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Abstract

A principal chooses one of multiple projects or an outside option. An agent is privately

informed about the projects’ benefits and shares the principal’s preferences except for not

internalizing her value from the outside option. We show that strategic communication

is characterized by pandering : the agent biases his recommendation toward better-looking

projects, even when both parties would be better off with some other project. We identify

when projects are better-looking and find that it need not coincide with higher expected

values. We develop comparative statics and study how organizations can try to ameliorate

the pandering distortion.
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1 Introduction

A central problem in organizations and markets is that of a decision-maker (DM) who must rely

upon advice from a better-informed agent. Starting with Crawford and Sobel (1982), a large lit-

erature studies the credibility of “cheap talk” when there are conflicts of interest between the two

parties. This paper addresses a novel issue: how do differences in observable or verifiable charac-

teristics of the available alternatives affect cheap talk about non-verifiable private information?

In a nutshell, our main insight is that the agent’s desire to persuade the DM ineluctably leads

to recommendations that systematically pander toward alternatives that look better. We develop

the economics of pandering to persuade in strategic communication and study implications for

organizational and market responses.

In any number of applications, a DM knows some characteristics of the options she must

choose from. For instance, a Dean deciding whether to a hire a new faculty in the economics

department can consult candidates’ curriculum vitae; a board deciding which capital investment

project to fund has some prior experience about which kinds of projects are more or less likely

to succeed; and a firm that could hire a consultant to revamp its management processes knows

which procedures are being implemented at other firms. This information is not complete,

though, since the agent—the economics department, CEO, or consultant respectively—typically

has additional “soft” or unverifiable private information. For example, an economics department

can evaluate the quality of a candidate’s research well beyond the content of a vita. Crucially,

the available “hard” information can affect the DM’s interpretation of the agent’s claims about

his soft information. The reason is that any hard information typically creates an asymmetry

among the alternative options from the DM’s point of view, causing some to look ex-ante more

attractive than others. Our interest is in understanding how such asymmetry influences the

agent’s strategic communication of his soft information.

The incentive issues arise in our model because of the interest conflict on an outside

option, or status quo, the DM has available in addition to the set of alternatives that the agent

is better-informed about. For instance, the outside option for a Dean could be to hire no new

faculty member or hire a faculty in a different department, or for a corporate board to not fund

any capital investment project. Since the alternatives require resource costs that the agent does

not fully internalize, the outside option is typically more desirable to the DM than the agent. In

our baseline model, detailed in Section 2, this is the only conflict of interest. More precisely, any

alternative project gives the DM and the agent a common benefit. They realize the same value

from each project, which is randomly drawn and privately observed by the agent. On the other

hand, the agent derives no benefit from the outside option, whereas the DM receives some fixed
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and commonly known benefit from choosing it.

Consequently, the strategic problem facing the agent is to persuade the DM that some

alternative is better than the outside option in a way that maximizes their common benefit

amongst the set of alternatives. This captures an essential feature of many applications, including

each of the examples mentioned above.

In this setting, we show that cheap-talk communication necessarily takes the form of com-

parisons.1 In equilibrium, the agent’s message is interpreted as a recommendation about which

alternative provides the highest benefit. Our central insight is that any observable differences

between alternatives will often cause the agent to systematically distort his true preference rank-

ing over the alternatives: the agent will sometimes recommend an ex-ante attractive alternative

that is in fact worse than some other (which was ex-ante less attractive), even though both the

agent and the DM would be better off with the latter! In this sense, the agent panders toward

alternatives with favorable observable information. Although aware of this pandering distor-

tion, in any influential equilibrium, the DM always accepts the agent’s recommendation of the

most attractive options, while she is more circumspect when the agent recommends an ex-ante

unattractive option, in the sense that she may or may not accept such a recommendation.

Despite the common interest the two parties have over alternative projects, the distortion

in communication is unavoidable because the agent is also trying to persuade the DM to adopt

some alternative over the outside option. If the agent were to always recommend the best al-

ternative, then a recommendation for ex-ante attractive (or “better-looking”) alternatives would

generate a more favorable assessment from the DM about the benefit of foregoing the outside

option. Consequently, for some outside option values, the DM would accept the agent’s recom-

mendation of better-looking alternatives but stick with the outside option when a less-attractive

(or “weaker-looking”) alternative is recommended. This generates the incentive for the agent to

distort recommendations toward better-looking alternatives. The incentive to distort becomes

more severe when the value of the outside option to the DM is higher.

Building on this basic observation, our analysis proceeds in two ways. First we develop and

refine the pandering-to-persuade intuition in a multidimensional cheap-talk model, showing how

influential communication can nevertheless take place. The idea is that if the agent recommends

an ex-ante unattractive alternative only when it is sufficiently better—not just better—than all

others, it becomes more acceptable to the DM when recommended. After presenting an illus-

trative example in Section 3, we turn in Section 4 to a general analysis of when one alternative

1Comparative cheap talk has been studied by Chakraborty and Harbaugh (2007, 2009). As discussed in more
detail subsequently, our focus is distinct and complementary to these papers.
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“looks better” than another. Formally, this amounts to identifying an appropriate stochastic or-

dering condition for the distributions from which the value of each alternative is drawn. We show

that when the stochastic ordering condition holds, pandering toward better-looking alternatives

arises in any influential equilibrium of the cheap-talk game once the outside option is sufficiently

high for the DM, i.e. when the agent truly needs to persuade the DM.

The stochastic ordering of alternatives can be intuitive in some cases, such as when it

coincides with the first-order stochastic dominance (FOSD) ranking (and hence expected values).

But the opposite can also be true: an alternative that is dominated according to FOSD (and even

in likelihood ratio) can nevertheless be the one that the agent panders toward. While perhaps

surprising, this highlights the economics of communication in the present context: what matters

is not the evaluation of an alternative in isolation, but rather in comparison to others. Standard

stochastic relations pertain to the former, whereas it is the latter that is relevant here.

Next, we explore several implications of the characterization of pandering. Of note is

that weaker-looking alternatives become more credible or acceptable to the DM when they are

pitched against a stronger slate of alternatives (formally, when the distribution of any alternative

improves in the sense of likelihood-ratio dominance). A related point is that weaker-looking

alternatives are often better off in a pandering equilibrium (where they are discriminated against)

when compared to a truthful ranking. Returning to the hiring application, these two points

suggest why candidate A from a lower-ranked department can actually benefit from competing

with candidate B from a higher-ranked department than with someone from a similarly-ranked

department; moreover, that A can be better off when the hiring committee is known to pander

toward B rather than just giving a truthful ranking between A and B.

Section 5 turns to studying responses that the DM can take to mitigate the inefficiencies

from pandering. Since the communication distortion worsens as the outside option becomes more

valuable to the DM, a stronger outside option can hurt the DM. This implies that the DM may

benefit from burning ships, i.e. reducing the value of the outside option, even at some cost. We

also show how a “commitment to buy” or simple delegation to the agent (Aghion and Tirole,

1997; Dessein, 2002) is always beneficial to the DM relative to any influential communication if

she can can commit to not override the agent’s choice ex post, and, moreover, she can make the

delegation decision after observing some characteristics of the alternatives.

An implication is that observable hard information is valuable in decision-making to the

extent that it informs delegation decisions or “no-strings-attached” budget allocations, but no

more than that. If, based on the observable information, the DM deems the agent trustworthy

enough in the sense that influential communication is possible, then she should instead just give
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him full discretion about which alternative to choose. In many circumstances, such a commitment

may not be feasible or credible, given that the DM would often have an incentive to override

the agent’s choice ex post. In these cases, observable information can be harmful because of

the pandering distortions it creates in the communication of unverifiable information. Ex-ante,

the DM may even prefer ignorance—committing never to observe any information about the

alternatives—because this mitigates pandering. We also discuss properties of more sophisticated

mechanisms when richer commitment possibilities are available, such as stochastic mechanisms,

which can be implemented via delegation to a third party.

Before concluding (Section 7), we address in Section 6 some extensions that are potentially

important for different applications of the model. Consider the resource allocation problem where

a DM decides which projects to provide funding for. The DM may be privately informed about

the opportunity cost of resources; she may not only decide which project to fund, but also how

much resources to make available; or she may be able to fund more than one project if she wishes

to. We show that our baseline model can easily accommodate such extensions, and our main

insights regarding pandering and delegation are robust. Another application of the model is to a

seller (e.g. consultant) providing advice to a potential buyer (e.g. a firm). It is reasonable that

the seller may have a larger profit margin on certain projects, which creates a conflict of interest

even between the alternative projects. Again, such conflicts can be introduced in our model and

the basic logic of pandering still holds. Unconstrained delegation is only optimal, however, if the

conflicts over alternatives are small relative to the observable asymmetries between alternatives.

This paper connects to multiple strands of literature. The logic of pandering is related

to Brandenburger and Polak (1996).2 They elegantly show how a manager who cares about his

firm’s short-run stock price will distort his investment decision towards an investment that the

market believes is ex-ante more likely to succeed. However, their model is not one of strategic

communication, but rather has an agent making decisions himself when concerned about external

perceptions. As a result, we study a different set of issues, such as organizational and market

responses, and we shed light on a broader set of applications, such as buyer-seller relationships

and resource allocation processes in firms. Our analysis and findings are also more refined because

of a richer framework.3 Inter alia, we show that an agent may pander towards an alternative

with lower ex-ante expected value, which does not arise in Brandenburger and Polak (1996).

2See Heidhues and Lagerlof (2003) and Loertscher (2010) for multi-agent versions of a similar theme in the
context of electoral competition.

3Their model has two states, two noisy signals, and two possible decisions. We have continuous and multi-
dimensional state space, perfectly informative signals, an arbitrary finite number of decisions. Moreover, the
preferences for the agent in our model are more complex because he also cares about the benefit of the chosen
alternative and not just about whether the outside option is foregone.
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Crawford and Sobel (1982)’s canonical model of cheap talk has one-dimensional private

information and a different preference structure than ours. Within the small but growing lit-

erature on multidimensional cheap talk (e.g., Battaglini, 2002; Ambrus and Takahashi, 2008;

Chakraborty and Harbaugh, 2009), the most relevant comparison is with Chakraborty and Har-

baugh (2007). They show how truthful comparisons can be credible across dimensions even when

there is a large conflict of interest within each dimension, so long as there are common interests

across dimensions. A key assumption for their result is enough symmetry across dimensions in

terms of preferences and the prior. Our analysis is complementary because we study the prop-

erties of informative communication when there is enough asymmetry across dimensions; this

leads to a breakdown of truthful comparisons and instead generates pandering.4

Since we compare the outcomes of our cheap-talk model with simple delegation and other

mechanisms without transfers, part of this paper is also related to the constrained delegation

literature initiated by Holmstrom (1984).5 Our setting is closest to Armstrong and Vickers

(2010). Pandering is not an issue in their paper, however, because they assume that the values

of projects are drawn from identical distributions.6

Finally, we note that although the notion of pandering may be reminiscent of various

kinds of “career concerns” models,7 the driving forces there are very different from the current

paper. In those models, the distortions occur because the agent is attempting to signal either

his ability or preferences because of, implicity or explicitly, future considerations. In contrast,

our model has no such uncertainty and no dynamic considerations; rather, the distortions occur

entirely because the agent wishes to persuade the DM about her current decision. The logic here

is also distinct from that of Prendergast (1993), where distortions occur because a worker tries to

guess the private information of a supervisor when subjective performance evaluations are used.

4Levy and Razin (2007) identify conditions under which communication can entirely break down in a model of
multidimensional cheap talk when the conflict of interest is sufficiently large. While this also occurs in our model
for a large enough outside option, their result crucially relies on the state being correlated across dimensions,
whereas we assume independence. More importantly, our focus is on the properties of influential communication
when the outside option is not too large.

5Some recent contributions include Alonso and Matouschek (2008), Goltsman, Hörner, Pavlov and Squintani
(2009), Kovác and Mylovanov (2009), and Koessler and Martimort (2009).

6Bar and Gordon (2010) allow projects to be drawn from different distributions, but each project is owned by
a distinct agent and the principal can use transfers.

7See, for example, Morris (2001), Canes-Wrone et al. (2001), Majumdar and Mukand (2004), Maskin and
Tirole (2004), Prat (2005), and Ottaviani and Sorensen (2006).
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2 The Model

2.1 Setup

There are two players: an agent (“he”) and a decision-maker (DM, “she”). The DM must choose

a single option, i, from the set {0, 1, . . . , n}, where n ≥ 2.8 It is convenient to interpret option

0 as a status quo or outside option for the DM, and N := {1, . . . , n} as a set of alternative

projects. Both players share a common payoff if one of the alternative projects is chosen, but

this value is private information of the agent. Specifically, each project i ∈ N yields both players

a payoff of bi that is drawn from a prior distribution Fi and privately observed by the agent.

(Throughout, payoffs refer to von Neumann-Morgenstern utilities, and the players are expected

utility maximizers.) On the other hand, it is common knowledge that if the outside option is

chosen, the agent’s payoff is zero (a normalization), while the DM’s payoff is b0 > 0.

We maintain the following assumptions on (F1, . . . , Fn) and b0:

(A1) For each i ∈ N , 0 ≤ bi < b0 < bi ≤ ∞, where bi := inf Support[bi] and bi := supSupport[bi].

(A2) For each i ∈ N , Fi is absolutely continuous on [bi, bi], with a density fi.

(A3) For each pair i, j ∈ N with i 6= j, ∃α ∈ R++ such that E[bi|bi > αbj] > b0.

(A4) For any i, j ∈ N , Fi and Fj are independent distributions, but they need not be identical.

After privately observing b := (b1, . . . , bn) ∈ B :=
n∏
i=1

[bi, bi], which we also refer to as

the agent’s type, the agent sends a cheap-talk or payoff-irrelevant message to the DM, m ∈M ,

where M is a large space (e.g. M = Rn
+). The DM then chooses a project i ∈ N ∪ {0}. Aside

from the realization of b, all aspects of the game are common knowledge.

2.2 Discussion of the assumptions

Since both the agent and the DM derive the same payoff, bi, for any i ∈ N , their interests in

choosing between the n projects are completely aligned. Assumption (A1) implies that each

project has a positive chance of being better for the DM than the outside option; this is without

loss of generality because otherwise a project would not be viable. More importantly, (A1) also

8Nothing is lost by excluding n = 1, as the analysis is trivial given the rest of the model.
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implies that the agent strictly prefers any project to the outside option, whereas with positive

probability, each project is worse than the outside option for the DM. Thus, the conflict of

interest is entirely about the outside option: the agent does not internalize the opportunity cost

to the DM of implementing a project. What is essential here is that the DM values the outside

option more than the agent relative to the alternative projects; allowing for bi < 0 complicates

some details of the analysis without adding commensurate insight.9

Assumption (A2) is for technical convenience. Assumption (A3) means that the DM’s

posterior assessment of any project i ∈ N becomes more favorable than the outside option if

project i is known to be sufficiently better than any other project j ∈ N \ {i}. Note that given

(A1), this is automatically satisfied if bi > 0 for all i. The precise role of (A3) will be clarified

later, but intuitively, it ensures that if the agent only recommends a project when it is sufficiently

better than some other, the DM will wish to implement it.

The independence portion of Assumption (A4) is not essential for the main results about

pandering, but makes some of the analysis and results more transparent. (A4) also allows for

non-identical project distributions. Since this is central to the pandering results, it is worth

discussing at some length. A useful way to interpret non-identical distributions is that each

project i has some attributes that are publicly observed and some attributes that are privately

observed by the agent. For example, if the projects represent academic job candidates, the two

components may respectively be a candidate’s vita and the hiring department’s evaluation of

her future trajectory. Both aspects can be viewed as initially stochastic, with the distribution

Fi capturing the residual uncertainty about i’s value after the observable components have been

realized (and observed by both DM and agent). Typically, projects will have different realizations

of observable information, so that even if projects i and j are initially symmetric, there will be an

asymmetry in the residual uncertainty about them, so that Fi 6= Fj. One can therefore view the

distribution of bi’s as parameterized by some observable information vi, i.e. Fi(bi) ≡ F (bi; vi).

The following are two parameterized families of distributions that serve as useful examples:

• Scale-invariant uniform distributions: bi is uniformly distributed on [vi, vi + u] for

some u > 0 and v1 ≥ v2 ≥ · · · ≥ vn > 0.

• Exponential distributions: bi is exponentially distributed on [0,∞) with mean vi, where

v1 ≥ v2 ≥ · · · ≥ vn > 0.

9If bi < 0, then the agent will prefer the outside option over project i. For our purposes, the situation can
equivalently be modeled by generating a new distribution for project i, say F̃i, with support [0, bi] and distribution
as follows: F̃i(x) = 0 for all x < 0 and F̃i(x) = Fi(x) for all x ≥ 0. Since it is credible for the agent to reveal that
bi < 0, the strategic communication problem concerns F̃i. The resulting atom at zero in F̃i can be accommodated
in the analysis.
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Rather than thinking of some attributes as directly observable to the DM, it may also

be plausible that all aspects are privately observed by the agent, but there are two kinds of

information: verifiable or “hard” information, and unverifiable or “soft” information. Under a

monotone likelihood ratio condition that is satisfied by the above two families but is considerably

more general, analogues of standard “unraveling” arguments (Milgrom, 1981; Seidmann and

Winter, 1997) support the agent fully revealing the verifiable components. It is then effectively

as though the DM directly learns the realizations of these components, and again Fi captures

the residual soft information about project i. Appendix F formalizes this point.

2.3 Equilibrium simplification

We study a class of perfect Bayesian equilibria. The agent is assumed to use a pure strategy in

equilibrium, represented by a function µ : B → M .10 A possibly-mixed strategy for the DM is

α : M → ∆(N ∪ {0}), where ∆(·) is the set of probability distributions. We restrict attention

to equilibria where the DM does not randomize on the equilibrium path between two or more

alternative projects. In other words, in equilibrium, any randomization by the DM must be

between the outside option and one project, although which project it is could depend upon

the message received. Given that the only conflict between the two players is about the outside

option, we view this as a natural class of equilibria to study. Indeed, Appendix E proves that this

is without loss of generality when n = 2, except for knife-edged prior distributions. Hereafter,

“equilibrium” refers to a perfect Bayesian equilibrium satisfying these properties.11

Since the game is one of cheap talk, the objects of interest are equilibrium mappings

from agent types to the DM’s (mixtures over) decisions, i.e. α(µ(·)), rather than what messages

are used per se. Say that two equilibria are outcome-equivalent if they have the same such

mapping for almost all types.

Lemma 1. Any equilibrium is outcome-equivalent to one where no more than n messages are

used in equilibrium.

The proof of this result and all others not in the text are in Appendices A and B. The

intuition is straightforward: there are n alternative projects and any message will lead to a

distribution of decisions over the outside option and at most one project. Whenever two or

10We conjecture that this is without loss of generality.
11Some readers may prefer to think of the model as a veto game: the agent chooses a project from the set N ,

and the DM can only choose whether to accept the proposal or veto it in favor of the outside option. This would
be a natural model for many applications. While the game would no longer be one of cheap talk, our results also
hold in this setting with minor qualifiers.
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more messages result in a particular project being implemented with positive probability, the

agent will only use the message(s) that maximize(s) the acceptance probability of that project.

Finally, equilibria in which two or more messages yield the same acceptance probability are

outcome-equivalent to an equilibrium in which only one of these messages is ever used.

In light of Lemma 1, we focus hereafter on equilibria where no more than n messages

are used, which, without loss of generality, can be taken to be the set N . In other words,

the cheap-talk game is effectively reduced to one in which the agent recommends or proposes

a project i ∈ N . In turn, the DM’s equilibrium strategy can now be viewed as a vector of

acceptance probabilities, q := (q1, . . . , qn) ∈ [0, 1]n, where qi is the probability with which

the DM implements project i if the agent recommends that project. Thus, if an agent proposes

project i, a DM who adopts strategy q accepts the recommendation with probability qi but

rejects it in favor of the outside option with probability 1− qi.

We are now in a position to characterize equilibria. The agent’s problem is to choose a

strategy µ : B → ∆(N) that maps each profile of project values b to probabilities (µ1(b), ..., µn(b))

of recommending alternative projects in N . Given any q, a strategy µ is optimal for the agent

if and only if

µi(b) = 1 if qibi > max
j∈N\{i}

qjbj. (1)

Accordingly, in characterizing an equilibrium, we can just focus on the DM’s acceptance vector,

q, with the understanding that the agent best responds according to (1). For any equilibrium

q, the optimality of the DM’s strategy combined with (1) implies a pair of conditions for each

project i:

qi > 0 =⇒ E
[
bi | qibi = max

j∈N
qjbj

]
≥ max

{
b0, max

k∈N\{i}
E
[
bk | qibi = max

j∈N
qjbj

]}
, (2)

qi = 1 ⇐= E
[
bi | qibi = max

j∈N
qjbj

]
> max

{
b0, max

k∈N\{i}
E
[
bk | qibi = max

j∈N
qjbj

]}
. (3)

Condition (2) says that the DM accepts project i (when it is recommended) only if she

finds it weakly better than the outside option as well as the other (unrecommended) projects,

given her posterior which takes the agent’s strategy (1) into consideration. Similarly, (3) says

that if she finds the recommended project to be strictly better than all other options, she must

accept that project for sure. These conditions are clearly necessary in any equilibrium;12 the

following result shows that they are also sufficient.

12Strictly speaking, for those projects that are recommended with positive probability on the equilibrium path,
i.e. when Pr{b : qibi = maxj∈N qjbj} > 0.
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Lemma 2. If an equilibrium has acceptance vector q ∈ [0, 1]n, then (2) and (3) are satisfied for

all projects i such that Pr{b : qibi = maxj∈N qjbj} > 0. Conversely, for any q ∈ [0, 1]n satisfying

(2) and (3) for all i such that Pr{b : qibi = maxj∈N qjbj} > 0, there is an equilibrium where the

DM plays q and the agent’s strategy satisfies (1).

For expositional convenience, we will also focus on equilibria with the property that if a

project i has ex-ante probability zero of being implemented on the equilibrium path, then the

DM’s acceptance vector q has qi = 0. This is without loss of generality because there is always an

outcome-equivalent equilibrium with this property: if qi > 0 but the agent does not recommend

i with positive probability, it must be that qibi ≤ qjbj for some j 6= i, so setting qi = 0 does not

change the agent’s incentives and remains optimal for the DM with the same beliefs.

2.4 Terminology

We will refer to an equilibrium with q = 0 := (0, . . . , 0) as a zero equilibrium. If qi = 1,

we say that the DM rubber-stamps project i, since she chooses it with probability one when

the agent recommends it. If the principal rubber-stamps all projects, it is optimal for the agent

to be truthful in the sense that he always recommends the best project. Indeed, in any non-

zero equilibrium, it is optimal for the agent to be truthful if and only if the DM rubber-stamps

all projects. Accordingly, we will say that a truthful equilibrium is one where q = 1 :=

(1, . . . , 1).13 An equilibrium is influential if |{i ∈ N : qi > 0}| ≥ 2, i.e. there are at least two

projects that are implemented on the equilibrium path. We say that the agent panders toward

i over j if qi > qj > 0. The reason is that under this condition, the agent will recommend j if

it is sufficiently better than the other projects, yet he biases his recommendation toward i over

j because he will not recommend j unless bj >
qi
qj
bi. Note that we do not consider qi > 0 = qj

as pandering toward i over j because the agent can never get j implemented. An equilibrium is

a pandering equilibrium if there are some i and j such that the agent panders toward i over

j in the equilibrium. Finally, say that an equilibrium q is larger than another equilibrium q′ if

q > q′,14 and q is better than q′ if q Pareto dominates q′ at the interim stage where the agent

has learned his type but the DM has not.

13There can be a zero equilibrium where the agent always recommends the best project; this exists if and only
if for all i ∈ N , E[bi|bi = maxj∈N bj ] ≤ b0. We choose not to call this a truthful equilibrium.

14Throughout, we use standard vector notation: q > q′ if qi ≥ q′i for all i with strict inequality for some i;
q� q′ if qi > q′i for all i.
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3 Illustrative Example

As a prelude to the general results, we begin with a simple numerical example to illustrate the

key idea of pandering to persuade. Suppose there are two projects whose values b1 and b2 are

distributed uniformly on [1
3
, 4
3
] and [0, 1] respectively. In any usual sense, the DM’s prior favors

project one, or project one “looks better” than project two. A direct computation shows that

E[b1|b1 > b2] = 0.91 > 0.78 = E[b2|b2 > b1].
15 (4)

Naturally, the nature of equilibrium and the effectiveness of communication will depend on b0,

the value of outside option to the DM. If b0 ≤ 0.78, then (4) implies that the DM will rubber-

stamp the agent’s recommendation as long as he is truthful. In particular, the DM will have no

incentive to pick either the outside option or a project that has not been recommended.16 When

the DM rubber-stamps both projects, the agent’s optimal strategy is to recommend truthfully.

Hence, a truthful equilibrium exists, as shown in Panel A of Figure 1.

If b0 > 0.78, however, the truthful equilibrium cannot be supported. To see why, suppose

the agent recommends truthfully. When he recommends project two, the DM will not rubber-

stamp it as (4) implies that she would rather choose the outside option. Hence, a truthful

equilibrium does not exist. In fact, one can show that if b0 ≥ 0.86, the only equilibrium is the

zero equilibrium where the DM always opts for the outside option.

What happens when b0 ∈ (0.78, 0.86)? There is an influential equilibrium q∗ = (1, q∗2) for

some q∗2 ∈ (0, 1). In this equilibrium, the DM rubber-stamps project one whenever it is proposed

but rejects project two with positive probability when it is proposed. This causes the agent to

pander toward the better-looking project : he biases his recommendation toward project one as

he proposes project two if and only if b2 >
b1
q∗2
> b1. To understand the logic of this pandering

equilibrium, recall that the DM strictly prefers to reject project two if the agent were to employ

the truthful strategy. Suppose the DM rejects the recommendation of project two with some

small probability. Intuitively, the DM gets “tougher” on project two but not to a degree that she

will always reject it. Faced with this strategy, the agent finds it in his best interest to recommend

project two more selectively: he recommends it only when it is so much better than project one

that it is worth the risk of rejection. (This can be seen in Panels B-D of Figure 1: the agent

recommends project two only if (b1, b2) lies in the dark shaded region, well above the 45 degree

line.) Naturally, when the agent is selective in this manner, the DM’s posterior belief about

15All numbers in the example are rounded to two decimal places.
16The latter observation also uses the fact that E[b1|b1 < b2] = 0.56 and E[b2|b2 < b1] = 0.42.
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Figure 1 – Example with b1 ∼ U [1
3
, 4
3
] and b2 ∼ U [0, 1].

project two when it is recommended improves compared to when the agent is truthful. In fact,

the posterior can improve to such a degree that project two becomes acceptable. It can be shown

that one can always find q∗2 ∈ (0, 1] such that

b0 = E[b2|q∗2b2 > b1], (5)

which makes the DM indifferent between accepting and rejecting the recommendation of project

two, which then rationalizes the DM’s randomization when project two is proposed.17

17While the equilibrium is in mixed strategies, the underlying intuition and logic of pandering equilibria does not
hinge on mixed strategies. The mixed strategy equilibrium can be purified in the sense of Harsanyi (1973). Suppose
the agent has some uncertainty about the value of the outside option, b0, while the value is privately known to
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Notice that even if b0 ≥ 0.86, there will be a solution q∗2 to (5). So why does the pandering

equilibrium only exist when b0 ∈ (0.78, 0.86)? The reason is that the DM must also find project

one acceptable when it is recommended, since she is rubber-stamping it. When the agent panders

more toward project one, the DM’s posterior about project one when recommended worsens, as

the recommendation is not as informative. The pandering equilibrium requires

E[b1|b1 > q∗2b2] ≥ b0. (6)

It can be verified that when b0 ≥ 0.86, the q∗2 that solves (5) does not satisfy (6). This is shown

in Panel D of Figure 1 for b = 0.86.

A related observation is that the degree of pandering changes as b0 rises within (0.78, 0.86).

As b0 gets larger, the agent must be more selective against recommending project two for the DM

to find it acceptable, which in turn requires the DM to reject project two with higher probability

when it is recommended. Formally, as b0 rises, q∗2 must fall to keep (5) satisfied. This is also seen

in Figure 1, where Panels B and C show how the acceptance rate of the worse looking project

falls as b0 rises.

The pandering equilibrium is not the only equilibrium when b0 ∈ (0.78, 0.86). If b0 ≤ 5
6

=

E[b1], there is a non-influential equilibrium q = (1, 0). Here the agent always proposes project

one and the DM rubber-stamps it, despite the fact that both players would be better off by

implementing project two whenever b2 > b1. If b0 >
5
6
, there is a zero equilibrium, which can be

supported by the agent always recommending project one.18 The agent is clearly strictly better

off with a larger acceptance vector and hence prefers the influential pandering equilibrium to

either of these non-influential equilibria. More interestingly, the DM also prefers the pandering

equilibrium. To see this, consider any (b1, b2) such that the agent would recommend b2 in the

pandering equilibrium; since b2 ≥ b1/q
∗
2 > b1 in such a case, the DM will be strictly better off

from choosing project two than project one, which shows that she strictly prefers the pandering

equilibrium to the (1, 0) equilibrium. In addition, conditions (5) and (6) imply that the DM

prefers the pandering equilibrium to the zero equilibrium (strictly, unless both conditions hold

with equality).

We end the example’s analysis by emphasizing the importance of the projects being non-

the DM. For example, let b0 be uniformly distributed on [v0 − ε, v0] , with ε > 0 small. Then for v0 ∈ (0.78, 0.86)
a pandering equilibrium q̃ = (1, q̃2) exists, where q̃2 is the solution to E[b2|q̃2b2 > b1] = v0 − (1 − q̃2)ε. In this
equilibrium, the DM plays a pure strategy where she accepts project one whenever it is proposed but she accepts
project two when it is proposed if and only if b0 ≤ E[b2|q̃2b2 > b1], which from the agent’s perspective occurs
with probability q̃2. As ε→ 0, q̃2 → q∗2 . See also Section 6.1.

18Both these non-influential equilibria can be supported with passive beliefs for the DM in the off-path event
that project two is recommended.
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identically distributed for pandering. If, instead, F1 = F2, then there would be some cutoff value

of the outside option such that for lower outside options there would be a truthful equilibrium

where the DM rubber-stamps whichever project is recommended, while for higher outside options

there would only be a zero equilibrium.

4 General Analysis

This section generalizes the ideas illustrated above, focussing initially on the two projects case

since it permits the clearest development of our main themes. At the end of this section, we

discuss how the results can be extended to more than two projects.

The fundamental logic of pandering to persuade is very general because so long as the

two projects are not identically distributed, the DM’s beliefs when the agent is truthful will

typically favor one project, say project one, over the other. Our goal is to identify when there

is a systematic pattern of pandering, namely to understand what attributes of the projects—in

terms of their value distributions—cause one project to be pandered toward regardless of the

selection of equilibrium and the value of the outside option. Moreover, we would like systematic

comparative statics, for instance how the outside option affects the degree of pandering. Such

analysis requires an appropriate stochastic ordering of the project value distributions.

Definition 1. For n = 2, projects are strongly ordered if

E[b1|b1 > b2] > E[b2|b2 > b1], (R1)

and, for any i, j ∈ {1, 2} with i 6= j,

E[bi|bi > αbj] is nondecreasing in α ∈ R+ (R2)

so long as the expectation is well-defined.

The first part of the ordering condition is mild since when F1 6= F2, generally E[b1|b1 >
b2] 6= E[b2|b2 > b1]; in this sense, (R1) can be viewed as a labeling convention. The important

part of the definition is (R2). Consider E[b1|b1 > αb2]: there are two effects on this expectation

when α increases. On the one hand, for any given realization of b2, the conditional expectation of

b1 increases; call this a conditioning effect. However, there is a countering selection effect: as α

rises, lower realizations of b2 become increasingly likely. Perhaps counter-intuitively, the selection

effect can dominate the conditioning effect, so that in general, E[b1|b1 > αb2] can decrease when
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α increases.19 (R2) requires the conditioning effect to at least offset the selection effect. This

is satisfied, for example, by the two parameterized families of distributions introduced earlier

(scale-invariant uniform and exponential distribution families).

Theorem 1. Assume n = 2 and the projects are strongly ordered.

1. If q is an equilibrium with q1 > 0, then q1 ≥ q2; if in addition q2 < 1, then q1 > q2.

2. There is a largest equilibrium, q∗, in the sense that for any other equilibrium q 6= q∗,

q∗ > q. Moreover, q∗ is the best equilibrium. There exist b∗0 := E[b2|b2 ≥ b1] and some

b∗∗0 ≥ b∗0 such that:20

(a) If b0 ≤ b∗0, then the best equilibrium is the truthful equilibrium, q∗ = (1, 1).

(b) If b0 ∈ (b∗0, b
∗∗
0 ) , the best equilibrium is a pandering equilibrium, q∗ = (1, q∗2) for

some q∗2 ∈ (0, 1). Moreover, in this region of b0, an increase in b0 strictly increases

pandering in the best equilibrium (i.e. q∗2 strictly decreases) and strictly decreases the

interim expected payoffs of both players in the best equilibrium.21

(c) If b0 > b∗∗0 , only the zero equilibrium exists, q∗ = (0, 0).

Part 1 of the theorem implies that in any equilibrium where project one is proposed

on path, either the equilibrium is truthful or there is pandering toward project one. Part 2

characterizes the largest equilibrium, which is appealing to focus on for a number of reasons, not

the least of which is that it is the best equilibrium. The possible values of the outside option

can be partitioned into three distinct regions: when b0 is low, the best equilibrium is truthful;

when b0 is intermediate, it is a pandering equilibrium; and when b0 is large enough, only the zero

equilibrium exists. Part 2(a) of the theorem implies that a truthful equilibrium can exist even if

E[bi] < b0 for i = 1, 2. This is intuitive, since what matters for the DM’s decision when the agent

is truthful is her posterior conditional on one project being better than the other, which can be

substantially higher than the unconditional expectation. Note that b∗0 ≥ max{E[b1],E[b2]}, hence

a sufficient condition for a truthful equilibrium to exist is that one of the projects has higher

ex-ante expectation than the outside option.

19This is easily seen in a a discrete example: suppose b1 and b2 are both uniformly distributed on {1, 3} and
{0, 2} respectively. Then E[b1|b1 > b2] = 1

3 (1) + 2
3 (3) = 7

3 , while E[b1|b1 > 2b2] = 1
2 (1) + 1

2 (3) = 2.
20Typically, b∗∗ > b∗. A sufficient condition that guarantees the strict inequality is that E[b2|αb2 > b1] is

strictly decreasing in α at α = 1. This is satisfied, for example, by both our leading parametric distribution
families: scale-invariant uniform and exponential.

21For the agent, this means that his interim expected payoff is weakly smaller for all b and strictly so for some
b.
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Part 2(b) of the theorem contains two comparative statics as the outside option increases

in the region where the best equilibrium has pandering. First, as one would expect, there is

strictly more pandering, because the agent must distort more for the DM to be willing to accept

project two when recommended. Surprisingly, the DM’s welfare strictly decreases with a higher

outside option. To see the logic, note that in a pandering equilibrium, the DM is indifferent

between accepting project two when recommended and choosing the outside option. This implies

that holding fixed the agent’s recommendation strategy, the DM’s utility is the same whether

she plays q∗ = (1, q∗2) or just rubber-stamps both projects, q = (1, 1). Since, in the relevant

region, a higher b0 induces more pandering, a DM who plays q = (1, 1) would be choosing the

better project less often when b0 is higher, which implies the welfare result.

When b0 < b∗0, the value of the outside option is irrelevant for welfare since the best

equilibrium is truthful. Once b0 > b∗∗0 , the DM’s welfare is strictly increasing in b0 since the

outside option is always chosen. Altogether then, the outside option has a non-monotonic effect

on the DM’s expected payoff. Naturally, the agent’s welfare is weakly decreasing in b0. It is

constant and identical to the DM’s when b0 ≤ b∗0, then strictly declines in b0 in the pandering

interval (b∗0, b
∗∗
0 ), and finally drops to zero once b0 > b∗∗0 .

The characterization of Theorem 1 provides another interesting insight: when pandering

arises, the agent does not benefit from a commitment to truthfully recommend the best alterna-

tive. To see this, observe that if the agent were constrained to rank the projects truthfully, the

DM would play q = (1, 0) when b0 ∈ (b∗0, b
∗∗
0 ). The agent interim—hence, ex-ante—prefers the

pandering equilibrium vector (1, q∗2), since he can still get project one whenever he wants but

also chooses to propose project two if b2q
∗
2 > b1. Hence, unlike in the leading cases of Crawford

and Sobel (1982), cheap-talk is not self-defeating in the current model: for intermediate conflicts

of interest (captured by b0), the agent prefers the equilibrium pandering to ex-ante “tying his

hands” to a truthful ranking.22 Indeed, for any b0 ∈ (b∗0, b
∗∗
0 ), if the DM were to think naively

that the agent is telling the truth (e.g. because she is not aware of the conflict of interest), the

agent would want to change the DM’s beliefs and behavior by convincing the DM that he is in

fact pandering (e.g. by making her aware of the conflict of interest).23

A related insight is that the alternatives themselves can also benefit from pandering. This

is again because when b0 ∈ (b∗0, b
∗∗
0 ), project two would never be implemented if the agent ranks

22Optimal commitment by the agent is not our focus in this paper; see Kamenica and Gentzkow (2009) for
some work in this direction.

23For this reason, introducing the possibility that the DM may be naive in the above sense is not welfare
improving for the agent and the strategic DM, in contrast to Kartik, Ottaviani and Squintani (2007). In particular,
when b0 ∈ (b∗0, b

∗∗
0 ), a moderate probability of DM naivety would strictly lower the interim expected payoff for

the agent and the strategic DM because it leads to more pandering in equilibrium.
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projects truthfully while it is implemented with positive probability in the pandering equilibrium.

The idea can be illustrated via a faculty hiring application: without pandering, a candidate from

a lesser-ranked school would be recommended whenever a committee finds him to be the best,

but such a recommendation may never be accepted by the Dean. On the other hand, with

pandering, the candidate is only proposed when he sufficiently dominates a candidate from a

better-ranked school; this happens less often, but the candidate benefits because he is at least

approved sometimes when recommended. Moreover, a candidate from a better-ranked school also

benefits from pandering because he is recommended more often (even when moderately worse

that the other candidate) and is approved when recommended.

The implications of Theorem 1 can be illustrated with explicit formulae for our two leading

parametric distribution families:

Example 1 (Scale-invariant uniform distributions). Assume that b2 is uniformly distributed on

[0, 1], while b1 is uniformly distributed on [v, 1 + v] with v > 0.24 Strong ordering is satisfied, so

Theorem 1 applies. As shown in Appendix D, b∗0 = 2+v
3

, q∗2 =
v

3b0 − 2
, and b∗∗0 is the (unique)

solution to b∗∗0 = E
[
b1

∣∣∣∣b1 > ( v

3b∗∗0 − 2

)
b2

]
, which is indeed larger than b∗0. Pandering is in-

creasing in b0, i.e. q∗2 is decreasing in b0. Moreover, b∗0 and q∗2 are increasing in v; in this sense,

project two becomes more acceptable when project one is stronger.

Example 2 (Exponential distributions). Assume that b1 and b2 are exponentially distributed

with means v1 and v2, where v1 > v2 > 0.25 Strong ordering is satisfied, so Theorem 1 applies.

Appendix D computes that b∗0 = v2 + v1v2
v1+v2

, q∗2 = v1
v2

(
2v2−b0
b0−v2

)
, and b∗∗0 = 3v1v2

v1+v2
> b∗0. Pandering

is increasing (q∗2 is decreasing) in b0. Again, b∗0 and q∗2 are increasing in v; in this sense, project

two becomes more acceptable when project one is stronger. Appendix D also provides a formula

for the DM’s expected payoff, which may be useful for applications.

What makes one project look better than the other? To better understand the direction

of pandering, it is instructive to consider the strong ordering condition in more detail. Intuition

suggests that the agent will pander toward a project that is ex-ante attractive. Within our leading

families of distributions (scale-invariant uniform distributions and exponential distributions), the

strong ordering condition agrees with all usual stochastic ordering notions, including likelihood-

ratio ordering. Specifically, if project one dominates project two in the sense of v1 > v2 in either

of these families, then b1 likelihood-ratio dominates b2, and hence if there is pandering, the agent

24Assumptions (A1) and (A3) require that b0 < 1.
25As shown in the Appendix D, Assumption (A3) requires that b0 < 2v2.
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panders toward the project that would be ranked higher in any usual sense. In particular, the

agent panders toward the project with higher ex-ante expected value.

In general, however, our ordering condition does not correspond to standard notions of

stochastic ordering. The reason for this divergence is important in understanding the mechanics

of strategic persuasion in our setting. When the agent recommends a project to the DM, he

is making a comparative statement about alternative projects by conveying that the project he

recommends is better than the other. Crucially, a project that looks best “in isolation” need

not be the one that looks best when “pitched comparatively,” because the posterior about the

recommended project can depend substantially on the project it is compared against.

To illustrate, suppose b1 is uniformly distributed on [1, 3], while b2 is uniformly distributed

on [2, 3]. Think of these as two job candidates from Ph.D. programs: candidate 2 is from a top-5

ranked department and candidate 1 is from a top-30 ranked department. Candidate 2 clearly

dominates candidate 1 when one views each candidate in isolation; for instance, E[b2] = 2.5 > 2 =

E[b1], and b2 in fact likelihood-ratio dominates b1. This does not mean, however, that candidate 2

looks better than candidate 1 when recommended by comparison. Pitching candidate 2 favorably

against candidate 1 is not a particularly strong endorsement of candidate 2, since he is expected

to be better than candidate 1. This recommendation conveys only that candidate 1 is likely to

be weak, as expected; specifically, the DM’s posterior belief puts more weight on b1 being in the

lower half interval, [1, 2], rather than b2 being in the upper tail of [2, 3]. On the other hand,

pitching candidate 1 favorably against candidate 2 is a huge endorsement of candidate 1, for it

suggests that candidate 1’s value is likely in the upper tail of [2, 3]. Indeed,

E[b1|b1 > b2] = 2.66 > E[b2|b2 > b1] = 2.55.

From the perspective of comparative pitching, the candidate who is weaker in isolation looks

better than the candidate who is stronger in isolation! It can be verified that candidate 1

dominates candidate 2 in our strong ordering, and any pandering is therefore toward candidate

1. We stress, however, that this does not mean that the agent will recommend candidate 1 more

often than candidate 2. Since he is weak in isolation, candidate 1 will often have realized values

significantly smaller than candidate 2; at the margin, however, the agent is biased toward the

former.

The next result further develops the economics of comparative pitching. We say that

distribution F likelihood-ratio dominates distribution F̃ if their respective densities f̃ and

f satisfy f(b′)
f(b)
≥ f̃(b′)

f̃(b)
for any b′ > b such that both ratios have either a non-zero numerator or

denominator. The likelihood-ratio domination is strict if the inequality holds strictly for a set
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of positive measure of (b′, b) satisfying b′ > b.

Theorem 2. Fix b0 and an environment F = (F1, F2) that satisfies strong ordering. Let F̃ =

(F̃1, F̃2) be an environment with a weaker slate of alternatives: F̃j = Fj for some j, and for

i 6= j, either (a) Fi strict likelihood-ratio dominates F̃i and F̃ satisfies strong ordering, or (b) F̃i

is a degenerate distribution at zero. Letting q∗ and q̃∗ denote the best equilibria in each of the

respective environments, we have q∗ ≥ q̃∗. Moreover, q∗ > q̃∗ if q∗ > 0 and q̃ < 1.

Theorem 2 considers two senses in which the slate of alternatives becomes stronger when

switching from environment F̃ to F: in case (a), the number of projects is held constant, but the

distribution of one project improves in the sense of strict likelihood-ratio dominance; in case (b),

the environment F̃ consists of only one project while the environment F is obtained by adding

a new project to F̃. In either case, the best equilibrium in the stronger environment is at least

as large as the original environment, and strictly larger if the original environment did not have

a truthful equilibrium and the stronger environment has a non-zero equilibrium. (These caveats

are necessary or else both environments would have the same best equilibrium, either truthful

or zero respectively.)

An important implication of Theorem 2 is that the best equilibrium in the stronger envi-

ronment can be strictly larger if the value distribution that improves is that of project one, even

though project one is already accepted with probability one when proposed. In this sense, project

two can become more acceptable to the DM when project one becomes stronger, even though

project two’s distribution is unchanged. This is entirely due to the property of comparative

rankings: an improvement in F1 improves the conditional expectation of project two when it

is proposed, holding fixed the equilibrium acceptance vector. Strong ordering then implies the

existence of a larger equilibrium if the original equilibrium was not truthful. Examples 1 and

2 illustrate this point: there, a likelihood-ratio improvement of project one corresponds to an

increase in v and v1 respectively in the two examples, and as noted there, this causes b∗0 and q∗2

to both increase.

Case (b) of Theorem 2 implies that the agent never benefits from “hiding a project.”

To fix ideas, suppose the availability of project one is common knowledge between the DM and

the agent, but the availability of project two is not. Project two is only available with some

probability, and its availability is privately known to the agent. The theorem implies that if the

agent can credibly prove the availability of project two, it is always optimal for the agent to do

so. It is also possible, for instance, that E[b1] < b0 but E[bi|bi > bj] > b0, i, j = 1, 2, i 6= j, in

which case the agent can get the better project accepted if two is available but neither project

accepted if only project one were available.
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What happens if the projects are not strongly ordered? While strong ordering is essential

for delivering the full force—in particular, the comparative statics—of Theorems 1 and 2, a weaker

stochastic ordering suffices to identify a systematic direction of pandering.

Definition 2. For n = 2, projects are weakly ordered if

∀α ≥ 1,E[b1|b1 > αb2] > E[b2|αb2 > b1].

It is straightforward that strong ordering implies weak ordering. The latter is weaker

because it does not require (R2). Rather, weak ordering allows E[bi|bi > αbj] (for any i 6= j)

to decrease in α, but requires that the ranking assumed in (R1), i.e. that E[b1|b1 > αb2] >

E[b2|αb2 > b1] when α = 1, must be preserved for all larger α.26

Theorem 3. Assume n = 2 and the two projects are weakly ordered. Then, any influential but

non-truthful equilibrium has pandering toward project one.

Proof. Under weak ordering, there cannot be an equilibrium with 1 > q2 = q1 > 0 because then

the agent will be truthful, hence b0 = E[b1|b1 > b2] > E[b2|b2 > b1] = b0, a contradiction. So any

non-truthful but influential equilibrium must have either q1 > q2 > 0 or q2 > q1 > 0. But the

latter configuration cannot be an equilibrium because for α = q2
q1
> 1, E[b1|b1 > αb2] > E[b2|b1 <

αb2] ≥ b0, hence the DM’s optimality requires q1 = 1, a contradiction. Q.E.D.

This result is tight in the sense that the weak ordering condition is not only sufficient

but also almost necessary for pandering to systematically go in the direction of one project.

In other words, if projects cannot be weakly ordered (after relabeling projects), then generally

the agent may pander toward either project depending on the outside option. To see this,

suppose E[b1|b1 > b2] > E[b2|b2 > b1] but for some α′ > 1, E[b1|b1 > α′b2] < E[b2|α′b2 > b1].

For some b0 ∈ (E[b2|b2 > b1],E[b2|b2 > b1] + ε) for a small ε > 0, there exists a pandering

equilibrium q = (1, q2) with q2 ∈ (0, 1), i.e. the agent panders toward project one. Yet, for some

b0 ∈ (E[b1|b1 > α′b2],E[b1|b1 > α′b2] + ε) for a small ε > 0, there is an equilibrium q′ = (q′1, 1)

with q′1 ≈ 1/α′ ∈ (0, 1), i.e. the agent now panders toward project two.

More than two projects. Theorems 1 and 2 can be extended to more than two projects by

strengthening the stochastic order.

26Truncated Normal distributions typically satisfy weak ordering but not strong ordering. For an example, let
G1 be a Normal distribution with mean 5 and variance 1, while G2 is Normal with mean 4.5 and variance 1. The
corresponding densities are denoted g1 and g2 respectively. For i = 1, 2, each bi is distributed on [0,∞) with

density fi(x) = gi(x)
1−Gi(0)

. One can verify that for α ≥ 1, E[b1|b1 > αb2] initially rises in α but then starts to fall,

hence strong ordering fails. However, it can also be verified that weak ordering is satisfied.
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Definition 3. For n > 2, projects are strongly ordered if

1. For any i < j, and any k ∈ R+,

E[bi|bi > bj, bi > k] > E[bj|bj > bi, bj > k]. (R1′)

whenever both expectations are well-defined.

2. For any i and j, and any k ∈ R+,

E[bi|bi > αbj, bi > k] is nondecreasing in α ∈ R+ (R2′)

so long as the expectation is well-defined.

The only difference between (R1′) and (R1), or (R2′) and (R2), is the extra conditioning

on the relevant random variable being above the non-negative constant k. Obviously, when

k = 0, (R1′) and (R2′) are respectively identical to (R1) and (R2), because of our maintained

assumption (A1). Since Definition 3 requires (R1′) and (R2′) to hold for all k ∈ R+, this notion of

strong ordering is more demanding than that of Definition 1, even if there are only two projects.

Intuitively, the roles of (R1′) and (R2′) are analogous to that of (R1) and (R2), but modified

to account for the fact that when n > 2, a recommendation for a project i is a comparative

statement not only against project j, but also the other n − 2 projects. In other words, the

DM’s posterior about i when the agent recommends project i rather than project j must also

account for the fact that i is sufficiently better than all the other non-j projects as well, for each

realization of their values.27

Given this extension of the strong ordering notion, our main conclusions generalize to any

n ≥ 2; see Theorems 8 and 9 in Appendix C. We show there that there are threshold values,

b∗0 and b∗∗0 , such that (i) for b0 < b∗0, there is a truthful equilibrium; (ii) for b0 ∈ (b∗0, b
∗∗
0 ), the

largest equilibrium has pandering towards better-looking projects (those with a lower index, by

Definition 3); and (iii) for b0 > b∗∗0 , the only equilibrium is the zero equilibrium.28 In particular,

these results apply to the scale-invariant and exponential families of distributions because both

these families satisfy (R1′) and (R2′).

27In this light, some readers may find it helpful to consider the following alternative to part one of the definition:
For any i < j and any (αk)k 6=i,j ∈ Rn−2

++ , E[bi|bi > bj , bi > max
k 6=i,j

αkbk] > E[bj |bj > bi, bj > max
k 6=i,j

αkbk] whenever

these expectations are well-defined. A similar modification can also be used for the second part of the definition.
While these requirements are slightly weaker and would suffice, we chose the earlier formulation for greater clarity.

28One caveat is that the largest equilibrium need not be the best equilibrium when n > 2. Nevertheless, we
argue in Appendix C that the largest equilibrium is still compelling to focus on.
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5 Delegation, Commitment, and Other Responses

We now turn to several measures that the DM may employ to mitigate the distortion that is

caused by the agent’s pandering. Throughout this section, we assume for simplicity there are two

projects that are strongly ordered, and refer to the largest equilibrium q∗ defined in Theorem 1.

5.1 Delegation

One mechanism that has received attention in the literature is that of full delegation, where

the DM simply transfers decision-making authority to the agent. In a setting with incomplete

contracts (Grossman and Hart, 1986; Hart and Moore, 1990), the simplicity of this mechanism

is appealing. At first glance, delegation involves a potentially complicated tradeoff for the DM

in our context. On the one hand, delegation eliminates pandering (since the agent will always

choose the best project), but on the other, it sometimes leads to a project being implemented

even when the DM prefers the outside option. Nevertheless, we find full delegation to be optimal

whenever the best equilibrium in communication involves pandering.

Theorem 4. If the largest equilibrium q∗ of the communication game is nonzero, then the DM

is ex-ante weakly better off by delegating authority to the agent no matter which equilibrium of

the communication game would be played, and strictly so if q∗ < 1.

To see the intuition, suppose the largest communication equilibrium q∗ is non-zero. By

Theorem 1, q∗ � 0. If q∗ 6= 1, then the DM is randomizing between accepting project two and

rejecting it when it is recommended, so she must be indifferent between project 2 and the outside

option in that case. Therefore, holding the agent’s strategy fixed, the DM’s expected utility is

the same whether she plays q∗ or 1. Delegation effectively commits the DM to playing the latter

strategy and also has the additional benefit of eliminating any pandering since the agent will

choose the best project truthfully. So the DM is weakly better off by delegating, and strictly so

unless q∗ = 1. As is clear from this argument, Theorem 4 does not actually require the projects

to be ordered.

A few remarks are useful in interpreting Theorem 4. First, Dessein (2002) has established

a similar result for the uniform-quadratic specification of Crawford and Sobel (1982). However,

he also shows that more generally, delegation in Crawford and Sobel (1982) is only optimal if

the conflict of interest is sufficiently small, rather than whenever communication is influential.

In contrast, Theorem 4 proves that delegation is preferred by the DM in the current model

whenever communication can be influential. Second, the theorem only gives sufficient conditions
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for delegation to be optimal. In fact, even if b0 is large so that q∗ = 0, delegation will be strictly

preferred by the DM so long as b0 is not too large. Obviously, if b0 is sufficiently large, the DM

would prefer to retain authority and just choose the outside option. Third, the theorem in fact

holds for any n ≥ 2 (if n > 2, q∗ is defined by Theorem 8 in Appendix C). Fourth, whenever

the DM prefers delegation to communication, constrained delegation—where the DM allows

the agent to choose from a particular subset of all possible options—is of no additional benefit

to the DM, since the agent will never choose the outside option and there is perfect alignment

of interests among the alternative projects.

Finally, when q∗ < 1, it is crucial that the DM be able to commit to delegation, because

ex-post, the DM would like to override the agent and choose the outside option whenever the

agent the worse-looking project, namely project 2. Of course, if the agent anticipates that the

DM will overturn his choice of project 2, his incentives change dramatically, and the outcome

would be some equilibrium q of the communication game.

5.2 Stochastic mechanisms

Full or constrained delegation can be viewed as commitments by the DM to particular vectors of

acceptance probabilities, where each qi ∈ {0, 1}. From this perspective, it is natural to ask what

acceptance strategies the DM would wish to use if she can commit to a stochastic acceptance

rule. Stochastic mechanisms are of more than purely theoretical interest. As will be seen, the

optimal stochastic mechanism can be implemented via delegating authority to a third party who

internalizes a different value than b0 from the outside option.

Formally, the optimal stochastic mechanism is a solution to the following problem:

max
q∈[0,1]2

E

 ∑
i∈{1,2}

qi(bi − b0) · 11{qibi>qjbj ,∀j}

+ b0. (7)

In other words, the DM chooses an acceptance profile q knowing that the agent will

respond optimally to it in terms of which project to propose. In particular, the DM is allowed

to choose the profile q under which she may accept a proposed project with positive probability

even though its posterior value may be strictly less than b0 (which of course requires credible

commitment). We have already seen that for moderate outside options, full delegation strictly

dominates any equilibrium with communication. Notice that full delegation is subsumed as a

feasible solution in the above problem, where q = 1.

23



Let qc denote the solution to (7). It is of interest whether full delegation coincides with

the optimal commitment rule. The answer is that it generally does not.

Theorem 5. If the largest communication equilibrium has q∗ < 1, then the optimal commitment

rule has qc < 1. If 0 < q∗ < 1, then the optimal commitment rule is qc = (1, qc2) where

qc2 ∈ (q∗2, 1).

This theorem says that, whenever the DM does not rubber-stamp the adviser’s recommen-

dation in the largest communication equilibrium q∗, she should also refuse to rubber-stamp it in

an optimal stochastic mechanism; that is, she should not fully delegate. Interpreted differently,

whenever the (largest) communication equilibrium involves pandering, the optimal commitment

rule also induces the agent to pander. The intuition is as follows. Assume project two is ex-ante

undesirable in the sense that E[b2|b2 ≥ b1] < b0. By Theorem 1, this is necessary and sufficient

for the DM not to rubber-stamp project two when it is recommended by the agent. Starting

from q = 1, suppose the DM lowers q2 slightly below 1. The benefit is that when project two

is proposed, the outside option b0 will be sometimes realized instead of b2. The cost is that this

induces some pandering. However, the benefit is of first-order importance since E[b2|b2 > b1] < b0

while the cost is of second-order importance, since there is no pandering at q = 1. On balance,

reducing q2 slightly below 1 is beneficial.

The second statement of Theorem 5 is that the optimal stochastic mechanism involves

reduced pandering compared to any influential communication equilibrium whenever the largest

communication equilibrium is nonzero. The logic is that starting from q∗ < 1, if the DM raises q2

slightly, this has a first-order benefit of reducing pandering and only a second-order cost because

E[b2|q∗2b2 > b1] = b0. Extending this logic shows that we must have qc > q∗. There exists a

b′0 ∈ (0, b0) such that if the DM delegates decision-making to a third party who values the outside

option at b′0 instead of b0, then communication between the agent and the third party will end up

implementing qc. The presence of such a third party is plausible in a hierarchical organization.

For instance, in such a setting, often the intermediate boss, or a supervisor, internalizes the value

of the outside option more than the agent but not as much as the principal.

5.3 Endogenous choice of outside option

So far we have taken the outside option, b0, to be exogenously given. In many applications,

it is reasonable to think that the DM can endogenously choose b0, perhaps improving it at a

cost. Formally, suppose that prior to communication, the DM can endogenously choose the

outside option at a cost c(b0), where c(·) is strictly increasing, and assume there exists b̂0 ∈
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arg maxb0∈R+ [b0 − c(b0)]. Suppose further that the DM’s choice of b0 is publicly observed prior

to the communication game.

Let ΠD denote the expected utility the DM receives from full delegation. More precisely,

this is the payoff that the DM enjoys if the agent is truthful and the DM rubber-stamps the

agent’s recommendations. The following observations can be readily drawn.

Theorem 6. If ΠD ≥ b̂0 − c(b̂0), then it is optimal for the DM to set b0 = 0 and rubber-stamp

the agent’s recommendation (q∗ = 1). If ΠD < b̂0 − c(b̂0), however, it is optimal for the DM to

set b0 = b̂0 and never accept the agent’s recommendation (q∗ = 0).

The rationale for this result is simple: Since full delegation is better for the DM than

communicating with any pandering, it does not pay the DM to invest in the outside option

unless it is so attractive that it will always be chosen. By choosing a minimal outside option,

the DM effectively delegates the project choice to the agent. So the issue for the DM boils down

to whether this is better or worse than investing in an outside option so large that it is always

implemented.

The logic of Theorem 6 applies even when destroying outside option is costly, implying

that “burning ships” can sometimes be optimal. In particular, as was shown in Theorem 1,

the DM may strictly benefit from reducing the value of her outside option, precisely because it

reduces pandering. This may be desirable for the DM even if it is costly do so, so long as the

cost is not too large.

5.4 Ignorance can be bliss

The pandering distortion results from the DM’s partial knowledge of the projects’ attributes.

Such knowledge may be obtained by the DM investigating the projects herself or from the agent’s

communication of verifiable information to the DM. The results obtained so far suggest that the

DM may actually benefit from committing herself to remain ignorant, either by not investigating

or by not engaging in any verifiable communication with the agent. In particular, any infor-

mation that can only improve the DM’s understanding of how alternative projects compare with

one another but not how they compare relative to the outside option is likely to exacerbate the

pandering problem without any countervailing benefit. We now formalize this idea by identifying

a type of information that the DM will never wish to learn.29

29In other settings of strategic communication, Chen (2009) and Lai (2010) also note such a possibility; they
model the DM’s information as a private signal, which creates two-sided asymmetric information, unlike our
analysis below.
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Suppose there are two projects A and B whose values bA and bB are ex-ante identically

distributed. Suppose the DM, either through her own investigation or verifiable communication

with the agent, can costlessly obtain a signal s ∈ S prior to the agent’s communication of

soft information. Assume for convenience that S is finite. We consider two regimes: (1) No

information: The DM does not observe s; and (2) Information: the DM and the agent observe

the realized value of s. We say that the signal is value-neutral if E[max{bA, bB}|s] is the same

for all s ∈ S, and it is non-trivial if E[bA|bA > bB, s] 6= E[bA|bA > bB, s
′] for some s, s′ ∈ S.

Value-neutrality captures the notion of the signal being valuable only insofar as it informs the

DM about which of the projects is better, but not about how the best project compares against

the outside option.30

Theorem 7. Consider the best equilibrium under each information regime. If the signal is

value-neutral, then the DM prefers (at least weakly) not observing the signal to observing the

signal. If the signal is also non-trivial, then there exists a non-empty interval [b̂0, b0] such that

the preference for ignorance is strict for b0 ∈ (b̂0, b0).

Theorem 7 shows that observable information can be harmful, and the DM would benefit

from ignorance in the sense of not observing such information.31 While the result assumes that the

projects are ex-ante identical, it is robust to relaxing this assumption because the DM’s payoffs

from no information and information vary continuously (upon selecting the best equilibrium)

when the assumption is slightly relaxed.

6 Discussion and Extensions

The model we have studied is quite stylized, but we believe it yields insights on strategic com-

munication that are broadly relevant when alternatives differ in observable characteristics. Our

analysis generalizes readily in many respects, producing additional insights for applications. In

lieu of an exhaustive analysis, we sketch several ideas for extending our baseline model, restrict-

ing attention to two projects that satisfy strong ordering. As will be seen, these extensions

preserve the themes that given strong ordering, (i) ranking equilibria exist, featuring pandering

30While value-neutrality is generally a strong assumption, it holds for example with the widely-used binary
signal structure: S = {sA, sB} such that for any real valued function h(bA, bB), E[h(bA, bB)|sA] = E[h(bB , bA)|sB ].
Given symmetric binary signals, E[max{bA, bB}|sA] = E[max{bB , bA}|sB ] = E[max{bA, bB}|sB ].

31Evidently, the nature of information matters for this conclusion. Just as we have characterized the nature of
information that can only make the DM worse off, certain kinds of information benefit the DM. It can be shown
that the DM will always benefit from learning information with the dual characteristics, i.e. observing a signal
that is ranking-neutral in the sense that E[bA|bA > bB , s] and E[bB |bA < bB , s] are constant across s ∈ S and also
value-non-neutral in that E[max{bA, bB}|s] varies with s.
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toward better-looking projects for appropriate values of the outside option, and (ii) the organi-

zational implications of such pandering, particularly the benefit of delegation, carry over with

some interesting caveats.

6.1 Private information about outside option

In many applications, the value of the outside option may not be known when communication

takes place, or it may be known only privately to the DM. For example, when a department in a

university makes its hiring recommendation to its Dean, the Dean may have private information

about the hiring opportunities and needs for other departments, or may still be waiting to hear

from them. Similarly, a seller may not be privy to a buyer’s reservation value of her product, or

a CEO may know more than a manager about the cost of capital.

We can easily accommodate such situations by assuming that the value of the outside

option, b0, is observed privately by the DM prior to the agent’s communication about b. Suppose

that b0 is drawn from a distribution G (·) with strictly positive density on [0,∞). In this setting,

a ranking equilibrium is described not by a vector of acceptance probabilities, but rather by

a threshold vector (b10, b
2
0) such that the DM follows the agent’s recommendation of project

i ∈ {1, 2} if and only if b0 ≤ bi0, choosing her outside option otherwise. Since the agent’s best

response is to recommend project 1 if b1 >
G(b20)

G(b10)
b2 and recommend project 2 otherwise, the

threshold vector (b10, b
2
0) is an equilibrium if and only if

E
[
b1

∣∣∣∣b1 > G(b20)

G(b10)
b2

]
= b10 and E

[
b2

∣∣∣∣b1 < G(b20)

G(b10)
b2

]
= b20. (8)

As long as the expected value of bi given bi ≥ αbj (i, j ∈ {1, 2} and i 6= j) is bounded for any

α > 0, a solution to (8) exists. Moreover, strong ordering implies that any solution has b10 > b20.

In other words, there is pandering in any ranking equilibrium. The intuition is that since the

agent is uncertain about the outside option, on the margin, when b1 is only slightly below b2, he

prefers to recommend project one so as to increase the probability of acceptance, which yields

a benefit of higher-order magnitude compared with the associated utility loss of getting project

one rather than project two.

Given the equilibrium pandering, the DM has an incentive to convince the agent that

her outside option is low, for the agent will pander less if he believes the outside option to

have a lower value. Such communication from the DM is not credible, however, so long as the

DM’s information is soft. By contrast, if the information is hard, then there will be unraveling,

resulting in full revelation of the outside option value.
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What about the DM’s decision to delegate? Since the DM’s private information affects

the decision she makes following the agent’s recommendation, it may conceivably affect the DM’s

incentive to delegate project choice to the agent. For instance, when b0 ∈ (b10, b
2
0), the DM only

approves project one but rejects project two, when the respective projects are recommended. One

may think that for such values of b0, the DM does not want to delegate and instead just accepts

project one when it is recommended. This logic is incomplete, however, because the DM’s decision

not to delegate would reveal that her outside option is high and thereby exacerbate the agent’s

pandering. Strikingly, it can be shown that the DM delegates project choice in equilibrium if and

only if b0 ≤ E [max {b1, b2}] — just as in the baseline model where b0 was common knowledge.

6.2 Preference conflicts over alternative projects

Another natural extension is to allow the DM and the agent to have non-congruent preferences

over the set of alternative projects. For instance, a seller may obtain a larger profit margin on

a particular product, or a Dean may have a gender bias or favor economists that do research

in a certain area. A simple way to introduce such conflicts is to assume that the agent derives

a benefit aibi from project i, where ai > 0 is common knowledge, while the DM continues to

obtain bi from project i.32 The parameter a := a1/a2 is a sufficient statistic for the preference

conflict between projects and indicates whether the agent is biased toward the better-looking

project (a > 1) or the worse-looking project (a ∈ (0, 1)). A ranking equilibrium is characterized

by the DM’s acceptance probabilities q = (q1, q2), but now the agent recommends project 1 if

aq1b1 > q2b2 and project 2 otherwise. We will say that the agent panders toward project i if

qi > qj > 0 (i 6= j), i.e. he biases his recommendation in favor of i from the perspective of

his preferences, not from the DM’s. Consequently, the DM may benefit from pandering, as we

discuss below. To avoid uninteresting cases, assume that the truthful equilibrium does not exist,

i.e. either E[b1|ab1 > b2] < b0 or E[b2|ab1 < b2] < b0, and a non-zero equilibrium does exist.

Under strong ordering, one can show that there exists a critical threshold of conflict,

a ∈ (1,∞], such that if a ∈ (0, a), the largest equilibrium has pandering toward the better-looking

project (q∗ = (1, q∗2) with q∗2 ∈ (0, 1)) while for a > a, the largest equilibrium has pandering

toward the worse-looking project (q∗ = (q∗1, 1) with q∗1 ∈ (0, 1)).33 Notice that if a < 1, the agent

has a preference bias for project two but nevertheless panders toward project one in order to

persuade the DM. If a ∈ (1, a), then pandering reinforces the agent’s bias to over-recommend

32While such a multiplicative form of bias is especially convenient to study, it is also straightforward to incor-
porate an additive or other forms of bias.

33Formally, a is the solution to E[b2|b2 > ab1] = E[b1|b2 < ab1] if a solution exists (uniqueness is guaranteed by
strong ordering), and a =∞ otherwise.
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project one from the DM’s perspective. Interestingly, in this case, the acceptance probability

of project two in the largest equilibrium is increasing in the preference conflict a; the reason is

that the agent’s preference bias toward the better-looking project makes his recommendation of a

worse-looking project more credible than the same recommendation made by an unbiased agent.34

Finally, when a > a, the agent’s preferences are so biased toward the good-looking project that

a recommendation of project one is less credible than that of project 2; hence the persuasion

motive leads him to pander toward project two. It is not hard to check that even though the

agent is pandering toward project two relative to his true preferences, he still over-recommends

project one from the DM’s perspective, i.e. aq1 ≥ q2 in any equilibrium.

An important difference from the baseline model is that if a < 1 or a > a, the DM benefits

from some pandering, for it counteracts the agent’s preference bias. This affects the DM’s gains

from delegation. If a < 1, a small degree of pandering reduces the agent’s bias toward project

two; in fact the DM’s utility is maximized at q∗2 = a. Delegation then dominates communication

only when the largest equilibrium has sufficiently severe pandering. If a > a so that the agent

is strongly biased in favor of project one, the agent’s pandering toward project two (recall, this

is relative to the agent’s preferred alternative) is always beneficial to the DM, so delegation is

never optimal. Only when a ∈ [1, a) is delegation is optimal for any level of pandering.

The above observations highlight a fundamental difference between pandering due to

conflicts of interests over alternatives and pandering due to observable differences between alter-

natives. In particular, if projects are identical (F1 = F2) but a 6= 1, then pandering is always

beneficial to the DM: the agent knows that a proposal of a pet project is less credible, so he

restrains himself from proposing—i.e., panders against—such a project. Delegation is subopti-

mal in such a case. By contrast, in our baseline model where F1 6= F2 and a = 1, we have seen

that pandering is always detrimental to the DM, and delegation is strictly preferred whenever

pandering occurs in the largest equilibrium.

6.3 Variable project size

A DM’s decision space is sometimes not binary. For example, a corporate board may not only

decide which project to fund but also how much resources to make available for a chosen project.

Or, a buyer may purchase variable units of a good from a seller. In these cases, it is reasonable

that projects with higher expected values receive more resources from the DM.

34This does not imply that the DM prefers a more biased agent when a ∈ (0, 1). The reason is that q∗2 ∈ (0, 1)
implies E[b2|q∗2b2 > ab1] = b0; hence, in equilibrium, an increase in a triggers a change in q∗2 but keeps q∗2/a
constant and thus does not affect the agent’s recommendation strategy. Since the DM is indifferent across all
q2 ∈ [0, 1], holding fixed the agent’s strategy, the DM’s welfare does not change.
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Assume that the DM must decide how much to invest in one of two projects. Project

i ∈ {1, 2} yields profits of biqi− γ
2
q2i , when the DM invests qi for the project and the project has

quality bi, which is again private information of the agent. The agent derives the benefit biqi but

does not internalize the investment cost γ
2
q2i . In this setting, a ranking equilibrium is characterized

by an investment vector q = (q1, q2), where qi ∈ R+ is the investment size chosen by the DM

when project i is recommended. The agent recommends project one whenever q1b1 > q2b2, which

implies that in any equilibrium, γq1 = E[b1|q1b1 > q2b2] and γq2 = E[b2|q1b1 < q2b2]. Strong

ordering implies that q1 > q2 in any equilibrium, so the agent always panders toward the better-

looking project no matter the value of the outside option. The intuition is most clearly seen

when b1 is only slightly smaller than b2: in this case, since the agent cares about the amount of

resources he receives, he will recommend project one if the DM believes this to be truthful.

The resulting distortion can be mitigated by delegation, provided the DM can put a cap

on the maximum investment the agent can make (knowing that the agent will always invest the

maximum allowed). In particular, relative to the communication game, it is always beneficial for

the DM to delegate project choice to the agent with a cap equal to the quantity the DM would

invest herself in the better-looking project when it is recommended in the communication game.

This extension permits a comparison with Blanes i Vidal and Moller (2007), who show

that a principal may select a project that she privately knows is inferior but is perceived to be of

higher quality by an agent who must exert costly effort to implement the project. Intuitively, the

DM in our model is the agent in theirs whose implementation effort is increasing in his posterior

on project quality.

6.4 Non-exclusive projects

There are situations in which the DM may choose multiple projects. For example, a corporate

board may approve several capital investment projects if the expected profits of each exceed

their cost of capital, or a Dean may want to hire two economists if both candidates appear to be

outstanding.

To fix ideas, assume that the DM may choose to implement neither, either, or both

projects. If both projects are chosen, both the DM and the agent obtain a payoff of b1 + b2; if

only project i ∈ {1, 2} is chosen, the DM gets bi + b0 while the agent gets bi; and if neither is

chosen, the DM gets 2b0 while the agent gets 0. In this setting, one may wonder if the intuition

of pandering toward better-looking projects in order to persuade would still apply. In particular,

is it possible that the agent, in equilibrium, panders toward the worse-looking project in order
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to increase the chances that both projects are selected? Such a possibility is particularly relevant

if b0 is such that

E[b1|b1 > b2] > E[b2|b2 > b1] > E[b1|b2 > b1] > b0 > E[b2|b1 > b2]. (9)

Restricting attention to ranking equilibria where the agent simply reports whether αb1 > b2 or

b2 > αb1 for some α > 0, one can show that any influential equilibrium still has pandering toward

the better-looking project (i.e, α > 1). In such an equilibrium, when the agent ranks project

one ahead of project two, the DM accepts it and also accepts project two with some probability.

If the agent ranks project two ahead of project one, the DM accepts it but rejects project one.

Hence, even if the DM can implement both projects, the communication is still biased toward

the better-looking project. Existence of an influential ranking equilibrium requires E[b2] ≥ b0. If

E[b2] < b0, the only equilibrium is the one where the DM always chooses project one.

Interestingly, if E[b2] < b0, the DM would benefit from committing herself to implement at

most one project. Indeed, the inequalities in (9) imply that the agent will then truthfully reveal

the better project, and the DM will follow this recommendation. By contrast, if the DM does

not make such a commitment, the desire to get both projects adopted destroys the credibility of

the agent’s communication.

7 Conclusion

This paper has studied strategic communication by an agent who has some non-verifiable private

information about the benefit of various alternatives and wants a decision maker (DM) to select

the best one, but does not fully internalize the DM’s benefit from an outside option. In the

baseline model, this is the only source of conflict: conditional on not choosing the outside option,

the two parties’ preferences are aligned over the alternatives.

This type of agency problem is salient in many settings of resource allocation. Examples

include a seller who vies for a consumer’s purchase, a supplier competing for a firm’s contract, a

venture capitalist raising funds from wealthy individuals or institutions, a philanthropist choosing

between charities, or a firm allocating its resources between its divisions. In each of these

applications, the agent typically does not fully internalize the opportunity cost of resources:

suppliers, money managers, venture capitalists, charities, and division managers all derive private

benefits when they sell more, are allocated more resources, manage more money, or are given

larger budgets.

31



Our main finding is that there is a systematic distortion in the agent’s recommendations,

and hence the DM’s decisions, toward alternatives that “look better” to the DM. An alternative

can look better than another based on characteristics that are either directly observable to the

DM or revealed via some verifiable information by the agent himself. The reason for the distortion

is that recommending an option that “looks worse” makes it less attractive for the DM to forego

the outside option, even when the DM believes the agent is truthfully recommending the best

available option. Since the agent wants to persuade the DM against the outside option, the agent

ineluctably panders toward better-looking alternatives.

Our analysis shows that which alternative the agent panders toward can be subtle. Per-

haps surprisingly, recommendations can be distorted toward alternatives with lower expected

values, because in a comparative ranking, these can sometimes be better-looking than alterna-

tives with higher expected values. We also show that equilibrium pandering has a number of

interesting implications. For example, worse-looking options benefit from pandering as it makes

them acceptable to the DM while they would not be under truthful recommendations. At the

same time, better-looking projects benefit because they are recommended more often.

The second part of our analysis concerned organizational or market responses to pan-

dering. A simple process that improves on pure communication is for the DM to first request

all verifiable information from the agent and then decide whether to either entirely delegate

decision-making to the agent (with a commitment never to override the agent’s choice) or just

choose the outside option. In this organization structure, hard information on the options is all

that matters, as it determines whether delegation to the agent is warranted, and cheap-talk or

soft recommendations do not add any value. We therefore provide a rationale for “no-strings

attached” budget allocations, delegation of hiring decisions to subgroups, commitments to buy

in buyer-seller relationships, and requirements from venture capitalists or investment funds that

investors commit their money for some period of time. We also show that if the DM cannot

commit to such delegation, she may be better off by not observing any hard information at all.

Given the ubiquity of resource allocation problems, and more generally the importance

of strategic advice when options “look different” based on partial information, we believe the

framework presented here can be fruitfully used for various applications. Our model is amenable

to a number of extensions and tailoring, as illustrated in Section 6. There is also much left

to understand about the economics of pandering to persuade at a broader level. For example,

several agents may compete for resources, effectively endogenizing the DM’s value of the outside

option as far as any single agent is concerned. The DM may also have private information about

some aspects of her preferences over alternatives, making an agent cautious to express a strong
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preference for one of the alternatives. These are just two of the directions we are pursuing in

ongoing work.
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A Proofs

Proof of Lemma 1. See supplementary appendix B. Q.E.D.

Proof of Lemma 2. See supplementary appendix B. Q.E.D.

Proof of Theorem 1. For any y > 0, let Λ(y) := E[b1|b1 > yb2]− E[b2|yb2 > b1], whenever this is

well-defined. Strong ordering implies that Λ(y) > 0 for any y ≥ 1 at which it is well-defined.

Step 1: We begin with Part 1 of the theorem. Pick any equilibrium q with q1 >

0. Assume, to contradiction, that q2 > q1. Then E [b1|q1b1 ≥ q2b2] = E
[
b1|b1 ≥ q2

q1
b2

]
>

E
[
b2| q2q1 b2 ≥ b1

]
= E [b2|q2b2 ≥ q1b1] ≥ b0, where the strict inequality is by strong ordering and

that q2/q1 ≥ 1, while the weak inequality is because q2 > 0. But equilibrium now requires that

q1 = 1 (recall condition (3)), a contradiction with q2 > q1. Similarly, if 0 < q1 = q2 < 1, the same

argument applies, except that the contradiction is not with q2 > q1 but rather with q1 < 1.

Part 2 of the theorem is proved in a number of steps. Steps 2–4 concern the essential

properties of the largest equilibrium, q∗, and the outside option thresholds, b∗0 and b∗∗0 .

Step 2: Plainly, there is a truthful equilibrium q∗ = (1, 1) when b0 < b∗0 := E[b2|b2 > b1],

and this is the largest equilibrium for such b0. Note that for any b0 > b∗0, there is no equilibrium

q with q1 = 0 < q2, because in that case the agent always recommends project two, but then

E[b2] ≤ E[b2|b2 > b1] = b∗0 < b0, contradicting equilibrium condition (2). By the first part of the

theorem, we conclude that for b0 > b∗0, any non-zero equilibrium q has q1 > q2.

Step 3: Suppose that for all y > 0, Λ (y) > 0. Set b∗∗0 := supy∈(0,1] E [b2|b1 < yb2].

Since b∗0 = E[b2|b2 > b1], it follows that b∗∗0 ≥ b∗0, with equality if and only if E [b2|b1 < yb2] =

E [b2|b1 < b2] for all y ∈ (0, 1). Since E [b2|b1 < yb2] is continuous in y for all y > 0, it follows

that for any b0 ∈ (b∗0, b
∗∗
0 ), there is some q∗2 ∈ (0, 1) that solves b0 = E [b2|b1 < q∗2b2]; if there

are multiple solutions, pick the largest one. Suppose the agent recommends project two if and

only if q∗2b2 > b1. Since E[b1|b1 ≤ q∗2b2] < E [b2|b1 < q∗2b2] = b0, it is optimal for the DM to

accept project two with probability q∗2 when it is proposed. Moreover, E[b2|b1 > q∗2b2] ≤ E[b2] ≤
E[b2|q∗2b2 > b1] = b0 < E[b1|b1 > q∗2b2], where the last inequality is by the hypothesis that

Λ(y) > 0 for all y > 0; hence it is also optimal for the DM to accept project one when proposed.

Therefore, q∗ = (1, q∗2) is a pandering equilibrium, which by construction is larger than any other

equilibrium q with q1 = 1. Moreover, any non-zero equilibrium q̃ with q̃1 < 1 has q̃1 > q̃2 (see

Step 2), hence there would be a larger equilibrium q = (1, q̃2/q̃1), which in turn is weakly smaller

than q∗. Finally, we don’t need to consider b0 ≥ b∗∗0 because this violates Assumption (A3).

Step 4: Suppose now that Λ(y) = 0 for some y > 0. Let ŷ := max{y : Λ(y) = 0}. Since

Λ(1) > 0, it follows that ŷ < 1 and Λ (y) > 0 for all y > ŷ. Set b∗∗0 = E [b2|b1 < ŷb2]. Plainly,

b∗∗0 ≥ b∗0, with strict inequality if E[b2|b1 < yb2] is strictly decreasing at y = 1. It follows from

the continuity of E [b2|b1 ≤ yb2] in y for y ∈ [ŷ, 1] that for all b0 ∈ (b∗0, b
∗∗
0 ], there is a solution

36



q∗2 ∈ (ŷ, 1) to b0 = E [b2|b1 < q∗2b2] < E [b1|b1 > q∗2b2]; if there are multiple solutions, pick the

largest one. By arguments similar to those used in Step 1, q∗ = (1, q∗2) is a pandering equilibrium

that is also the largest among all equilibria. Finally, we must argue that for b0 > b∗∗0 , the only

equilibrium is q∗ = 0. Note there is no influential equilibrium by the construction of b∗∗0 , and

by Step 2, any non-influential equilibrium q must have q2 = 0. But E[b1] ≤ E[b1|b1 > ŷb2] =

E[b2|b1 < ŷb2] = b∗∗0 < b0, so there is no equilibrium q with q1 > 0 = q2.

Step 5: This step shows that q∗ is the best equilibrium. Since q∗ = 0 is the only

equilibrium when b0 > b∗∗0 , assume b0 < b∗∗0 . Clearly, the agent prefers a larger equilibrium (in

the sense that his expected payoff is weakly larger for all b and strictly larger for some b), so we

need only show that the DM’s welfare is highest at q∗. As shown earlier, b0 < b∗∗0 implies that

the largest equilibrium q∗ has q∗1 = 1. Suppose there exists another equilibrium q < q∗.

Consider first q1 = 0 and q2 = 0. The DM weakly prefers q∗ since she always chooses

a project that gives her on expectation at least b0. Consider next q1 = 0 and q2 > 0. Then

E[b2] ≥ b0, which implies by strong ordering that E[b1|b1 ≥ b2] > E[b2|b2 ≥ b1] ≥ E[b2], hence

q∗ = 1. Clearly, the DM strictly prefers q∗ over q. Finally, suppose q1 > 0. Then, by the

first part of the theorem, q1 ≥ q2. We can assume q1 = 1, for otherwise there exists another

equilibrium q′ = 1
q1

q which the DM prefers at least weakly to q. Since q < q∗, it now follows

that q2 < q∗2. Let Π(q̃) denote the DM’s expected payoff in an arbitrary equilibrium q̃. Notice

that in computing Π(q∗) or Π(q), we can keep the agent’s strategy fixed and assume the DM

instead adopts both projects with probability one when recommended (even though she may

not in equilibrium), because of the DM’s indifference when she adopts project two with strictly

interior probability. Thus,

Π(q∗) = E
[
b1 · 11{b1>q∗2b2} + b2 · 11{q2b2<b1<q∗2b2} + b2 · 11{b1<q2b2}

]
> E

[
b1 · 11{b1>q∗2b2} + b1 · 11{q2b2<b1<q∗2b2} + b2 · 11{b1<q2b2}

]
= E

[
b1 · 11{b1>q2b2} + b2 · 11{b1<q2b2}

]
= Π(q),

where the strict inequality holds because Pr{b : q2b2 < b1 < q∗2b2} > 0 and in this event, b2 > b1
because q∗2 ≤ 1.

Step 6: Finally, we address the comparative statics when b0 increases within the region

(b∗0, b
∗∗
0 ). It is clear that q∗2 strictly decreases in b0 by its construction in Steps 3 and 4. Given

this, the same payoff argument as in the final part of Step 4 shows that the DM’s expected payoff

strictly decreases in b0. Plainly, the agent’s interim expected payoff is weakly smaller for all b

and strictly so for some b when b0 is larger. Q.E.D.

Proof of Theorem 2. If F̃i is a degenerate distribution at zero, the conclusions of Theorem follow

from the observations that if E[b̃j] < b0 then q̃∗ = 0, and if E[b̃j] ≥ b0 then q∗ = 1 because

Fj = F̃j. So assume for the rest of the proof that F̃i is not degenerate, i.e. case (a) applies.

The theorem holds trivially if q̃∗ = 0, so also assume q̃∗ > 0, hence q̃∗ � 0. Let b and b̃
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be the random vectors of the project values corresponding to F and F̃, respectively. Given the

assumptions, we claim that for m ∈ {1, 2}

E[bm|q̃∗mbm = max
k∈{1,2}

q̃∗kbk] ≥ E[b̃m|q̃∗mb̃m = max
k∈{1,2}

q̃∗k b̃k]. (10)

For m = i, inequality (10) follows from the likelihood-ratio dominance hypothesis. For m = j,

the argument is as follows. We can write

E[bj | q̃∗j bj = max
k∈{1,2}

q̃∗kbk] =

∫∞
0
bjFi(

q̃∗j
q̃∗i
bj)fj(bj)dbj∫∞

0
Fi(

q̃∗j
q̃∗i
bj)fj(bj)dbj

=

∫ ∞
0

bkj(b)db,

where kj(z) := Fi(
q̃∗j
q̃∗i
z)fj(z)/

∫∞
0
Fi(

q̃∗j
q̃∗i
z̃)fj(z̃)dz̃. Likewise, E[b̃j | q̃∗j b̃j = maxk∈N q̃

∗
k b̃k] =

∫∞
0
bk̃j(b)db,

where k̃j(z) := F̃i(
q̃∗j
q̃∗i
z)fj(z)/

∫∞
0
F̃i(

q̃∗j
q̃∗i
z̃)fj(z̃)dz̃. To prove inequality (10), it suffices to show that

kj likelihood-ratio dominates k̃j. Consider any b′ > b. Algebra shows that

kj (b′)

kj (b)
≥ k̃j (b′)

k̃j (b)
⇔

Fi

(
q̃∗j
q̃∗i
b′
)

Fi

(
q̃∗j
q̃∗i
b
) ≥ F̃i

(
q̃∗j
q̃∗i
b′
)

F̃i

(
q̃∗j
q̃∗i
b
) .

But the right-hand side of the above equivalence is implied by the hypothesis that Fi likelihood-

ratio dominates F̃i.
35

It now follows that q∗ ≥ q̃∗: strong ordering of F combined with (10) for each m ∈
{1, 2} implies that there is a weakly larger equilibrium in F than q̃∗ (one just raises the second

component of the acceptance vector as high as possible so long as it remains optimal for the DM

to accept project two when recommended).

For the second part of the theorem, assume 0 < q̃∗ < 1, for if not the conclusion is trivial.

So q̃∗2 ∈ (0, 1). The argument used above to prove (10) also reveals that since the likelihood-ratio

domination of Fi over F̃i is strict, kj strictly likelihood-ratio dominates k̃j, hence the inequality

in (10) must hold strictly for m ∈ {1, 2}. But then q̃∗ cannot be an equilibrium in environment F

because randomization would not be optimal for the DM following a recommendation of project

two. It follows from the first part of the theorem that q∗ > q̃∗. Q.E.D.

Proof of Theorem 4. Assume q∗ is non-zero and pick any non-zero communication equilibrium q.

Theorem 1(b) has established that the DM’s expected utility from q is no larger than that from

q∗, so it suffices to show that delegation is weakly preferred to q∗, and strictly so if q∗ < 1. If

35To see this, note that it suffices to show that d
dx [F (x)/F̃ (x)] ≥ 0. This derivative is proportional to F̃ (x)f(x)−

F (x)f̃(x), which we will argue is non-negative. The likelihood-ratio domination hypothesis implies that for
any y < x, f(x)f̃(y) ≥ f(y)f̃(x). Integrating this inequality over y from the lower endpoint up to x yields
f(x)F̃ (x) ≥ F (x)f̃(x), as desired.
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q∗ = 1, then the outcome of delegation is identical to that of q∗ and the result is trivially true. So

assume q∗ < 1, in which case q∗1 = 1 > q∗2 > 0 by Theorem 1. Since the DM is indifferent between

the outside option and project two when the latter is recommended, the DM’s expected payoff

is the same as it would be if she always adopted a recommended project, keeping the agent’s

strategy fixed. Therefore, the DM’s expected payoff is Π(q∗) := E
[∑2

i=1 bi · 11{q∗i bi>q∗j bj ,j 6=i}
]
<

E [max{b1, b2}], where the inequality holds since q∗1 > q∗2. Since this latter payoff is what the DM

achieves under delegation, delegation is strictly preferred. Q.E.D.

Proof of Theorem 5. The proof consists of three steps.

Step 1: If q∗ < 1, then qc < 1.

Proof: Let Π(q) denote the value of committing to q as given by the maximand in (7).

Then,

∂Π(q)

∂q2

∣∣∣∣
q=1

= E[(b2 − b0) · 11{b2≥b1}] +
∑

i,j∈{1,2}

∂E[(bi − b0) · 11{qibi≥qjbj ,j 6=i}]
∂q2

∣∣∣∣
q=1

= E[(b2 − b0) · 11{b2≥b1}] + lim
δ↓0

E[(b2 − b1) · 11{b1>b2>(1−δ)b1}]

δ

= E[(b2 − b0) · 11{b2≥b1}] < 0,

where the strict inequality follows from the assumption that q∗ < 1, which implies that E[b2|b2 ≥
b1] < b0. ‖

Step 2: If qci < qcj , for i, j ∈ {1, 2} with i 6= j, then E[(bi − b0) · 11{qci bi>qcjbj}] < 0.

Proof: Suppose to the contrary that qci < qcj and that E[(bi − b0) · 11{qci bi>qcjbj}] ≥ 0. We

derive a contradiction by showing that the DM benefits from raising qi above qci :

∂Π(q)

∂qi

∣∣∣∣
q=qc

= E[(bi − b0) · 11{bi≥bj}] +
∑

k,l∈{1,2}

∂E[(bk − b0) · 11{qkbk≥qlbl}]
∂qi

∣∣∣∣
q=qc

= E[(bi − b0) · 11{qci bi≥qcjbj}]

+ lim
δ↓0

(
E[qci (bi − b0) · 11{(qci+δ)bi>qcjbj>qci bi}]− E[qcj(bj − b0) · 11{(qci+δ)bi>qcjbj>qci bi}]

δ

)

= E[(bi − b0) · 11{qci bi≥qcjbj}] + (qcj − qci )b0
(

lim
δ↓0

Pr{(qci + δ)bi > qcjbj > qci bi}
δ

)
> 0,

where the inequality holds because the first term of the last line is nonnegative by the hypothesis,

the second term is strictly positive since qci < qcj , and the limit point is well defined and is strictly

positive given the assumption of there being positive density on {(bi, bj)|qci bi = qcjbj}. ‖

Step 3: If q∗ > 0, then qc > q∗.
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Proof: Since q∗ > 0, we can assume that qc > 0, as q∗ does at least as well as 0. Step 2

implies that qc1 ≥ qc2, since otherwise q∗ > 0 implies E[(b1 − b0) · 11{qc1b1>qc2b2}] ≥ 0, a contradiction

to Step 2. Given qc1 ≥ qc2, we can now assume that qc1 = 1, since otherwise by proportionally

raising both qc1 and qc2 until qc1 reaches 1, the DM cannot be worse off.

Next, we know that qc2 < 1 by Step 1. We cannot have qc2 ≤ q∗2, because if this were the

case then the equilibrium condition for q∗ implies E[(b2− b0) · 11{qc2b2>qc1b1}] ≥ 0, which contradicts

Step 2 since qc2 < 1 = qc1. ‖ Q.E.D.

Proof of Theorem 6. By Theorem 4, whenever q∗ > 0, the DM is weakly better off from full

delegation than from communication. Since under full delegation the outside option is never

chosen, it follows that choosing any b0 that gives rise to q∗ > 0 is strictly dominated for the

DM by choosing optimally between b0 and playing q∗ = 1, given that c(·) is strictly increasing.

Among the set of b0’s such that q∗ = 0, the DM is just maximizing b0 − c(b0). The statement of

the theorem now follows immediately. Q.E.D.

Proof of Theorem 7. Assume the signal is value-neutral. Suppose first the DM has learned some

signal s ∈ S, and a communication equilibrium q(s) = (qA(s), qB(s)) ensues, where qi(s) denotes

the probability of project i = A,B being accepted by the DM when the agent recommends i given

signal s. There are two possibilities. First, if q(s) = 0, then the DM’s payoff will be b0. Suppose

next q(s) > 0. Then following the argument of Theorem 4, the DM’s payoff is no higher than it is

under delegation. The latter payoff is E[max{bA, bB}|s], which by the value-neutrality assumption

is independent of the signal realization and hence is equal to E[max{bA, bB}]. Thus, regardless of

q(s), the DM’s expected payoff from having learned s is no greater than max {b0,E[max{bA, bB}]}.
But the latter is exactly the DM’s expected payoff under “no information.” More precisely,

since bA and bB are identically distributed, E[bA|bA ≥ bB] = E[bB|bA ≤ bB] = E[max{bA, bB}].
Hence, if E[max{bA, bB}] ≥ b0, then a truthful equilibrium arises under no information, and if

E[max{bA, bB}] < b0, only the zero equilibrium arises under no information. Since the preceding

argument applies to any signal realization, the first statement of the theorem follows.

Suppose next that the signal is also non-trivial. This implies that

b̂0 := min
s∈S

(min{E[bA|bA ≥ bB, s],E[bB|bA < bB, s]}) < E[max{bA, bB}] =: b0. (11)

Consider any b0 ∈ (b̂0, b0). (11) implies that there is a truthful equilibrium under “no informa-

tion,” which gives the DM a payoff of E[max{bA, bB}]. (11) also implies that there is no truthful

equilibrium following any observed signal; hence, following any observed signal, the DM’s payoff

is strictly less than E[max{bA, bB}]. Integrating over all possible signals, the second statement

of the theorem follows. Q.E.D.

40



The remaining appendices are supplementary and not in-
tended for publication.

B Omitted Proofs

This Appendix provides proofs for Lemmas 1 and 2.

Proof of Lemma 1. Consider any equilibrium (α, µ) with more than n on-path messages. With-

out loss, we can assume that all of them have positive ex-ante probability, since there is clearly

an outcome-equivalent equilibrium where this is the case. Let M∗ be the set of on-path messages.

First suppose that α(m) = 0 for all m ∈M∗. Then for any m ∈M∗ and any i ∈ N , we must have

E[bi|m] ≤ b0, so that E[bi] ≤ b0, and it follows that there is an outcome-equivalent “babbling” or

pooling equilibrium with only one on-path message.

Next, consider the case where some m∗ ∈M∗ leads to an alternative project with positive

probability, i.e. Support[α(m∗)] ∩ N 6= ∅. This requires that Support[α(m)] ∩ N 6= ∅ for all

m ∈M∗, since for almost all types, the agent would never use a message that fails this property

given the availability of m∗. We will argue that there is an outcome-equivalent equilibrium

with one fewer message used. This is sufficient to prove the Lemma because by repeating the

argument as many times as needed, there will be an outcome-equivalent equilibrium with exactly

n messages.

Since |M∗| > n, there is some project i∗ ∈ N and at least two distinct messages m1 ∈M∗

and m2 ∈ M∗ such that Support[α(m1)] ⊆ {0, i∗} and Support[α(m2)] ⊆ {0, i∗}. Letting

α(i|m) be the probability that α(·) puts on any project i following message m, we must have

α(i∗|m1) = α(i∗|m2) > 0, since otherwise one of the two messages would never be used. Let

B1 := {b : µ(b) = m1} and B2 := {b : µ(b) = m2}. Optimality of α implies

for k ∈ {1, 2}, E[bi∗|b ∈ Bk] ≥ max{b0,max
j∈N

E[bj|b ∈ Bk]}, (12)

for k ∈ {1, 2}, E[bi∗|b ∈ Bk] = b0 if α(i∗|mk) < 1. (13)

Now consider a strategy µ̃ defined as follows: for any b /∈ B1 ∪ B2, µ̃(b) = µ(b); for any

b ∈ B1 ∪ B2, µ̃(b) = m1. So µ̃ is identical to µ except that all types using m2 switch to m1, so

that m2 is not used in µ̃. It is immediate that

for j ∈ N and m ∈M∗ \ {m1,m2}, E[bj|m; µ̃] = E[bj|m;µ]. (14)

Moreover, by iterated expectations,

for j ∈ N,E[bj|m1; µ̃] = Pr(B1)E[bj|b ∈ B1] + Pr(B2)E[bj|b ∈ B2]. (15)
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(12), (13), (14), and (15) imply the desired conclusion that (α, µ̃) is an equilibrium, and by

construction, it is outcome-equivalent to (α, µ) but uses one fewer message. Q.E.D.

Proof of Lemma 2. The first statement is immediate. For sufficiency, fix any q satisfying (2) and

(3) for all i with Pr{b : qibi = maxj∈N qjbj} > 0. We consider two cases:

(i) Suppose first there is some i with qi > 0. Then the agent has a best response, µ,

that satisfies (1) and also has the property that any project that is recommended on path has

positive ex-ante probability of being recommended. Such a µ and q are mutual best responses

and Bayes Rule is satisfied. The only issue is assigning an appropriate out-of-equilibrium belief

when any off-path project j is recommended; one can specify the off-path belief that bk = b0 for

all k, which clearly rationalizes qj.

(ii) Now suppose qi = 0 for all i. Then for all i, Pr{b : qibi = maxj∈N qjbj} > 0

and E [bi | qibi = maxj∈N qjbj] = E[bi]. It follows from (3) that for all i, E[bi] ≤ b0, and hence

there is an equilibrium where the DM always chooses the outside option with “passive beliefs”of

maintaining the prior no matter the recommendation, and the agent always recommends project

one. Q.E.D.

C More than Two Projects

This Appendix shows how our main results extend to multiple projects, n > 2, under the strong

ordering condition of Definition 3. We first generalize Theorem 1:

Theorem 8. Assume strong ordering, as stated in Definition 3.

1. For any equilibrium q, for any i < j, if qi > 0, then qi ≥ qj, and if qi > 0 and qj < 1, then

qi > qj.

2. There is a largest equilibrium, q∗ such that:

(a) If b0 ≤ b∗0 := E[bn|bn = maxj∈N bj], then there exists a truthful equilibrium q∗ = 1.

(b) If b0 ∈ (b∗0, b
∗∗
0 ) for some b∗∗0 ≥ b∗0, then q∗ � 0 and q∗1 = 1; that is, the largest

equilibrium is a pandering equilibrium. Moreover, for any b̃0 > b0 in this interval,

q∗ > q̃∗, where these are the largest equilibria respectively for b0 and b̃0.

(c) If b0 > b∗∗0 , then only the zero equilibrium exists, q∗ = 0.

Proof. The proof is in several steps.

Step 1: Fix any equilibrium q and any i < j. If qi > 0, then qi ≥ qj, and if in addition qj < 1,

then qi > qj.
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Proof: Fix any equilibrium q and any projects i < j. Suppose to the contrary that

qj > qi > 0. Then

E
[
bi

∣∣∣∣ qibi ≥ max

{
qjbj,max

k 6=i,j
qkbk

}]
= E

[
bi

∣∣∣∣ bi ≥ max

{(
qj
qi

)
bj,max

k 6=i,j

(
qk
qi

)
bk

}]
> E

[
bj

∣∣∣∣ (qjqi
)
bj ≥ max

{
bi,max

k 6=i,j

(
qk
qi

)
bk

}]
= E

[
bj

∣∣∣∣ qjbj ≥ qkbk,∀k 6= j

]
≥ b0,

where the strict inequality is because of strong ordering and the weak inequality is because qj > 0.

But this implies that E[bi |qibi = maxk∈N qkbk] > b0, which is contradiction with qi ∈ (0, 1). This

proves that qi ≥ qj. For the second statement, notice that 0 < qi = qj < 1 implies that the

final inequality above must hold with equality. Since the strict inequality above still applies, the

DM’s optimality requires qi = 1, a contradiction. ‖

For the remaining results, we consider a mapping ψ : [0, 1]n → [0, 1]n such that for each

q = (q1, ..., qn) ∈ [0, 1]n,

ψi(q1, ..., qn) := max

{
q′i ∈ [0, 1]

∣∣∣∣E[bi | q′ibi ≥ qjbj,∀j 6= i] ≥ b0

}
(16)

with the convention that max ∅ := 0. The mapping ψi calculates the highest probability with

which the DM is willing to accept project i when it is recommended according to (1) subject to

the constraint that the posterior belief does not fall below b0.

Step 2: The mapping ψ has a largest fixed point q∗.

Proof: It suffices to prove that the mapping is monotonic, since Tarski’s fixed point

theorem then implies that the set of fixed points is nonempty and contains a largest element. Fix

any q′ ≥ q. We will prove that ψ(q′) ≥ ψ(q). If ψi(q) = 0 for some i then clearly ψi(q
′) ≥ ψi(q).

So suppose ψi(q) > 0 for some i. Then E[bi |ψi(q)bi ≥ qjbj,∀j 6= i] ≥ b0. Since q′ ≥ q, for any

such i, (R2′) implies that E[bi |ψi(q)bi ≥ q′jbj, ∀j 6= i] ≥ E[bi |ψi(q)bi ≥ qjbj,∀j 6= i]. Putting

the two facts together, we have E[bi |ψi(q)bi ≥ q′jbj,∀j 6= i] ≥ b0, from which it follows that

ψi(q
′) ≥ ψi(q). ‖

Step 3: The largest fixed point q∗ of ψ is an equilibrium.

Proof: By Lemma 2, it suffices to prove that q∗ satisfies (2) and (3). To begin, suppose

q∗i > 0, then, since q∗i = ψi(q
∗) > 0, we have

E[bi | q∗i bi = max
k∈N

q∗kbk] ≥ b0. (17)

Now consider any project j 6= i with q∗j > 0. If q∗j = 1, then q∗j ≥ q∗i , so q∗i bi ≥ q∗j bj implies
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bi ≥ bi. It thus follows that

E[bj | q∗i bi = max
k∈N

q∗kbk] ≤ E[bi | q∗i bi = max
k∈N

q∗kbk]. (18)

If q∗j ∈ [0, 1), then we have

E[bj | q∗i bi = max
k∈N

q∗kbk] ≤ E[bj | q∗j bj = max
k∈N

q∗kbk] ≤ b0, (19)

where the second inequality follows from q∗j = ψj(q
∗) and from the construction of ψ for the case

q∗j < 1, and the first inequality is explained as follows: Define x := maxk 6=i,j q
∗
kbk, and let G be

its cumulative distribution function. Then, the middle term of (19) can be written as

E[bj | q∗j bj = max
k∈N

q∗kbk] =

∫∞
0
bjG(q∗j bj)Fi(

q∗j
q∗i
bj)fj(bj)dbj∫∞

0
G(q∗j bj)Fi(

q∗j
q∗i
bj)fj(bj)dbj

=

∫ ∞
0

bf̂j(b)db,

where

f̂j(z) :=
G(q∗j z)Fi(

q∗j
q∗i
z)fj(z)∫∞

0
G(q∗j z̃)Fi(

q∗j
q∗i
z̃)fj(z̃)dz̃

.

Likewise, the left-most term of (19) can be written as

E[bj | q∗i bi = max
k∈N

q∗kbk] =

∫∞
0
bj

(∫∞
q∗
j

q∗
i
bj
G(q∗i bi)fi(bi)dbi

)
fj(bj)dbj

∫∞
0

(∫∞
q∗
j

q∗
i
bj
G(q∗i bi)fi(bi)dbi

)
fj(bj)dbj

=

∫ ∞
0

bf̃j(b)db,

where

f̃j(z) :=

(∫∞
q∗
j

q∗
i
z
G(q∗i bi)fi(bi)dbi

)
fj(z)

∫∞
0

(∫∞
q∗
j

q∗
i
z̃
G(q∗i bi)fi(bi)dbi

)
fj(z̃)dz̃

.

Note that η̃(z) :=
∫∞

q∗
j

q∗
i
z
G(q∗i bi)fi(bi)dbi is non-increasing in z, while η̂(z) := G(q∗j z)Fi(

q∗j
q∗i
z)

is nondecreasing in z. Hence, for any z′ > z,

f̃j(z
′)

f̃j(z)
=
η̃(z′)fj(z

′)

η̃(z)fj(z)
≤ fj(z

′)

fj(z)
≤ η̂(z′)fj(z

′)

η̂(z)fj(z)
=
f̂j(z

′)

f̂j(z)
, (20)

whenever the left-most and right-most terms are well defined.
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The inequality (20) means that f̂ likelihood-ratio dominates f̃ , which proves the first

inequality of (19). When combined, (17), (18), and (19) imply that q∗ satisfies (2). The con-

struction of ψ implies that q∗ satisfies (3). ‖

Step 4: The largest fixed point q∗ of ψ is the largest equilibrium.

Proof: Suppose to the contrary that there is an equilibrium q̂ 6≤ q∗. Define a mapping

ψ̂ :
∏

i∈N [q̂i, 1]→
∏

i∈N [q̂i, 1] such that for each q = (q1, ..., qn) ∈
∏

i∈N [q̂i, 1],

ψ̂i(q1, ..., qn) := max

{
q′i ∈ [q̂i, 1]

∣∣∣∣E[bi | q′ibi ≥ qjbj,∀j 6= i] ≥ b0

}
,

again with the convention that max ∅ := 0. Since q̂ is an equilibrium, it must satisfy (2), so

ψ̂i(q̂) ≥ q̂i. Hence the mapping is well defined on the restricted domain. Further, since ψi(q̂) ≥ q̂i
for each i, it must be that ψ̂(q) = ψ(q) for any q ∈

∏
i∈N [q̂i, 1]. Hence ψ̂ is monotonic, and

Tarski’s fixed point theorem implies existence of a fixed point, say q̂+. By construction, q̂+ ≥ q̂.

Evidently, q̂+ is a fixed point of ψ as well (in the unrestricted domain). Since q∗ is the largest

fixed point, we must have q∗ ≥ q̂+ ≥ q̂, a contradiction. The result follows since q∗ is an

equilibrium by Step 3. ‖

Step 5: If q∗ 6= 0, then q∗ � 0 and q∗1 = 1.

Proof: Suppose q∗ 6= 0. Then, there must exist k ∈ N such that q∗k > 0. Fix any i 6= k.

By (A3), there exists α > 0 such that

b0 ≤ E
[
bi

∣∣∣∣bi > αbk

]
= E

[
bi

∣∣∣∣ (q∗kα
)
bi > q∗kbk

]
≤ E

[
bi

∣∣∣∣ (q∗kα
)
bi > q∗j bj,∀j

]
,

which implies that, for qi = q∗

α
> 0, E

[
bi

∣∣∣∣qibi > q∗j bj,∀bj
]
≥ b0. It follows that q∗i = ψi(q

∗) ≥

qi > 0. We have thus proven q∗ � 0. Step 1 then implies that q∗i ≥ q∗j for any i < j. Suppose

q∗1 < 1. Then, it must be that E[bi | q∗i bi = maxk∈N q
∗
kbk] = b0 for all i ∈ N . Now consider

q∗ =
(

1
q∗i

)
q∗. Clearly, q∗ is also an equilibrium and q∗ � q∗, which contradicts Step 4. ‖

Step 6: Let q∗(b0) denote the largest equilibrium under outside option b0. Then, q∗(b0) ≥ q∗(b′0)

for b0 < b′0. If b0 < b′0 and q∗(b′0) ∈ (0,1), then q∗(b0) > q∗(b′0).

Proof: Write ψ(q; b0) in (16) to explicitly recognize its dependence on b0. It is easy to see

that ψi(q; b0) is nonincreasing in b0. It follows that the largest fixed point q∗(b0) is nonincreasing

in b0, proving the first statement. To prove the second, let b0 < b′0 and q∗(b′0) ∈ (0,1). The

statement holds trivially if q∗(b0) = 1. Hence, assume q∗(b0) < 1. By Step 1 and Step 5, we

must have q∗n(b0) ∈ (0, 1), and this implies that E[bn|q∗n(b0)bn = maxk∈N q
∗
k(b0)bk] = b0 < b′0.

Clearly, q∗(b0) 6= q∗(b′0). By the first statement, it follows that q∗(b0) > q∗(b′0). ‖

Step 7: The truthful equilibrium exists if and only if b0 ≤ b∗0 := E[bn|bn = maxj∈N bj].
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Proof: If b0 ≤ b∗0, then (R1′) implies that b0 ≤ E[bi|bi = maxj∈N bj] for all i ∈ N , so there

is a truthful equilibrium. If b0 > b∗0, q = 1 clearly violates (2), so there cannot be a truthful

equilibrium. ‖

Step 8: There exists b∗∗0 ≥ b∗0 such that the largest equilibrium is q∗(b0) ∈ (0,1)—it is a

pandering equilibrium—if b0 ∈ (b∗0, b
∗∗
0 ) and it is zero equilibrium if b0 > b∗∗0 . For any b0, b

′
0 ∈

(b∗0, b
∗∗
0 ) such that b0 < b′0, q∗(b0) > q∗(b′0).

Proof: The first statement follows directly from Steps 1, 5, 6, and 7. The second statement

follows directly from Step 7 by noting that q∗(b′0) ∈ (0,1). ‖ Q.E.D.

Remark 1. Unlike with Theorem 1, the largest equilibrium may not be the best equilibrium

when there are many projects.36 Yet, it is compelling to focus on. First, it clearly maximizes

the agent’s (interim) payoff. Second, there is a sense in which any non-zero equilibrium q where

qi = 0 for some i must be supported with “unreasonable”off-path beliefs. Informally, a forward-

induction logic goes as follows: by proposing a project i when qi = 0 (which is off the equilibrium

path in a non-zero equilibrium), the agent must be signaling that i is sufficiently better than all

the projects that he could get implemented with positive probability. So the DM should focus

her beliefs on those types that would have the most to gain from such a deviation. Naturally,

the agent has more to gain the higher is bi. But then, with enough weight of beliefs on high bi’s,

the DM should accept i with probability one, contradicting qi = 0. This intuition is formalized

in Appendix G, where we show that the D1 criterion of Cho and Kreps (1987) rules out any

equilibrium q 6= 0 with qi = 0 for some i.37 Given that when q∗ 6= 0 it will generically be the

only equilibrium where all projects are implemented with positive probability on the equilibrium

path,38 and q∗ is obviously better for both players than the zero equilibrium, we find it reasonable

to focus on q∗.

Focusing on the largest equilibrium, the comparison pitching result of Theorem 2 can also

be generalized to the multi-project environment:

Theorem 9. Fix b0 and an environment F = (F1, . . . , Fi, . . . , Fn) that satisfies strong ordering

(Definition 3). Let F̃ = (F1, . . . , F̃i, . . . , Fn) be a new environment such that either

(a) F̃ satisfies strong ordering and Fi likelihood-ratio dominates F̃i; or

36To see why, suppose n = 4 and the largest equilibrium is q∗ = (1, q∗2 , q
∗
3 , q
∗
4)� 0 while another equilibrium is

q = (1, q2, q3, 0) with q2 > 0 and q3 > 0. Even if q∗2 > q2 and q∗3 > q3, so that q∗ has less pandering than q toward
project one, it could be that q∗ has more pandering toward project two over three than q, i.e. 1 > q3/q2 > q∗3/q

∗
2 .

If projects two and three are ex-ante significantly more likely to be better than projects one and four, it is possible
that the DM could prefer q over q∗.

37To circumvent the usual problems of refinement in cheap-talk games, we apply the refinement in a restricted
“veto game” where the DM can only choose between the proposed project and the outside option. This is no longer
a cheap-talk game, but as mentioned previously in fn. 11, is almost equivalent for our purposes. Specifically, any
equilibrium we consider in the cheap-talk game has a counterpart in the veto game.

38A proof of this statement is available on request.
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(b) F̃i is a degenerate distribution at zero.

In either case, let q∗ and q̃∗ denote the largest equilibria respectively under F and F̃. Then

q∗ ≥ q̃∗; moreover, q∗ > q̃∗ if q̃∗ 6= 1 and q∗ > 0 and either (b) holds or the likelihood-ratio

dominance in (a) is strict.

Proof. The proof is very similar to that of Theorem 2, so we do not reproduce the entire argument.

The key difference is that instead of inequality (10), we must now show that for any j ∈ N ,

E[bj|q̃∗j bj = max
k∈N

q̃∗kbk] ≥ E[b̃j|q̃∗j b̃j = max
k∈N

q̃∗k b̃k]. (21)

(As before, case (b) is straightforward, so we focus on case (a) of the Theorem so that F̃i is not

degenerate at zero, and moreover, we can assume q̃∗ � 0.) For j = i, (21) follows from likelihood-

ratio dominance of Fi over F̃i. For j 6= i, (21) is proven as follows. Define x := maxk 6=i,j q̃
∗
kbk,

and let G be its cumulative distribution function. We can write

E[bj | q̃∗j bj = max
k∈N

q̃∗kbk] =

∫∞
0
bjG(q̃∗j bj)Fi(

q̃∗j
q̃∗i
bj)fj(bj)dbj∫∞

0
G(q̃∗j bj)Fi(

q̃∗j
q̃∗i
bj)fj(bj)dbj

=

∫ ∞
0

bkj(b)db,

where kj(z) :=
G(q̃∗j z)Fi(

q̃∗j
q̃∗
i
z)fj(z)∫∞

0 G(q̃∗j z̃)Fi(
q̃∗
j

q̃∗
i
z̃)fj(z̃)dz̃

. Likewise,

E[b̃j | q̃∗j b̃j = max
k∈N

q̃∗k b̃k] =

∫ ∞
0

bk̃j(b)db,

where k̃j(z) :=
G(q̃∗j z)F̃i(

q̃∗j
q̃∗
i
z)fj(z)∫∞

0 G(q̃∗j z̃)F̃i(
q̃∗
j

q̃∗
i
z̃)fj(z̃)dz̃

. To prove inequality (21), it suffices to show that kj

likelihood-ratio dominates k̃j. Consider any b′ > b. Algebra shows that

kj (b′)

kj (b)
≥ k̃j (b′)

k̃j (b)
⇔

Fi

(
q̃∗j
q̃∗i
b′
)

Fi

(
q̃∗j
q̃∗i
b
) ≥ F̃i

(
q̃∗j
q̃∗i
b′
)

F̃i

(
q̃∗j
q̃∗i
b
) ,

which is the same inequality as we had in the proof of Theorem 2, so again the right-hand side of

the equivalence is implied by the hypothesis that Fi likelihood-ratio dominates F̃i (see the earlier

proof for additional details).

To finish the proof of the first part of the Theorem, let ψ and ψ̃ denote the mappings (16)

for environments F and F̃, respectively. Then, (21) means that ψ(q̃∗) ≥ ψ̃(q̃∗). This implies

that there exists a fixed point of ψ weakly greater than q̃∗. It follows that q∗ ≥ q̃∗.
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Just as in the proof of Theorem 2, the second part of the current Theorem follows from

the fact that inequality (21) has to hold strictly when the likelihood-ratio domination of Fi over

F̃i is strict; hence ψ(q̃∗) > ψ̃ (q̃∗), whereby q∗ > q̃∗. Q.E.D.

D Leading Examples

This Appendix provides detailed computations for the leading examples with n = 2. We prove

that they satisfy strong ordering and verify the expressions provided in Examples 1 and 2.

D.1 Scale-invariant Uniform Distributions

Assume that b2 is uniformly distributed on [0, 1], while b1 is uniformly distributed on [v, 1 + v]

with v > 0. Assumption (A1) requires b0 < 1; this also guarantees (A3).

Strong ordering: We compute

E[b2|b2 > αb1] =

∫ 1+v

v

∫ 1

αb1
b2db2db1∫ 1+v

v

∫ 1

αb1
db2db1

=
3v2α2 + 3vα2 + α2 − 3

3α + 6vα− 6
for α ∈

[
0,

1

1 + v

]
,

and

E[b2|b2 > αb1] =

∫ 1/α

v

∫ 1

αb1
b2db2db1∫ 1/α

v

∫ 1

αb1
1db2db1

=
2

3
+
α

3
v for α ∈

(
1

1 + v
,

1

v

]
. (22)

Both expressions are increasing in α in the relevant range. Note that E[b2|b2 > αb1] is not

defined for α > 1/v.

Similarly, it can be computed that

E[b1|b1 > αb2] =


v + 1

2
if α ≤ v

−2v3+3v2α+6vα−α3+3α
−3v2+6vα−3α2+6α

if α ∈ (v, 1 + v)
6v2+6v+2

6v+3
if α ≥ 1 + v

(23)

and hence is non-decreasing in α.

The Largest Equilibrium: From Theorem 1 and formula (22),

b∗0 = E[b2|b2 > b1] =
2

3
+
v

3
.

For b0 > b∗0, a pandering equilibrium q∗ = (1, q∗2) with q∗2 ∈ (0, 1) requires E[b2|b2 > b1/q
∗
2] = b0.
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Substituting from (22) yields the solution

q∗2(b0) =
v

3b0 − 2
(24)

so long as the right hand side above is larger than v, which is guaranteed since b0 < 1. That

q∗1 = 1 implies E[b1|b1 > q∗2(b0)b2] ≥ b0, into which we substitute (24) to obtain

E
[
b1|b1 >

v

3b0 − 2
b2

]
≥ b0.

By substituting from (23), it can be verified that the left-hand side of the above expression is

continuous and weakly decreasing in b0, while the right-hand side is, obviously, strictly increasing.

Moreover, by the definition of b∗0, E
[
b1|b1 > v

3b∗0−2
b2

]
= E[b1|b1 > b2] > b∗0. Therefore, there is a

unique b∗∗0 such that

E
[
b1|b1 >

v

3b∗∗0 − 2
b2

]
= b∗∗0 ,

and b∗∗0 > b∗0. It can be verified that b∗∗0 < 1 if and only if v < 1
2
. It follows that a pandering

equilibrium q∗ = (1, q∗2) with q∗2 ∈ (0, 1) exists if and only if b0 ∈ (b∗0,min{1, b∗∗0 }). If b∗∗0 < 1 (i.e.,

v < 1/2), then for b0 ∈ (b∗∗, 1) the only equilibrium is q = (0, 0).

Remark 2. Finally, what happens if b0 > 1, so that Assumptions (A1) and (A3) fail? If v < 1/2,

then E[b1] = v+ 1
2
< b0, hence q = (0, 0) is the only equilibrium. If v > 1

2
, then for b0 ∈

(
1, 1

2
+ v
)
,

q = (1, 0) is the only equilibrium, whereas for b0 >
1
2

+ v, q = (0, 0) is the only equilibrium.

Thus, a violation of (A1) and (A3) allow for the non-influential equilibrium (1, 0) to be the largest

equilibrium for certain values of b0.

D.2 Exponential Distributions

Assume that b1 and b2 are exponentially distributed with respective means v1 and v2, where

v1 > v2 > 0. Assumption (A1) is obviously satisfied for any b0 ∈ R++; we will show below that

(A3) requires b0 < 2v2.

Strong Ordering: Denoting the project densities respectively by f1(·) and f2(·), we have that

E[b1|b1 > b2] =

∫∞
0

(E[b1 > b2|b2] Pr(b1 > b2|b2)f2(b2)db2∫∞
0

Pr(b1 > b2|b2)f2(b2)db2

=
v1 + v2
v1

∫ ∞
0

(v1 + b2)e
− 1

v1
b2

(
1

v2
e
− 1

v2
b2

)
db2

=

∫ ∞
0

(v1 + b2)

(
v1 + v2
v1v2

)
e
−
(

v1+v2
v1v2

)
b2db2

= v1 +
v1v2
v1 + v2

.
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Similarly,

E[b2|b2 > b1] = v2 +
v1v2
v1 + v2

.

Moreover, since αbi is exponentially distributed with mean αvi, the above calculations imply

E[bi|bi > αbj] = vi +
αvivj
vi + αvj

. (25)

Since the right-hand side above is strictly increasing in α for any α ∈ R+, strong ordering is

satisfied. Note that since limα→∞ E[bi|bi > αbj] = 2vi, Assumption (A3) requires b0 < 2v2.

The Largest Equilibrium: From Theorem 1 and equation (25),

b∗0 = E[b2|b2 > b1] = v2 +
v1v2
v1 + v2

.

For b0 > b∗0, a pandering equilibrium q = (1, q∗2) with q∗2 ∈ (0, 1) requires E[b2|b2 > b1/q
∗
2] = b0.

Substituting from (25) yields the solution

q∗2(b0) =
v1
v2

(
2v2 − b0
b0 − v2

)
. (26)

That q∗1 = 1 implies E[b1|b1 > q∗2(b0)b2] ≥ b0, into which we substitute (25) to obtain

3v1 − b0
v1
v2
≥ b0.

Since the left-hand side of the this inequality is decreasing in b0 and the right-hand side is

increasing in b0, the inequality is satisfied if and only if

b0 ≤ b∗∗0 =
3v1v2
v2 + v1

Note that b∗∗0 < 2v2 if and only if v1 < 2v2. It follows that a pandering equilibrium q∗ = (1, q∗2)

with q∗2 ∈ (0, 1) exists if and only if b0 ∈ (b∗0,min{b∗∗0 , 2v2}). If b∗∗0 < 2v2 (i.e., if v1 < 2v2), then

for b0 ∈ (b∗∗0 , 2v2), the only equilibrium is q = (0, 0).

DM’s Expected Payoff: If b0 < b∗0, the DM’s ex-ante expected payoff is

πt := E [max {b1, b2}]

=

(
v1

v1 + v2

)(
v1 +

v1v2
v1 + v2

)
+

(
v2

v1 + v2

)(
v2 +

v1v2
v1 + v2

)
= v1 + v2 −

v1v2
v1 + v2

.
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For b0 ∈ (b∗0,min{b∗∗0 , 2v2)), the DM’s expected payoff is

πp := Pr(b1 > q∗2(b0)b2)E[b1|b1 > q∗2(b0)b2] + Pr(q∗2(b0)b2 > b1)b0

=

(
v1

v1 + q2v2

)(
v1 +

v1q2v2
v1 + q2v2

)
+

(
q2v2

v1 + q2v2

)
b0

=

(
v1

v1 + q2v2

)(
3v1 − b0

v1
v2

)
+

(
q2v2

v1 + q2v2

)
b0

=
1

(v2)2
(
2b0(v2)

2 − (v2 + v1)(b0)
2 + 4b0v1v2 − 3v1(v2)

2
)

= πt − (v1 + v2)

v22
(b0 − b∗0)

2 .

Finally, if b0 > (b∗∗0 , 2v2), the DM’s expected payoff is just b0.

Remark 3. What happens if 2v2 < b0, so that Assumption (A3) fails? Then q2 = 0 in any

equilibrium. If v1 < 2v2, then E[b1] = v1 < b0, hence q = (0, 0) is the only equilibrium. If

v1 > 2v2, then for b0 ∈ (2v2, v1), q = (1, 0) is the unique equilibrium whereas for b0 > v1,

q = (0, 0) is the unique equilibrium. Thus, a violation of (A3) allows for the non-influential

equilibrium (1, 0) to be the largest equilibrium, for certain values of b0.

E Simple Randomization by the DM

This Appendix shows that for two projects there is no perfect Bayesian equilibrium where the

DM puts positive probability on both projects for a positive measure of agent types, except for

knife-edged prior distributions.

To this end, consider any equilibrium (µ, α), where µ : B →M is the agent’s pure strategy

and α : M → ∆({0, 1, 2}) is the DM’s possibly-mixed strategy. For any m ∈ M , α(i|m) is the

probability that the DM chooses project i following message m.

Suppose there is an on-path message m∗ such that min {α (1|m∗) , α (2|m∗)} > 0. (If m∗

does not exist, we are done.) We can assume that there is some other on-path message that

induces a different action distribution from the DM, because otherwise E [b1] = E [b2], which is

knife-edged. Moreover, no on-path message can lead to the status quo with probability 1, since

the agent will never use such a message given the availability of m∗.

Step 1: There exist constants q1 > α (1|m∗) and q2 > α (2|m∗) such that for any on-path

message m, either(i) α (m) = α (m∗), or (ii) α (1|m) = 0 and α (2|m) = q2, or (iii) α (1|m) = q1
and α (2|m) = 0.

To prove this, suppose m is on path and α (m) 6= α (m∗). We cannot have the agent

strictly prefer m∗ to m or vice-versa independent of his type, so suppose α (1|m) > α (1|m∗) and

α (2|m∗) > α (2|m), with the opposite case treated symmetrically below. Then m∗ will be used
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by the agent only if

b1α (1|m∗) + b2α (2|m∗) ≥ b1α (1|m) + b2α (2|m) ,

or b2 ≥ b1k, where k := α(1|m)−α(1|m∗)
α(2|m∗)−α(2|m)

. If k ≥ 1, E [b2|m∗] > E [b1|m∗], which cannot be,

hence k < 1. Analogously, message m will be used by the agent only if b1 ≥ b2
k

. Since k < 1,

E [b2|m] < E [b1|m], which implies that α (2|m) = 0 < α (1|m).

A symmetric argument applies to the case of α (1|m) < α (1|m∗) and α (2|m∗) < α (2|m),

establishing that in this case α (2|m) > 0 = α (1|m).

Finally, note that all on-path messages that lead to (possibly degenerate) randomization

between project 1 and the outside option must put the same probability on project 1, call it q1,

and this must be strictly larger than α (1|m∗) — otherwise they would not be used. Analogously

for project 2 and the outside option.

Step 2: Suppose there is an on-path message m1 such that α (1|m1) = q1 and an on-path

message m2 such that α (2|m2) = q2. We cannot have q1 = q2 = 1, for then only at most a zero

measure of types will induce randomization from the DM. So suppose q1 = 1 > q2. Then m∗

will only be used by types such that b2 > b1, contradicting E [b2|m∗] = E [b1|m∗]. Similarly for

q1 < 1 = q2. Therefore, max {q1, q2} < 1, which implies

E [b1|m1] = E [b2|m2] = b0. (27)

Since m1 is used by the agent when

q1 − α (1|m∗)
α (2|m∗)

b1 ≥ b2,

and m2 is used by the agent when

α (1|m∗)
q2 − α (2|m∗)

b1 ≤ b2,

we can visualize the b1 − b2 rectangle as being partitioned into three regions by the two

line segments b2 = xb1 and b2 = yb1 where x := q1−α(1|m∗)
α(2|m∗) and y := α(1|m∗)

q2−α(2|m∗) . Message m1 is

used in the bottom region, m∗ in the middle region, and m2 in the top region. Hence, any prior

distribution that solves (27) and also satisfies E [b1|m∗] = E [b2|m∗] is knife-edged.

Step 3: Suppose that any on-path message m with α (m) 6= α (m∗) has α (2|m) = 0. (A

symmetric argument applies to the other case where α (1|m) = 0.) Then there is some m1 with

α (1|m1) = q1. We must have q1 < 1 because otherwise the agent will use m1 whenever b1 ≥ b2,

contradicting E [b1|m∗] = E [b2|m∗]. Thus E [b1|m1] = b0. But now analogously to step 2, we can
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view the type space as partitioned into two regions by a line segment

b2 =
q1 − α (1|m∗)
α (2|m∗)

b1,

with message m1 used in the lower cone and m∗ in the upper cone. For non-knife-edge

priors, the requirement that E [b1|m1] = b0 will imply a finite number of candidates for q1−α(1|m∗)
α(2|m∗) ,

none of which will also yield E [b1|m∗] = E [b2|m∗].

F Revelation of Verifiable Information

In this Appendix, we show how revelation of hard information by the agent can lead to asym-

metries in soft information about projects. This formalizes the assertion in Section 2.2 that

asymmetric distributions for the project values can be viewed as resulting from either asymme-

tries that are directly observable to the DM or private but verifiable information of the agent

that is fully revealed.

Formally, suppose that all projects are ex-ante identical. Each project i independently

draws from a distribution G(·) a verifiable component, vi ∈ V , where V is a compact subset of R.

Thereafter, each project draws it’s value bi independently from a family of distributions F (bi|vi)
with density f(bi|vi). The agent privately observes the vector (v,b) and then communicates

with the DM in two stages. First, he sends a vector of messages r := (r1, . . . , rn) about v subject

to the constraint that for each i,

ri ∈ {X : X ⊆ V,X is closed, vi ∈ X}.

This formulation captures that each vi is hard information: the agent can claim that vi lies in

any subset of V so long as the claim is true. Thereafter, the agent sends a cheap-talk message

just as in our baseline model. Finally, the DM implements a project or the outside option.

The key assumption we make is that the distributions F (b|v) satisfy the monotone likelihood-

ratio property (MLRP): if v > v′, then for all b > b′, f(b|v)
f(b′|v) >

f(b|v′)
f(b′|v′) . Moreover, assume that for

any vector of hard information, v, the project distributions (F (·|v1), . . . , F (·|vn)) satisfy strong

ordering.

Proposition 1. In this extended model with privately observed hard information, there is an

equilibrium where the agent fully reveals his hard information by sending ri = vi, and the subse-

quent cheap-talk subgame outcome is identical to the largest equilibrium, q∗, of our baseline model

where each Fi = F (·|vi).

Proof. Consider a skeptical posture by the DM, where for any hard information report ri ⊆ V ,

the DM believes that vi = min ri. Then for any profile r, the DM plays the q∗ associated with
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our baseline model where each Fi = F (·|min ri). Since F (b|v) has the MLRP, Theorem 9 implies

that if the agent deviates from r = v to any other hard information report, he only induces

a weakly smaller acceptance profile from the DM in the ensuing cheap-talk game. Thus the

agent can do no better than playing ri = vi and then playing according to q∗ of the game where

Fi = F (·|vi). Plainly, the DM is playing optimally as well. Q.E.D.

G Equilibrium Refinement

This Appendix shows how a formal refinement can be used to justify focussing on the largest

equilibrium, q∗, even when n > 2. Recall from Remark 1 that although q∗ is the best equilibrium

when n = 2, this need not be the case when n > 2. We show here that if an equilibrium q survive

an appropriate belief-based refinement, then either q = 0 or q � 0. Since q∗ is generically the

only equilibrium where all projects are accepted with positive probability when recommended

(assuming a non-zero equilibrium exists), and it is better than the zero equilibrium, this provides

a rationale to focus on the largest equilibrium.

G.1 Preliminaries

The refinement we use is the D1 criterion of Cho and Kreps (1987); some other criteria based

on strategic stability such as universal divinity (Banks and Sobel, 1987) would yield the same

conclusion. Since standard belief-based refinements are powerless in cheap-talk games,39 we apply

the D1 refinement to a slightly restricted “veto game” where the DM must choose between the

project proposed by the agent and the outside option. To be clear: the only difference between

the veto game and the equilibrium class we study in the cheap-talk game is that in the latter,

the DM is allowed to choose one of the alternative projects that are not proposed by the agent.

Any of the equilibria we study in the cheap-talk game is an equilibrium of the veto game,40

and accordingly we believe that focussing on the veto game to apply belief-based refinements is

reasonable.

One final note before introducing the refinement: we will assume here that bi > 0 for all

i. This is to ensure that no matter the realization of b, the agent strictly prefers getting any

project implemented over the outside option. The case of bi = 0 for some i can be accommodated

along similar lines, but requires some additional care.41

39Cheap-talk refinements such as Farrell’s (1993) neologism proofness or Chen, Kartik and Sobel’s (2008) no
incentive to separate are not sufficient here either.

40The converse is not always true, because one can support “perverse” equilibria in the veto game that would
not be equilibria in the cheap-talk game. But since our goal is to refine the set of equilibria of the cheap-talk
game, this is immaterial.

41To elaborate: we would then have to assume that the agent’s utility from project i is u+ bi for some u > 0.
While this would alter the exact equilibrium vector q∗ compared to the baseline model where u = 0, it does not
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G.2 The D1 refinement

Given any equilibrium q, define the sets

Di (b) :=
{
x ∈ [0, 1] : xbi ≥ max

k
qkbk

}
,

D+
i (b) :=

{
x ∈ [0, 1] : xbi > max

k
qkbk

}
.

Either of these sets may be empty. In words, relative to a given equilibrium, Di (b) is the

set of acceptance probabilities of project i that would make the agent of type b weakly prefer

proposing project i compared to following the equilibrium strategy, and similarly for D+
i (b) with

strict preference.

We can now state Cho and Kreps’s (1987) D1 criterion adapted to our framework. Recall

that in any equilibrium, if qi > 0, then i is proposed on the equilibrium path; on the other

hand, if q > 0, qi = 0 implies that project i is never proposed and hence is an out-of-equilibrium

project.

Definition 4. An equilibrium with q > 0 satisfies the D1 criterion if for any i such that qi = 0,

µ (b|i) = 0 if there exists b′ s.t. Di (b) ⊆ D+
i (b′) ,

where µ (·|i) is the DM’s equilibrium belief about project values when project i is proposed.

To interpret, note that an equilibrium with q > 0 and qi = 0 must have Eµ(·|i) [bi] ≤ b0;

otherwise, sequential rationality requires qi = 1. D1 requires that we support this behavior of

the DM with beliefs that put zero probability on any type b such that there is some other type,

b′ that would strictly prefer to propose the project for any acceptance probability for which b

weakly prefers proposing it to equilibrium. Intuitively, in such case, b′ is “more likely” to deviate

to project i than b, and the D1 criterion requires that b be eliminated from the support of the

DM’s beliefs when i is proposed.

G.3 Selection

The following result shows that any non-zero equilibrium that satisfies the D1 criterion must

have all projects proposed in equilibrium.

Proposition 2. Any equilibrium q > 0 satisfies the D1 criterion only if q� 0.

qualitatively change any of the results. The refinement analysis below would go through with this specification
even if bi = 0 for any i.
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Proof. Suppose not, toward a contradiction. Then there is D1 equilibrium where q > 0 but

qi = 0 for some j 6= i. We will argue that for any b with bi ≤ b0, D1 requires that µ (b|i) = 0;

this proves the proposition because it implies that Eµ(·|i) [bi] > b0, contradicting qi = 0. Note

that since bi > 0 for all i, maxk qkbk > 0.

First consider any b such that bi ≤ b0 and bi ≤ maxk qkbk. Then either Di (b) = {1} or

Di (b) = ∅. On the other hand, for any b′ such that b′i > maxk 6=i b
′
k, D

+
i (b′) ⊇ {1}. Hence D1

requires that µ (b|i) = 0.

Now consider any b such that bi ≤ b0 and bi > maxk qkbk. Then Di (b) =
[
maxk

qkbk
bi
, 1
]
(

[0, 1]. Consider b′ such that b′k = bk for all k 6= i, and b′i > b0. For any x ∈ Di (b), xb′i >

maxk qkb
′
k, and hence Di (b) ⊆ D+

i (b′). So again, D1 requires that µ (b|i) = 0 . Q.E.D.
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