news consumption Herfindahl index, was strongly and negatively associated with the users’ frequency of using Google news and Bing news.7

Second, consider the problem of imperfect tracking. We postulate that outlets have a superior ability to track the behavior of consumers within their outlets rather than between them.8 When consumers are each loyal to a single outlet, imperfect tracking would not be an issue for

7 See also Chiou and Tucker (2010) for additional evidence that news aggregators facilitate consumer switching between outlets.

8 This is consistent with current practice (Edelman, 2010).
advertisers. To reach many consumers, advertisers could purchase impressions on a wide number of outlets (i.e., multi-home) and achieve those goals. However, when consumers switch between outlets, advertisers have a harder task. An advertiser who multi-homes will find that it impresses the same consumer more than once, potentially wasting expensive advertising.\(^9\) Maximizing the “reach” of advertising now carries the additional cost of paying for wasted impressions. In contrast, an advertiser who single-homes will miss some proportion of consumers entirely.

We show that consumer switching and imperfect tracking together interact to generate an outcome whereby an increase in consumer switching (holding fixed the number of outlets and their market shares) leads to a reduction in impression prices, as advertisers are not willing to pay as much due to the potential waste. For similar reasons, increasing the number of outlets also reduces total advertising revenues. However, in the absence of switching, our model reduces to the standard media economics model, whereby outlets set monopoly prices to advertisers irrespective of the competition among outlets.

With only a few exceptions, the literature on two-sided markets assumes that each side of the market either fully single-homes or fully multi-homes.\(^{10}\) While most models in the media economics literature assume that consumers single-home – that is, choose to allocate attention to only one outlet – there are some that have considered what happens when consumers multi-home. Gabszewicz and Wauthy (2004) and Anderson and Coate (2005) considered this but demonstrated that advertisers would all single-home in this case resulting in no change in overall advertising revenues.\(^{11}\) Recently, Ambrus and Reisinger (2006) considered a model of

\(^9\) Some advertisers target an optimal number of impressions per consumer that is greater than one. Imperfect tracking makes it difficult to target that optimal number of impressions, however, for concreteness in our model we study the case where the optimal number of impressions is equal to one.

\(^{10}\) Although it has received less attention in the economics literature, fixed costs of engaging with alternative outlets are important in practice in the advertising industry. We do not consider such fixed costs in this paper.

\(^{11}\) Ashlagi, Edelman & Lee (2010) examine competing ad auctions for search engines where consumers single-home but advertisers face costs that make multi-homing costly.
horizontally differentiated outlets whereby only some share of consumers multi-homed; specifically, consumers who are on the margin of choosing one outlet or the other. They then posited that those consumers were less valuable to outlets than consumers who single-homed. Anderson, Foyos and Kind (2010) endogenized the value of multi-homing consumers, and demonstrated that outlets would receive lower prices for ads shown to multi-homing consumers than loyal ones. Consequently, outlets adjust their advertising levels (creating more annoying ads) to reduce consumer multi-homing. The overall impact on prices is ambiguous, but competition does reduce outlet profits in their model.

As noted earlier, we move away from the notion that consumers come to outlets with an associated revenue stream and instead model revenue as arising from the effective impressions advertisers are able to procure. This involves constructing a model whereby consumers may switch outlets within the time period advertisers want to place impressions in front of them. Importantly, this means that an outlet can place more ads over loyal consumers (who consume more content on an outlet) than they can over switching consumers, who only visit the output for some fraction of the relevant time period.12 This requires us to consider the mixed single and multi-homing consumer outcomes and to solve for the resulting equilibrium in the advertising market. The modeling challenge arises because the price that clears the market also impacts on the “quality” of likely matches between consumers and advertisers (that is, the likelihood of a wasted impression). We demonstrate that a sorting equilibrium exists, whereby high value advertisers multi-home and, in some cases, increase the frequency of impressions so as not to miss consumers, while lower value advertisers single-home. As the share of switching consumers

12 Both Ambrus and Reisinger (2006) and Anderson, Foyos and Kind (2010) assume that the ad-capacity associated with single and multi-homing consumers are identical. As is demonstrated below, the fact that loyal (single-homing) consumers will allocate more attention to an outlet and hence, view more ads, than switching (multi-homing) consumers has a significant impact on the resulting equilibrium and the set of strategies outlets may pursue to maximize profits.
rises, advertisers prefer to single-home rather than multi-home. This frees up ad capacity on each outlet for lower valued advertisers, who set the price in the market. Consequently, prices and total ad revenue decline.

Interestingly, we demonstrate that this result is not straightforward. It depends critically on the total available ad capacity. When capacity is very high, while single-homing advertisers are always the marginal advertiser in the market, high value advertisers have an incentive to purchase multiple impressions and absorb inframarginal capacity. The balance between the marginal and inframarginal means that, in some cases, for fixed (and large) ad capacity, increased consumer switching between outlets may be associated with higher, not lower, outlet profits. Indeed, profits may exceed levels that can be achieved when either switching or imperfect tracking is not a problem.

However, this result relies on levels of ad capacity on each outlet that are higher than the equilibrium levels that would be chosen in a Cournot-like ad capacity game. In our baseline model, we assume that ad capacity on each outlet is fixed and exogenous. This captures a world where outlets stick to a “standard” format for where advertising appears on a news page, and do not vary it as consumer switching increases. Incorporating endogenous ad capacity would potentially raise two effects. One effect is the standard Cournot effect: higher advertising capacity leads to lower prices, and increased competition among outlets leads to higher equilibrium capacity. A second effect is the one identified in the prior literature on media economics: users dislike ads, and so outlets compete for users by providing fewer ads. Most of our results are qualitatively robust to incorporating Cournot-style competition in capacity; however, specific functional forms play a role in deriving comparative statics on the role of switching, for the usual reason that capacities are strategic substitutes, while exogenous
parameters might shift the returns to capacity in similar directions for all outlets, leading to competing effects in the equilibrium analysis. Incorporating the negative effect of competition on ad capacity due to competition for users would moderate some of our findings. Our choice to leave this out of the model reflects the desire to focus on the novel effects in our model, together with our observation that, while internet advertising does impact the user experience, the content of the sites rather than the level of advertising is the driving force behind online news media market shares.

In our baseline model with exogenous capacity, we demonstrate that a reduction in competition (say through a merger) always results in higher industry ad revenues. Next, we consider several applications of the model. We demonstrate that when some outlets cannot sell ads (as they might if they are regulated public broadcasters or smaller blogs) ad prices will be higher. When outlets capture consumer attention without selling ads, this reduces the supply of capacity that can be sold to advertisers in the market. Further, because movements to and from such outlets do not create wasted impressions, efficiency and prices go up. Thus, our model provides a rationalization of private media outlet objections against public broadcasters being allowed to sell ads.

Our baseline model assumed that outlets were symmetric. In Section 6 we relax this and derive conditions under which outlets earn higher advertising revenue per consumer than their rivals. This happens when one outlet has a lower ad capacity than the other, although it may not increase their total profits. Significantly, an outlet with a higher readership can, in the face of consumer switching, command a higher impression price than its rival. This is because the marginal advertiser who is a single-homer in that case will prefer to purchase impressions on the outlet with the higher readership share and is willing to pay a premium to do so. Consequently,
higher valued, single-homing advertisers sort onto the high readership outlet first, giving them a “positional advantage.” We demonstrate that the extent of this positional advantage can drive competition for those consumers and, indeed, may cause outlets to invest more in quality than they would under benchmark cases or perfect tracking. This result is consistent with the stylized fact that media outlets that provide greater “reach” command higher ad prices, all else equal.

We also demonstrate that an outlet can gain a positional advantage by having limited content, but content that consumers visit reliably – something we term magnet content. If outlets can ensure that a high share of consumers will at some point allocate attention to them, those outlets can command a premium in advertising markets. This suggests that outlets may focus their efforts on producing offerings that regularly attract the attention of many consumers rather than the focused attention of fewer consumers.\footnote{A counterveiling effect outside our model is that with more data about consumers, outlets can sell more targeted advertising. See Athey and Gans (2010) for an analysis of the impact of targeting technology on ad prices.} Relatedly, we demonstrate that paywalls unilaterally imposed by an outlet can have the effect of reducing their positional advantage or giving their rivals a positional advantage in advertising markets. As a result, we identify additional competitive costs to outlets from introducing paywalls.

2 Model Set-Up

We begin by setting out the fundamentals of consumer and advertiser demand and behavior that drive our model. These are the core elements that do not change as consumers face lower costs of switching between outlets.

2.1 Consumer Attention and Advertiser Value

Consumers have scarce attention that they devote to consuming various bits of media. In addition, consumers are potential purchasers of products and can be matched with firms through
advertising. We assume that consumers purchase products at a slower rate than they consume media. For example, a consumer might purchase one soda in a day but have numerous opportunities to consume media over that same period of time. A soda-maker is concerned about putting an impression in front of a consumer sometime during the day and so is indifferent as to which period of the day that occurs. What matters for advertising supply is thus the total attention a consumer devotes to viewing media over the course of a day, but depending on how well consumers can be tracked within and across outlets, a consumer’s switching patterns may effect the extent to which advertising impressions are wasted.

Formally, suppose there are \(T \) periods, where the defining feature of a period is that a consumer can only read one unit of content per period (so it would correspond to something like a view of an online web page). \(v \in [0,1] \)

We let \(a_i \) be the quantity of advertising that outlet \(i \) presents to consumers per unit of time. We assume that all advertising is equally effective regardless of the quantity, and our base model ignores consumer disutility of ads for simplicity. We assume that ad capacity is exogenous (although we explore the robustness of our results to relaxing this assumption below).

In each period that a consumer visits outlet \(i \), a consumer is impressed by \(a_i \) ads and if that happens in all periods, the consumer is impressed by \(Ta_i \) ads. \(Ta_i \) is the total (maximum possible) amount of advertising inventory introduced to the market by outlet \(i \), as well as the maximum quantity of advertisers who could possibly reach an individual consumer that stays with outlet \(i \) for all periods (if each advertiser purchased at most one ad per consumer).

An advertiser who puts an impression in front of a consumer in a period receive a value (strictly, value of a lead), \(v \in [0,1] \) for all consumers, independent of the number of consumers. The value to the advertiser does not increase if the same consumer sees more than one ad.
impression from a given advertiser. Advertisers are heterogeneous in their valuations, and the cumulative distribution function of advertiser valuations is $F(v)$.14 If Ta_i is the total supply of consumer attention, and advertisers are ranked by value in terms of rationing of access to consumer attention, then the marginal advertiser, v_i, is defined by $1 - F(v_i) = Ta_i$. We restrict attention, therefore, to cases where $\max_i a_i < 1/T$ so there is an interior solution.

2.2 Outlet Demand and Advertising Inventory

How do consumers allocate attention to different media outlets? We assume that whenever a consumer has an opportunity to choose, outlet i will be chosen with probability x_i. Thus, x_i is a measure of an outlet’s intrinsic quality (in our baseline model it is exogenous, but in Section 6.3 we endogenize the quality). If a consumer chooses an outlet, $i \in \{1, \ldots, I\}$, and has no opportunity to switch thereafter, outlet i’s advertising inventory would be $x_i a_i T$.

We assume, however, that an opportunity for a consumer to switch outlets arrives (independently) each period with probability, ρ.15 For convenience, throughout this paper we assume that $T = 2$ so, in effect, there is, at most, a single opportunity to switch.16 Thus, the total expected amount of attention going to i is:

$$x_i + x_i ((1 - \rho) + \rho x_i) + (1 - x_i) \rho x_i = 2x_i$$

(1)

We let D_i denote the share of consumers loyal to i (i.e., single-homers) and D_{ij} denote the share consumers who switch between outlets i and j (i.e., multi-homers) in any given period. Then:

14 An alternative specification might have advertisers desiring to reach a specific number of consumers (Athey and Gans, 2010) or a specific consumer type (Athey and Gans, 2010; Bergemann and Bonatti, 2010).

15 Here we treat this probability as independent of history (i.e., outlets a consumer may have visited earlier) or the future (i.e., outlets that they may visit later). In Section 6.5, below, we explore the implications of relaxing this assumption.

16 If there are more than two periods, then there are many opportunities to switch, and there will be many different types of switchers, e.g. those who spend different fractions of their time with different outlets. This complicates the modeling substantially without changing the basic economic tradeoffs.
\[D_i' = x_i - x_i(1 - x_i)\rho \]
\[D_j' = 2\rho x_i x_j \]
When there are no switching opportunities (i.e., \(\rho = 0 \)), \(D_i' = x_i \) and \(D_j' = 0 \) for all \(\{i, j\} \).

We observe that for much of our analysis, because we take outlet size \((x_i)\) to be exogenous, the key variables are the proportion of switchers and the proportion of loyal consumers for each outlet; the specific model of consumer switching does not affect the results.

In this model, if outlets have asymmetric capacity, then different consumer “switching types” will generate different advertising capacities. Consumers loyal to an outlet \(i \) will generate \(2a_i \) in advertising inventory while a consumer switching between outlets \(i \) and \(j \) will generate \(a_i + a_j \) in advertising inventory. As there are \(I \) outlets, this means that there are \(I + \frac{1}{2}I(I-1) \) different consumer types (i.e., \(I \) loyals and the remainder switchers between two different outlets).

3 Benchmarks

To begin, it is useful to examine two benchmarks for the advertising market: efficient allocation of advertisers to consumers, and pure single-homing consumers. This will allow us to examine the impact of possible tracking technologies as well as the impact of the Internet when such technologies are not available.

3.1 First Best Allocation

\(2a_i a_i + a_j I + \frac{1}{2}I(I-1) \) To achieve efficient allocation of advertisers to consumers, the highest value advertisers should be allocated first to advertising inventory generated by each consumer switching type. Let \(v_i \) denote the marginal advertiser allocated to consumers loyal to
outlet i and let $v_{s,ij}$ denote the marginal advertiser allocated to consumers who switch between outlets i and j (in most of the analysis that follows we will consider only two outlets so that, with only two periods, we can drop the ij subscript on switchers). An efficient allocation of advertisers to consumers involves allocating all advertisers with $v \geq v_i$ to outlet i’s loyal consumers and those with $v \geq v_{s,ij}$ to those who switch between i and j. $\{i, j\} i \neq j$ Thus, the marginal advertisers will be determined by: $2a_i = 1 - F(v_i)$ and $a_i + a_j = 1 - F(v_{s,ij})$.

3.2 Pure Single-Homing Consumers

Another benchmark comes from traditional media economics that assumes that consumers pay attention to only a single outlet (e.g., Anderson and Coate, 2005); that is, in the language of the two-sided markets literature, all consumers single-home. In our model, that is formalized as $\rho = 0$ (say, corresponding to a world where consumers read one newspaper per day). We term this environment NS. In effect, this environment gives outlets a monopoly over access to a share of consumers and will set advertising pricing terms to reflect that.17

To see this, recall our assumption that advertisers place the same marginal value per consumer on reaching any number of consumers. Given that there are no fixed costs of advertising with different outlets, advertisers will multi-home, advertising on any outlet whose impression price, p_i, is less than v.

There is an issue, however, in that when an outlet has many consumers, it needs to track when an ad is placed in front of a given consumer. This is an issue we will return to below. The common assumption is that outlets can track consumers within their own outlets and so to access all an outlet’s consumers an advertiser need only pay for one impression per consumer. Thus, if17 Note that this is the usual assumption in many models of media competition. For example, Anderson and Coate (2005) assume that broadcasters compete for viewers and then are able to earn an advertising revenue, $R(a)$ per consumer contingent upon the number of ads shown to them.
it has advertising inventory of a_i per period, the market clearing price for outlet i is the p_i that satisfies $1 - F(p_i) = 2a_i$. If $P(z) \equiv F^{-1}(1 - z)$ then $p_i = P(2a_i)$. Outlet i’s profits will be: $\pi_i = x_i P(2a_i) 2a_i$. Note that, contingent upon the assumption that $\rho = 0$, this is an efficient allocation of advertisers to consumers. If (in an extension to our baseline model) advertising capacity were endogenously chosen by each outlet, then the capacity chosen will be less than what would be chosen by a social planner. This is just a standard monopoly output problem, since each outlet acts as a monopolist over its loyal consumers. In much of our analysis we will consider the special case of advertiser values with a uniform distribution, $F(v) = v$. Then, as is standard, the monopoly problem for outlet i is to choose a_i to maximize π_i resulting in $a_i^{\text{NS}} = \frac{1}{2}$ and a profit level of $\pi_i^{\text{NS}} = x_i(1 - 2a_i) 2a_i = x_i \frac{1}{4}$. This is invariant to the number of outlets.\(^1\)

3.3 No tracking:

Another benchmark is to consider what happens when outlets are unable to internally (or externally) track impressions and to control matching between advertisers and consumers. This is the assumption made by Butters (1977) and Bergemann and Bonatti (2010). In the early days of the Internet, websites had no ability to track consumers even within outlets, and even today with privacy settings such tracking may not be possible. The models of Butters (1977) and Bergemann and Bonatti (2010) assume that advertisers choose the intensity of their advertising on an outlet, but that advertising messages (impressions) are distributed independently (across messages) and uniformly across consumers. We will refer to this as the “BBB no tracking assumptions,” and we will maintain that assumption within this subsection. This means that a

\(^{18}\) As discussed in the introduction, we assume that the readership share x_i does not depend on the number of ads. The standard models of media economics focus on this effect, and show that competition for users reduces the equilibrium output of ads. We do not formally model this effect as it has been well-studied in the existing literature.
given consumer might see the same advertisement multiple times, which involves waste. In their models, the expected number of unique impressions received by an advertiser with advertising intensity \(n \) in a market of size \(x \) is given by \(x \left(1 - \left(1 - \frac{1}{x}\right)^n\right) \approx x(1 - e^{-n/x}) \), where \(\frac{1}{x} \) is the probability that a given consumer is selected for a given ad impression.\(^{19}\)

In our model, we can consider the efficiency of an advertiser’s impressions on multiple outlets in an environment with switching, under the assumptions of the BBB model. In the Appendix, we show that if \(n_i \) is the number of impressions purchased on outlet \(i \), under the BBB no-tracking assumptions, an advertiser with value \(v \) solves:

\[
\max_{\{n_i \geq 0, n_2 \geq 0\}} \pi := D'_1(1 - e^{-n_1/x_1})v + D'_2(1 - e^{-n_2/x_2})v + D^x(1 - e^{-(1/2)(n_1/x_1 + n_2/x_2)})v - n_1p_1 - n_2p_2 \quad (4)
\]

Let \(n^*(v, p_1, p_2) := (n^*_1(v, p_1, p_2), n^*_2(v, p_1, p_2)) \) denote the solution this problem. Notice that if \(\rho > 0 \), then impressions on different outlets are (imperfect) substitutes from the advertisers’ perspective as they allow them to reach the shared customers. The higher is \(\rho \), the higher is the degree of substitutability.

We also see that since a particular loyal user is twice as likely to be selected as a switcher (in our two period model, there is twice as much ad inventory for each loyal user on a given outlet), impressions on a given outlet are more efficient, the higher the share of switchers. Thus:

\[
\frac{\partial^2 \pi}{\partial n_1 \partial \rho} = e^{-n_1/x_1} \cdot v \cdot \left[\left(\frac{1}{x_1}\right) \frac{\partial}{\partial n_1} D'_1(\rho, x_1) + \left(\frac{1}{2x_1}\right) \frac{\partial}{\partial \rho} D'_1(\rho, x_1) \cdot e^{-(1/2)(n_1/x_1 - n_2/x_2)} \right]\\
= e^{-n_1/x_1} \cdot v \cdot \rho \cdot (1 - x_1) \cdot \left[-1 + e^{-(1/2)(n_1/x_1 - n_2/x_2)}\right]
\]

Thus, \(\text{sign} \left[\frac{\partial^2 \pi}{\partial n_1 \partial \rho} \right] = \text{sign} [n_1 / x_1 - n_2 / x_2] \). This has several implications. First, if an advertiser for some reason does not purchase many impressions on one outlet (e.g., very high impression prices

\(^{19}\) Bergemann and Bonnati (2010) have a model with a continuum of advertisers and consumers, much like our model, but take the function \(x(1 - e^{-n/x}) \) as a primitive describing the number of unique consumers impressed on an outlet.
there), then its advertising on the remaining outlet is an increasing function of the degree of switching. Intuitively, the more switchers, the more unique users there are per ad impression on an outlet, and thus the more efficient advertising will be.

There is also a second consequence of this, however. If, for any reason, an advertiser purchases the same fraction of available impressions on each outlet (even as the probability of switching changes), the outlet’s demand for impressions is independent of the probability of switching. This happens because the likelihood of wasting impressions on switchers (by catching them at both outlets) is equal to the likelihood of wasting impressions on loyals (by catching them twice on the same outlet).

Formally, we have:

Proposition 1a. For all values \(v, p_1, p_2 \geq 0 \), a solution to the advertisers’ problem exists and is unique. Suppose \(n^* \neq (0,0) \). Then \(\frac{\bar{a}_1}{e_1} \geq \frac{\bar{a}_2}{e_2} \) if and only if \(p_2 \geq p_1 \). Moreover \(\frac{\bar{a}_1}{e_0} \geq 0 \) and \(\frac{\bar{a}_2}{e_0} \leq 0 \) if and only if \(p_2 \geq p_1 \).

The proofs of all propositions are in the appendix. The first part of the proposition says that if an advertiser is active (i.e. buys any impression), then the number of impressions purchased per unit of attention captured must be higher on the cheaper outlet. The second part says that the relative price pins down the comparative statics.

Observe that if \(p_1 \neq p_2 \), then switching matters. The advertiser buys fewer impressions per unit of attention on the more expensive outlet, causing the fraction of impressions wasted on switchers to be lower than the fraction wasted on loyals. Then, increasing the proportion of switchers makes the less expensive outlet even more attractive, since the fraction of impressions that is wasted goes down with the number of switchers. This implies that higher types, who have a higher opportunity cost of missing users, multi-home, whereas lower types with value greater than the price of the less expensive outlet \(v \geq p_1 \) single-home.
An interesting, and a priori surprising, consequence of the above analysis is that absent supply-side asymmetries to account for gaps in market prices, equilibrium total advertising revenues will be constant in both the market shares of the outlets and the probability of switching.

Proposition 1b. Suppose that \(a_1 = a_2 = a \). Then outlets’ profits are independent of \(\rho \) and total industry revenue per consumer is equal to \(2ap^* \) where \(p^* \) is the unique solution to \(2a = \int_p^1 \ln(v/p) dF(v) \).

Thus, when the ad capacity per consumer on each outlet is exogenously assumed to be symmetric, an increasing share of switchers will not account for declining ad revenue in the no tracking case despite asymmetries in readership shares. Asymmetry is something Bergemann and Bonatti (2010) assume, and they demonstrate that adding more outlets with increasing asymmetric readership shares can *increase* total advertising revenue by virtue of facilitating improved targeting. They assume, however, that all consumers read one outlet while some also switch to other outlets. Thus, in their case, there is a hierarchy in readership preferences.

In Appendix B, we analyze endogenous ad capacity for several alternative technological assumptions about tracking. In general, ad capacities will not be symmetric across firms unless the readership shares are symmetric. The insight from our analysis that is robust, is that if the outlets have similar (per consumer) ad capacity in equilibrium, then switching will have a small effect on profits.
4 Perfect Tracking

4.1 The Advertiser’s Dilemma

When there are no switching consumers, an advertiser who places an ad on one outlet impresses those consumers only and one that places ads on multiple outlets, impresses all of the consumers of those outlets. None of those impressions is wasted and no consumer on an outlet is missed. Consequently, save for any shortfalls in ad capacity, all advertisers multi-home.\(^\text{20}\)

When consumers switch between outlets, advertisers, in general, face a dilemma. A multi-homing advertiser accesses all of the loyal consumers on each outlet, but it may only reach a fraction of the switchers. While some switchers may see distinct ads when they traverse between outlets, others may see the same ad from a multi-homing advertiser twice and others, not at all. The advertiser then faces a trade-off. It may prefer to single-home, sacrificing loyals on another outlet but not wasting any impressions. On the other hand, it may decide to multi-home, and even go further, increasing the number of impressions across all outlets. This increases their number of wasted impressions in return for impressing a greater proportion of switchers.

Given the two period structure of attention, one might think that this dilemma could be resolved by coordinating on a time period. For instance, an advertiser could pay for impressions only in the first period across all outlets and none in the second. However, this would require that consumers were overlapping completely in time in terms of the reading habits.\(^\text{21}\) There is nothing in the two period structure that requires such synchronization, and we find it unrealistic for

\(^{20}\) If ad capacities differ between outlets, then, by definition, there must exist some advertisers who do not multi-home.

\(^{21}\) In the context of coordinating attention, the Superbowl commands such a large share of attention at a given period of time that advertisers can be assured of impressing that share of consumers. Consequently, the coordination opportunity afforded by this may be a reason why ad space commands such high payments per viewer during that event. We explore a similar effect below.
online browsing. Consequently, we assume that coordination of impressions in a given period of time is not possible.\(^\text{22}\)

The advertiser’s dilemma arises when outlets cannot easily track consumers as they move across outlets. We begin by considering cases where there are switching consumers but where the missed/wasted impressions problem does not arise. This allows us to consider the impact of a technological ‘benchmark’ on the efficiency of advertising markets and competition within them.

4.2 Perfect ad-tracking

In this section we imagine a technology – the elements of which currently exist (at least online) but the implementation is far from achieving its ideal – whereby consumers can be tracked both within and across outlets with information kept as to the ads they have seen. In this situation, a consumer could be impressed by an ad at most once and advertisers could, with certainty, pay for an impression to a consumer and receive it.\(^\text{23}\) Thus, there are neither wasted impressions nor missed impressions. We term this perfect ad-tracking, as the advertising platform (or broker or exchange) is able to track consumers across web-sites and control the ads they see in a given period of time. Here, we assume that this service is provided competitively and we assume that advertisers pay only for an impression. This too is a heroic assumption but it allows us to separate the efficiency impact of perfect tracking from possible issues of platform market power.

\(^{22}\) One might wonder whether a pay-per-click model of advertising would alleviate the advertiser’s dilemma. The answer is no: whatever the payment model, displaying one advertisement necessarily displaces another. For this reason, most pay-per-click advertising networks charge advertisers a price per click that is inversely proportional to the click-through rate of the ad. Thus, the overall payment of the advertiser is “per impression”—an ad that is not clicked on often (perhaps because it is wasted, if the advertiser multi-homes) has to pay a proportionally higher price per click to justify displacing another advertiser.

\(^{23}\) Of course, some advertisers may have an optimal number of impressions per consumer other than one. The technology could ensure that optimum so, without loss in generality, we restrict that optimum to one here.
As noted earlier, there are \(I + \frac{1}{2} I(I-1) \) types of consumer; \(I \) who single-home on a given outlet and the remainder who switch between two outlets. We assume in this subsection that the platform can \textit{price discriminate} based on consumer-type (the platform can do this, because it sees behavior of consumers on all outlets). We assume that the outlets have a single level of ad capacity for all consumers and sell those impressions using the ad platform.\(^{24,25}\)

A consumer single-homing on outlet \(i \), will generate \(2a_i \) in advertising inventory. Advertisers will choose to advertise to a consumer so long as their value exceeds the impression price. Consequently, the price per impression to a single-homer on outlet \(i \), \(p_i \), will be determined by \(1 - F(p_i) = 2a_i \). In contrast, a multi-homing consumer, switching between outlets \(i \) and \(j \), generates \(a_i + a_j \) units of advertising inventory and so the price per impression on them is determined by \(1 - F(p_{ij}) = a_i + a_j \). Note that this is an efficient allocation of advertisers to consumer. Note also that if \(a_i = a_j \), then \(p_i = p_j = p_{ij} \). In contrast, if \(a_i > a_j \), then \(p_i < p_{ij} < p_j \).

In a given period, outlet \(i \) receives all of its loyal consumers, \(D_i^l \), and half of the switchers between it and a given outlet \(j \), \(D_j^s \). Given this specification, outlet \(i \)’s profits are:

\(^{24}\) To see how this would work, consider the allocation and pricing problem faced by the ad platform. Consumers who end up loyal to the highest-capacity outlet see ads from the largest interval of advertisers, while consumers who end up loyal to the lowest-capacity outlet see ads from the smallest interval of advertisers, but allocative efficiency requires that all consumers see ads from the highest-value advertisers. The challenge is that before the resolution of switching behavior, the total set of advertisers a consumer should see and the market-clearing price cannot be determined. In a stable environment, the ad platform can offer a set of prices for each type of consumer, such that supply equals demand for each type. In the first period, the platform allocates the highest-value advertisers first to each consumer (as revealed by their willingness to place an order for the most expensive consumer types). Then in the second period, the ad platform knows the total supply of ad space for each consumer and allocates the remainder of the advertisers who place an order for those types of consumers.

\(^{25}\) An alternative (but probably less realistic) assumption would be that the ad platform shares information with the outlet about the consumer type, so that the outlet can set different capacities for different types.\(^{25}\) This additional flexibility would lead to a scenario with essentially distinct markets, so that firms compete for switchers and but have a monopoly over access to loyal users. It is a bit more complicated to think how this would work in practice, since consumer types would only be fully determined in the second period, after the consumer had already experienced a first-period ad capacity. We omit the formal analysis of this case.
\[
\pi_i = \sum_{j \neq i} P(a_i + a_j) a_i D_j^i + P(2a_i) 2a_i D_i^i
\] (5)

An increase in \(\rho \) causes a greater share of consumers to become switchers. An outlet \(i \) will benefit from this change if they earn more, on average, from switchers than from loyal consumers; i.e., if and only if:

\[
\sum_{j \neq i} (P(a_i + a_j) - P(2a_i)) x_j > 0
\] (6)

In particular, an outlet with a high capacity relative to other outlets that have a relatively large readership share will become more profitable as a greater number of consumers become multi-homers. The opposite is the case for an outlet with relatively low advertising capacity. This insight leads to the following result.

Proposition 2. For an outlet \(i \) with \(a_i \geq \max_j a_j \) (\(a_i \leq \min_j a_j \)), \(\pi_i \) is non-decreasing (non-increasing) in \(\rho \). If all outlets have equal advertising capacities, then \(\pi_i \) does not change with \(\rho \) for all \(i \).

The result is due to an externality that the ‘high capacity’ outlets exerts on the low capacity one through \(p_g \). As \(\rho \) increases, the low capacity outlets lose their most valuable readers in favor of the high capacity ones and vice versa. Since the only impact of switching is to change the total capacity of ads a consumer sees, if all outlets have the same capacity, clearly switching has no impact when capacity is exogenous.

It is then straightforward to compare the profits achieved under perfect ad-tracking with those that arise in the benchmark case with single-homing consumers.

Proposition 3. If \(\rho = 0 \) and/or \(a_i = a \) for all \(i \), then expected outlet profits under perfect ad tracking is the same as the benchmark case with single-homing consumers. Otherwise, there exists, under perfect ad-tracking, at least one outlet whose profits will be higher and one whose profits will be lower than the benchmark case with \(\rho = 0 \).
Note that when $\rho = 0$, there are no switchers and profits in (5) equal $\pi_i = x_i P(2a_i) 2a_i$, the profits in the benchmark case. Similarly, if $a_i = a$, then (5) becomes $\pi_i = P(2a) a \left(\sum_{j \neq i} D_j^i + 2D_i^i \right) = x_i P(2a) 2a$. Intuitively, when there is no switching and no ad tracking, an outlet earns revenue for each reader it attracts and can divide that revenue between the two attention periods. When there is perfect ad-tracking, the same can be achieved as the outlet is paid per reader attracted per period. As the expected attention the outlet received is the same in both cases (that is, $2x_i$ units), their profits are the same.

Importantly, relative profits per reader are not driven by differences of relative market shares. That is, with symmetric ad capacities, profits are proportional to x_i. Thus, acquisition of an additional unit of readership share by an outlet transfers the profits associated with that reader directly from another outlet, and the marginal acquisition value of a reader is $P(2a) 2a$ regardless of how many readers an outlet already has. Assuming an exogenous level of ad capacity, this is precisely the same acquisition incentive that outlets in the case where consumers single home.\(^\text{26}\)

It is useful to emphasize here that competition between outlets over advertisers for multi-homing consumers is limited by the number of attention periods. In this respect, when the advertising platform distinguishes between switchers moving between outlets, the number of advertising impressions it can sell is limited to the capacities of those two outlets. If there were more attention periods, then for some switchers who traverse more outlets advertising capacity will be supplied by a greater number of outlets. When advertising capacity is endogenous, this will drive more competition between outlets in the provision of such capacity.

\(^{26}\) In the appendix, we examine the case where ad capacity is endogenous. It is demonstrated there that Cournot-like competitive outcomes result and become more intense as ρ becomes higher, decreasing profits.
5 Imperfect Tracking

As argued in the introduction, outlets do not currently operate either at an extreme of not being able to track consumers nor are they able to track consumers across outlets. Instead, tracking is imperfect – being available to varying degrees internally to an outlet and unavailable externally. Here we examine the equilibrium in the advertising market that arises when tracking is imperfect. We first demonstrate that in a model of imperfect tracking, consumers switching among outlets can explain declining total advertising revenue in the news industry. Second, as noted earlier, one of the primary benefits of the Internet for the news media industry is to utilize tracking technology to ensure that there is a tighter match between advertisers and readers. By providing a model of advertising markets under imperfect tracking we can compare those outcomes to ones generated with the benchmark and perfect tracking cases. This allows us to understand both the costs to the industry from increased consumer switching as well as the incentives to adopt tracking technologies.

5.1 Tracking technologies

Above we considered two types of offers that might be put to advertisers. Under no tracking the offer was “over the two attention periods, we will place a given number of impressions on our outlet for a price of p per impression.” Under perfect tracking the offer was “over the two attention periods, we will impress a given set of consumers just once regardless of where their attention is allocated at a price of p per consumer/impression.” Under imperfect tracking, it is assumed that outlets have the technology to offer a tighter connection between impressions and consumers than no tracking, because they have some capability of tracking consumers within their own outlet. However, outlets cannot offer inter-outlet arrangements (such
as different prices for different switching categories of consumer) that would be possible under perfect tracking because they cannot track consumers across outlets.

One case we consider is **perfect internal tracking**, whereby no consumer receives more than one impression from an advertiser on a given outlet. In this situation, one possible offer an outlet might make is “over the two attention periods, we will impress each unique consumer on the outlet once at a price of p per impression/consumer.” Thus, an advertiser could accept this deal and purchase impressions on $D_i^1 + D_i^2$ consumers on outlet i. However, this creates a capacity management issue if the outlet cannot distinguish loyal from switching consumers. If an outlet does not impress all consumers in the ‘first period’ it will have to impress them in the second period. However, unless it can distinguish between loyals and switchers in the first period, some consumers may move to the other outlet and it will be unable to fulfill its contract. Alternatively, it could impress all consumers in the first period and perhaps identify the new switchers as unique consumers to impress in the second period. However, even in that case, loyals who remain through the second period will have additional capacity that can be sold. In principle, that capacity could not be sold under a “impress all unique consumers” contract but this would mean that the outlet would have to offer a range of distinct products to advertisers. This is an interesting and potentially realistic scenario, however, due to its additional complexity we do not explore that here and leave the analysis to Section 7 below.

Instead, we consider here tracking technologies where outlets offer a single ‘product’ or contract type to advertisers. One possible contract offer might be “we will associate an ad with a given piece of content and you will pay a price of p each time that ad is viewed.” This is effectively the offer made for offline content and, so long as consumers read a piece of content at most once, it has a natural form of tracking embedded within it. If an advertiser purchased ads
alongside a single piece of content on a single outlet they would expect to impress \(D'_1 + \frac{1}{2} D' \) customers. If they purchased an ad alongside content on both outlets they would expect to impress \(D'_1 + D'_2 + \frac{3}{4} D' \) unique customers. Note that an advertiser placing ads on both outlets would be able to impress all loyal consumers but may miss some switching consumers while impressing other consumers more than once. The more switchers an advertiser would want to target, the more pieces of content they would have to place ads alongside. Thus, they would be paying for multiple impressions on loyal consumers which, under our assumptions, would not generate additional value for them. The notion that to impress more switchers, advertisers need to pay for more wasted impressions is a common feature of imperfect tracking. If an advertiser pays for \(n \) content-based ads, it will impress \((1 - \frac{1}{2^n})D'\) switchers. That said, the waste involved is limited if advertisers single-home and confine their ads to one outlet.

An alternative offer, available to online outlets, would be: “over the two attention periods, we will place at most \(x \) impressions per consumer at a price of \(p \) per impression.” For instance, if an advertiser chose a rate of at most one impression per consumer over the two periods, the outlet could show an ad to all consumers in the first or to all consumers in the second period for a total of \(D'_1 + \frac{1}{2} D' \) impressions. If the advertiser chose a rate of two impressions, the outlet would impress all consumers in each period resulting in \(2D'_1 + D' \) impressions. Of course, like ads associated with content, if an advertiser were to accept this contract on both outlets – say, at a rate of one ad each, it would impress \(D'_1 + D'_2 + \frac{3}{4} D' \) consumers with a total of \(D'_1 + D'_2 + D' \) impressions. There would be missed switchers as they moved between outlets and for the same reason some wasted impressions on switchers. If the advertiser increased the ad rate to two on just one of the outlets, say outlet 1, it would impress all consumers but pay for
2\(D_i^1 + D_i^2 + \frac{3}{2}D^1\) impressions. Table 1 lists the expected advertiser surplus associated with various advertising purchases.

Table 1

<table>
<thead>
<tr>
<th>Advertiser Choice</th>
<th>Expected Advertiser Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single home on (i), (Rate = 1)</td>
<td>((D_i^1 + \frac{1}{2}D^1)(v - p))</td>
</tr>
<tr>
<td>Single home on (i), 2 impressions</td>
<td>((D_i^2 + D^1)v - (2D_i^1 + D^1)p)</td>
</tr>
<tr>
<td>Multi-home, rate = 1 on each</td>
<td>((D_i^1 + D_i^2 + \frac{3}{2}D^1)v - p)</td>
</tr>
<tr>
<td>Multi-home, rate = 2 on (i) and rate = 1 on (j)</td>
<td>(v - (2D_i^1 + D_j^1 + \frac{3}{2}D^1)p)</td>
</tr>
<tr>
<td>Multi-home, rate = 2 on each</td>
<td>(v - (2D_i^1 + 2D_i^2 + 2D^1)p)</td>
</tr>
</tbody>
</table>

We will use this ‘frequency cap’ specification for internal tracking in what follows as it represents the simplest form of imperfect tracking that does not create a capacity management issue for outlets. Its key feature is that there are diminishing returns to increasing the rate of impressions placed both within and across outlets. For this reason, the marginal advertiser in the market will single-home and multi-homers, if they exist, will be high value advertisers. This fact tells us something about the resulting market equilibrium. First, as the next result demonstrates, imperfect tracking allows a greater quantity of advertisers to access outlets.

Proposition 4. Suppose there is (i) exogenous and symmetric advertising capacity; (ii) \(\rho > 0\); and (iii) there is imperfect tracking. If, in equilibrium, advertiser, \(v = 1\), purchases no more than one impression per consumer, the equilibrium number of advertisers active in the market is greater than when \(\rho = 0\).

The proof is straightforward. Due to diminishing returns to multi-homing that arise when \(\rho > 0\), the marginal advertiser in any equilibrium is a single-homer. As no advertiser single-homes when \(\rho = 0\), and by the assumption that the highest value advertiser is multi-homing with only one impression per consumer (as they would do when there are no switchers), the total number
of advertisers purchasing ad space necessarily increases when $\rho > 0$. Since the number of impressions are fixed (as supply is fixed), this implies that impression prices will be lower.

When the highest value advertiser purchases more than one impression per consumer, the result in Proposition 4 may not hold. As will be demonstrated below, this has implications for impression pricing. Because it is inframarginal advertisers who are most likely to buy multiple impressions per consumer on one or more outlets, marginal advertisers determine the market clearing price. Therefore, as the number of switchers becomes large, inframarginal demand becomes large enough that the marginal advertiser may have higher value than when there are no switchers. Consequently, impression prices may rise.

5.2 Market Equilibrium with Imperfect Tracking

Because the market equilibria under each type of imperfect tracking is driven by similar factors, we will concentrate here on the equilibrium under frequency capping, as this corresponds to what many online outlets are able to provide at the present time.

There are several important things to observe about expected advertiser surplus as listed in Table 1. First, having 2 impressions on both outlets is purely wasteful and can be ruled out. Consequently, the largest number of impressions any advertiser will purchase is 3. Second, if outlets are symmetric (i.e., $D_1 = D_2 = D'$ and $a_1 = a_2 = a$), multi-homing with one impression on each outlet is preferable to single-homing with two-impressions as $D' > \frac{1}{4} D'$ which is true as $D' \leq \frac{1}{2}$. Finally, multi-homing (2 and 1) advertisers will, all other things equal, purchase their third impression on the outlet with the fewest number of loyal consumers.

Under symmetry, therefore, there is a clear ranking of options based on advertiser value. Low value advertisers prefer single-homing, then there is multi-homing (1 impression on each)
and then there is multi-homing (2 and 1) that may be chosen by the highest value advertisers. Assuming a single price for impressions across outlets (which arises under symmetry), the marginal multi-homing (2 and 1) advertiser is \(v_{12} = \frac{b' + \frac{1}{4} b'}{d' + \frac{1}{4} d'} p = \frac{1}{4 d'} p \) while the marginal multi-homing (1 and 1) advertiser is \(v_2 = \frac{d' + \frac{1}{4} d'}{d' + \frac{1}{4} d'} p = \frac{1}{1 - 4 d'} p \). The marginal advertiser in the market is a single-homer, \(v = p \). Note that \(v_{12} > v_1 \Rightarrow D' < 1 \) (under symmetry). There are therefore, three regimes of equilibrium possible: (i) if \(v_{12} \geq 1 \), both outlets will only have single-homing advertisers on them; (ii) if \(v_{12} < 1 \), there will be multi-homing advertisers on each outlet; and (iii) if \(1 > v_{12} \), there will be multi-homing advertisers (with additional impressions) on each outlet.

To solve for the market equilibrium, each outlet’s demand has to equal its supply. For an outlet, its total supply of advertising inventory is given by:

\[
2a_iD_i' + a_iD'
\]

It will often be convenient in what follows to express variables in a per customer basis. In this case, total advertising inventory on outlet \(i \) is \(2a_i \).

On the demand side, for each consumer it expects to attract, an outlet receives a share of single-homers \((F(v_{12}) - F(v_i)) \), an impression from each multi-homer \((1 - F(v_{12})) \) or \(F(v_{12}) - F(v_{12}) \) as the case may be) and a further half (under symmetry) of multi-homers (if any) who have 2 impressions on one outlet \((1 - F(v_{12}')) \). Thus, outlet demand is:

\[
(D_i' + \frac{1}{2} D') \left(\sigma_i (F(v_{12}) - F(v_i)) + (1 - F(v_{12})) + \frac{1}{2} (1 - F(v_{12 })) \right)
\]

\[
(D_i' + \frac{1}{2} D') \left(\sigma_i (F(v_{12}) - F(v_i)) + (1 - F(v_{12})) \right)
\]

where
\[
\sigma_i = \begin{cases}
\max \left[\frac{2a_i - (F(v_{i1}) - F(v_{i2}) + \frac{1}{2}(1 - F(v_{i2})))}{2a_i - (F(v_{i1}) - F(v_{i2}) + \frac{1}{2}(1 - F(v_{i2}))) + 2a_j - (F(v_{j1}) - F(v_{j2}) + \frac{1}{2}(1 - F(v_{j2})))}, 0 \right] & \text{if } \frac{1}{2} D' > p \\
\max \left[\frac{2a_i - (1 - F(v_{i2}))}{2a_i - (1 - F(v_{i2})) + 2a_j - (1 - F(v_{j2}))}, 0 \right] & \text{if } \frac{1}{2} D' \leq p
\end{cases}
\]

That is, \(\sigma_i \) is outlet \(i \)'s spare capacity after sales to multi-homing advertisers and we assume that single-homers are allocated in equilibrium to each outlet according to their spare capacity (if any). Under symmetry, if these are positive for both outlets then \(\sigma_i = \frac{1}{2} \).

5.3 Symmetric outlets

In this subsection we consider the symmetric case where \(D'_1 = D'_2 = D' \) and \(a_1 = a_2 = a \).

In this case, each outlet's available capacity is auctioned on a first price basis. The marginal single-homing advertiser on outlet \(i \), \(v_i \), will have a willingness to pay for an impression determined by their expected surplus of \((D' + \frac{1}{2} D')(v_i - p) \) while the marginal multi-homing advertiser in the market, \(v_{12} \), will have a willingness to pay for an impression on outlet \(i \), determined by:

\[
(2D' + \frac{3}{4} D')v_{12} - 2(D' + \frac{1}{2} D')p = (D' + \frac{1}{2} D')(v_i - p)
\]

The marginal multi-homing (2 and 1) advertiser is determined by

\[
(2D' + D')v_{12'} - 3(D' + \frac{1}{2} D')p = (2D' + \frac{3}{4} D')v_{12'} - 2(D' + \frac{1}{2} D')p
\]

These equations holding with equality determine the threshold values that sort advertisers in the market: \(v_i = p \), \(v_{12} = \frac{1}{1 - 4D'} p \), and \(v_{12'} = \frac{1}{4D'} p \).

We now consider possible equilibrium allocations of advertisers to outlets. First, is it possible that \(\sigma_1 = \sigma_2 = 0 \) and there are only multi-homing advertisers in the market? For this to be an equilibrium, the willingness to pay of a multi-homing advertiser for an impression on an
outlet must exceed the willingness to pay of a single-homing advertiser for an impression on an outlet. That is, the following two inequalities (derived from (10)) must hold:

\[
(D'_i + \frac{1}{4} D')v_{i2} - (D'_i + \frac{1}{2} D')p_1 \geq (D'_i + \frac{1}{4} D')v_1 - p_1
\] (12)

\[
(D'_2 + \frac{1}{4} D')v_{i2} - (D'_2 + \frac{1}{2} D')p_2 \geq (D'_2 + \frac{1}{2} D')(v_2 - p_2)
\] (13)

Note that the marginal advertiser on each outlet would have to be a multi-homer and so \(v_i = v_{i2}\).

Note also that because the ‘just excluded advertiser’ (with value \(v_{i2} - \varepsilon\)) would be willing to pay that for a single impression on an outlet, \(p_i > v_{i2} - \varepsilon\) for each outlet. It is clear that as \(\varepsilon\) goes to zero, the willingness to pay of the just excluded advertiser to single-home exceeds the willingness to pay of the marginal multi-homing advertiser for its marginal impression. That is, the LHS of (12) and (13) becomes negative while the RHS is zero if \(D' > 0\). If \(D' > 0\), at least one outlet must, in equilibrium, sell to single-homing advertisers. That advertiser sets the marginal price in the market. If \(D' = 0\), (12) and (13) hold with equality and so a pure multi-homing equilibrium can arise.

Second, is an equilibrium where each outlet has both multi-homing and single-homing advertisers possible? That is, an equilibrium involving \(\sigma_i > 0\) for all \(i\). For this to arise, demand from (8) must equal supply from (7) with symmetry implying that \(\sigma_i = \frac{1}{2}\). Without a distributional assumption, this does not yield a closed-form solution for price. However, assuming that \(F(v) = v\) (i.e., a uniform distribution), we can solve for the market clearing impression prices:

\[
p = \begin{cases}
\frac{D'(2-D')}{4+D'(2-D')}(3-4a) & \text{if } \frac{1}{2}D' > p \\
\frac{2(2-D')}{4-D'}(1-2a) & \text{if } \frac{1}{2}D' \leq p
\end{cases}
\] (14)
Note that under symmetry, \(D^s = 2\rho x^2 < \frac{1}{2} \). Thus, the number of switchers cannot exceed that level.

Importantly, when there are no advertisers purchasing multiple impressions on a single outlet, price declines with \(D^s \). However, as \(D^s \) rises, there comes a point at which price is low enough that advertisers do purchase multiple impressions. The ones that do so are the inframarginal advertisers, and so as \(D^s \) rises beyond this point, price, and hence, outlet profits, \(p(D' a + D'a) = pa \), rise.\(^{27}\)

Finally, is it possible that there are only single-homing advertisers in equilibrium? This would arise if for the highest value advertiser \((v = 1) \), its willingness to pay for an additional impression on an additional outlet were negative; that is, \(v_{12} = \frac{1}{1-a_D} p > 1 \). Using (14), it is easy to determine that this will arise if \(2a < \frac{D'}{4} \). In this case, all advertisers on each outlet would be single-homing so that \(2a = \sigma_i (1-p) \Rightarrow \sigma_i = (1-4a) \). To confirm that this can be an equilibrium, note that when \(2a < \frac{D'}{4} \), \(v_{12} = \frac{1}{1-a_D} (1-4a) > \frac{1}{1-a_D} (1-\frac{D'}{2}) > 1 \) which always holds.

The following proposition summarizes how equilibrium profits depend on \(D' \).

Proposition 5. Assume that \(F(.) \) is uniform and there are two symmetric outlets. Suppose also that \(a_1 = a_2 = a \). Then an outlet’s equilibrium profits are as follows:

(i) For \(D' \leq \min \left\{ 8a, 4(1-a) - 2\sqrt{2(1-2a) + 4a^2} \right\} \), \(\pi_i = \frac{1}{2} \frac{2(2-D')}{{4-D'}} (1-2a)2a \);

(ii) For \(D' > 4(1-a) - 2\sqrt{2(1-2a) + 4a^2} \) and \(D' < 8a \), \(\pi_i = \frac{1}{2} \frac{D'(2-D')}{4+D'(2-D')} (3-4a)2a \)

(iii) For \(D' \geq 8a \), \(\pi_i = \frac{1}{2} (1-4a)2a \).

\(^{27}\) It is useful to check whether multiple equilibria are possible. To rule this out as a concern note that market clearing prices in both cases above are equal if:

\[
\frac{D'(2-D')}{4+D'(2-D')} (3-4a) = \frac{2\alpha - D'}{4-D'} (1-2a) \Rightarrow D' = 2\left(2(1-a) - \sqrt{2(1-2a) + 4a^2} \right).
\]

At this level of \(D' \), \(p = 2(1-a) - \sqrt{2(1-2a) + 4a^2} \); i.e., \(D'/2 \). So, for given ad capacities, there is no issue of multiple equilibria.
This characterization of equilibrium profits provides some insight into the impact of the Internet on the news media. To the extent that the Internet has facilitated switching, these results suggest that profits will decline but will eventually rise as switching becomes easier (see Figure One). When the share of switchers is low, competition for the marginal advertiser pushes down total outlet ad revenue. However, as the switcher share becomes large, the comparative static changes sign and profits rise with the number of switchers. This is because high value advertisers begin to purchase multiple impressions on individual outlets. This takes up scarce capacity and excludes lower valued advertisers who were setting the impression price. The end result is that more switchers drive higher impression prices and profits.

Figure One: Outlet Profits as a function of \(D^s \) (\(a = 0.4 \))

It is important to note, however, that the result that profits will rise with \(D^s \) relies on ad capacity being high enough. If ad capacity is scarce, impression prices never fall to a level that makes it worthwhile for infra-marginal advertisers to purchase multiple impressions on individual outlets.
Importantly, when there are no advertisers purchasing multiple impressions on a single outlet, price declines with D^s. However, as D^s rises, there comes a point at which price is low enough that advertisers do purchase multiple impressions. The ones that do so are the inframarginal advertisers and so as D^s rises beyond this point, price, and hence, outlet profits,

$$p(D^s 2a + D^a) = pa, \text{rise.}$$

5.4 Incentives to adopt perfect tracking

Having characterized the equilibrium outcomes under imperfect tracking, we can now examine incentives to adopt perfect tracking under the assumption that advertising capacity can be adjusted prior to and following such adoption. The following proposition compares profits here with profits under perfect tracking.

Proposition 6. Assume that $F(.)$ is uniform and there are two symmetric outlets. Suppose also that $a_1 \approx a_2$. For low levels of D^s, outlet profits under perfect tracking exceed profits without tracking. For high levels of D^s, profits under perfect tracking may be lower than profits without tracking.

This result is depicted in Figure One. Our earlier analysis identified that outlets with symmetric capacities, perfect tracking yields the benchmark profit outcome. Nonetheless, here we have demonstrated that when ad capacities are sufficiently high, profits for both outlets may be higher under no tracking than under perfect tracking. The reason is that higher value advertisers are induced to purchase more impressions. This crowds-out lower value advertisers who are setting price at the margin and consequently, impression prices are higher. This suggests that perfect tracking technology might not be adopted despite their ability to generate efficient outcomes in advertising markets.\(^{28}\)

\(^{28}\) Of course, this also highlights the importance of how ad capacities are chosen; something we analyze in the appendix. That analysis demonstrates that it is, in fact, an inability to commit to not selling advertisements when ad capacity is relatively high that permits the outcome that perfect tracking may lead to lower profits than imperfect tracking.
It is useful to note that outlets do not have a unilateral incentive to adopt perfect tracking as it has no value unless the other outlet is on board. This fact also makes it challenging for a provider of perfect tracking services to appropriate the rents from that activity as we would expect each outlet to have some hold-out power.

5.5 The Impact of Prohibiting Tracking

In 2010, the Federal Trade Commission was exploring a policy that would give consumers the right to ‘opt out’ of tracking of any kind by websites. If widely adopted, this would eliminate tracking options for media outlets. The analysis here allows us to examine the impact of that on advertising markets.

Figure Two demonstrates that, for the most part, removing tracking options lowers outlet profits.\(^{29}\) Moreover, as tracking eliminated wasted impressions, its removal also reduces allocative efficiency in advertising markets. That said, from Proposition 6, we know that, in some cases, when tracking technologies are not available, outlet profits rise. Nonetheless, a prohibition only prevents tracking from being used and thus, weakly reduces profits.

\(^{29}\) With a uniform, \(F(\cdot)\), under no tracking, equilibrium impression prices are given by
\[
p = -\text{ProductLog}[-e^{-1-2\alpha}].
\]
5.6 The Impact of Mergers

The evaluation of mergers between media outlets has always posed some difficult issues for policy-makers. On the one hand, if it is accepted that outlets have a monopoly over access to their consumers, then such mergers are unlikely to reduce to competitive outcomes in advertising markets. On the other hand, it is argued that a merger may indeed reduce competitive outcomes in advertising markets, increasing ad revenue, and stimulating outlet’s incentives to attract consumers. While a full delineation of these views is not possible here, the analysis thus far can speak to the question of whether a merger between outlets would reduce competitive outcomes (i.e., increase total revenue) on the advertising side of the media industry.

To begin, suppose that a merger between two outlets allows them to improve inter-outlet tracking. In this case, this will reduce the number of wasted and missed impressions in the advertising market. While impression prices would rise, so would allocative efficiency. As noted earlier, a move to perfect tracking will generate, for a fixed ad capacity, the first best outcome. Interestingly, by Proposition 6, it is not clear that outlets would choose to merge in order to
facilitate this. While allocative efficiency may rise, total advertising profits could fall in cases where D^f and a are sufficiently high.

Alternatively, it may be that the technology is not readily available to improve inter-outlet tracking (even with common ownership). In this case, if the merged outlet charges a single price to advertisers on each outlet, the total ad revenue generated will be the same as the case where both outlets are separately owned. That follows because we have assumed that ad capacity is exogenous, so there is (by assumption) no mechanism for exercising market power: the number of outlets affects equilibrium outcomes only through the impact on tracking and thus the efficiency of advertising on multiple outlets. A full analysis of mergers would thus need to consider the extension of our model to endogenous capacity (see the Appendix).

Even within the context of the exogenous-capacity model, however, we can consider another potential impact of mergers. What if the merger allowed the commonly owned outlet to price discriminate in a novel way; specifically, to identify and charge differential prices to single and multi-homing advertisers? That is, suppose that, on each outlet, the monopoly owner can commit to an ad capacity allocated to multi-homers, a_m, and an ad capacity allocated to single homers, a_s. Price discrimination is achieved by charging all advertisers the same price for their first impression on one of the outlets and a different price for their second impression. Suppose also that no advertiser wants to purchase multiple impressions on one outlet and that outlet readership quality is symmetric. The price the outlet can charge multi-homers, p_m for their second impression and single-homers, p_s, for their single impression are determined by:

$$a_m = 1 - v_{12} \quad \text{and} \quad a_s = \frac{1}{2} (v_{12} - v_1)$$ \hspace{1cm} (15)

where $v_i = p_s$ and $v_{12} = \frac{1}{2-D'} p_m$ given the symmetric readership assumption. Solving for prices and substituting into each outlet’s per reader profit function, $\frac{1}{2} (p_s + p_m) a_m + p_s a_s$, gives:
\[
\frac{1}{4} \left((1 - 2a_s - a_m)(2a_s + a_m) + a_m \frac{12 - D'}{2} (1 - a_m) \right)
\]

(16)

Maximizing with respect to \((a_m, a_s)\) and subject to \(a_s + a_m = 2a\) yields:

\[
a_m = \frac{16a - D'}{2(4 - D')} \quad \text{and} \quad a_s = \frac{D'}{2(4 - D')} (1 - 4a)
\]

(17)

so long as \(\frac{1}{4} > a > \frac{1}{16} D'\). \(^{30}\) Profits are: \(\frac{64a(2-D')(1-2a)+D'^2}{32(4-D')}\) which are greater than profits in the absence of price discrimination.

5.7 The Impact of Blogs and Public Broadcasting

One of the factors that traditional newspapers have argued are contributing to their decline is the rise of blogs and also competition from government-subsidized media. Both of those types of outlets have in common that they either do not accept advertising or accept very little of it. Somewhat in contradiction to this position, newspapers and television broadcasters have objected to plans to allow public broadcasters to sell advertisements rather than rely on subsidies. This latter objection remains a puzzle from the perspective of traditional media economics, because requiring competing public broadcasters to sell ads will cause more annoyance for their consumers and benefit other outlets. Here we explore the impact of competition from non-advertising media outlets.

We do this by assuming that the probability that consumers visit such outlets if given the choice is \(x_b\). We also assume that the two mainstream (advertising) outlets have symmetric readership shares with \(x_1 = x_2 = \frac{1}{2} (1 - x_b)\). This implies that:

\[
D' = \frac{1}{2} (1 - x_b) \left(1 - \frac{1}{2} (1 + x_b) \rho \right)
\]

(18)

\[
D_{12}' = \rho \frac{1}{2} (1 - x_b)^2
\]

(19)

\(^{30}\) If this condition does not hold, the outlet would not choose to price discriminate.
\[D_{ib}^* = \rho x_b (1 - x_b) \]

(20)

Given this, the advertiser expected surplus from given advertising strategies are:

<table>
<thead>
<tr>
<th>Advertiser Choice</th>
<th>Frequency-Based Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single home on (i), 1 impression</td>
<td>((D_i^* + \frac{1}{2} D_{ib}^* + \frac{1}{2} D_{ibb}^*)(v - p))</td>
</tr>
<tr>
<td>Single home on (i), 2 impressions</td>
<td>((D_i^* + D_{i12}^* + D_{ib}^)v - (2D_i^ + D_{i12}^* + D_{ib}^*)p)</td>
</tr>
<tr>
<td>Multi-home, 1 impression each</td>
<td>((D_i^* + D_{i2b}^* + \frac{3}{4} D_{i12}^* + \frac{1}{2} (D_{ib}^* + D_{ibb}^))v - p(D_i^ + D_{i2b}^* + D_{i12}^* + \frac{1}{2} (D_{ib}^* + D_{ibb}^*)))</td>
</tr>
<tr>
<td>Multi-home, 2 on (i) and 1 on (j)</td>
<td>((D_i^* + D_j^* + D_{i2b}^* + D_{ib}^* + \frac{1}{2} D_{ibj}^)v - (2D_i^ + D_j^* + \frac{3}{4} D_{i12}^* + \frac{1}{2} D_{ibj}^*)p)</td>
</tr>
<tr>
<td>Multi-home, 2 impressions on each</td>
<td>((D_i^* + D_j^* + D_{i12}^* + D_{ib}^* + D_{ibj}^)v - (2D_i^ + 2D_j^* + 2D_{i12}^* + D_{ib}^* + D_{ibj}^*)p)</td>
</tr>
</tbody>
</table>

The main difference between this case and the previous two outlet model is that some advertisers may choose to multi-home with two impressions on each outlet so as to impress a greater share of those switching between blogs and mainstream outlets. Indeed, under symmetry, the threshold advertiser rates become (under symmetric ad capacities):

\[v_i = p \]

(21)

\[v_{12} = 2 \frac{2D_i^* + D_{ib}^* + D_{ibb}^*}{4D_i^* + D_{ib}^* + 2D_{ibb}^*} p \]

(22)

\[v_{12'} = 2 \frac{2D_j^* + D_{ib}^* + D_{ibb}^*}{D_i^* + 2D_{ib}^*} p \]

(23)

\[v_{12''} = \frac{2D_j^* + D_{ib}^* + D_{ibb}^*}{D_{ib}^*} p \]

(24)

where \(v_{12'}\) is the threshold between multi-homing with 2 on one outlet and multi-homing with 2 impressions on each outlet. It is clear that, under symmetry, \(v_{12'} > v_{12} > v_{12} > v_i\) when \(\rho > 0\). This implies that there are three demand ‘cases’ but that supply in the market is
\[D'_12a_1 + D'_22a_2 + D'_{12}(a_1 + a_2) + D'_{1b}a_1 + D'_{2b}a_2. \] So long as ad capacities are symmetric, the market clearing price is given by:

\[
p = \begin{cases}
\frac{1-4a}{2(4-(1-x_b)p)^8-(1-2a)} & 0 < a < \frac{1}{16} \rho(1-x_b) \\
\frac{(1+3x_b)p(4-(1-x_b)p)}{16+(1+7x_b)p}\frac{(3-4a)}{(1-3x_b)\rho^2}(1-2a) & \text{if } \frac{1}{16} \rho(1-x_b) < a < a^L \\
\frac{x_b(1+3x_b)p(4-(1-x_b)p)}{4-(2+2\rho+3x_b)\rho^2 + 2(28+2\rho-\rho^2)} & a \geq a^H
\end{cases}
\]

where \(a^L = \frac{32-\rho(16+2x_b)(8-\rho)+\rho^2-3x_b^2}{64-16(1-x_b)^2} \) and \(a^H = \frac{3(4-\rho)+x_b(20+\rho(-10+\rho+x_b(-19+2(-3x_b)p)))}{4(1+3x_b)(4-(1-x_b)^2)} \). It can be seen here that as the number of blog readers increases and/or the probability of switching rises, that inframarginal advertisers will demand more impressions.

Given this, we can prove the following:

Proposition 7. For \(\rho > 0 \) and exogenous \(a_1 \approx a_2 \), equilibrium impression prices are increasing in the popularity of the ad-free outlet, \(x_b \).

The proof of the proposition requires a simple examination of (25) and is omitted. Intuitively, an increase in \(x_b \) has two effects. First, it decreases the effective supply of advertising capacity in the market. Because blog readers do not see advertisements, as attention is diverted to blogs, less attention is available for ads to be placed in front of. Second, unlike switchers between mainstream outlets, switchers between blogs and mainstream outlets do not contribute to the wasted impressions problem. Consequently, a greater share of blog readers increases the share of blog-mainstream switchers as well and so improves the efficiency of matching. This increases the demand for advertisements. These two effects – a decrease in supply and an increase in demand – combine to raise equilibrium impression prices. It is instructive to note that, even under perfect tracking, the supply-side effect remains and so impression prices would be expected to rise with blog readership share in that case too.
Nonetheless, in terms of the impact on overall outlet profits, the price effect of an increased blog share may not outweigh the quantity effect (in terms of lost readers). If it is the case that we are comparing a situation where one output sells advertising to one where it does not (absent any quantity changes in readership), then it is clear that advertising-selling outlets prefer the situation where its rival is prohibited from selling ads. This resolves the puzzle posed by traditional media economics.

6 Asymmetric Outlets and Outlet Profitability

Thus far, in analyzing imperfect tracking, we have focused on a situation where outlets are symmetric along various dimensions and, consequently, have a similar competitive position in advertising markets. Here we now consider the impact of different types of asymmetries between outlets in order to understand whether positional advantages are possible and what drives them in advertising markets. This is important because, as noted in the introduction, it has been observed that display advertisements both across media types but, most interestingly, within media types have considerable variation in their revenue earned per impression. By examining asymmetries we can hypothesize what factors might drive such heterogeneity.

6.1 Asymmetric ad capacities

While the above analysis allowed for some differences between outlets in ad capacities, the main results on imperfect tracking assumed symmetry. Here we consider what happens when ad capacities can be asymmetric. We study whether asymmetry can permit a single market clearing price for advertising and, if not, what do prices look like? Importantly, does an outlet have an incentive to reduce ad capacity in order to exercise market power in advertising markets?
The following proposition summarizes the equilibrium outcomes.

Proposition 8. Suppose that outlets are symmetric in readership and \(F(v) = v \) but that \(a_1 < a_2 \). If \(a_1 \in \left[0, \frac{4a_2 - D^*}{2a_1 - D^*}\right] \) and \(a_2 \in \left[\frac{1}{2}(2a_1(2-D^*)+D^*), 1\right] \), then, in equilibrium, \(p_1 > p_2 \). Otherwise, \(p_1 = p_2 \).

The proof (in the appendix) demonstrates that profits are:

\[
\pi_1 = (1 - \frac{1}{2}D^*)(1 - 2a_1)2a_1
\]

\[
\pi_2 = \begin{cases}
(1 - 2a_2)2a_2 & \text{if } a_2 \leq \frac{2-D^*}{4} \\
\frac{2-D^*}{2-D^*} (1-a_2)2a_2 & \text{if } a_2 > \frac{2-D^*}{4}
\end{cases}
\]

(26)

(27)

Here it is clear that having a smaller ad capacity is not necessarily an advantage for outlets even if it does result in a higher impression price.

What does this imply for the incentive of an outlet to use capacity to exercise market power? When ad capacities are symmetric, the analysis of endogenous ad capacity in the appendix demonstrates that outlets have incentives akin to those of quantity duopolists in choosing their ad capacities. However, while locally this may be the case, each can unilaterally generate an asymmetric equilibrium of the form described in Proposition 8. When its rival’s capacity is low, an outlet has an incentive to expand capacity so that there are no single-homers on the rival outlet. In contrast, when a rival outlet has very high capacity, an outlet may choose a low capacity so as to only sell to multi-homing advertisers. The appendix demonstrates that, over a non-trivial range of \(D^* \), no pure strategy equilibrium exists. However, if outlets choose capacities sequentially, the resulting equilibrium is asymmetric with one outlet choosing a low and the other a high ad capacity converging to symmetry as \(D^* \) becomes small. Nonetheless, if each ad capacity is constrained to be no greater than \(\frac{1}{4} \), then that is the resulting equilibrium and no asymmetric outcome occurs.
6.2 Asymmetric outlets

Asymmetric capacity choices can lead to differential prices but do not confer absolute positional advantages on outlets. Here we now consider what happens when outlets have different content quality with one outlet being able to generate a higher readership share than the other; in particular, when $x_1 > x_2 \Rightarrow D^1 > D^2$. In this case, we demonstrate that outlet 1 commands a positional advantage in the advertising market that leads to it being able to earn higher impression prices than outlet alongside having a higher readership share.

To see this, observe that, if there is sufficient capacity on both outlets, single homing advertisers will sort on to outlet 1 first. This is because, for a given v, if impression prices were the same on each outlet (equal to p) then $(D^1 + \frac{1}{2}D^r)(v - p) > (D^2 + \frac{1}{2}D^r)(v - p)$. However, as impression prices will differ in equilibrium (specifically, it must be the case that $p_1 > p_2$ if there are single homers on outlet 2), the marginal single-homer on outlet 1 will be given by $v_1 = \frac{2(D_2p_2 - D_1p_1) + D^r(p_2 - p_1)}{2(D_2 - D_1)}$ while $v_2 = p_2$. Note that $v_1 > v_2 \Rightarrow (2D^1 + D^r)(p_2 - p_1) < 0$.\(^{31}\)

It is important to emphasize that it is the existence of switching consumers (i.e., $D^r > 0$) that generates this sorting. If there are no switchers, then the marginal advertiser on each outlet is competing with a multi-homing advertiser for their marginal impression. In this case, as there are no diminishing returns to additional impressions, a higher value multi-homing advertiser will outbid a smaller value single-homing advertiser for that slot. It is only when there are switchers that single-homing advertisers – competing against one another – determine the impression price on an outlet.

Some set of advertisers will multi-home with one impression on each outlet. The marginal multi-homing advertiser will be determined by:

\(^{31}\) Of course, there may be no single-homers on outlet 2 which will alter this intuition as we discuss below.
\[
(D'_1 + D'_2 + \frac{1}{2} D^*)v_{1z} - (D'_1 + \frac{1}{2} D^*)p_1 - (D'_2 + \frac{1}{2} D^*)p_2 = \max \left[(D'_1 + \frac{1}{2} D^*)(v_{1z} - p_1), (D'_2 + \frac{1}{2} D^*)(v_{1z} - p_2) \right] \tag{28}
\]

Of course, it is also possible that some advertisers will multi-home with 2 impressions on one outlet. Note that, in this case, the outlet receiving the additional impression will be outlet 2 as it has the smallest number of loyal consumers. Hence, \(v_{1z} = \frac{2(2D'_1 + D^*)}{4(1-D'_1-D'_2)-3D^*} p_2 \).

Given this, so long as \(v_i > v_2 \), market clearing implies that the following equations (for each outlet) be simultaneously satisfied:

\[
1 - F(v_i) = 2a \tag{29}
\]

\[
2(1 - F(\min\{v_{1z}, 1\})) + F(\min\{v_{1z}, 1\}) - F(v_{1z}) - F(v_2) = 2a \tag{30}\]

The following proposition characterizes the equilibrium outcome when ad capacities are symmetric. The derived profits are found by solving (29) and (30) for outlet prices and substituting them into outlet profits while checking to see what allocations of advertising choices these imply (in the same manner as those derived in Proposition 5).

Proposition 9. Assume that \(F(.) \) is uniform, \(a_1 = a_2 = a \) and \(x_1 > x_2 \). Then each outlet’s equilibrium profits are as follows:

(i) For \(\frac{8 - \rho(8 - 8\rho)}{8(2-x_\rho)} < a < \frac{2-x_\rho(2-x_\rho)}{4-x_\rho(2-x_\rho)} \) or \(\frac{2-x_\rho(2-x_\rho)}{4-x_\rho(2-x_\rho)} < a < \frac{1}{2} \), \(\pi_1 = (2(1-a) - x_1 - \frac{4(3-4a)(1-x_1)}{4+x_\rho(2-x_\rho)}) 2a \) and \(\pi_2 = x_2 \frac{x_\rho(2-x_\rho)}{4+x_\rho(2-x_\rho)} (3-4a) 2a \);

(ii) For \(\frac{3\rho}{8} < a < \frac{8 - \rho(8 - 8\rho)}{8(2-x_\rho)} \), \(\pi_1 = x_1 \frac{4-\rho}{4-x_\rho} (1-2a) 2a \) and \(\pi_2 = x_2 \frac{2(2-x_\rho)}{4-x_\rho} (1-2a) 2a \);

(iii) For \(\frac{3\rho}{8} \geq a \), \(\pi_1 = x_1 (1-\frac{2a}{x_1}) 2a \) and \(\pi_2 = x_2 (1-4a) 2a \).

The asymmetric outlet case operates similarly to the symmetric outlet case but with an important difference: in general, the ‘larger’ outlet in terms of readership share can command a premium for its ad space. This is a known puzzle in traditional media economics as it is usually thought

\[^{32}\text{If } v_i < v_2, \text{ then this expression becomes } 2 \left(1 - F(v_{1z})\right) + F(v_{1z}) - F(v_{1z}) = 2a.\]
that consumers are equally valuable regardless of the outlet they are on. Here, because ads are tracked more effectively internally, placing ads on the larger outlet only involves less expected waste than when you place ads on the other outlet or spread them across outlets. Hence, the larger outlet can command a premium.

However, we also find one exception to this pattern when \((a, \rho)\) are large (Proposition 9 (i) when \(\frac{2-4a\rho^2}{4-4a\rho^2} < a < \frac{1}{2}\)). In this case, outlet 2 is a more attractive outlet for high value advertisers who multi-home with an additional impression on one outlet. These advertisers outbid single homing advertisers on outlet 2. Hence, the lowest value advertisers reside, in that case, on outlet 1 which, in turn, implies that, in equilibrium, \(p_1 < p_2\). Thus, outlet 1’s profit per reader may be lower than outlet 2’s overturning the intuition provided in the discussion preceding Proposition 9.

6.3 Incentives to compete for readers

We now turn to examine a simple game designed to illustrate the incentives to compete for readers under imperfect tracking versus perfect tracking. We suppose that prior to consumers and advertisers making any choices, outlets can invest an amount, \(c(\sigma_i) = \frac{1}{2} \sigma_i^2\) which generates a probability \(\sigma_i \in (0,1)\) of being a high rather than a low quality outlet. The probabilities are independent across outlets. Therefore, if outlets choose \((\sigma_1, \sigma_2)\) then with probability \(\sigma_1(1-\sigma_2)\) only outlet 1 has high quality and so \(x_1 > x_2\) while with probability \(\sigma_2(1-\sigma_1)\) the reverse is true. With probability \(\sigma_1\sigma_2 + (1-\sigma_1)(1-\sigma_2)\) both outlets have the same quality (high or low as the case may be) and \(x_1 = x_2\).

The outlet’s choose their ‘qualities’ simultaneously. When outlets have different qualities, the high quality outlet earns \(\pi^H\) while the low quality outlet earns \(\pi^L\). If they have the
same quality an outlet earns π. The profits here are as given in Propositions 5 and 9 when there is imperfect tracking and (5) if there is perfect tracking. Thus, in each case, $\pi^H > \pi > \pi^L$. It is straightforward to determine that the unique equilibrium ‘qualities’ are:

$$\sigma_i = \sigma_2 = \frac{\pi^H - \pi}{1 + \pi^H + \pi^L - 2\pi}$$

(31)

The following proposition characterizes the intensity of investments in quality as a function of the tracking technology adopted.

Proposition 10. For a given x_i achieved by a uniquely high quality outlet, the equilibrium level of σ_i is higher under imperfect tracking than under imperfect tracking so long as

$$a \leq \frac{32 + \rho(8(4 - \rho) - x_i(32 + \rho(20 - 2\rho - x_i(16 + (4 - \rho)\rho)))]}{64 + \rho(12(4 - \rho) - x_i(32 + \rho(24 - 2\rho - x_i(16 + (4 - \rho)\rho))))}.$$

The proof involves a simple comparison of equilibrium quality choices and is omitted. The cost of being a low competing against a high quality outlet rises with the number of switchers. This differential creates a strong incentive to compete for a quality position. When a becomes high, as we saw in Proposition 9, the smaller outlet can command a price premium. In this case, the incentives to invest in quality under imperfect tracking will diminish and, indeed, become negative.

6.4 Magnet content

The analysis thus far has assumed that outlets have sufficient content to attract attention of loyal consumers throughout the relevant attention period. Of course, on the Internet, much content is provided on a smaller scale. For providers of that content, there is no possibility of attracting loyal consumers. However, here we demonstrate how such providers may have a positional advantage in advertising markets; that is, what they lose in their inability to attract frequent visits from consumers, they can make up in terms of their reach across all consumers – acting as a magnet for attention in the relevant advertising period.
Suppose that outlet 2, in our current formulation, has only limited content; i.e., that consumers visiting that outlet will stay at most one period. To assist in identifying it notationally, let’s rename it outlet f. Outlet 1 is unchanged. In this situation, the total expected traffic (over both periods) to outlet 1 is $x_i + (1 - \rho)x_i + \rho x_i^2 + \rho x_f$ and to outlet 2 is $x_f + \rho x_i x_f$. Using this, we can identify loyal and switching consumers in this context for any given period:

$$D'_i = x_i - \rho x_f x_i$$

$$D' = \rho x_f (1 + x_i)$$

$$D'_f = x_f - \rho x_f$$

Of course, there is an important sense in which the description ‘loyal to outlet f’ is a misnomer as consumers can consume one period of content. Consequently, this is more appropriately described as ‘exclusive to outlet f.’ Nonetheless, to focus on the impact of limited content, we will confine ourselves here to the case where $\rho = 1$. In this situation, $D'_f = 0$ and outlet f only has consumers who are switchers. Thus, while outlet 1 supplies ad capacity of $D'_i 2a + D' a$ into the market, outlet f only supplies $D' a$.

The following table identifies the surplus to an advertiser with value v from pursuing different choices.

<table>
<thead>
<tr>
<th>Advertiser Choice</th>
<th>Frequency-Based Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single home on 1, 1 impression</td>
<td>$(D'_i + \frac{1}{2} D')(v - p_i)$</td>
</tr>
<tr>
<td>Single home on 1, 2 impressions</td>
<td>$(D'_i + D')(v - (2D'_i + D') p_i)$</td>
</tr>
<tr>
<td>Single home on f, 1 impression</td>
<td>$\frac{1}{2} D'(v - p_f)$</td>
</tr>
<tr>
<td>Single home on f, 2 impressions</td>
<td>$D'(v - p_f)$</td>
</tr>
<tr>
<td>Multi-home, 1 impression each</td>
<td>$(D'_i + \frac{1}{2} D')(v - (D'_i + \frac{1}{2} D') p_i - \frac{1}{2} D' p_f)$</td>
</tr>
<tr>
<td>Multi-home, 2 on f and 1 on 1</td>
<td>$(D'_i + D')(v - (D'_i + \frac{1}{2} D') p_i - D' p_f)$</td>
</tr>
</tbody>
</table>
Notice that there are now three options for an advertiser to cover the entire consumer market – single homing on 1 with 2 impressions, and multi-homing with two impressions on at least one outlet. Of course, it is clear that multi-homing with 2 impressions on outlet 1 is dominated by single-homing on outlet 1 (as the former involves paying for impressions on f without any benefit). In addition, note that any advertiser who wants to single homing on outlet f will prefer to do so with two impressions as there is no waste from the additional impression. More subtly, we can always rule out multi-homing with one impression on each outlet. For this to be preferred to single-homing on outlet 1 (with one impression) it must be the case that $\frac{1}{4}D^v > \frac{1}{2}D^p_f$.

However, this condition also means that by moving from multi-homing with single impressions to multi-homing on outlet f with 2 impressions is preferable. Consequently, if an advertiser wants to capture an additional $\frac{1}{4}D^v$ by purchasing an impression on outlet f, it will also want to do this by purchasing two additional impressions on outlet f.

This still leaves four choices that might be undertaken by advertisers. Importantly, as a means of covering the entire market, single-homing on outlet 1 with 2 impressions and multi-homing with 2 impressions on f are substitutes. Indeed, multi-homing will only be chosen if $(D^i_1 + \frac{1}{2}D^v)p_1 > D^v p_f$; a condition that must hold if D^v is very small. Importantly, at any point in time, we will only observe one of these strategies being chosen. In each case, it will be the highest value advertisers who pursue them.

For the remaining choices, advertisers single homing on f (with 2 impressions) or on 1 (with 1 impression) are candidates to be the marginal advertiser in the market. If $\frac{1}{2}D^v > D^i_1$, higher value advertisers prefer (holding prices constant) purchasing impressions on f rather than
1. Under this condition, the marginal advertiser, with value p_1, would earn $D'(p_1 - p_f)$ by switching to outlet f which is negative if $p_1 < p_f$. Similarly, if the marginal advertiser has value, p_f, it will earn $(D'_1 + \frac{1}{2} D') (p_f - p_1)$ by switching to outlet 1. This reduces its surplus if $p_f < p_1$. Hence, the marginal advertiser will be on the lowest priced outlet.

Given this, we can prove the following proposition.

Proposition 11. Suppose that $\rho = 1$. Equilibrium profits for outlets 1 and f are:

$$
\pi_1 = (D'_1 + \frac{1}{2} D') (a D'_1 + D' (1 - 2a)) 2a \quad \pi_f = D' \left(\frac{2}{3} - a \right) a
$$

$$
\pi_1 = (D'_1 + \frac{1}{2} D') \left(a D'_1 + D' (1 - 2a) \right) 2a \quad \pi_f = D' \left(1 - 2a - 2(1 - 3a) \frac{D'_1}{D'} \right) a
$$

if $\frac{1}{2} D' \leq D'_1$

The structure of the equilibrium is interesting. When f’s share is low ($\frac{1}{2} D' < D'_1$) and begins to rise, outlet 1, who was exclusively selling to single-homing advertisers (1 impression) continues to do so but high valued advertisers also purchase 2 impressions on outlet f. The same is true of low valued purchasers who now become the marginal advertisers in the market at a price of p_f. Consequently, $p_f < p_1$ but as x_f rises outlet 1’s profit falls as does total profits from advertising in the industry. This changes when x_f reaches a critical level (i.e., 0.42265 so that $\frac{1}{2} D' > D'_1$).

At that point, marginal advertisers prefer to bid for 2 impressions on outlet f and so single-homing advertisers with a single impression on outlet 1 become the marginal advertisers at a price of p_1. This implies that $p_f > p_1$. In addition, the high valued advertisers no longer choose to multi-home and become exclusive to outlet 1 with 2 impressions. Nonetheless, as x_f rises outlet 1’s profits continue to fall. In this case, however, industry profits rise again and indeed, when $x_f \rightarrow 1$ they approach the same level as when $x_f = 0$. In this case, the profits are split evenly between the two outlets rather than held entirely by outlet 1. Intuitively, at this point, all
consumers are switchers and so there is no longer any inefficiency resulting from wasted impressions.

Where there is inefficiency at this limit is as a result of outlet 1’s content. It now arguably too much as the small content outlet can earn exactly the same profits as it can with content sufficient to capture attention for only a single attention period. Indeed, when \(x_f \) is such that \(\frac{1}{2} D' > D'_1 \), outlet \(f \) earns more than half of outlet 1’s profits. Thus, the rate of return for providing that additional content is lower for outlet 1 than for outlet \(f \).

6.5 Paywalls

Paywalls have been proposed as a means by which outlets with falling advertising revenue may restore profitability. Of course, there are several different types of paywalls that may be employed. One possibility is a paywall – sometimes termed ‘micropayments’ – whereby consumers pay whenever they visit a website; similar to payments for physical newspapers at the newstand. Another type is a subscription whereby consumers pay once and can access a site for a length of time. Finally, some outlets have experimented with limited paywalls that permit limited reading on websites but if consumers want to consume more they have to subscribe. Here we analyze each of these types of strategies focusing on what it does to advertising revenue for each outlet. In so doing, we focus on a situation where one outlet, in this case outlet 1, introduces a paywall while the other outlet remains free.

The exploration here will be conducted within the context of the model thusfar to gain some insight on these issues. A full exploration would embed a proper model of consumer behavior in the consumer choice side of the market. Instead, we argue that one important effect of paywalls is to impact on switching behavior and through that on advertising markets. Specifically, we now propose that outlets are asymmetric in the probabilities that a consumer
might have an opportunity to switch away from them. That is, we define ρ_i as the probability that a consumer who has visited outlet i, has an opportunity to switch from it. Consequently, the three consumer classes are now determined by:

$$D'_1 = x_1 - x_1 (1-x_1) \rho_{12}$$

$$D'_2 = x_2 - x_2 (1-x_2) \rho_{21}$$

$$D'_{12} = (\rho_{21} + \rho_{12}) x_1 x_2$$

A higher ρ_i may result from the consumer having a higher cost associated with remaining with outlet i. Of course, a paywall may impact upon x_i. However, for the most part, we will hold that effect fixed and comment on the impact of such movements below.

We begin by considering *micropayments* whereby outlet 1 charges consumers for each period they visit its website. Holding the impact on x_1 fixed, a micropayment makes it less likely that visitors to outlet 1 will stay on that outlet another period (increasing ρ_{12}) while making it less likely visitors to outlet 2 will switch to outlet 1 (decreasing ρ_{21}). This has two impacts on advertising markets. First, D'_{12} could rise or fall depending upon what happens to $\rho_{21} + \rho_{12}$. If it falls, then this will put upward pressure on advertising prices if ad capacity is relatively low. Second, recall that when readership shares were asymmetric, an outlet commanded a positional advantage if its expected share of loyal consumers was relatively high. However, holding x_1 fixed and starting from a symmetric position prior to the paywall, micropayments on outlet 1 will cause $D'_1 > D'_1$. Consequently, outlet 2 will be given a positional advantage in the advertising market so that $p_2 > p_1$. Add to that the likelihood that 1’s paywall will reduce x_1 and this effect is only reinforced. Outlet 1 would have to not only make up for lost advertising revenues as a
loss in visitors but also from the loss in positional advantage while outlet 2 clearly benefits on both of these dimensions from the paywall.

In contrast to a micropayment system, a subscription system will have a more directed impact. In such a system, a visitor to outlet 1 only pays on their first visit and not thereafter. This means that a subscriber to outlet 1 may be just as likely – should the opportunity and desire arise – to switch to outlet 2 (i.e., \(\rho_{12} \) will not change). However, a non-subscriber who had visited outlet 2 previously would be less likely to then subscribe to outlet 1 for what remained of the attention period (i.e., \(\rho_{21} \) would fall). Once again, starting from a position of symmetry, this implies that \(D_1 > D_1' \) and so the paywall would not only lead to relatively more visitors to outlet 2 but a positional advantage for it in advertising markets. This is an interesting result as one of the claims associated with subscription paywalls is that they will increase consumer loyalty to an outlet. While it is true that such loyalty, if generated, would increase an outlet’s advertising revenues per consumer, here a subscription generates increased loyalty for the rival outlet rather than the outlet imposing the paywall. Of course, this effect could be mitigated if, say because they are subscribers, consumers are more inclined to be loyal to outlet 1 thereby increasing \(\rho_{12} \). The point here is that that outcome is not straightforward.

Finally, some outlets have proposed a limited paywall.\(^{33}\) In this case, outlets allow access to some content for free and then charge should a consumer wish to consume more. In the context of the model here, such a paywall would only be imposed, say, if a consumer chose to stay on outlet 1 for both attention periods. This type of paywall would be unlikely to have any impact on those who had previously visited outlet 2 as they could still freely switch to outlet 1 (i.e., \(\rho_{21} \) would be unchanged). However, this paywall would impose a penalty for staying on

\(^{33}\) This has been implemented by the Financial Times and, more recently, the New York Times.
outlet 1 making consumers more inclined to switch (i.e., \(\rho_{12} \) would rise). It is clear again, that other things being equal, the paywall would result in \(D_2 > D_1' \).

The analysis here demonstrates that putting in a paywall may give an outlet a positional disadvantage in advertising markets. Of course if an outlet already has a positional advantage, the likelihood that this occurs is lower. Nonetheless, the impact of a paywall does confer benefits on rivals in advertising markets as well as increasing their readership. These consequences may explain the low use of paywalls for online news media.

7 **First Look versus Last Look Advertising**

Thus far, we have modeled advertising markets with outlets offering a single and common product to all advertisers. While different tracking technologies altered the nature of the product offering, we did not consider multiple product offerings that would allow outlets to engage in price discrimination.

In this section, we explore one aspect of alternative products that might be offered; specifically, that advertisers bid separately for ‘first look’ and ‘last look’ consumers. A first look ad for a consumer is an ad placed in front of the consumer when they first visit an outlet. In contrast, a last look ad is one placed in front of consumers at the end of the relevant attention period. In the context of our model, a first look ad would be one consumers see in period 1 whereas a last look ad is one consumers see in period 2. It assumed here that outlets can track consumers perfectly and so distinguish, at any point of time, first and last (second) look consumers. Outlets offer advertisers the following: “over the two attention periods, we will place an impression in front of first look consumers at a price of \(p_{1st} \) per impression and an impression in front of last look consumers at a price of \(p_{2nd} \) per impression.” In practice, this might be
implemented by associating advertising with particular content that is likely to be viewed sequentially.

What is advertiser demand for these alternative products? If an advertiser purchases ‘first look’ ads on, say outlet 1, it will impress $D'_1 + D'$ consumers. Notice that, given this, an advertiser will not find it optimal to also purchase ‘last look’ ads on the same outlet. In addition, if $p_{1st} \geq p_{2nd}$, an advertiser would not find it optimal to also purchase ‘first look’ ads on outlet 2. If it did this, their expected surplus would be $v - (D'_1 + D')p_{1st} - (D'_2 + D')p_{1st}$ as it impressed all consumers. However, the alternative would be to purchase impressions on last look consumers on outlet 2. This would generate surplus of $v - (D'_1 + D')p_{1st} - D'_2 p_{2nd}$ as no switcher on an outlet could be considered a last look consumer.

This insight leads to the following result:

Proposition 12. Assume that there are two symmetric outlets. Suppose also that $a_1 = a_2 = a$. If outlets offer distinct first and last look products, then outlet profits are the same as under perfect tracking.

Consider the following allocation of advertisers to outlets. All advertisers above a certain threshold, v, pay for first look consumers on one outlet and last look consumers on the other. In this case, both outlets set $p_{1st} = p_{2nd} = v$. Notice that the marginal advertiser, v, earns zero expected surplus on each outlet. Hence, no advertiser with lower value will bid for their consumers on either outlet. Consequently, each outlet can accommodate a distinct advertisers with each of its products so that $p_{1st} = p_{2nd} = P(2a)$. Thus, an outlet’s profits become:

$$P(2a)(D'_1 + D')a + P(2a)D'_1 a = P(2a)a.$$

Significantly, for the symmetric outlet case, this outcome results in allocative efficiency. Quality differences between outlets will not change this outcome. For instance, if $x_1 > x_2$, then
high value advertisers will bid more for a bundle of first and last look consumers. However, as each component of the bundle is set by a different outlets, the ability to substitute between them will cause prices to be bid to equality. Hence, no sorting will occur.

What will change the outcome is if there are differences in ad capacities between outlets. In this case, the bundle across outlets could only be offered up to the minimum ad capacity. Beyond that point, additional capacity could not be sold as a part of the bundle and so the higher capacity outlet would sell the excess consumers to single-homing advertisers. This outcome is still allocatively efficient, however but sorting means that the profits differ from the outcome under perfect tracking.

Finally, if there are more than two outlets (or specifically if the number of outlets is greater than the number of attention periods), then multi-homing advertisers will face diminishing returns to expanding impressions across outlets. Consequently, the same issues that arise under imperfect tracking will emerge. However, if the number of outlets is less than the number of attention periods (say, if the latter is a continuum) then it is possible that price discrimination could restore efficiency. We leave an exploration of this for future research.

8 Conclusions and Directions for Future Research

This paper resolves long-standing puzzles in media economics regarding the impact of competition by constructing a model where consumers can switch between media outlets and those outlets can only imperfectly track those consumers across outlets. This model generates a number of predictions including that as consumer switching increases total advertising revenue falls, that outlets with a larger readership share command premiums for advertisements, that greater switching may lead advertisers to increase the frequency of impressions purchased on
outlets, that an increase in attention from non-advertising sources will increase advertising prices, that mergers may allow outlets to price discriminate in advertising markets, that ad platforms may not increase outlet profits, that investments in content quality will be associated with the frequency with which advertisers purchase impressions and that outlets that supply magnet content may be more profitable than outlets offering a deeper set of content. These predictions await thoughtful empirical testing but are thusfar consistent with stylized facts associated with the impact of the Internet on the newspaper industry.

While the model here has a wide set of predictions, extensions could deepen our understanding further. Firstly, the model involves two outlets usually modeled as symmetric with a distribution of advertisers with specific qualities. Generalizing these could assist in developing more nuanced predictions for empirical analysis; specifically, understanding the impact of outlet heterogeneity on advertising prices, incentives to invest in quality and incentives to invest in tracking technology.

Related, in this paper, we focused on frequency-based tracking noting that other forms of tracking have been part of the news industry. An open question is what the incentives are for firms to unilaterally improve their internal tracking of consumers. As noted throughout this paper, the adoption of more efficient matching may increase marginal demand but reduce inframarginal demand from advertisers. When ad capacity is scarce, it is not clear that such moves will prove profitable for outlets.

Finally, throughout this paper we have assumed that advertisements were equally effective on both outlets. However, in some situations, it may be that the expected value from impressing a consumer on one outlet is higher than that from impressing consumers on another. For instance, consider (as in Athey and Gans, 2010), a situation where all advertisers are in a
given local area. One outlet publishes in that local area only while the other is general and publishes across local areas. Absent the ability to identify consumers based on their location, a consumer impressed on the local outlet will still generate an expected value of \(v \) to advertiser \(v \) whereas one impressed on the general outlet will only generate an expect value of \(\theta v \) with \(\theta < 1 \). In this situation, even if there are no switching consumers, advertisers on the general outlet will be paying for wasted impressions.

While this situation may be expected to generate outcomes similar to when readership shares are asymmetric, the effects can be subtle. A general outlet may have fewer consumers who are of value to advertisers but also may have a larger readership. Also, when consumers switch between outlets, the switching behavior is information on those hidden characteristics. Thus, switching behavior may actually increase match efficiency. Consequently, the effects of tailored content, self-selection and incentives to adopt targeting technologies that overcome these are not clear and likely to be an area where future developments can be fruitful.

34 Location is only one aspect upon which consumers and advertisers might sort according to common interests. Any specialized media content can perform this function and give an outlet a matching advantage over more general outlets.

35 Milgrom and Levin (2010) argue that targeting may be limited because it conflicts with goals of achieving market thickness (see also Athey and Gans, 2010).
9 Appendix

9.1 Proof of Proposition 1a,b and related results

Consider the following program: \(\max_{n_1 \geq 0, n_2 \geq 0} \pi \), where

\[
\pi := D_1'(1 - e^{-\frac{n_1}{2D_1' + D'}})v + D_2'(1 - e^{-\frac{n_2}{2D_2' + D'}})v + D'(1 - e^{-\frac{n_1 + n_2}{2D_1' + D'}})v - n_1p_1 - n_2p_2.
\]

Let \(n^* := (n^*_1, n^*_2) \) denote its solution, which depends, among other things, on \(v \).

Result 1: \(\frac{n^*_1}{2D_1' + D'} \leq \frac{n^*_2}{2D_2' + D'} \) if and only if \(p_1 \geq p_2 \).

In what follows we will use the above observation to derive a number of results. First, suppose that outlets are equally expensive: \(p_1 = p_2 = p \) with \(p > 0 \).

Result 2: \(n^*_1 = \frac{2D_1' + D'}{2} \ln(v/p) \) and \(n^*_2 = \frac{2D_2' + D'}{2} \ln(v/p) \).

It follows that all active advertisers multi-home. Now suppose, without loss of generality, that \(p_1 \leq p_2 \), i.e. outlet two is the expensive one.

Result 3: If \(p_2 > p_1 \) and \(\frac{\partial \pi}{\partial n_2} |_{n=n^*} = 0 \) then \(n^*_1 > 0 \).

Result 4: \(n^*_2 > 0 \) implies \(n^*_1 > 0 \) (i.e. all advertisers active on the more expensive outlet multi-home).

Result 5: \(n^*_1 = 0 \) and \(\frac{\partial \pi}{\partial n_1} |_{n=n^*} = 0 \) imply \(n^*_1 > 0 \).

Result 4 says that, in equilibrium, a sorting condition holds. High value advertisers will multi-home, intermediate value advertisers will single-home on the cheaper website. Note that the result holds regardless of the value of \(x_1 \) and \(\rho \). This means that the equilibrium strategy of is pinned down by the relative price, not by asymmetries in readership share.

Result 6: \(\frac{\partial n^*_1}{\partial p} \geq 0 \) and \(\frac{\partial n^*_1}{\partial p} \leq 0 \) if and only if \(p_1 \leq p_2 \).

We shall now prove these results in turn.

Set \(\pi := D_1'(1 - e^{-\frac{n_1}{2D_1' + D'}})v + D_2'(1 - e^{-\frac{n_2}{2D_2' + D'}})v + D'(1 - e^{-\frac{n_1 + n_2}{2D_1' + D'}})v - n_1p_1 - n_2p_2. \)
Note that π is continuous and $\lim_{n_1 \to 0} \pi = 0$, $\lim_{n_2 \to 0} \pi = -\infty$, so there exists a solution. Moreover $\pi: \mathbb{R}^2 \to \mathbb{R}$ is strictly concave in (n_1, n_2), and since the set defined by the constraints is convex the solution denoted (n_1^*, n_2^*) is unique and characterized by the following necessary and sufficient conditions for maxima:

\[
\begin{align*}
\frac{\partial \pi}{\partial n_1} &\leq 0 \iff \frac{2D_1^*}{2D_1^* + D'} e^{-\frac{n_1^*}{2D_1^* + D'}} + \frac{D^*}{2D_1^* + D'} e^{-\frac{n_2^*}{2D_1^* + D'}} \leq \frac{p_1}{v} \\
\frac{\partial \pi}{\partial n_2} &\leq 0 \iff \frac{2D_2^*}{2D_1^* + D'} e^{-\frac{n_1^*}{2D_1^* + D'}} + \frac{D^*}{2D_1^* + D'} e^{-\frac{n_2^*}{2D_1^* + D'}} \leq \frac{p_2}{v} \\
n_1^* \frac{\partial \pi}{\partial n_1} &= 0 \\
n_2^* \frac{\partial \pi}{\partial n_2} &= 0
\end{align*}
\]

Note that $n_1^* = n_2^* = 0 \iff \min \{ p_1, p_2 \} \geq v$, so in what follows we shall assume $v > \min \{ p_1, p_2 \}$ to consider non-trivial solutions.

We have to consider three cases:

1. $\frac{\partial \pi}{\partial n_1}_{n_1 = n_2} = \frac{\partial \pi}{\partial n_2}_{n_1 = n_2} = 0 \iff n_1^*, n_2^* \geq 0$ (the “interior solution” case)

2. $\frac{\partial \pi}{\partial n_1}_{n_1 = n_2^*} \leq \frac{\partial \pi}{\partial n_2}_{n_1 = n_2^*} = 0 \iff n_1^* = 0, n_2^* \geq 0$

3. $\frac{\partial \pi}{\partial n_1}_{n_1 = n_1^*} \leq \frac{\partial \pi}{\partial n_2}_{n_1 = n_1^*} = 0 \iff n_1^* \geq 0, n_2^* = 0$

Let us consider case 1 first. Subtracting side by side and rearranging the FOCs we get:

\[
\begin{bmatrix}
-\frac{4D_1^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} + \frac{D^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} & -\frac{D^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} + \frac{n_1^*}{(2D_1^* + D') e^{-\frac{n_1^*}{2D_1^* + D'}}} \\
-\frac{4D_2^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} - \frac{D^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} & -\frac{D^*}{(2D_1^* + D')^2} e^{-\frac{n_1^*}{2D_1^* + D'}} + \frac{n_1^*}{(2D_1^* + D') e^{-\frac{n_1^*}{2D_1^* + D'}}}
\end{bmatrix}
\]

is definite negative.

36 Since π is twice differentiable and the Hessian matrix...
\[e^{-\frac{2n^*_1}{2D_1'^1 + D^s}} \left(-\frac{2D_1'}{2D_1'^1 + D^s} e^{-\frac{n^*_1}{2D_1'^1 + D^s}} + \left(\frac{D'}{2D_1'^1 + D^s} - \frac{D^s}{2D_1'^1 + D^s} \right) e^{\frac{n^*_1}{2D_1'^1 + D^s}} \right) = \frac{p_1 - p_2}{v} \]

Note that the sign of the left hand side is always equal to the sign of \(\frac{n^*_1}{2D_1'^1 + D^s} \). It follows that \(p_1 = p_2 \) iff \(\frac{n^*_1}{2D_1'^1 + D^s} = 0 \), \(p_1 < p_2 \) iff \(\frac{n^*_1}{2D_1'^1 + D^s} < 0 \) and \(p_1 > p_2 \) iff \(\frac{n^*_1}{2D_1'^1 + D^s} > 0 \).

Consider case 2 when \(p_1 < p_2 \). FOCs yield:

\[
\frac{2D_1'}{2D_1'^1 + D^s} + \frac{D^s}{2D_1'^1 + D^s} e^{-\frac{2n^*_1}{2D_1'^1 + D^s}} \leq \frac{p_1}{v}
\]

\[
\frac{2D_2'}{2D_2'^1 + D^s} e^{-\frac{2n^*_2}{2D_2'^1 + D^s}} + \frac{D^s}{2D_2'^1 + D^s} e^{-\frac{2n^*_2}{2D_2'^1 + D^s}} = \frac{p_2}{v}
\]

Note that this should hold for all values of prices such that \(p_1 < p_2 \) and parameters on which \(n^*_1 \) depends. But if \(n^*_2 \approx 0 \) we get \(p_1 \geq v = p_2 \) which is a contradiction. Thus case 2 cannot occur if \(p_1 < p_2 \).

Finally, consider case 3 when \(p_1 < p_2 \). As long as \(n^*_1 \geq 0, n^*_2 \geq 0 \), it is still true that \(\frac{n^*_1}{2D_1'^1 + D^s} \geq \frac{n^*_2}{2D_2'^1 + D^s} = 0 \). Conversely if \(p_1 > p_2 \), Case 3 cannot occur and in Case 2 as long as \(n^*_1 = 0, n^*_2 \geq 0 \) it is still true that \(\frac{n^*_2}{2D_2'^1 + D^s} \geq \frac{n^*_1}{2D_1'^1 + D^s} = 0 \).

Now suppose \(p_1 = p_2 = p > v \). Suppose \((n_1^*, n_2^*) = \left(\frac{2D_1'^1 + D^s}{2} \ln(v/p), \frac{2D_2'^1 + D^s}{2} \ln(v/p) \right) \). Substituting into the FOCs:
\[
\frac{\partial \pi}{\partial n_1} = \frac{2D_1^l}{2D_1^l + D^s} e^{\frac{2n_1}{2D_1^l + D^s}} + \frac{2D_1^l}{2D_1^l + D^s} e^{\frac{-n_1}{2D_1^l + D^s}} - \frac{n_1}{2D_1^l + D^s} - \frac{n_2}{2D_1^l + D^s} - \frac{p}{v}
\]
\[
= \frac{2D_1^l}{2D_1^l + D^s} e^{\frac{2D_1^l + D^s}{2} \ln(v/p)} + \frac{D^s}{2D_1^l + D^s} e^{\frac{2D_1^l + D^s}{2} \ln(v/p)} - \frac{p}{v}
\]
\[
= \frac{2D_1^l}{2D_1^l + D^s} \frac{p}{v} + \frac{D^s}{2D_1^l + D^s} \frac{p}{v} - \frac{p}{v} = 0
\]
\[
\frac{\partial \pi}{\partial n_2} = \frac{2D_2^l}{2D_2^l + D^s} e^{\frac{2n_2}{2D_2^l + D^s}} + \frac{2D_2^l}{2D_2^l + D^s} e^{\frac{-n_2}{2D_2^l + D^s}} - \frac{n_1}{2D_2^l + D^s} - \frac{n_2}{2D_2^l + D^s} - \frac{p}{v}
\]
\[
= \frac{2D_2^l}{2D_2^l + D^s} e^{\frac{2D_2^l + D^s}{2} \ln(v/p)} + \frac{D^s}{2D_2^l + D^s} e^{\frac{2D_2^l + D^s}{2} \ln(v/p)} - \frac{p}{v}
\]
\[
= \frac{2D_1^l}{2D_2^l + D^s} \frac{p}{v} + \frac{D^s}{2D_2^l + D^s} \frac{p}{v} - \frac{p}{v} = 0
\]

And, therefore, in this particular case \((n_1^*, n_2^*) = \left(\frac{2D_1^l + D^s}{2} \ln(v/p), \frac{2D_2^l + D^s}{2} \ln(v/p)\right)\) is the unique solution to the problem.

Proof of result 3, 4 and 5

If \(p_2 > p_1\), suppose \(\frac{\partial \pi}{\partial n_1}|_{n_1^*} = 0\) and \(n_1^* = 0\). Then FOCs become

\[
\frac{2D_1^l}{2D_1^l + D^s} + \frac{D^s}{2D_1^l + D^s} e^{\frac{-n_1^*}{2D_1^l + D^s}} - \frac{p_1}{v} \leq 0
\]
\[
= \frac{2D_2^l}{2D_2^l + D^s} e^{\frac{-2n_2^*}{2D_2^l + D^s}} + \frac{D^s}{2D_2^l + D^s} e^{\frac{-n_2^*}{2D_2^l + D^s}} - \frac{n_2^*}{2D_2^l + D^s} - \frac{p_2}{v} = 0
\]

Which can be rewritten as

\[
\frac{2D_1^l}{2D_1^l + D^s} + \frac{D^s}{2D_1^l + D^s} e^{\frac{-n_1^*}{2D_1^l + D^s}} \leq \frac{p_1}{v} < \frac{p_2}{v} = \frac{2D_2^l}{2D_2^l + D^s} e^{\frac{-2n_2^*}{2D_2^l + D^s}} + \frac{D^s}{2D_2^l + D^s} e^{\frac{-n_2^*}{2D_2^l + D^s}}
\]

Note that the right hand side is decreasing in \(n_2^*\), and so the above inequality, which has to hold for all values of parameters and prices such that \(p_2 > p_1\), is more easily satisfied for low values of \(n_2^*\). But if \(n_2^* \approx 0\) we get

\[
\frac{2D_1^l}{2D_1^l + D^s} + \frac{D^s}{2D_1^l + D^s} \leq \frac{2D_1^l}{2D_1^l + D^s} + \frac{D^s}{2D_1^l + D^s} < \frac{2D_2^l}{2D_2^l + D^s} + \frac{D^s}{2D_2^l + D^s}
\]
which is a contradiction.

In particular, it must be that \(n_1^* > 0 \) both when \(n_2^* > 0 \), and when \(n_2^* = 0 \) and \(\partial \pi / \partial n_2 \bigg|_{n_1 = n_1^*} = 0 \)

Proof of result 6

The Jacobian of the function \(g(n_1, n_2, \rho) : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) defined by the first order conditions with respect to \(n_1 \) and \(n_2 \) corresponds to the Hessian matrix of \(\pi \), which is definite negative and hence nonsingular. Therefore by the inverse function theorem the function \(g \) defines implicitly a function \(n(\rho) : \mathbb{R} \rightarrow \mathbb{R}^2 \) around the point \((n_1^*, n_2^*)\). Using the functional form of \(D^i_1 \), \(D^i_2 \) and \(D^i \) we get

\[
\frac{\partial n_1^*}{\partial \rho} = \frac{(1 - e^{-2 x_i}) (\rho x_i + e^{-2 x_i} (2 - \rho x_i)) (1 - x_i)}{\rho x_i (1 - \rho (1 - x_i)) + (1 - \rho x_i) e^{-2 x_i} (1 - x_i) (2 + \rho (1 - x_i)) (e^{-2 x_i} - 2)}
\]

\[
\frac{\partial n_2^*}{\partial \rho} = \frac{(1 - e^{-2 x_i}) (2 - \rho (1 - x_i)) + e^{-2 x_i} (1 - x_i) (2 + \rho (1 - x_i)) (e^{-2 x_i} - 2)}{\rho x_i (1 - \rho (1 - x_i)) + e^{-2 x_i} (1 - x_i) (2 + \rho (1 - x_i)) (e^{-2 x_i} - 2)}
\]

Note that if \(\frac{n_1}{x_i} - \frac{n_1^*}{1 - x_i} = 0 \), then \(\frac{\partial n_1^*}{\partial \rho} = \frac{\partial n_1}{\partial \rho} = 0 \) and therefore \(\frac{\partial n_1^*}{\partial \rho} = \frac{\partial n_1}{\partial \rho} = 0 \) if and only if \(p_1 = p_2 \); on the other hand if \(\frac{n_1}{x_i} - \frac{n_1^*}{1 - x_i} > 0 \), then \(\frac{\partial n_1^*}{\partial \rho} > 0 \) and \(\frac{\partial n_1}{\partial \rho} < 0 \), which implies that \(\frac{\partial n_1^*}{\partial \rho} > 0 \) and \(\frac{\partial n_1}{\partial \rho} < 0 \) if and only if \(p_1 < p_2 \). Conversely, \(\frac{\partial n_1}{\partial \rho} < 0 \) and \(\frac{\partial n_1^*}{\partial \rho} > 0 \) if and only if \(p_1 > p_2 \).

Proof of proposition 1b

We have two separate markets for impressions, one per outlet. An equilibrium price vector \((p_1^*, p_2^*)\) solves:

\[
a(2D^i_1 + D^i) = \int_{n_1^*(v, p_1, p_2, x_i, \rho)}^{\infty} n_1^*(v, p_1, p_2, x_i, \rho) f(v) dv
\]

\[
a(2D^i_2 + D^i) = \int_{n_2^*(v, p_1, p_2, x_i, \rho)}^{\infty} n_2^*(v, p_1, p_2, x_i, \rho) f(v) dv
\]

where \(n_i^*(v, p_1, p_2) \) is type \(v \)'s demand of impressions of outlet \(i \) at prices \((p_1, p_2)\) and the indifferent types are left unspecified but clearly depend on the price vector. We want to show that a solution to the above system exists and is unique under our assumptions.

Here I will just prove that a symmetric solution with \(p_1^* = p_2^* \) exists and is unique.
The candidate price vectors lie in \mathbb{R}^2. Let’s restrict our search on the diagonal: $p_1^* = p_2^* = p$.

From the above analysis we know what the aggregate demand is on the diagonal for both outlets:

$$n_1^* = \frac{2D_1^j + D^i}{2} \ln (v / p) \quad \text{and} \quad n_2^* = \frac{2D_2^j + D^i}{2} \ln (v / p).$$

Furthermore we know that all advertisers multi-home when prices are equal: $v_1 = v_2 = p$. Hence we can rewrite the market clearing conditions as:

$$a(2D_1^j + D^i) = \int_p^\infty \frac{2D_1^j + D^i}{2} \ln (v / p) f(v)dv$$
$$a(2D_2^j + D^i) = \int_p^\infty \frac{2D_2^j + D^i}{2} \ln (v / p) f(v)dv$$

And hence:

$$2a = \int_p^\infty \ln (v / p) f(v)dv$$
$$2a = \int_p^\infty \ln (v / p) f(v)dv$$

It follows that if there is a price that solves $2a = \int_p^\infty \ln (v / p) f(v)dv$, it must be a market clearing price. Since the right hand side is strictly decreasing in p, and satisfies the following boundary conditions: $\lim_{p \to 0} \log (v / p) = \infty, \lim_{p \to \infty} \int_p^\infty \ln (v / p) f(v)dv = 0$, then a solution to $2a = \int_p^\infty \ln (v / p) f(v)dv$ exists and is unique. Call it p^* and notice that such price does not depend on x_1 or on ρ. Plugging this into total advertising revenues (that is, the sum of the outlets’ profits) we get: $\pi_1^* + \pi_2^* = a(2D_1^j + D^i)p^* + a(2D_2^j + D^i)p^* = 2ap^*$

To exclude asymmetric market clearing vectors we shall use the following result:

Claim 1 define $v_1(p) := \{v \in \mathbb{R}^+: n_1^*(p, v) = 0, \partial \pi / \partial n_1\big|_{n_1^* = 0} = 0\}$ and $v_2(p) := \{v \in \mathbb{R}^+: n_2^*(p, v) = 0, \partial \pi / \partial n_2\big|_{n_2^* = 0} = 0\}$. If $p_1 > p_2$ then $v_1(p) < v_2(p)$, and if $p_1 < p_2$ then $v_1(p) > v_2(p)$.

PROOF: consider the case $p_1 > p_2$. We have already shown that if $\partial \pi / \partial n_1\big|_{n_1^* = 0} = 0$ then $n_2^* > 0$.

Two corollaries of this are:

1. if $\partial \pi / \partial n_1\big|_{n_1^* = 0} = 0$ and $n_1^* = 0$, then $n_2^* > 0$.

2. if \(\frac{\partial \pi}{\partial n_2} \bigg|_{n=n^*} = 0 \) and \(n_2^* = 0 \) then \(n_1^* = 0 \), since \(\frac{n_1^*}{2D_1^* + D'} \geq \frac{n_2^*}{2D_2^* + D'} \) holds.

Note that \(\frac{\partial \pi}{\partial n_1} \bigg|_{n=n^*} = 0 \) and \(n_1^*(p,v) = 0 \) define \(v_1(p) \) while \(\frac{\partial \pi}{\partial n_2} \bigg|_{n=n^*} = 0 \) and \(n_2^*(p,v) = 0 \) define \(v_2(p) \). Now suppose that \(v_1(p) < v_2(p) \). This implies that there exists a range of values of \(v \in [v_1(p), v_2(p)] \) in which \(\frac{\partial \pi}{\partial n_1} \bigg|_{n=n^*} = 0 \) and \(n_2^* = 0 \), which is a contradiction. Conversely, if \(p_1 < p_2 \), then it must be the case that \(v_1(p) > v_2(p) \).

Moreover note that when \(p_1 > p_2 \), by result 2 we also know from \(\frac{\partial \pi}{\partial n_2} \bigg|_{n=n^*} = 0 \) that \(v_2(p) = p_2 \), while \(v_1(p) \) depends on \(n_1^* \), which in turn depends on both prices. Vice-versa, if \(p_1 < p_2 \)

\[v_1(p) = p_1 \text{ while } v_2(p) \text{ will depend on both prices.} \]

Claim 2. The system

\[
a(2D_1^* + D') = \int_{v_1(p)}^{\infty} n_1^*(v, p_1, p_2, x_1, \rho) f(v) dv
\]

\[
a(2D_2^* + D') = \int_{v_2(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv
\]

has no solution in which \(p_1 \neq p_2 \).

PROOF: Suppose \(p_1 > p_2 \). Then we know that \(\frac{n_2^*}{2D_2^* + D'} < \frac{n_1^*}{2D_1^* + D'} \), which implies \(n_1^* < \frac{2D_1^* + D'}{2D_2^* + D'} n_2^* \).

Substituting into the system:

\[
a(2D_1^* + D') < \int_{v_1(p)}^{\infty} (2D_1^* + D') \frac{n_2^*}{2D_2^* + D'}(v, p_1, p_2, x_1, \rho) f(v) dv
\]

\[
a(2D_2^* + D') = \int_{v_2(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv
\]

Now, since \(v_2(p_1, p_2) > v_1(p_1, p_2) \) the interval over which \(n_2^*(v, p_1, p_2, x_1, \rho) f(v) \) is integrated is such that

\[
\int_{v_2(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv > \int_{v_1(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv
\]

Therefore plugging into the system we get

\[
a(2D_1^* + D') < \int_{v_1(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv < \int_{v_2(p)}^{\infty} n_2^*(v, p_1, p_2, x_1, \rho) f(v) dv = a(2D_1^* + D')
\]
which is a contradiction. Similarly, suppose \(p_1 < p_2 \). Then \(\frac{n_1^*}{2D_1^*} < \frac{n_1^*}{2D_x^*} \), and the system becomes

\[
a(2D_1^i + D^x) > \int_{v_1(p)}^{\infty} (2D_1^i + D^x) \frac{n_1^*}{2D_1^i + D^x} (v, p_1, p_2, x_1, \rho) f(v) dv
\]
\[
a(2D_2^i + D^x) = \int_{v_2(p)}^{\infty} n_2^* (v, p_1, p_2, x_1, \rho) f(v) dv
\]

Since \(v_1(p_1, p_2) > v_2(p_1, p_2) \) the interval over which \(n_2^* (v, p_1, p_2, x_1, \rho) f(v) \) is integrated is such that

\[
\int_{v_2(p)}^{\infty} n_2^* (v, p_1, p_2, x_1, \rho) f(v) dv < \int_{v_1(p)}^{\infty} n_2^* (v, p_1, p_2, x_1, \rho) f(v) dv
\]

and therefore

\[
a(2D_2^i + D^x) = \int_{v_2(p)}^{\infty} n_2^* (v, p_1, p_2, x_1, \rho) f(v) dv < \int_{v_1(p)}^{\infty} n_2^* (v, p_1, p_2, x_1, \rho) f(v) dv < a(2D_1^i + D^x)
\]

A contradiction. Therefore, it must be \(p_1^* = p_2^* = p \).

9.2 Proof of Proposition 6

When \(D^x \) is low, outlet 1’s profits under no tracking are \(\frac{2(2-D^x)}{4-D^x} (1-(a_1 + a_2))a_1 \) whereas outlet 1’s profits under perfect tracking are \((1-a_1-a_2)a_1D^x + (1-2a_1)2a_1D^x \). Profits under perfect tracking exceed those under no tracking if:

\[
(a_1-a_2)D^x(4-D^x) + (1-2a_1)(4-D^x) > 2(2-D^x)(1-(a_1 + a_2))
\]

With \(a_1 = a_2 \), this becomes:

\[
D^x > 0
\]

When \(D^x \) is high, outlet 1’s profits under no tracking may be \(\frac{D^x(2-D^x)}{4-D^x} (3-2(a_1+a_2))a_1 \). Comparing these to the profits under perfect tracking and imposing \(a_1 = a_2 = a \), perfect tracking will yield higher profits if:

\[
\frac{2(1-2a)}{4-a} > D^x(2-D^x)
\]

Examining the case where \(D^x = \frac{1}{2} \), note that these profits will be an equilibrium if the equilibrium price they are based on \(\frac{2(2-D^x)}{4-D^x} (1-2a) \) is less than \(\frac{1}{4} \). That is, if \(\frac{6}{7} (1-2a) < \frac{1}{4} \Rightarrow a > \frac{17}{48} \). At \(D^x = \frac{1}{2} \), we have \(\frac{2(1-2a)}{4-a} > \frac{1}{4} \Rightarrow a < \frac{5}{13} \) so for \(a \in [\frac{17}{48}, \frac{5}{13}] \), perfect tracking yields superior profits but for \(a > \frac{5}{13} \), profits are higher under no tracking.
9.3 Proof of Proposition 8

Suppose that $a_1 < a_2$ and that $\sigma_1 = 0$. Also, assume for the moment that $\nu_{12} > 1$. In this case, the conditions for outlet supply to equal outlet demand become:

\[2a_1 = 1 - \nu_{12} \]
\[2a_2 = 1 - \nu_{12} + \nu_{12} - \nu_2 \]

as outlet 1 only sells to multi-homers while outlet 2 sells to all of the single-homers. For this to be an equilibrium, prices in each outlet (which may be different) must be at a level where the marginal multi-homer is indifferent between multi-homing and single-homing on outlet 2.\(^{37}\)

\[(D'_l + \frac{1}{4} D')\nu_{12} - (D'_l + \frac{1}{2} D')(p_1) > (D'_l + \frac{1}{2} D')(\nu_2 - p_1) \]
\[(D'_l + \frac{1}{4} D')\nu_{12} - (D'_l + \frac{1}{2} D')(p_2) \geq (D'_l + \frac{1}{2} D')(\nu_2 - p_2) \]

Note, first, that this requires that $p_1 \geq p_2$, otherwise, as we demonstrated above (37) could not hold, as single-homers would successful bid for impressions on 1. Instead, if $p_1 < p_2$,
\[(D'_l + \frac{1}{4} D')\nu_{12} - (D'_l + \frac{1}{2} D')(p_1) = 0 \]

as multi-homers will bid up 1’s impression price. Given this and (35), we can determine that in any equilibrium of this kind,

\[p_1 = \frac{p'_l + \frac{1}{2}D'}{p'_l + \frac{1}{4}D'}(1 - 2a_l) \]

Hence, $\nu_{12} = 1 - 2a_l$. Note also, that single-homers will set the impression price on outlet 2 (so that $p_2 = \nu_2$) and hence, the RHS of (38) will equal zero. Substituting in $\nu_{12} = 1 - 2a_l$ on the LHS we have:

\[p_2 \leq \frac{p'_l + \frac{1}{2}D'}{p'_l + \frac{1}{4}D'}(1 - 2a_l) \]

Note, however, we also have from (36) that $p_2 = 1 - 2a_2$. Thus, for this to be an equilibrium outcome requires:

\[1 - 2a_2 \leq \frac{p'_l + \frac{1}{2}D'}{p'_l + \frac{1}{4}D'}(1 - 2a_l) \]

Note that if $a_1 \approx a_2$ and $D^* > 0$ this cannot hold. Thus, 2’s ad capacity must be significantly greater than 1’s. Thus, with symmetric readerships, the asymmetric equilibrium will occur for $a_i \in [0, \frac{4a_j - D^*}{2(2 - D^*)}]$ and $a_j \in \left[\frac{1}{4}(2a_l(2 - D^*) + D^*), 1\right]$. Note that if $a_j = \frac{1}{2}$, $a_i \in [0, \frac{1}{2}]$ while if $a_i = \frac{1}{2}$, then $a_j \in \left[\frac{1}{4}, 1\right]$. Thus, if each outlet has capacity of $\frac{1}{2}$, any asymmetry will generate the asymmetric equilibrium.

This derivation assumes that $\nu_{12} > 1$. If this was not the case and if $p_1 > p_2$ then the market clearing conditions for the asymmetric equilibrium would become:

\(^{37}\) With symmetric readership shares, the marginal multi-homer would not choose to single-home on outlet 1 if $p_1 > p_2$ which will turn out to be the case.
\[2a_1 = 1 - v_{12} \quad (42) \]

\[2a_2 = 2(1 - v_{12'}) + v_{12'} - v_2 \quad (43) \]

as only outlet 2 sells additional impressions to some multi-homers. Thus, outlet 1’s price would remain as in (39) while outlet 2’s pricing condition would satisfy (substituting \(v_{12'} \) into (43)):

\[p_2 = \frac{2D'_{12}}{2 + D'} (1 - a_z) \quad (44) \]

This would be an equilibrium so long as \(v_{12'} (p_2) < 1 \) or \(a_z > \frac{2 - D'}{4} \) in addition to the ad capacity asymmetries as identified earlier. It is easy to confirm in this case that \(p_1 > p_2 \).

9.4 Proof of Proposition 11

Case 1: \(\frac{1}{2} D^s > D'_l \). Suppose that \((D'_l + \frac{1}{2} D')p_1 < D'^s p_f\). Then consider a candidate equilibrium where high value advertisers sort as single-homers (2 impressions) on 1, then single-homers (2 impressions) on \(f \) and finally as single-homers (1 impression) on 1. In this case, equilibrium prices will be the solution to:

\[D'_l 2a + D'^s a = (D'_l + \frac{1}{2} D') \left(2(1 - v_{1f}) + (v_{1f} - p_1) \right) \quad (45) \]

\[\frac{1}{2} D'^s 2a = \frac{1}{2} D'^s 2(1 - v_{1f}) \quad (46) \]

where \(v_{1f} = \frac{(D'_l + D'^s)p_1 - D'_l p_f}{D'_l} \) and \(v_{1f} = \frac{2D'_{12}p_{12} - (2D'_l + D'^s)p_f}{D'^s - 2D'_l} \). Solving this gives:

\[p_1 = \frac{aD'_l + D'^s (1 - 2a)}{D'_l + D'^s} \quad (47) \]

\[p_f = 1 - 2a - 2(1 - 3a) \frac{D'_l^2}{D'^s} \quad (48) \]

(recalling that we assume that \(a \leq \frac{1}{4} \)). It is easy to demonstrate that \(p_f > p_i \) and that \((D'_l + \frac{1}{2} D')p_1 < D'^s p_f\). This confirms the equilibrium.

Is it possible that \((D'_l + \frac{1}{2} D')p_1 > D'^s p_f\)? In this case, a candidate equilibrium would have high value advertisers sort as multi-homers (2 impressions) on \(f \) and then single-homers (2 impressions) on \(f \). In this case, no advertiser will choose single-homing on 1. Thus, equilibrium prices will be the solution to:

\[D'_l 2a + D'^s a = (D'_l + \frac{1}{2} D')(1 - v_{1f}) \quad (49) \]

\[\frac{1}{2} D'^s 2a = \frac{1}{2} D'^s 2(1 - p_f) \quad (50) \]

where \(v_{1f} = \frac{(D'_l + D'^s)p_1}{D'_l} \). Solving this gives:

\[p_1 = \frac{D'_l(1 - 2a)}{2D'_l + D'^s} \quad (51) \]

\[p_f = 1 - a \quad (52) \]
It is easy to demonstrate that \(p_f > p_l \) but that

\[
(D_1' + \frac{1}{2} D^*) p_l - D^* p_f = (\frac{1}{2} - a)D_1' - D^*(1 - a) > 0 \Rightarrow \frac{D^*}{\partial p} < \frac{1-a}{1-a} \]

which cannot hold as the LHS is greater than 2 while the RHS is less than 2. Thus, this cannot be an equilibrium.

Case 2: \(\frac{1}{2} D^* < D_1' \). Suppose that \((D_1' + \frac{1}{2} D^*) p_l > D^* p_f \). Then consider a candidate equilibrium where high value advertisers sort as multi-homers (2 impressions) on \(f \), then single-homers (1 impression) on 1 and finally single-homers (2 impressions) on \(f \). In this case, equilibrium prices will be the solution to:

\[
D_1' 2a + D^* a = (D_1' + \frac{1}{2} D^*)(1 - v_l) \quad (53)
\]

\[
\frac{1}{2} D^* 2a = \frac{1}{2} D^* 2(1 - v_{1f} + v_l - p_f) \quad (54)
\]

where \(v_{1f} = 2p_f \) and \(v_l = \frac{(2D_1' + D^*)p_f - 2D^* p_f}{2D_1' - D^*} \). Solving this gives:

\[
p_l = \frac{6D_1' (1 - 2a) + D^*}{3(2D_1' + D^*)} \quad (55)
\]

\[
p_f = \frac{2}{3} - a \quad (56)
\]

(recalling that we assume that \(a \leq \frac{1}{2} \)). It is easy to demonstrate that \(p_f < p_l \) and that \((D_1' + \frac{1}{2} D^*) p_l > D^* p_f \). This confirms the equilibrium.
10 Appendix B: Endogenous Advertising Capacity

10.1 Perfect Tracking

The previous results highlight the importance of relative advertising capacity in determining which outlets may gain from the Internet in the future. We now endogenize capacity choice, so that outlets can commit to smaller capacity levels than could be potentially supplied, focusing on how it relates to both readership share and the share of multi-homing consumers. Observe that the choice here for outlets is capacity per consumer per unit of attention. We do not allow outlets to sell different quantities of advertising to different types of consumers.

We assume that there are only two outlets to focus on the impact of outlet asymmetry. This means that an outlet will face demands for two sets of consumers — one set that it has monopoly control over and the other for which it competes with its rival a la Cournot. We now consider an analysis of the comparative statics of competition in this set-up.

We can write profits as a function of capacity, readership share and ρ:

$$\pi_i(a_i, a_j, x_i, \rho) = P(a_i + a_j) a_i D_q^i(x_i, 1-x_i, \rho) + P(2a_i) 2a_i D_q^i(x_i, \rho)$$

Let $MR_i^D(a_i, a_j) = \left(a_i P'(a_i) + P(a_i) \right)$ and $MR_i^M(a_i) = 2 \left(2a_i P'(2a_i) + P(2a_i) \right)$. The first-order conditions for outlet i imply:

$$MR_i^D(a_i, a_i + a_j)D_q^i(x_i, x_j, \rho) + MR_i^M(a_i)D_q^i(x_i, \rho) = 0.$$

This shows that the outlet considers the relative proportion of switchers and loyal users when choosing output, and it will select capacity so that one of the marginal revenue terms is positive while the other is negative. Note that if $a_i > a_j$, then if P is decreasing and concave, $MR_i^D(a_i, a_i + a_j) < 0$ implies that $MR_i^M(a_i) < 0$. Thus, for the outlet with the larger equilibrium capacity, we must have $MR_i^D(a_i, a_i + a_j) \geq 0$ in equilibrium: capacity is chosen lower than the Cournot best response, but higher than the monopoly level for that outlet. The converse is not necessarily true, however; the outlet with small equilibrium capacity may also have $MR_i^D(a_i, a_i + a_j) \geq 0$ (and indeed, this holds in the case of uniformly distributed advertiser valuation).

The impact of an increased readership share on the incentive to expand capacity is:

$$\frac{\partial}{\partial \rho} \pi_i = MR_i^D(a_i, a_i + a_j) \frac{\partial}{\partial x_i} D_q^i(x_i, 1-x_i, \rho) + MR_i^M(a_i) \frac{\partial}{\partial x_i} D_q^i(x_i, \rho)$$

$$= MR_i^D(a_i, a_i + a_j) 2\rho(1-x_i) + MR_i^M(a_i)(1-\rho + 2x_i, \rho)$$

At an equilibrium choice of capacity, the ratio of the marginal revenue terms is equal to the ratio of switchers to loyal users, so that we will have (where \hat{a}_i is the equilibrium capacity for i):

38 All of the qualitative predictions in this subsection apply for a general $F(.)$ assumed to be log-concave. (Proofs available from the authors).
Since higher readership share increases the proportion of loyal users, its direct effect on capacity is negative if and only if \(MR_D^i(\hat{a}_i, \hat{a}_i + \hat{a}_j) \geq 0 \). Intuitively, becoming larger causes a firm to put more weight on loyal users, giving it the incentive to reduce output. However, clear equilibrium comparative statics are complicated by the fact that Cournot outputs are strategic substitutes.

We can also consider the impact of switching on capacity choice:

\[
\frac{\partial^2}{\partial a_i \partial \rho} \pi_i = MR_D^i(a_i, a_i + a_j) \frac{\partial}{\partial \rho} D_y^i(x_i, 1-x_i, \rho) + MR_M^i(a_i) \frac{\partial}{\partial \rho} D_i^i(x_i, \rho)
\]

\[
= -MR_D^i(\hat{a}_i, \hat{a}_i + \hat{a}_j) 2 \rho (1-x_i) \left(\frac{x_i \rho}{1-(1-x_i) \rho} \right)
\]

At an equilibrium capacity choice, we will have

\[
\frac{\partial^2}{\partial a_i \partial \rho} \pi_i \bigg|_{(a_i,a_j)=(\hat{a}_i,\hat{a}_j)} = MR_D^i(\hat{a}_i, \hat{a}_i + \hat{a}_j) 2 x_i^2 (1-x_i) \left(\frac{1-2 \rho (1-x_i)}{1- \rho (1-x_i)} \right)
\]

So long as switching is not too prevalent and outlets are not too asymmetric, switching decreases the share of loyal users, so that the direct effect of switching on capacity is positive if and only if \(MR_D^i(\hat{a}_i, \hat{a}_i + \hat{a}_j) (1-2 \rho (1-x_i)) \geq 0 \). Thus, the direct effect is unambiguously positive for the outlet with the larger share.

Using the envelope theorem, we can write the impact of \(\rho \) on profits as follows:

\[
\frac{\partial}{\partial \rho} \pi_i(a_i^*, a_j^*(x_i, \rho); x_i, \rho) = P'(a_i^* + a_j^*) a_i^* D_y^i(x_i, 1-x_i, \rho) \frac{\partial}{\partial \rho} a_i^* (x_i, \rho)
\]

\[
+ P(a_i^* + a_j^*) a_i^* \frac{\partial}{\partial \rho} D_y^i(x_i, 1-x_i, \rho) + P(2 a_i^*) 2 a_i^* \frac{\partial}{\partial \rho} D_i^i(x_i, \rho)
\]

\[
= P'(a_i^* + a_j^*) a_i^* D_y^i(x_i, 1-x_i, \rho) \frac{\partial}{\partial \rho} a_i^* (x_i, \rho)
\]

\[
+ 2P(a_i^* + a_j^*) a_i^* x_i (1-x_i) - 2P(2a_i^*) a_i^* x_i (1-x_i)
\]

Switching has an indirect effect through increasing the opponent’s output, which (if it increases opponent capacity) lowers price and thus profits. It also has a direct effect of increasing the proportion of switchers and decreasing the proportion of loyals. The sum of the last two terms is negative if and only if \(a_i^* \leq a_j^* \); for the lower-capacity outlet, switchers are less profitable. The analysis for the outlet with the higher equilibrium output appears ambiguous if its competitor’s output is increasing in \(\rho \), as the price effect and the switcher/loyal effect move in opposite directions.

Summarizing the discussion so far, we can gain some intuition about the direct effects of parameter changes on outlet capacity choices and profits, but some additional structure on demand is required to obtain unambiguous comparative statics results. To do so, we focus on the case of linear demand (uniformly distributed advertiser valuations). The following proposition demonstrates that the larger outlet will provide the lowest advertising capacity.
Proposition A1. Suppose that there are two outlets and that \(F(v) = v \). Equilibrium advertising for each outlet, \(\hat{a}_i \), are non-increasing in readership share, \(x_i \). Equilibrium advertising \(\hat{a}_i \) is non-decreasing in \(\rho \) if \(x_i \leq (21 - \sqrt{249})/6 \approx 0.87 \) or \(\rho \leq (2/3)(3 - \sqrt{3}) \approx 0.84 \). Total ad capacity, \(\hat{a}_i + \hat{a}_j \), is non-decreasing in \(\rho \). For sufficiently symmetric firms \(.33 \leq x_i \leq .67 \), profits of both firms are decreasing in \(\rho \), while for sufficiently asymmetric firms, profits are decreasing (increasing) in \(\rho \) for \(x_i > (\leq) x_j \). \(\pi_{i PT} / x_i > \pi_{j PT} / x_j \) when \(x_i > x_j \). \(\pi_{i PT} - \pi_{j PT} \) is decreasing in \(\rho \) for \(x_i > x_j \).

Proof: Solving for the unique Nash equilibrium with the uniform distribution we have:

\[
\hat{a}_i = \frac{16D_iD_j + 6D_iD_j + 4D_iD_j + D_i^2}{64D_iD_j + 16(D_i + D_j)D_i + 3D_i^2} \tag{57}
\]

\[
\pi_{i PT} = \frac{(4D_i + D_j)(16D_iD_j + 6D_iD_j + 4D_iD_j + D_i^2)^2}{(64D_iD_j + 16(D_i + D_j)D_i + 3D_i^2)^2} \tag{58}
\]

The rest of the proposition follows from manipulating these expressions.

We have already developed some intuition for these results, but the uniform distribution gives us more definitive conclusions. Consider the comparative statics of switching on profits. The increase in capacity of an opponent’s outlet has a negative impact on each outlet. However, the increase in the share of switchers has a positive (resp. negative) effect on the smaller (larger) outlet, as the share of consumers coming from the switchers goes up. Switchers are more (less) profitable than loyals for the smaller (larger) outlet, because the larger outlet serves less capacity than the smaller outlet. With the uniform distribution, for the small outlet the latter effect dominates the negative effect of increase in capacity and small outlet profits go up.

Note that switching also affects the impact of an increase in readership share on profits. Under the benchmark single-homing consumer case, more readers simply improved profits in a linear fashion; that is \(\pi_{i PT} / x_i \) was independent of \(x_i \). With perfect tracking, an additional reader attracted from a rival outlet not only causes an outlet to restrict advertising capacity but for that capacity to increase elsewhere (since capacities are strategic substitutes in our Cournot setup), decreasing impression prices for switchers. Thus, outlets with a lower readership share have a higher incentive to attract marginal readers.

It is also useful to note that if the two outlets were commonly owned, their owner would maximize joint outlet profits by setting \(a_1 = a_2 = \frac{1}{2} \). By Proposition 2, in this case, realized profits in this case will be the same as those generated when there are no switchers. Thus, under perfect tracking with \(D^t > 0 \) there will be an incentive for outlets to merge.

In the absence of common ownership, multi-homing consumers cause outlets to compete for advertisers and a greater proportion of them increases available advertising space and decreases overall profits. However, the question of interest is what this does to the marginal incentive to attract an additional reader at the expense of rivals. What we can demonstrate is that as \(x_i \to 0 \) or \(x_i \to 1 \), then \(\frac{\partial \pi_{i PT}}{\partial x_i} > \frac{\partial \pi_{i NO}}{\partial x_i} = \frac{1}{2} \). It is useful to note that if both outlets are commonly owned (i.e., in a monopoly), then profits under perfect tracking are the same as profits earned for each outlet in the no switching case. Thus, competition is the source of any reduction in profits.
as a result of switching but this competition can, in turn, promote higher incentives to attract readership when there are asymmetric readership shares.

10.2 Imperfect tracking

Suppose that competition comprises two stages (as in the perfect tracking case). In stage 1, both outlets simultaneously choose their ad capacities. In stage 2, the market clears based on those capacities and prices and profits are realized. It turns out that, in this situation, a pure strategy equilibrium in the Stage 1 (Cournot) game does not exist for a non-trivial rage of D'.

Proposition A2. With endogenous capacity, $F(v) = v$ and symmetric readership shares, the pure strategy equilibrium outcomes are:

(i) For $D' = 0$, $a_i = \frac{1}{2}$ with per consumer profits of $\pi_i = \frac{1}{4}$ for all i.

(ii) For $D' \geq \frac{4}{9}$, $a_i = \frac{1}{2}$ with per consumer profits of $\pi_i = \frac{2(2-D')}{4-D'} \frac{2}{9}$ for all i.

Otherwise no pure strategy equilibrium exists.

Proof: Note that for $D' = 0$, $v_{12} = p$ and the asymmetric equilibrium holds for any $(a_1, a_2) \not\in (\frac{1}{4}, \frac{1}{4})$. In any asymmetric equilibrium, per consumer profits equal $(1 - 2a_i)2a_i$ for each outlet; which is maximized at a capacity of $\frac{1}{4}$. Hence, by deviating, each would receive no greater profits than they do under the equilibrium as specified in (i).

To check that outcome (ii) is an equilibrium, observe that if each outlet plays a local best response, they each choose capacity equal to $\frac{1}{2}$. Now consider a choice $a_i \gg \frac{1}{2}$ so that $p(a_1, a_2) = \frac{1}{2} D'$. In this case, the highest profits outlet 1 could earn are:

$$\max_{a_i} \frac{D'(2-D')}{4+D'(2-D')} (3 - 2(a_i + \frac{1}{2})) 2a_i$$

which is maximized at $a_i = \frac{7}{11}$; which would create the asymmetric equilibrium. Thus, the maximum capacity 1 would chose would be $\frac{1}{12}(4 + D')$ resulting in profits of $\frac{1}{36}(2 - D')(4 + D') < \frac{2(2-D')} {4-D'} \frac{2}{9}$. Now consider a choice $a_i \ll \frac{1}{2}$ so that $\pi_1 = 0$; specifically, $a_i \leq \frac{4 - 4D'} {6(2-D')^2}$. In this case, outlet 1 maximizes profits with a choice of $a_i = \frac{1}{2}$ earning profits of $p_1 2a_i = \frac{D'(2-D')}{4+D'(2-D')} (1 - 2a_i)2a_i = \frac{1}{9} (2 - D')$ which is greater than $\frac{2(2-D')}{4-D'} \frac{2}{9}$ for $D' \leq \frac{4}{9}$. When $D' > \frac{4}{9}$, this deviation is not profitable. Finally, we need to check that, in fact, $p(a_1, a_2) = \frac{1}{2} D'$. This implies that $\frac{1}{2} D' < \frac{2(2-D')}{4-D'} \frac{1}{3} \Rightarrow D' < \frac{5}{3} (4 - \sqrt{10})$ which always holds for $D' \leq \frac{4}{9}$.

We now turn to establish that there are no other pure strategy equilibria. First, note when $p < \frac{1}{2} D'$, it is easy to see that $a_i = \frac{1}{2}$ is a local best response to $a_2 = \frac{1}{2}$. At this point, each outlet earns profits of $\frac{D'(2-D')}{4+D'(2-D')}$. Note, however, that any deviation from these capacities generates the asymmetric equilibrium. Thus, setting $a_i \gg \frac{1}{2}$ would earn that outlet profits of $\frac{2D'}{2-D'} (1-a_i)2a_i$ which are maximized at $\frac{1}{2}$ and exceed $\frac{D'(2-D')}{4+D'(2-D')}$ at this point. A reduction in capacity would involve maximum profits at $a_i = \frac{1}{2}$. In this case, it is
easy to establish that \(\frac{D'(2-D')}{4+D'(2-D')} < \frac{1}{8} (2-D') \) and so a large reduction in ad capacity is a profitable deviation for outlet 1. Thus, no equilibria of this type exists.

What about an asymmetric equilibrium? Any equilibrium would involve the outlet with the smaller capacity, say 1, choosing \(a_1 = \frac{1}{4} \) while the other outlet chooses \(a_2 = \frac{1}{8} (2+D') \). Note that this is consistent with \(v_{12^*} > 1 \) and it is straightforward to establish that outlet 2 would not want to choose a higher ad capacity to change this. In this case, outlet 2 earns per consumer profits of \((1-2a_2)2a_2 \) and it is easy to determine that these are decreasing in \(a_2 \) at \(a_2 = \frac{1}{8} (2+D') > \frac{1}{4} \). Therefore, given 1’s choice, 2 would not find it profitable to expand output. Contracting it would generate profits of \(\frac{2(2-D')}{4-D'} (1-\frac{1}{4}-a_2)2a_2 \); maximized at 3/8 which would involve too much asymmetry to generate that outcome. Thus, any contraction involves profits less than \(\frac{1}{16} (4-D^{12}) \). For \(p \geq \frac{1}{2} D' \), outlet 1 would earn per consumer profits of \(\frac{2(2-D')}{4-D'} (1-\frac{1}{8} (2+D')-a_1)2a_1 \) which is maximized at \(a_1 = \frac{1}{16} (6-D') \). However at this capacity, ad capacities would be sufficiently asymmetric that this would not be feasible. Instead, outlet 1 is constrained to a capacity no more than \(\frac{1}{16} (4+4D' - D^{12}) \). Note that this results in a price

\[
p = \frac{2(2-D')}{4-D'} (1-\frac{1}{8} (2+D')-\frac{1}{16} (4+4D' - D^{12})) \geq \frac{1}{2} D'.
\]

It is straightforward to demonstrate that this deviation is profitable for 1. A similar reasoning holds for the case where \(p < \frac{1}{2} D' \). Thus, there is no pure strategy equilibrium involving asymmetric capacity choices.

Intuitively, for smaller levels of \(D' \), each outlet would prefer to be the outlet with the larger capacity so long as the required asymmetry is not too large. When that occurs, their preferences switch. Consequently, there is a (downwards) discontinuity in the best response functions of each outlet for \(D' \in (0, \frac{1}{4}) \) and no pure strategy equilibrium exists.

Given the lack of a pure strategy equilibrium for a non-trivial set of parameters, we might consider a mixed strategy equilibrium. However, given this application, it is unclear whether mixing in its strict form is something that we would expect to see; specifically, because ad capacity may be a design decision for web pages.\(^{39}\) As an alternative, the following proposition characterizes the Stackelberg outcome where one outlet chooses its ad capacity prior to the other.

Proposition A3. In a sequential move game where outlet 1 chooses \(a_1 \) before outlet 2 chooses \(a_2 \), the unique equilibrium outcome involves \(a_1 = \frac{2+\sqrt{4D'-2D'}}{4(2-D')} \) and \(a_2 = \frac{1}{4} \) with per consumer profits of \(\pi_1 = \frac{2-3D' + \sqrt{4D'-2D'}}{2(2-D')} \) and \(\pi_2 = \frac{1}{8} (2-D') \).

\(^{39}\) Frankly, we have also been unable to identify the mixed strategy equilibrium although we know the set that contains its support and that that set converges to \((\frac{1}{4}, \frac{1}{4}) \) as \(D' \) goes to 0.
PROOF: If \(a_1 = \frac{2+\sqrt{2D^s} - 2D^s}{4(2-D^s)} \), then outlet 2 is different between \(a_2 = \frac{1}{4} \) or setting its capacity high enough to ensure that outlet 1 only has multi-homers; that is, \(a_2 \geq \frac{1}{4} (2a_1(2-D^s) + D^s) = \frac{1}{8} (2 + \sqrt{2D^s}) \). So 2 has no incentive to deviate. Outlet 1 has no incentive to increase capacity as this lowers its asymmetric equilibrium profits. It could, however, decrease capacity. This would result in 2 no longer being indifferent between a high and low capacity and choosing a high capacity, \(\frac{1}{4} (2a_1(2-D^s) + D^s) \). This would result in profits for 1 as the low capacity outlet in the asymmetric equilibrium which are maximized at \(\frac{1}{16} \) yielding \(\frac{1}{8} (2-D^s) \). These are less than the equilibrium profits and hence, there is no profitable deviation for 1.

Notice that the equilibrium profits of both outlets is decreasing in \(D^s \) from a starting point of \(\frac{1}{4} \) where \(D^s = 0 \).
References

Chiou, L. and C.E. Tucker. 2010. “News, Copyright and Online Aggregators,” *mimeo.*, MIT.

