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Abstract

Branch selection is a key decision in a cadet’s military career. Cadets at USMA can

increase their branch priorities at a fraction of slots by extending their service agree-

ment. This real-life matching problem fills an important gap in market design literature.

Although priorities fail a key substitutes condition, the agent-optimal stable mechanism

is well-defined, and in contrast to the current USMA mechanism it is fair, stable, and

strategy-proof. Adoption of this mechanism benefits cadets and the Army. This new

application shows that matching with contracts model is practically relevant beyond tra-

ditional domains that satisfy the substitutes condition.
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1 Introduction

As a response to historically low retention rates among junior officers, a group of economists and

senior officers at West Point’s Office of Economic and Manpower Analysis (OEMA) designed

a program called the Officer Career Satisfaction Program (OCSP) in the mid 2000s to boost
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career satisfaction and retention.1 OCSP consists of three incentive programs, each of which

carries a “price” of an additional three years of active duty service for a total of eight years for

United States Military Academy (USMA) cadets. The program is completely voluntary and

cadets can choose any two of the following three incentive programs: (1) graduate school, (2)

Branch-of-Choice, and (3) Base-of-Choice. The first incentive program is an option for two

years of fully funded graduate school that vests once the officer completes his initial five-year

commitment along with his additional three-year commitment. The second incentive program

is a contract where the cadet agrees to serve an additional three years in exchange for a specific

career specialty, or “branch” in military language. The final incentive program is a contract

where the cadet agrees to serve an additional three years in exchange for the base of the cadet’s

choice for his first assignment. Across years 2006 to 2009, the Army has gained a total of 17,596

man-years through the OCSP increasing the expected eight-year continuation rate of officers

from 47 percent to 67 percent (Wardynski, Lyle, and Colarusso 2010). Slightly more than 60

percent of this gain is due to a carefully designed Branch-of-Choice incentive program that has

been implemented through the USMA mechanism, an “indirect extension” of the celebrated

Gale-Shapley (1962) agent-optimal stable mechanism.

The agent-optimal stable mechanism and its extensions have had a profound influence on

market design. Versions of this mechanism are the basis of various labor market clearinghouses2

and have recently been adopted by school choice programs in Boston and New York City.3 An

important factor in this unmatched success of the agent-optimal stable mechanism is that once

the above-mentioned market design applications were carefully formulated, the “Gale-Shapley

program” was able to deliver much of the rest. By contrast, the introduction of the branch-of-

choice incentive makes the cadet-branch matching problem analytically more challenging than

basic two-sided matching models. Indeed, the novel branch priorities the Army adopted with its

incentive program do not satisfy a substitutes condition, which was thought to be a necessary

condition to apply the Gale-Shapley program when the Army started implementing the OCSP

in 2006. That the substitutes condition is not necessary was only recently discovered by Hatfield

and Kojima (2008). It is fair to suggest that the USMA mechanism was designed at a time

1See Wardynski, Lyle and Colarusso (2010) for a comprehensive review.
2See Roth and Peranson (1999) for the best known of these labor market clearinghouses, the medical resident

market in the U.S.
3See Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu, Pathak and Roth (2005), Abdulkadiroğlu, Pathak,

Roth, and Sönmez (2005).
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when market designers did not fully understand priority-based indivisible goods allocation in

the absence of the substitutes condition. Fortunately, significant progress has been made since

then, most notably by Hatfield and Kojima (2008, 2010). Building on these recent advances,

we show that the challenges introduced to cadet-branch matching with the branch-of-choice

incentive program can be overcome fairly easily without disrupting the core of the current

USMA matching system.

Prior to implementation of the OCSP, the assignment of cadets to branches was a relatively

straightforward task. Cadets at USMA have a strict priority ranking known as an order of merit

list (OML) that is based on a weighted average of academic performance, physical fitness test

scores, and military performance. The Army had been using the serial dictatorship induced by

the OML to assign slots at 16 branches to cadets. The highest-priority cadet was assigned his

top choice, the second-priority cadet was assigned his top choice among the remaining choices,

and so on. This mechanism is the only mechanism that is Pareto efficient and fair in the sense

that a higher-priority cadet would never envy the assignment of a lower-priority cadet (Balinski

and Sönmez 1999). Moreover, it is strategy-proof, and hence, truthful-preference revelation was

always in the cadets’ best interests. With the introduction of branch-of-choice incentives, the

Department of the Army decided to change branch priorities as outlined in its October 1, 2007

dated memorandum to the USMA superintendent:

Cadets will be branched with the initial objective that the first 75 percent of each

branch allocation is assigned by CPR. The DCS, G-1 may adjust the 75 percent

target based on the needs of the Army. The remaining branch allocations will be

distributed in CPR order to cadets who are willing to extend their ADSO by three

years to secure their branch of choice. Once all volunteers are exhausted, remaining

branch allocations will be distributed in CPR order.4

Along with this change in branch priorities, the nature of the outcome of the cadet-branch

matching problem has changed as well, because cadets are assigned branch-price pairs under

the new problem. Since the Kelso and Crawford (1982) extension of the agent-optimal stable

mechanism allows for wages, it is a natural candidate to consider as a solution to the new

4Here CPR stands for cadet performance rank, ADSO stands for active duty service obligation, and the

Deputy Chief of Staff, G-1 (DCS, G-1) is responsible for developing policy pertinent to active duty service

obligations.
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problem. This approach, however, is not fruitful because a substitutes condition that is key

in Kelso and Crawford (1982) is not satisfied in the present context. As discussed above, the

market design literature has been silent about matching problems when part of the allocation

is assigned based on priorities and the remainder based on willingness to pay an additional cost

coupled with priorities.

In this paper, we show that while the USMA mechanism introduced with OCSP lacks many

of the desirable features of its predecessor, the Army’s design is very close to what we argue is

the perfect mechanism for this task. We believe adoption of this strategy-proof cadet-optimal

stable mechanism will not only increase cadet satisfaction with the branch-of-choice incentive

program but also provide the Army with very valuable information on cadet preferences that can

be used to estimate the full potential of branch-of-choice incentive in terms of gained man-years.

As mentioned in the above memorandum, the fraction of slots that will be assigned strictly

based on cadet priorities is somewhat flexible, but given the nature of the game induced by the

USMA mechanism the Army has no way of reliably estimating the impact of the change of this

parameter under the current mechanism. If the cadet-optimal stable mechanism is adopted,

the Army will have a very precise estimate of how many additional man-years can be obtained

with a change in parameters of the problem, including branch capacities and the fraction of

these capacities reserved for cadets willing to pay the increased cost. But this is not the only

reason why the Army benefits by adopting a strategy-proof mechanism. Access to true cadet

preferences is important for the Army since officers who reach the top ranks of the military

tend to come from Combat Arms branches that are disproportionately occupied by whites, and

the relative lack of minorities in these branches has a significant impact on the diversity of the

senior leadership (Lim et al. 2009).

The USMA mechanism induces a relatively complicated game, and, as we have emphasized,

it does not inherit any of its predecessor’s appealing properties. Of particular concern is that,

truth-telling may no longer be an optimal strategy.5 Furthermore, an equilibrium outcome of the

USMA mechanism can be inefficient, unstable, unfair, and may penalize cadets for unambiguous

improvements in their order-of-merit list standings . Building on recent advancements in the

market design literature pioneered by Hatfield and Milgrom (2005), we propose the cadet-

optimal stable mechanism as an alternative. In contrast to the USMA mechanism, this direct

mechanism is strategy-proof, stable, fair, and respects improvements in cadet order-of-merit list

5This observation is first made by Switzer (2011).
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standings. We fully diagnose the cause of all undesired features of the USMA mechanism by

showing that the entire issue emanates from one “shortcut” the mechanism takes. Under the

branch-of-choice incentive program, each branch can be obtained either at the default cost or

at the increased cost. There are 16 branches6 and hence 32 possible branch-cost pairs that

can be assigned to each cadet. The cadet-optimal stable mechanism is a direct mechanism

where each cadet submits his preference ranking of as many as all 32 pairs.7 In contrast, the

USMA mechanism directs each cadet to report a ranking of 16 branches while at the same time

signing a branch-of-choice contract for each branch he is “willing” to pay the increased cost.

Using the branch preferences along with the set of signed branch-of-choice contracts, a proxy-

preference relation over branch-cost pairs is constructed under the USMA mechanism, and a

virtually identical procedure with the cadet-optimal stable mechanism is used to determine

the final outcome. Hence, while cadets can truthfully declare their preferences under our

proposed cadet-optimal stable mechanism, cadets need to represent them as best as they can

using the smaller strategy space available under the USMA mechanism. Whereas agents have

32! possible preference rankings under the cadet-optimal stable mechanism,8 they only have

16! × 216 strategies under the USMA mechanism. Simply put, the strategy-space provided by

the USMA mechanism is not nearly rich enough to reasonably represent cadet preferences.9

The difference between the strategy spaces results in the USMA mechanism losing most (if not

all) of the desirable properties of its predecessor in an otherwise perfect design.

The cadet-branch matching problem is a special case of the matching with contracts model

(Hatfield and Milgrom 2005) that subsumes and unifies the Gale and Shapley (1962) college

admissions model and the Kelso and Crawford (1982) labor market model, among others. This

model has attracted a lot of attention not only because it unifies the above-mentioned models

but also because it relates matching markets to auctions and formulates how the Gale-Shapley

6Female cadets are ineligible for two branches, but we ignore this constraint as it has no impact on our

analysis.
7Since participation in the OCSP incentive program is fully voluntary, cadets do not need to report the

ranking of increased cost alternatives that are worse than all default cost alternatives. Hence each cadet needs

to rank anywhere between 16 and 32 alternatives under the cadet-optimal stable mechanism.
8While we will make some natural assumptions shrinking the size of the strategy space, the cadet-optimal

stable mechanism is well-defined under all 32! preferences.
9The adverse impact of limiting strategy space in simpler school choice environments is well-studied. See

Haeringer and Klijn (2010) for a theoretical analysis and Calsamiglia, Haeringer, and Klijn (2010) for experi-

mental evidence.
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program relates to fixed-point techniques in lattice theory.10 Indeed, not only is our model a

special case of matching with contracts, we believe it is an important special case.

To make this point, we need to briefly discuss two important recent papers. Echenique

(2011) has recently shown that under the substitutes condition of Hatfield and Milgrom, the

matching with contracts model can be embedded within the Kelso and Crawford (1982) labor

market model.11 Many of the results in Hatfield and Milgrom assume the substitutes condition,

and thus Echenique (2011) has shown a (highly non-trivial) isomorphism between these results

and their counterparts in Kelso and Crawford (1982).12 Echenique (2011) emphasizes that

substitutability is key for the embedding to work. In particular, he indicates that a recent

theory paper by Hatfield and Kojima (2010) analyzes matching with contracts under weaker

conditions, and his embedding does not work under their conditions. Although Hatfield and

Kojima (2010) do not offer any applications under their weaker unilateral substitutes condition,

they show that many of the key results still persist under this condition. Remarkably, although

the substitutability condition fails in the context of cadet-branch matching, the unilateral

substitutes condition is satisfied. And thanks to Hatfield and Kojima (2010), results of Hatfield

and Milgrom (2005) that are relevant for cadet-branch matching can all be extended under the

unilateral substitutes condition. In this sense, our paper presents the first practical application

of matching with contracts that cannot be embedded into the Kelso and Crawford labor market

model.

While our main focus is solving the Army’s cadet-branch matching problem, we also extend

our basic model to analyze priority-based allocation of indivisible goods, when agents can “buy”

priority for some of the slots. We allow for a variety of costs for each object type and show how

the Hatfield-Kojima-Milgrom approach can be used to solve these problems. We present an

application to centralized school admissions where part of the seats are allocated at low-tuition

based on priorities while the rest are reserved for high-tuition students. This is reminiscent

of high-tuition seats being reserved for out-of-state students at state universities, although our

model is relevant for centralized admissions. Another application is parking space assignment

where allocation is based on priorities although priorities for some slots can be improved through

higher-cost permits.

10Recent contributions in this research program include Hatfield and Kojima (2008, 2010), Ostrovsky (2008),

and Westkamp (2010).
11Kelso and Crawford (1982) build on the analysis of Crawford and Knoer (1981).
12See also Kominers (2011) for an extension to many-to-many matching.
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The rest of the paper is organized as follows. In Section 2, we introduce the cadet-branch

matching problem as well as the USMA mechanism. In Section 3, we introduce the cadet-

optimal stable mechanism and show that it satisfies a number of desirable properties. In

Section 4, we show that the USMA mechanism is a rough approximation of the cadet-optimal

stable mechanism and as a result it fails all of the above-mentioned desirable properties. In

Section 5, we extend the model and present applications to parking space assignment and school

admissions. We conclude in Section 6.

2 The Cadet-Branch Matching Problem

Prior to 2006, the assignment of cadets to branches at USMA was a basic application of a student

placement problem (Balinski and Sönmez 1999): A number of cadets were to be assigned to a

number of branches based on their preferences over branches, capacities of the branches, and

a unique priority ranking of the cadets. This priority ranking of cadets is known as order-of-

merit list (OML) in military language, and it is based on a order-of-merit score (OMS) that

is constructed as a weighted average of academic performance, physical fitness test scores, and

military performance. The outcome of a problem is a matching of cadets to branches such that

no cadet is assigned to more than one branch and no branch is assigned more cadets than its

capacity. When assigning cadets to branches, it is important to follow the OML: A matching

is fair if a cadet never envies a lower-priority cadet. When there is a unique priority ranking

of agents, there is a perfect solution to a student placement problem. Simply assign the slots

at branches to cadets one at a time based on their preferences following their unique ranking:

The cadet with the highest priority receives his top choice, the next cadet receives his top

choice among the remaining choices, and so on. This direct mechanism is known as a simple

serial dictatorship, and it is the only mechanism that is fair and Pareto efficient (Balinski and

Sönmez 1999). It also has several other plausible properties, including strategy-proofness, and

it was the mechanism of choice at USMA prior to 2006.

2.1 The Model

Each cadet is committed to serve in active military service for five years upon completing his

studies, although the Army naturally wishes them to serve for longer periods. To encourage
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cadets to serve longer, the Army changed the nature of the cadet-branch matching in 2006.

Cadets are now given an option to sign one or more branch-of-choice contracts which increase

their priorities at branches of their choosing in exchange for three additional years of active

military service. A branch-of-choice contract does not guarantee a cadet will receive a slot at a

branch and nor does signing one necessarily oblige him for the three additional years of service

even if the cadet is assigned a slot at the branch. Loosely speaking, the Army has changed

the priorities only for the last 25 percent of the slots at each branch and has given priority to

cadets who have committed for three additional years of service at these slots. A cadet who

signed a branch-of-choice contract is obliged to serve the additional three years of service only

if he receives a slot from the last 25 percent of the capacity of a branch.

The addition of branch-of-choice contracts changes the structure of the cadet-branch match-

ing problem considerably. Most importantly, the outcome of the problem is no longer merely an

assignment of branches to cadets but rather an assignment of branches along with the terms of

these assignments. Cadets now have to evaluate branches together with their “cost” (in terms

of service years), and the above-mentioned fairness requirement needs to be modified to take

the branch-of-choice contracts into consideration. We are now ready to formally introduce the

problem.

A cadet-branch matching problem consists of

1. a finite set of cadets I = {i1, i2, . . . , in},

2. a finite set of branches B = {b1, b2, . . . , bm},

3. a vector of branch capacities q = (qb)b∈B with
∑

b∈B qb ≥ n,

4. a pair of “terms” T = {t0, t+},

5. a list of cadet preferences P = (Pi1 , Pi2 , . . . , Pin) over B × T , and

6. a priority ranking π : I → {1, . . . , n}.

Since the problem is motivated by the application at military academy, we refer t0 as the base

cost and t+ as the increased cost . We assume that cadet preferences are strict and they are

such that for any cadet i ∈ I and any pair of branches b, b′,

(b, t0)Pi(b
′, t0)⇔ (b, t+)Pi(b

′, t+).
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Hence cadet preferences over branches is independent of the service obligation, and thus each

cadet has well-defined preferences over branches. Let �i denote cadet preferences over branches

alone. For any cadet i and any pair of branches b, b′, we have

b �i b′ ⇔ (b, t0)Pi(b
′, t0)⇔ (b, t+)Pi(b

′, t+).

Let P denote the set of all preferences over B×T , and Q denote the set of all preferences over

B.

A contract x = (i, b, t) ∈ I × B × T specifies a cadet i, a branch b and the terms of

their match. Let X ≡ I × B × T be the set of all contracts. A branch-of-choice contract

x = (i, b, t) is a contract with increased cost t = t+. Given a contract x = (i, b, t), let xI = i

denote the cadet, xB = b denote the branch, and xT = t denote the terms of the contract x.

An allocation X ′ ⊂ X is a set of contracts such that each cadet appears in only one

contract and no branch appears in more contracts than its capacity. Let X denote the set of

all allocations.

Given a cadet i ∈ I and an allocation X ′ ⊂ X with (i, b, t) ∈ X ′, let X ′(i) = (b, t) denote

the assignment of cadet i under allocation X ′.

For a given problem, an allocation X ′ is fair if X ′(j)PiX
′(i)⇒ π(j) < π(i) for any pair of

cadets i, j. That is, a higher-priority cadet can never envy the assignment of a lower-priority

cadet under a fair allocation. Note that it is still possible for a higher-priority cadet to envy

the branch assigned to a lower-priority cadet under a fair allocation. Consider a high-priority

cadet i with an assignment X ′(i) = (b(i), t0) and a low-priority cadet j with X ′(j) = (b(j), t+).

While fairness rules out X ′(j)PiX
′(i), it is still possible that b(j) �i b(i). A low-priority cadet

may be able to get a more preferred branch, because he is willing to pay a higher price for it.

2.2 The USMA Mechanism

A mechanism is a strategy space Si for each cadet i along with an outcome function

ϕ : (S1 × S2 × · · ·Sn)→ X that selects an allocation for each strategy vector (s1, s2, . . . , sn) ∈
(S1 × S2 × · · ·Sn). Given a cadet i and strategy a profile s ∈ S, let s−i denote the strategy of

all cadets except cadet i.

A direct mechanism is a mechanism where the strategy space is simply the set of pref-

erences P for each cadet i. Hence a direct mechanism is simply a function ψ : Pn → X that

selects an allocation for each preference profile.
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The strategy space of each cadet is Q× 2B under the current USMA mechanism. That is,

each cadet is asked to choose

1. a ranking of branches alone, and

2. a number of branches (possibly none) for which the cadet is asked to sign a branch-of-

choice contract.

Let (�′i, Bi) be the strategy choice of cadet i under the USMA mechanism for a given problem.

Here �′i is the reported preferences of cadet i over branches and Bi is the set of branches for

which cadet i has signed a branch-of-choice contract. The branch-of-choices chosen by cadet

i indicates that cadet i is willing to pay the additional cost of t+ for each branch for which

he signs a branch-of-choice contract. The cadet will need to pay the additional cost only if he

receives one of the last 25 percent of the slots for which he is favored.

Under the USMA mechanism, cadets who sign a branch-of-choice contract for branch b

receive higher priority for the last λ fraction of slots at branch b (where λ = 0.25 at the

USMA). Hence, while the priority for the first (1 − λ)qb slots is strictly based on the merit

ranking π, the adjusted priority ranking π+
b for the last λqb slots is constructed in the

following natural way:13

• π+
b (i) < π+

b (j) for any two cadets i, j such that b ∈ Bi and b 6∈ Bj,

• π+
b (i) < π+

b (j) for any two cadets i, j such that π(i) < π(j), b ∈ Bi and b ∈ Bj,

• π+
b (i) < π+

b (j) for any two cadets i, j such that π(i) < π(j), b 6∈ Bi and b 6∈ Bj.

So the relative priority of two cadets does not change under π+
b unless one of the cadets has

signed a branch-of-choice contract for branch b while the other has not. For any two such

cadets, the cadet who has signed a branch-of-choice contract has higher priority under π+
b than

the one who has not signed one for the last λqb slots at branch b.

We are ready to describe the algorithm USMA uses to assign branch-price pairs to cadets

given their strategy choices (�′i, Bi)i∈I . For any branch b, we construct the adjusted priorities

π+
b as described above.

13Throughout the paper we will assume that λqb and (1− λ)qb as are integer values for any branch b. This is

for expositional simplicity and has no impact on the analysis. One can easily use rounded values for the entire

analysis.
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The USMA Algorithm

Step 1 : Each cadet i applies to his top-choice branch under his submitted preferences �′i.
Each branch b tentatively accepts the top (1 − λ)qb candidates based on the merit ranking π.

Among the remaining applicants it tentatively accepts the top λqb candidates based on the

adjusted priorities π+. Any remaining applicants are rejected.

Step 2 : Each cadet i who is rejected at Step 1 applies to his next-choice branch under his

submitted preferences �′i. For the first (1−λ)qb slots, each branch b reviews the new applicants

along with those held from Step 1, and tentatively accepts the top (1−λ)qb based on the merit

ranking π. For the last λqb slots, branch b considers all remaining applicants except those

already rejected by branch b at Step 1 and tentatively accepts the top λqb of them based on

the adjusted priorities π+.14 Any remaining applicants are rejected.

In general, at

Step k : Each cadet i who is rejected at Step (k-1) applies to his next-choice branch under his

submitted preferences �′i. For the first (1−λ)qb slots, each branch b reviews the new applicants

along with those held from Step (k-1), and tentatively accepts the top (1 − λ)qb based on the

merit ranking π. For the last λqb slots, branch b considers all remaining applicants except

those already rejected in earlier steps and tentatively accepts the top λqb of them based on the

adjusted priorities π+. Any remaining applicants are rejected.

The algorithm terminates when no applicant is rejected. All tentative assignments are

finalized at that point. For any branch b,

1. any cadet who is assigned one of the top (1− λ)qb slots by the algorithm is charged the

lower cost t0,

2. any cadet who is assigned one of the last λqb slots is charged the higher cost t+ if he has

signed a branch-of-choice contract for branch b, and

3. any cadet who is assigned one of the last λqb slots is charged the lower cost t0 if he has

not signed a branch-of-choice contract for branch b.

Given a strategy profile s = (�′i, Bi)i∈I and an order-of-merit list π, let ϕWP
π (s) denote the

outcome of the USMA mechanism. Whenever the order-of-merit list π is fixed throughout an

analysis, we will suppress π and denote the outcome as ϕWP (s).

14Observe that a cadet can be tentatively accepted for a branch b for the first (1 − λ)qb slots in Step 1 but

not in Step 2, although he is tentatively accepted for the last λqb slots in Step 2.
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The USMA algorithm reduces to the simple serial dictatorship induced by merit ranking

π when λ = 0. For the case of λ = 0, the USMA algorithm can also be interpreted as a

special case of the celebrated agent-proposing deferred acceptance algorithm (Gale and

Shapley 1962), which allows for a different priority ranking at each branch. Both of these

mechanisms are very well behaved: Not only do they always result in a fair allocation, but

truthful preference revelation is a dominant strategy for all cadets under either mechanism.

The analysis of the USMA mechanism for λ > 0 is somewhat more delicate. That is because

not only may truthful preference revelation be suboptimal under the USMA mechanism, but

also the optimal choice of branch-of-choice contracts is a challenging task. Before we analyze the

equilibrium outcomes of the USMA mechanism, we will show that the cadet-branch matching

problem is a special case of a recent influential model by Hatfield and Milgrom (2005). That will

not only allow us to propose an alternative mechanism to the cadet-branch matching problem

but also will allow us to better understand the equilibrium outcomes of the USMA mechanism.

3 Matching with Contracts

The cadet-branch matching problem is a special case of the matching with contracts model

(Hatfield and Milgrom 2005) that subsumes and unifies the Gale and Shapley (1962) college

admissions model and the Kelso and Crawford (1982) labor market model, among others. In

the original Hatfield-Milgrom model, each branch (hospitals in their framework) has preferences

over sets of agent-cost pairs. These hospital preferences induce a chosen set from each set of

contracts, and it is this chosen set (rather than hospital preferences) that is key in the model.

In the present framework, branches are not agents and they do not have preferences. However,

branches have priorities over cadet-cost pairs, and these priorities also induce chosen sets. This

is the sense in which the cadet-branch matching problem is a special case of matching with

contracts. We next present a few key concepts from matching with contracts before we propose

a new mechanism for cadet-branch matching. Recall that each cadet i has preferences Pi over

all branch-cost pairs. Equivalently, each cadet i has strict preferences over all contracts that

include him. Since no cadet can be “forced” to pay the increased cost, the relevant contracts

with increased cost t+ are those that are more preferred to at least one contract with the base

cost t0.

Definition: A contract (i, b, t+) is unacceptable for cadet i if (b′, t0)Pi(b, t+) for all b′ ∈ B.
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Given a set of contracts X ′, let the chosen set of cadet i from X ′, Ci(X
′), be ∅ if all

contracts in X ′ that include cadet i are unacceptable and the singleton set consisting of the

most preferred contract including cadet i in X ′ under Pi otherwise. That is,

Ci(X
′) =

{
(i, b, t) ∈ X ′ : (b, t)Pi(b

′, t′) for any (i, b′, t′) ∈ X ′ \ {(i, b, t)}
}

unless all contracts in X ′ that include cadet i are unacceptable.

In general, the chosen set of branch b from a set of contacts X ′ depends on the policy on

who has higher claims for slots in branch b. Here our focus is the current USMA policy, where

cadets with higher OML ranking have higher claims for the top (1− λ)qb slots and the priority

for the last λqb slots is adjusted to favor cadets who are willing to pay the increased service

cost. We are ready to define the USMA chosen set of branch b from a set of contracts X ′.

For a given order-of-merit priority ranking π and λ ∈ [0, 1], order all contracts in X ′ based on

the merit score of the cadet and construct USMA chosen set Cb(X
′) and the USMA rejected

set Rb(X
′) = X ′ \ Cb(X ′) as follows:

Phase 0 : Remove all contracts that involve another branch b′ and add them all to rejected

set Rb(X
′). Hence each contract that survives Phase 0 involves branch b.

Phase 1 : For the first (1 − λ)qb potential elements of Cb(X
′), simply choose the contracts

with highest-priority cadets one at a time. When two contracts of the same cadet are available,

choose the contract with the base cost t0 and reject the other one, including it in Rb(X
′).

Continue until either all contracts are considered or (1− λ)qb elements are chosen for Cb(X
′).

If the former happens, terminate the procedure and if the latter happens proceed with Phase

2.1.

Phase 2.1 : For the last λqb potential elements of Cb(X
′), we give priority to contracts with

increased cost t+. Hence in this phase only consider branch-of-choice contracts (i.e. contracts

with increased cost t+) and among them include in Cb(X
′) the contracts with highest-priority

cadets. If any cadet covered in Phase 2.1 has two contracts in X ′ reject the contract with

the base cost t0, including it in Rb(X
′). Continue until either all branch-of-choice contracts are

considered in X ′ or Cb(X
′) fills all qb elements. For the latter case, reject all remaining contracts,

including them in Rb(X
′) and terminate the procedure. For the former case, terminate the

procedure if all contracts in X ′ are considered and proceed with the Phase 2.2 otherwise.

Phase 2.2 : By construction, all remaining contracts in X ′ have the base cost t0. Include in

Cb(X
′) the contracts with highest-priority cadets one at a time until either all contracts in X ′
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are considered or Cb(X
′) fills all qb elements. Reject any remaining contracts, including them

in Rb(X
′).

3.1 Stability

Since the seminal paper of Gale and Shapley (1962), a condition known as stability has been

central to the analysis of two-sided matching markets as well as allocation of indivisible goods

based on priorities.15 Formally, an allocation X ′ is stable if

1.
⋃
i∈I Ci(X

′) = X ′,

2.
⋃
b∈B Cb(X

′) = X ′, and

3. there exists no cadet i, branch b, and contract x = (i, b, t) ∈ X \X ′ such that

{x} = Ci(X
′ ∪ {x})︸ ︷︷ ︸(

i.e. (b,t)PiX′(i)

) and x ∈ Cb(X ′ ∪ {x}).

In the context of cadet-branch matching, the only plausible allocations are the stable ones.

Note that if the first requirement fails then there is a cadet who prefers to reject a contract

that involves him (or equivalently, there is a cadet who is given an unacceptable contract);

if the second requirement fails then there exists a branch that would rather reject one of the

contracts that includes it; and if the third requirement fails then there exists an unselected

contract (i, b, t) where not only cadet i prefers pair (b, t) to his assignment, but also contract x

has sufficiently high priority to be selected by branch b given its composition.

3.2 Substitutes, Unilateral Substitutes, and the Law of Aggregate

Demand

The following two properties of branch priorities have played an important role in the analysis

of matching with contracts:

Definition: Priorities satisfy the law of aggregate demand for branch b if X ′ ⊂ X ′′ ⇒
|Cb(X ′)| ≤ |Cb(X ′′)|.

15See Roth and Sotomayor (1990) and Sönmez and Ünver (2010) for comprehensive surveys on the role of

stability in two-sided matching markets and allocation of indivisible goods based on priorities.
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That is, the size of the chosen set never shrinks as the set of contracts grows under the law of

aggregate demand.

Lemma 1: The USMA priorities satisfy the law of aggregate demand for each branch b.

Definition: Elements of X are substitutes for branch b if for all X ′ ⊂ X ′′ ⊆ X we have

Rb(X
′) ⊆ Rb(X

′′).

That is, contracts are substitutes if a contract that is chosen from a larger set X ′′ is chosen

from any of its subsets X ′ ⊂ X ′′ as well. Equivalently, any contract that is rejected from

a smaller set X ′ is also rejected from any larger set X ′′ that contains X ′. If elements of X

are substitutes, then the set of stable allocations is non-empty (Hatfield and Milgrom 2005).

Indeed, until Hatfield and Kojima (2008) showed otherwise, it was thought to be a necessary

condition for the guaranteed existence of a stable allocation. The following example shows that

contracts are not necessarily substitutes under the USMA priorities.

Example 1: Let I = {i1, i2, i3}, B = {b1, b2} with qb1 = qb2 = 2. Let the merit rank-

ing π order cadets as i1, i2, i3 and λ = 0.5. Let X ′ = {(i2, b1, t0), (i2, b1, t+)} and X ′′ =

{(i1, b1, t0), (i2, b1, t0), (i2, b1, t+)}. We have Cb1(X
′) = {(i2, b1, t0)}, Rb1(X

′) = {(i2, b1, t+)},
Cb1(X

′′) = {(i1, b1, t0)(i2, b1, t+)} and Rb1(X
′′) = {(i2, b1, t0)}. Hence, even though contract

(i2, b1, t+) is not rejected from X ′′, it is rejected from X ′, which is included in X ′′. �

Consider two contracts (i, b, t0), (i, b, t+) including the same cadet : Under the USMA chosen set

Cb, contract (i, b, t0) might be rejected at the expense of (i, b, t+) from a larger set X ′′, while the

choice is reversed for a subset X ′ of X ′′. That is the only reason why a contract can be rejected

from a smaller set despite being chosen from a larger one. Therefore, the USMA chosen set Cb

satisfies the following weaker condition, introduced by Hatfield and Kojima (2010):

Definition: Elements of X are unilateral substitutes for branch b if, whenever a contract

x = (i, b, t) is rejected from a smaller set X ′ even though x is the only contract in X ′ that

includes cadet i, contract x is also rejected from a larger set X ′′ that includes X ′.

Note that the emphasized part of the definition is what differentiates unilateral substitutes

condition from substitutes, and since any “reversal” in the choice of two contracts involves the

same cadet, the USMA priorities satisfy the unilateral substitutes condition. It turns out that,

this will be key in the context of cadet-branch matching.
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Lemma 2: Elements of X are unilateral substitutes for each branch b under the USMA

priorities.

3.3 Cumulative Offer Algorithm and the Cadet-Optimal Stable

Mechanism

We are ready to introduce the cadet-optimal stable mechanism (cosm), which is simply

the extension of the celebrated agent-optimal stable mechanism (Gale and Shapley 1962),

to matching with contracts:

The strategy space of each cadet is P under the cosm, and hence it is a direct mechanism.

Given a preference profile P ∈ P , the following algorithm can be used to find the outcome of

cosm.

Cumulative Offer Algorithm16

Step 1 : Start the offer process with the highest-merit-score cadet π(1) = i(1). Cadet i(1)

offers his first-choice contract x1 = (i(1), b(1), t) to branch b(1) that is involved in this contract.

Branch b(1) holds the contract if x1 ∈ Cb(1)({x1}) and rejects it otherwise. Let Ab(1)(1) = {x1}
and Ab(1) = ∅ for all b ∈ B \ {b(1)}.

Step 2 : Let i(2) be the highest-merit-score cadet for whom no contract is currently held

by any branch. Cadet i(2) offers his most-preferred contract x2 = (i(2), b(2), t) that has not

been rejected in the previous step to branch b(2). Branch b(2) holds the contract if x2 ∈
Cb(2)(Ab(2)(1)∪{x2}) and rejects it otherwise. Let Ab(2)(2) = Ab(2)(1)∪{x2} and Ab(2) = Ab(1)

for all b ∈ B \ {b(2)}.
In general, at

Step k: Let i(k) be the highest-merit-score cadet for whom no contract is currently held

by any branch. Cadet i(k) offers his most-preferred contract xk = (i(k), b(k), t) that has

not been rejected in previous steps to branch b(k). Branch b(k) holds the contract if xk ∈
Cb(k)(Ab(k)(k − 1) ∪ {xk}) and rejects it otherwise. Let Ab(k)(k) = Ab(k)(k − 1) ∪ {xk} and

Ab(k) = Ab(k − 1) for all b ∈ B \ {b(k − 1)}.
The algorithm terminates when all cadets have an offer that is on hold by a branch. Since

there are a finite number of contracts, the algorithm terminates after a finite number T of steps.

All contracts held at this final Step T are finalized and the final allocation is
⋃
b∈B Cb(AT ).

16The following description is borrowed mostly from Hatfield and Kojima (2010).
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Remark 1: While the choice of the cadet making the offer at any given step is uniquely defined

in the above-described cumulative offer algorithm, the same outcome is obtained regardless of

the choice of cadet as long as there is no contract held by any branch that involves the cadet

making the offer. Indeed, Hatfield and Kojima (2010) describe the algorithm without explicitly

specifying the order of agents making offers.

Given a preference profile P ∈ P and order-of-merit list π, let ϕGSπ (P ) denote the outcome

of the (Gale-Shapley) cadet-optimal stable mechanism. Whenever π is fixed throughout an

analysis, we will suppress it and denote the outcome as ϕGS(P ).

The first result we present justifies the name of the cadet-optimal stable mechanism.

Proposition 1: The cumulative offer algorithm produces a stable allocation under the USMA

branch priorities. Moreover, this allocation is weakly preferred by any cadet to any stable

allocation.

Given Proposition 1, it is tempting to conclude that the fairness of the cadet-optimal stable

mechanism immediately follows as a corollary. However, stability (even under USMA priorities)

does not imply fairness in our current setup. Note that we have not assumed that a cadet

necessarily prefers a pair (b, t0) to pair (b, t+). While this assumption is very natural, our entire

analysis is valid even in its absence. And there may be cadets who might prefer a longer-term

commitment for various reasons. That is one reason why a stable allocation might not be fair.

Example 2. There are two cadets i1, i2, one branch b1 with two slots, and λ = 0.5. Cadet i1

has higher priority than cadet i2, and their preferences are as follows:

(b1, t+)Pi1(b1, t0) and (b1, t0)Pi2(b1, t+).

Consider the allocation X ′ = {(i1, b1, t0), (i2, b2, t+)}. Because of his unusual preferences, the

higher-priority cadet i1 envies the assignment of the lower-priority cadet i2. Therefore, X ′ is

not fair. Nevertheless, X ′ is stable because branch b gives priority to contract (i1, b1, t0) over

contract (i1, b1, t+) for the first slot. �

Definition: A mechanism is stable if it always chooses a stable allocation. Similarly, a

mechanism is fair if it always chooses a fair allocation.

We next show that the cadet-optimal stable mechanism is fair, even though not all stable

mechanisms need to be fair, as Example 2 shows.
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Proposition 2: The cadet-optimal stable mechanism is fair under USMA branch priorities.

One of the remarkable properties of the cadet-optimal stable mechanism is that it is always

in cadets’ best interests to be entirely truthful about their preferences. Hence, cadets can never

benefit from “gaming” this mechanism.

Definition: A direct mechanism ϕ is strategy-proof if

ϕ(Pi, P−i)Piϕ(P ′i , P−i) for any i ∈ I, P−i ∈ Pn−1 and Pi, P
′
i ∈ P .

That is, no matter which cadet we consider, no matter what his true preferences Pi are, no

matter what other preferences P−i other cadets report (true or not), and no matter which

potential “misrepresentation” P ′i cadet i considers, truthful preference revelation is in his best

interests.

Proposition 3: The cadet-optimal stable mechanism is strategy-proof under USMA branch

priorities.

Remark 2: We rely on the unilateral substitutes condition to prove Propositions 1 and 3.

An alternative path is to show that USMA priorities are substitutable completable, a condition

recently introduced by Hatfield and Kominers (2011), and to use Lemma 16, and Theorems 17

and 18 in their paper.

One of the most important parameters of the cadet-branch matching problem is the order-

of-merit list π. And clearly, a reasonable mechanism would never penalize a cadet as a result of

an improvement of his standing in the order-of-merit list. Given two order-of-merit lists π1, π2,

we will say that π1 is an unambiguous improvement for cadet i over π2 if

1. the relative ranking between all cadets except cadet i remains exactly the same between

π1 and π2, although

2. the standing of cadet i is strictly better under π1 than under π2.

Definition: A mechanism respects improvements if a cadet never receives a strictly worse

assignment as a result of an unambiguous improvement of his priority ranking.

Proposition 4: The cadet-optimal stable mechanism respects improvements under USMA

branch priorities.
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4 The Case Against the USMA Mechanism

Analyzing the cadet-optimal stable mechanism is rather easy; not only it is a direct mechanism,

it is also strategy-proof, so there is good reason to believe that submitted cadet preferences

are truthful. Indeed, vulnerability of school choice mechanisms to preference manipulation has

been the main driving force behind the recent school choice reforms in Boston, Chicago, and

throughout England. (See Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu, Pathak, Roth

and Sönmez 2005, Kesten 2010, Pathak and Sönmez 2008, 2011.)

The USMA mechanism, on the other hand, is not a direct mechanism. Under the USMA

mechanism, each cadet submits his preferences over individual branches, and by signing branch-

of-choice contracts he indicates for which of these branches he is willing to pay the additional

cost of t+ for an increased priority at the last 25 percent of the slots. Since the USMA mecha-

nism is based on a strategy-proof mechanism, it is natural to ask whether truthful preference

revelation over branches is still in the best interests of the cadets. As we show in the next

example, this may no longer be the case.

Example 3 (Truthful preference revelation may be suboptimal under USMA mech-

anism): There are 3 cadets i1, i2, i3 and 3 branches b1, b2, b3 with one slot each. Cadets are

ordered as i1, i2, i3 under the order-of-merit list π and λ = 1, so any cadet who has signed a

branch-of-choice contract is given priority at each branch.17

Suppose that the true preferences of cadet i3 over branch-price pairs are as follows:

(b1, t0)Pi3(b2, t0)Pi3(b1, t+)Pi3(b2, t+)Pi3(b3, t0)

First, consider the situation where the submitted strategies of cadets i1 and i2 are as follows:

s̃i1 = (�̃i1 , B̃i1) with b1 �̃i1 b3 �̃i1 b2 and B̃i1 = ∅,

s̃i2 = (�̃i2 , B̃i2) with b1 �̃i2 b3 �̃i2 b2 and B̃i2 = ∅.

Given (s̃i1 , s̃i2), the best possible outcome for the lowest-priority cadet i3 is (b2, t0), which he

17It is straightforward to extend this example for λ = 0.25, but that would require an example with 9

additional agents and 3 additional slots at each branch.
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can obtain with any one of the following three strategies:

s1
i3

= (�i3 , B1
i3

) with b1 �i3 b2 �i3 b3 and B1
i3

= ∅,

s2
i3

= (�′i3 , B
1
i3

) with b2 �′i3 b1 �′i3 b
′
3 and B1

i3
= ∅,

s3
i3

= (�′i3 , B
2
i3

) with b2 �′i3 b1 �′i3 b3 and B2
i3

= {b1}.

Hence, the best response of cadet i3 to (s̃i1 , s̃i2) is {s1
i3
, s2
i3
, s3
i3
}. Therefore, the only two strate-

gies that can possibly dominate s3
i3

are s1
i3

or s2
i3

. We next show that neither strategy dominates

s3
i3

. Consider the situation where the submitted strategies of cadets i1 and i2 are as follows:

ŝi1 = (�̂i1 , B̂i1) with b2 �̂i1 b1 �̂i1 b3 and B̂i1 = ∅,

ŝi2 = (�̂i2 , B̂i2) with b1 �̂i2 b2 �̂i2b3 and B̂i2 = {b2}.

Given (ŝi1 , ŝi2), the best possible outcome for cadet i3 is (b1, t+). While cadet i3 can obtain

this outcome upon submitting s3
i3

, he will receive the inferior outcome (b3, t0) upon submitting

either s1
i3

or s2
i3

. Hence, neither strategy dominates s3
i3

, showing that it is not a dominated

strategy. Hence misrepresenting preferences over branches might be optimal under the USMA

mechanism. �

Example 3 shows that one cannot assume that submitted cadet preferences over branches

are necessarily truthful under the USMA mechanism. This makes analysis of the USMA mech-

anism more challenging than the cosm. For the rest of this section, we will consider the Nash

equilibrium outcomes of the USMA mechanism.

Definition: Given a mechanism (S, ϕ), the strategy profile s ∈ S is a Nash equilibrium if

ϕ(s)Piϕ(s−i, s
′
i) for any cadet i and any alternative strategy s′i ∈ Si cadet i can choose.

We next show that the USMA mechanism can be interpreted as an “approximation” of

the cadet-optimal stable mechanism. Fix a cadet-branch problem and let si = (�′i, Bi) be the

strategy choice of cadet i under the USMA mechanism. Construct the proxy preference

relation P ∗i = Pi(�′i, Bi) as follows:

1. b �′i b′ ⇒ (b, t0)P ∗i (b′, t0) for any pair of branches b, b′,

2. (b, t0)P ∗i (b, t+) for any branch b ∈ Bi, and moreover there exists no branch b′ ∈ B with

(b, t0)P ∗i (b′, t0)P ∗i (b, t+), and
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3. (b, t0)P ∗i (b′, t+) for any b ∈ B and b′ 6∈ Bi.

In other words, the proxy preference relation P ∗i extends cadet i’s submitted preferences �′i
over branches to branch-price pairs by simply inserting the (b, t+) option right after (b, t0) for

each branch b for which cadet i has signed a branch-of-choice contract.

Given a cadet-branch matching problem, let s be a Nash equilibrium strategy profile under

the USMA mechanism and P ∗ be the proxy preferences as described above. The equlibrium

outcome ϕWP (s) is equal to the outcome of the cadet-optimal stable mechanism under the

proxy preference profile P ∗.

Proposition 5: Let s = (�i, Bi)i∈I be a Nash equilibrium strategy profile under the USMA

mechanism and P ∗ = (Pi(�i, Bi))i∈I be the resulting proxy preferences as defined above. Then

we have ϕWP (s) = ϕGS(P ∗).

We next show that, while the USMA mechanism can be interpreted as an approximation

to cosm, its outcome can be quite troubling even at equilibrium.

Example 4 (Equilibrium outcome of USMA mechanism can be unstable, unfair, and

Pareto inferior to the outcome of cosm): There are 4 cadets i1, i2, i3, i4 and 4 branches

b1, b2, b3, b4 with one slot each. Cadets are ordered as i1, i2, i3, i4 under the order-of-merit list π

and λ = 1, so any cadet who has signed a branch-of-choice contract is given priority at each

branch. Cadet preferences (Pi1 , Pi2 , Pi3 , Pi4) are as follows:

Pi1 : (b1, t0) Pi1 (b2, t0) Pi1 (b1, t+) Pi1 (b3, t0) · · ·

Pi2 : (b1, t0) Pi2 (b1, t+) Pi2 (b2, t0) Pi2 (b2, t+) Pi2 (b4, t0) Pi2 (b4, t+) Pi2 (b3, t0) Pi2 (b3, t+)

Pi3 : (b1, t0) Pi3 (b3, t0) Pi3 (b1, t+) Pi3 (b2, t0) Pi3 (b3, t+) Pi3 (b2, t+) Pi3 (b4, t0) Pi3 (b4, t+)

Pi4 : (b4, t0) Pi4 (b2, t0) Pi4 (b4, t+) Pi4 (b2, t+) · · ·

Consider the following strategy profile (si1 , si2 , si3 , si4) under the USMA mechanism:

si1 = (�i1 , Bi1) with b1 �i1 b2 �i1 b3 �i1 b4 and Bi1 = {b1},

si2 = (�i2 , Bi2) with b1 �i2 b2 �i2 b4 �i2 b3 and Bi2 = {b4},

si3 = (�i3 , Bi3) with b1 �i3 b3 �i3 b2 �i3 b4 and Bi3 = {b1},

si4 = (�i4 , Bi4) with b4 �i4 b2 �i4 b1 �i4 b3 and Bi4 = {b2}.
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The outcome of the USMA mechanism is:

ϕWP (s) = {(i1, b1, t+), (i2, b2, t0), (i3, b3, t0), (i4, b4, t0)}

Claim: Strategy profile (si1 , si2 , si3 , si4) is a Nash equilibrium.

Proof of the Claim: Clearly cadet i4 having received his top choice (b4, t0) cannot have a

profitable deviation. Moreover, since the highest-priority cadet i1 not only ranks branch b1 as

his first choice but also signs a branch-of-choice contract for branch b1 under si1 , he will receive

the only slot at branch b1 no matter what other cadets do. Once branch b1 is out of their reach,

cadets i2 and i3 are each receiving their top choices among the remaining choices. Hence they

cannot have a profitable deviation either.

Finally, consider cadet i1 who receives his third choice (b1, t+). Observe that he cannot

receive his top choice (b1, t0) since cadet i3 not only ranks branch b1 as his first choice but also

signs a branch-of-choice contract for branch b1 under si3 . Cadet i1 cannot receive his second

choice (b2, t0) either. Suppose he did. Then since cadet i4 ranks branch b2 as his second choice

while at the same time signing a branch-of-choice contract for b2 under si4 , he would need to be

assigned a seat at his top-choice branch b4. But with no slots left at branches b2, b4, and having

signed a branch-of-choice contract for b4 under si2 , cadet i2 would need to be assigned a slot at

branch b1. That leaves only branch b3 for cadet i3. But this is not possible, since cadet i3 not

only ranks branch b1 as his first choice but also signs a branch-of-choice contract for it under

si3 , leading to the desired contradiction. Hence, cadet i1 does not have a profitable deviation

either. �

We next have several observations about the equilibrium outcome ϕWP (s).

1. ϕWP (s) is not fair. Even though cadet i1 is the highest-priority cadet, he envies the

assignment (b2, t0) of cadet i2. This situation happened because the USMA mechanism

implicitly assumed that cadet i1 prefers (b1, t+) to (b2, t0) simply because cadet i1 signed

a branch-of-choice contract for branch b1. What is more striking is that, cadet i1 has not

made a mistake in his choice of strategy. Since s is a Nash equilibrium outcome, there is

simply nothing he can do.

2. ϕWP (s) is not stable. Cadet i1, branch b2 and contract (i1, b2, t0) is such that

(b2, t0)Pi1 ϕ
WP (s; i1)︸ ︷︷ ︸
=(b1,t+)

and (i1, b2, t0) ∈ Cb2
(
ϕWP (s)︸ ︷︷ ︸

={(i2,b2,t0)}

∪{(i1, b2, t0)}
)
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3. The equilibrium outcome ϕWP (s) is inefficient in a very strong sense. Not only it is

Pareto dominated by the outcome of the cadet-optimal stable mechanism

ϕGS(P ) = {(i1, b2, t0), (i2, b1, t+), (i3, b3, t0), (i4, b4, t0)} ,

the two outcomes raise the exact same additional man-years for the Army. So even when

the Armys welfare is taken into consideration, the equilibrium outcome ϕWP (s) is very

implausible. �

In our next example, we show that a cadet might suffer from an improvement in his order-of-

merit list standing at equilibria of the USMA mechanism. This example is a slight modification

of Example 4.

Example 5 (Equilibrium outcome of the USMA mechanism may not respect im-

provements): There are 4 cadets i1, i2, i3, i4 and 4 branches b1, b2, b3, b4 with one slot each.

Cadets are ordered as i1, i2, i3, i4 under the order-of-merit list π1 and λ = 1, so any cadet

who has signed a branch-of-choice contract is given priority at each branch. Cadet preferences

(Pi1 , Pi2 , Pi3 , Pi4) are as follows:

Pi1 : (b1, t0) Pi1 (b2, t0) Pi1 (b1, t+) Pi1 (b3, t0) · · ·

Pi2 : (b1, t0) Pi2 (b1, t+) Pi2 (b2, t0) Pi2 (b2, t+) Pi2 (b4, t0) Pi2 (b4, t+) Pi2 (b3, t0) Pi2 (b3, t+)

Pi3 : (b1, t0) Pi3 (b3, t0) Pi3 (b1, t+) Pi3 (b2, t0) Pi3 (b3, t+) Pi3 (b2, t+) Pi3 (b4, t0) Pi3 (b4, t+)

Pi4 : (b4, t0) Pi4 (b2, t0) Pi4 (b4, t+) Pi4 (b2, t+) · · ·

Consider the following strategy profile (si1 , si2 , si3 , si4) under the USMA mechanism:

si1 = (�i1 , Bi1) with b1 �i1 b2 �i1 b3 �i1 b4 and Bi1 = {b1},

si2 = (�i2 , Bi2) with b1 �i2 b2 �i2 b4 �i2 b3 and Bi2 = {b1, b4},

si3 = (�i3 , Bi3) with b1 �i3 b3 �i3 b2 �i3 b4 and Bi3 = {b1},

si4 = (�i4 , Bi4) with b4 �i4 b2 �i4 b1 �i4 b3 and Bi4 = {b2}.

Just as in the case of Example 4, the strategy profile s is a Nash equilibrium18 and the outcome

18The only difference with Example 4 is that cadet i2 signs two branch-of-choice contracts for b1, b4 under si2

rather than only for b1.
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of the USMA mechanism is

ϕWP
π1

(s) = {(i1, b1, t+), (i2, b2, t0), (i3, b3, t0), (i4, b4, t0)} .

Next consider a slightly different scenario where cadets are ordered as i2, i1, i3, i4 under a dif-

ferent order-of-merit list π2. It is easy to verify that the strategy profile s remains a Nash

equlibrium under this change, while the outcome of the USMA mechanism changes:

ϕWP
π2

(s) = {(i1, b2, t0), (i2, b1, t+), (i3, b3, t0), (i4, b4, t0)} .

Hence, the assignment of cadet i1 improves as a result of a worse order-of-merit ranking π2,

showing that the USMA mechanism may penalize cadets as a result of improved order-of-merit

list standing. �

So why is it that the USMA mechanism can result in such undesired outcomes, even at

equilibria, although it can be interpreted as an approximation of the cadet-optimal stable

mechanism? After all, not only are both mechanisms extensions of the celebrated Gale-Shapley

agent-optimal stable mechanism, but they both use precisely the same branch priorities. The

reason is that whereas the cadet-optimal stable mechanism is a direct preference revelation

mechanism that maintains all desired properties of its predecessor, the USMA mechanism is an

indirect mechanism that arguably uses a somewhat simpler strategy space but as a result needs

to rely on proxy-preferences. And these proxy-preferences might be a very rough approximation

of true preferences, for several reasons:

1. Truthful preference revelation over branches is no longer necessarily optimal under the

USMA mechanism.

2. Even when cadets are entirely truthful about their preferences over branches, they are

often unable to declare their preferences over branch-price pairs since under the induced

proxy-preference relation the pair (b, t+) is assumed to be ranked right after (b, t0) for any

branch b for which a cadet signs a branch-of-choice contract.

3. In general, it is in cadets’ best interests to sign branch-of-choice contracts for only some

of the branches for which they are potentially willing to pay the increased cost t+. Hence,

several acceptable pairs with increased cost will be considered unacceptable under the

proxy preferences.
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4. Under the proxy-preferences, it is assumed that the “expensive”pair (b, t+) is always worse

than the “cheap” pair (b, t0). While this is a safe assumption for a majority of cadets,

there can be a few who might prefer otherwise, for various reasons.

We will say that a strategy si = (�′i, Bi) suggests compromise if there are two branches

b, b′ such that b �′i b′ and yet b′ ∈ Bi even though b 6∈ Bi. Under such a strategy, a cadet

signs a branch-of-choice contract for branch b′ but not for b even though branch b is more

preferred under his submitted preferences. One potential explanation for the use of a strategy

that suggests compromise is that the cadet might be misrepresenting his preferences and branch

b′ might be preferred to branch b under his true preferences. The use of such a strategy can

be also justified when the cadet is truthful about his preferences if he is not willing to “give

up” the opportunity to receive his less favorite branch b′ as well as any other branch that he

ranks between b and b′ at the cheaper cost t0. In either case, the use of a strategy that suggests

compromise is a clear evidence of a cadet having difficulty representing his true preferences

under the USMA mechanism. In 2010, of the 475 cadets who signed at least one branch-of-

choice contract, 40 of them submitted strategies that suggest compromise.

In addition to difficulties that arise because of the difference between proxy-preferences and

true-preferences, the outcome of the USMA mechanism is likely to suffer from further issues

when an equilibrium outcome cannot be reached. For example, a cadet might “overpay” for

his assigned branch, paying the increased cost of t+ even though there are lower-priority cadets

who receive the same branch at the base cost of t0. Such out-of-equilibrium outcomes decrease

cadet satisfaction even though they may potentially increase the man-year gains by the Army.

So far we have not compared the two mechanisms from the Army’s perspective. In the next

section, we will argue that, while the adoption of the cadet-optimal stable mechanism may

potentially reduce the number of man-years gained via the mechanism for a given λ, it is in all

parties’ best interests to modify the man-years gained by adjusting this parameter under the

cadet-optimal stable mechanism.

4.1 The Impact of Mechanism Choice on the Welfare of the Army

So far we have analyzed the cadet-branch matching problem almost entirely from the perspective

of the cadets. Clearly, the social planner of this problem, namely the Army, also cares about

the outcome of this problem. The objective function of the Army in this context might be quite
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complex, but it is safe to assume that it likely depends on at least three factors:

Cadet welfare: Clearly the Army’s welfare is paternalistic and it increases in cadet welfare.

After all the Army has replaced its old mechanism as part of three incentive packages that

it refers to as the Officer Career Satisfaction Program. The cadet-optimal stable mechanism

is an unambiguous winner based on this factor. It increases cadet welfare not only via a

more favorable outcome, but also via entirely removing the need for gaming the system and

thus simplifying the decision process. Moreover, all coordination failures resulting in losses

in efficiency, as well as suboptimal strategy choices resulting in unfair outcomes are entirely

eliminated further increasing cadet satisfaction under the cadet-optimal stable mechanism.

Simply put, the cadet-optimal stable mechanism fits perfectly with the spirit of Officer Career

Satisfaction Program.

Respecting order-of-merit list standings to a large degree: Under the USMA mechanism,

cadets can influence priorities for only the last 25 percent of slots at each branch. This is

evidence of the Army’s desire for the mechanism to respond highly to the order-of-merit list.

Both mechanisms use the exact same branch priority structure, and hence based on this factor

we have a tie between the two mechanisms.

Number of man-years gained via the mechanism: Since the proxy preferences constructed

by the USMA mechanism is only a rough approximation of the true preferences, it is difficult to

compare the outcomes of the two mechanisms based on this factor. However, for overdemanded

branches, all of the last 25 percent slots will be assigned to cadets at the increased cost of t+.

There may be cadets who overpay for their assignment at out of equilibrium outcomes of

the USMA mechanism. Such cadet mistakes make up one reason why the USMA mechanism

might result in more cadets paying the increased cost t+ than under the cadet-optimal stable

mechanism. In 2010, out of 1039 cadets, 215 were assigned their branch at the increased cost

t+. Among them, only 25 cadets overpaid for their assignment. Assuming that the proxy

preferences are truthful, there would have been 190 cadets who would be charged the increased

cost t+ under the cadet-optimal stable mechanism. We would like to emphasize that this is

a worst-case scenario for the cosm since cadets are likely to sign significantly more branch-of-

choice contracts under the cosm. Even if there is a slight reduction in the number of cadets

receiving their assignments at the increased cost t+ under cosm, the difference is due to cadets

who overpay under the USMA mechanism. A much better way to increase the man-years gained

by the Army is to slightly increase the parameter λ. For example, increasing λ to 0.3 is more
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than enough to offset a potential loss of 25 cadets who otherwise overpay under the USMA

mechanism.

Access to true cadet preferences is important for the Army for other reasons as well. While

the enlisted ranks of the U.S. military exhibit a high level of demographic diversity, the lead-

ership of the military has remained demographically homogeneous. In 2006, while 31 percent

of the enlisted ranks of the military were African American or Hispanic, only about 16 per-

cent of all officers were African American or Hispanic, and only 5 percent of all Generals were

African American or Hispanic (Lim et al. 2009). This is cause for concern, since diversity is

highly valued in the military. In a recent Rand Corporation report prepared for the Office of

the Secretary of Defense, Lim et al. (2009) conclude that the relative scarcity of minorities in

Combat Arms branches of the Army is a potential barrier to improving demographic diversity

in the senior officer ranks. In 2006, 80 percent of all Generals were from combat arm branches.

Using 2007 Army ROTC data, Lim et al. (2009) show that while 58 percent of white cadets’

submitted first choices were in Combat Arms, only 31 percent of African American cadets’

first choices were in Combat Arms.19 They also report that minorities tend to rank lower on

order-of-merit score and conclude that these numbers may not truly reflect a lack of interest in

minorities for Combat Arms. The following quote is borrowed from Lim et al. (2009):

In this exploratory study, we have demonstrated that it is critical for the Army

to increase minority representation in key career fields to improve the racial and

ethnic diversity of its top military officers. But we also contend that there is a

strong need for a more in-depth analysis of the Army branching process. If, as

our study suggests, minorities are indeed self-selecting into career fields with rela-

tively limited promotion opportunities, why are they doing so? On the one hand,

minority cadets could truly prefer different career fields than white cadets. In this

case, policy should focus on ways to make combat career fields more appealing to

minorities. On the other hand, minorities may not really prefer support career fields

but rather may reason that they lack the OML ranking to get a more competitive

19In addition to the USMA, the U.S. Army accesses officers through two other programs: Reserve Officer

Training Corps (ROTC) and Officer Candidate School (OCS). The USMA is the “flagship” institution of the

U.S. Army, and a disproportionate number of its graduates go on to become Colonels and Generals. ROTC, on

the other hand, is the “workhorse” of the U.S. Army, producing over twice as many officers as the USMA. As

in the case of the USMA mechanism, ROTC mechanism is also vulnerable to preference manipulation.
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career field (or they forecast a low probability of success in that career field). In

this case, minority cadets might desire a Combat Arms career field but may opt

for their most-preferred Combat Support or Combat Service Support career field

thinking that they would never get a top Combat Arms assignment.

The vulnerability of the ROTC mechanism to preference manipulation thus has adversely af-

fected the authors’ ability to prescribe an adequate policy recommendation in this important

analysis. While Lim et al. (2009) focus on the ROTC mechanism, their study is as relevant to

the case of the USMA, reinforcing the value of a strategy-proof mechanism.

5 Extended Model with Multiple Nested Layers

So far our focus has been cadet-branch matching. However, the cadet-optimal stable mechanism

is a perfect candidate for any real-life application where allocation is mainly based on priorities

although these priorities can be improved for some of the slots by paying a premium. In this

section, we refer to cadets as agents and to branches as objects, and allow a potentially different

set of terms along with a potentially different priority order for each object.

For each object b ∈ B, there are qb copies of the object and the priority order πb : I →
{1, . . . , n} represents claims of agents over object type b. As in the case of the cadet-branch

matching problem, each agent consumes only one object, and for any two agents i, j with

πb(i) < πb(j) agent i has higher claims on a copy of object b than agent j, other things being

equal. While having high priority for an object type makes it easier to secure a copy, it is

not the only way to receive one. An object b can be obtained under k(b) different terms. Let

Tb = {t1b , . . . , t
k(b)
b } denote the set of terms or costs for object b. For each object b we assume

that t1b is the default “cheapest” term, and terms get more “expensive” in increasing index.

As a result, each agent’s assignment is an object-cost pair (b, t) where b ∈ B and t ∈ T (b).

For each object b, copies of the object are divided in k(b) segments with qrb copies in segment

r = 1, . . . , , k(b) such that
∑k(b)

r=1 q
r
b = qb. For each object b,

1. the priority ranking πb determines the claims on the first q1
b copies that will be awarded

at the cheapest cost t1,

2. while the priority ranking πb is still used as a tie-breaker, those who are willing to pay

at least t2 receive higher priority for the next q2
b copies although the cost of these units
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never exceeds t2,

...

r. while the priority ranking πb is still used as a tie-breaker, those who are willing to pay

at least tr receive higher priority for the next qrb copies although the cost of these units

never exceeds tr,

...

k(b). while the priority ranking πb is still used as a tie-breaker, those who are willing to pay tk

receive higher priority for the last q
k(b)
b copies.

Each agent i has strict preferences Pi over all object-cost pairs, and we assume that there are

enough copies of the objects; hence
∑

b∈B qb ≥ n.20 A contract is an agent-object-cost triple

(i, b, t) such that t ∈ Tb. Let X denote the set of all contracts.

The only delicate part of this straightforward extension is an adequate specification of the

chosen set of object b from a set of contracts X ′ ⊆ X. Given the above nested multi-layer

priority structure, we construct the chosen set Cb(X
′) and the rejected set Rb(X

′) = X ′\Cb(X ′)
as follows:

Phase 0 : Remove all contracts that involve another object b′ and add them all to the

rejected set Rb(X
′). Hence each contract that survives Phase 0 involves object b.

Phase 1 : For the first q1
b potential elements of Cb(X

′), simply pick the contracts with highest

priority agents under πb one at a time. When multiple contracts of the same agent are available

in X ′, choose the contract with the cheapest cost t1b and reject the others, adding them to

Rb(X
′). Continue until either all contracts in X ′ are considered or q1

b elements of Cb(X
′) are

determined. If the former happens terminate the procedure, and if the latter happens proceed

with Phase 2.

In general for ` = 2, . . . , k(b),

Phase `: There are two sub-phases in each Phase ` > 1. In the first sub-phase only contracts

with costs t`b or more are considered, and the choice is made is entirely based on the priority

order πb among such contracts. There is a second sub-phase only if extra copies are left, and

20For most purposes we can make this assumption without loss of generality since one of these objects might

be a uniformly worst (null) object with capacity larger than n.
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in this second sub-phase the choice is lexicographically made first by the cost (with higher cost

contracts favored) and then by the priority order πb. We next give a more detailed description

of these sub-phases.

Phase `.1: Only consider contracts with costs t`b or more. Among them pick the contracts

with higher-priority agents under πb for the next q`b elements of Cb(X
′). When multiple contracts

are available for the same agent, choose the one with lowest cost (which has to be more than

t`−1
b being considered in this phase) and reject the others. Continue until either all contracts

with costs t`b, . . . , t
k(b)
b are considered in X ′ or

∑`
r=1 q

r
b elements of Cb(X

′) are determined. If

the former happens proceed with Phase `.2, and if the latter happens proceed with Phase `+1.

Phase `.2: By construction, all remaining contracts have cost t`−1 or less. In this sub-

phase contracts with higher costs are picked before contracts with lower costs, and only then

is the priority order πb followed. When multiple contracts are available for the same agent, the

highest-cost contract is chosen and the others are rejected. Continue until either all contracts

in X ′ are considered or
∑`

r=1 q
r
b elements of Cb(X

′) are determined. If the former happens

terminate the procedure, and if the latter happens proceed with Phase ` + 1 (unless ` = k(b)

in which case terminate the procedure).

Lemma 1∗: Nested multi-layer priorities satisfy the law of aggregate demand for each object

b.

Lemma 2∗: Elements of X are unilateral substitutes for each branch b under nested multi-layer

priorities.

Given lemmata 1∗ and 2∗, our extended model preserves all key aspects of the cadet-branch

matching problem. In particular, the cumulative offer algorithm gives a stable allocation that

is weakly preferred to any other stable allocation by any agent, and the resulting agent-optimal

stable mechanism is strategy-proof, fair, and respects improvements.21

A relatively straightforward application of this extended model is assignment of parking

space. Consider a college campus where there are several parking lots. Each parking lot is a

different object type and agents have preferences over these lots. The use of priority ranking is

widespread in the assignment of parking space, as is price discrimination via permits of different

21The last property needs to be modified since there are potentially multiple priority orders. Balinski and

Sönmez (1999) consider this more general version.

30



cost. Hence an agent-optimal stable mechanism is a natural candidate for this problem. Our

next application, presented in the next subsection, is somewhat more involved.

5.1 Application to Centralized School Admissions

To motivate this application, we need to describe some features of college admissions in Turkey.

Admission to colleges is centralized and includes private universities in the system. The priority

of each student for each department (including private university departments) is determined

by a central planner via a national centralized exam together with some other factors such

as high school grades. All students submit their preferences over individual departments to

the central planner, and as shown by Balinski and Sönmez (1999) the central planner assigns

students to departments via the Gale and Shapley (1962) college-optimal stable mechanism.

Private universities have been recruiting a large fraction of the best students in Turkey since

the first private university, Bilkent University, was launched in 1986. This is because they have

been offering full fellowships to the best students. Private universities treat the slots reserved

for fellowship students at a department as a separate unit for the purposes of centralized

admissions. Hence, there are different codes for fellowship slots and non-fellowship slots at any

department. Indeed, there are four different codes for each department of Sabanci University:

one code each for full fellowship slots, half fellowship slots, quarter fellowship slots, and regular

slots. Technically speaking, this aspect of Turkish college admissions makes it an application

of matching with contracts rather than a standard Gale-Shapley two-sided matching. For

example, a student may rank Economics at Sabanci University with full fellowship as his first

choice, Economics at Bosphorus University (a leading public university) as his second choice,

Economics at Sabanci University with half fellowship as his third choice, etc. This application

of matching with contracts, however, can be treated as a standard Gale-Shapley two-sided

matching model, since fellowship slots are treated as if they were a different department.

In contrast to the flexibility that attracts students of all backgrounds to private universities,

students at public universities uniformly pay a minimal tuition fee for their undergraduate

education. Essentially all students are admitted to public universities with tuition-waiver.

This makes public universities highly dependent on public funding, which makes it difficult for

them to compete with the top private universities. One recently debated policy suggestion has

been to reserve some of the seats at public universities for students who are willing to pay a
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much higher tuition fee (one that is closer to the actual cost of the education).22 If adopted, this

policy change will also break the asymmetry between private universities and public universities

in terms of the student pools they can target.

How could one adjust the centralized student assignment mechanism as a result of such a

policy change? When a private university cannot fill some of its regular slots, it does not make

sense to treat them as if they were fellowship slots, as this may not be in the best interests

of a private university. But if a public university cannot fill some of the slots reserved for

high-tuition students, these slots can and probably should be used for regular tuition-waiver

students. Hence if public Turkish universities reserve some of the seats for high-tuition students,

the student-optimal stable mechanism with the above-described chosen sets would be a very

plausible alternative. Analogous to the implementation in the cadet-branch matching problem,

a fraction of the slots will be reserved for students who are willing to pay an increased cost and

any extra unassigned high-tuition slots will be “converted” to regular slots to avoid wasting

public resources. Multiple tuition levels can be considered without compromising the existence

of a plausible mechanism by using the chosen sets introduced for our extended model.

6 Conclusion

Market design is an exciting field that seeks to provide practical advice for various resource

allocation problems. Auctions have been employed to allocate radio spectrum, electricity, and

timber involving hundreds of billions of dollars worldwide (Milgrom 2004). More recent applica-

tions of market design include school choice, kidney exchange (Roth, Sönmez, and Ünver 2004,

2005a,b, 2007, and Ünver 2010), course allocation (Sönmez and Ünver 2010 and Budish and

Cantillon 2011), and internet ad auctions (Edelman, Ostrovsky, and Schwarz 2007 and Varian

2007). In this paper, we presented a new market design application of cadet-branch matching

that emerged as part of the Officer Career Satisfaction Program that was designed by a group

of economists and officers at West Point’s Office of Economic and Manpower Analysis to boost

career satisfaction and retention. The cadet-optimal stable mechanism that we propose will

not only eliminate many of the issues currently present in the USMA mechanism and thereby

increase cadet satisfaction, but also provide the Army with potentially valuable estimates of

22While college admissions are decentralized in the U.S., reserving some of the seats for high-tuition students

is in the same spirit with state universities admitting out-of-state students at a much higher tuition level.
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the full potential of the branch-of-choice incentive program. With these estimates in hand, the

Army will have the ability to accurately calibrate parameters of the mechanism in order to

achieve desired objectives in terms of gained man-years.

Our paper also highlights the power of the matching with contracts approach in the context

of priority-based indivisible goods allocation. Tools provided by Hatfield and Milgrom (2005)

and Hatfield and Kojima (2010) are useful in the formulation of complicated priority structures

(such as the one used by the USMA in cadet-branch matching) that cannot be formulated via

the student assignment models of Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez

(2003).
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Appendix: Proofs

Proof of Lemma 1: By construction of the USMA chosen set, all contracts of a given cadet

can be rejected from a branch only when it reaches full capacity. Hence the size of the USMA

chosen set can never shrink as the set of available contracts grows. ♦

Proof of Lemma 2: Let x = (i, b, t) ∈ X ′ be the only contract in X ′ that involves cadet i

and suppose x 6∈ Cb(X ′). Let X ′′ ⊃ X ′. We have two cases to consider:

Case 1 : t = t0. Since (i, b, t0) 6∈ Cb(X ′), we have∣∣∣∣{j ∈ I : (j, b, t0) ∈ X ′ with π(j) < π(i)
}∣∣∣∣ ≥ (1− λ)qb, and∣∣∣∣{j ∈ I : (j, b, t0) ∈ X ′ and π(j) < π(i)

} ⋃ {
j ∈ I : (j, b, t+) ∈ X ′

}∣∣∣∣ ≥ qb.

Therefore X ′′ ⊃ X ′ implies∣∣∣∣{j ∈ I : (j, b, t0) ∈ X ′′ with π(j) < π(i)
}∣∣∣∣ ≥ (1− λ)qb, and∣∣∣∣{j ∈ I : (j, b, t0) ∈ X ′′ and π(j) < π(i)

} ⋃ {
j ∈ I : (j, b, t+) ∈ X ′′

}∣∣∣∣ ≥ qb

as well. Hence x 6∈ Cb(X ′′).
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Case 2 : t = t+. Recall that (i, b, t0) 6∈ X ′ for this case by assumption.23 Therefore

(i, b, t+) 6∈ Cb(X ′) implies∣∣∣∣{j ∈ I : {(j, b, t0), (j, b, t+)} ∩X ′ 6= ∅ and π(j) < π(i)
}∣∣∣∣ ≥ qb

which together with X ′′ ⊃ X ′ implies∣∣∣∣{j ∈ I : {(j, b, t0), (j, b, t+)} ∩X ′′ 6= ∅ and π(j) < π(i)
}∣∣∣∣ ≥ qb.

Hence x 6∈ Cb(X ′′) for this case as well, completing the proof. ♦
Proof of Proposition 1: The chosen set for any branch b satisfies the unilateral substitutes

condition by Lemma 2. Hence Proposition 1 is a corollary of Theorem 5 in (Hatfield and Kojima

2010). ♦

Proof of Proposition 2: Let X ′ be the outcome of the cadet-optimal stable mechanism. Fix

a cadet i and let x = (i, b, t) ∈ X ′. Suppose that cadet i prefers contract x′ = (i, b′, t′) to

x. Observe that contract x′ must have been offered to but rejected by the cumulative offer

algorithm. Therefore if t′ = t+, then any cadet who is assigned a slot at branch b′ has strictly

higher priority than cadet i by construction of Cb′ . If on the other hand t′ = t0, then any cadet

j with (j, b′, t0) ∈ X ′ has higher priority than cadet i. In either case X ′(j)PiX
′(i) implies cadet

j has higher priority than cadet i, completing the proof. ♦

Proof of Proposition 3: For any branch b, the chosen set Cb satisfies unilateral substitutes

condition by Lemma 2 and the law of aggregate demand by Lemma 1. Hence Proposition 3 is

a corollary of Theorem 7 in Hatfield and Kojima (2010). ♦

Proof of Proposition 4: Fix a cadet i and let π1 be an unambiguous improvement for cadet

i over π2.

Scenario 1 : First consider the outcome of cosm under priority order π1. Recall that by

Remark 1, the order of cadets making offers has no impact on the outcome of the cumulative

offer algorithm. Therefore, we can obtain the outcome of ϕGSπ1 as follows: First, entirely ignore

cadet i and run the cumulative offers algorithm until it stops. Let X ′ be the resulting set of

contracts. At this point, cadet i makes an offer for his first-choice contract x1. His offer may

cause a chain of rejections, which may eventually cause contract x1 to be rejected as well. If

23Proof of Lemma 2 does not work for the substitutes condition due to failure of this statement along with

the inequality following the statement.
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that happens, cadet i makes an offer for his second choice x2, which may cause another chain of

rejections, and so on. Let this process terminate after cadet i makes an offer for his kth choice

contract xk. There may still be a chain of rejections after this offer, but it does not reach cadet

i again. Hence cadet i receives his kth choice under ϕGSπ1 .

Scenario 2 : Next consider the outcome of ϕGSπ2 , which can be obtained in a similar way:

Initially entirely ignore cadet i and run the cumulative offers algorithm until it stops. Since

the only difference between two scenarios is cadet i’s standing in the priority list, X ′ will again

be the resulting set of contracts. Next cadet i makes an offer for his first-choice contract x1.

Since π1 is an unambiguous improvement for cadet i over π2, precisely the same sequence of

rejections will take place until he makes an offer for his kth choice contract xk. Therefore cadet

i cannot receive a better contract than his kth choice under ϕGSπ2 (although he can receive a

worse contract if the rejection chain returns back to him). ♦
Proof of Proposition 5: Fix a cadet-branch matching problem. Let s = (�′i, Bi)i∈I be a

Nash equilibrium strategy profile under the USMA mechanism and ϕWP (s) be the resulting

equilibrium outcome. Construct the resulting proxy preferences P ∗ = (Pi(�′i, Bi))i∈I as defined

above.

First consider any cadet i who is assigned the pair (b, t+) under ϕWP (s) and suppose that

cadet i would have been assigned the pair (b, t0) had he not signed a branch-of-choice contract

for branch b. That is, cadet i would have been assigned the pair (b, t0) under ϕWP (s−i, s
′
i) where

si = (�′i, Bi) and s′i = (�′i, Bi \ {b}). Therefore since s is a Nash equilibrium strategy, we must

have (b, t+)Pi(b, t0) for any such cadet, for otherwise cadet i would have a profitable deviation.

We will prove the theorem by showing that each step of the USMA algorithm under the

equilibrium profile s can be interpreted as a sequence of offers made to the cumulative offer

algorithm under the proxy preference profile P ∗. Recall that the order of offers is irrelevant

under the cumulative offer algorithm by Remark 1.

Consider Step 1 of the USMA algorithm, except let cadets make their proposals to their top

choices one at a time rather than simultaneously. Interpret each of these offers to be made at

the base cost of t0. As offers arrive, each branch b decides whether to hold the offer or reject

it, following the USMA branch priorities: When an offer comes to branch b from cadet i there

are three possibilities:

1. There are fewer than (1−λ)qb higher-priority cadets under priority list π that are currently

on hold by branch b. In that case branch b holds the offer from cadet i.
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2. There are at least (1− λ)qb higher-priority cadets under priority list π that are currently

on hold by branch b. However, for the remaining slots, there are fewer than λqb higher-

priority cadets under the adjusted priority ranking π+
b that are currently on hold by

branch b. In this case we will treat the following two cases separately:

(a) b 6∈ Bi (i.e. cadet i has not signed a branch-of-choice contract under si): In this case

branch b holds the offer from cadet i right away.

(b) b ∈ Bi (i.e. cadet i has signed a branch-of-choice contract under si): In this case

branch b first rejects the offer of cadet i although cadet i makes a second subsequent

offer to branch b right away with the increased cost t+ which is put on hold by branch

b.

3. If neither of the first two cases applies, branch b rejects the offer from cadet i for good.

Observe that the exact same rejection decisions would have been given under the cumulative

offer algorithm for proxy preference profile P ∗ for this first sequence of offers. Repeat the

above procedure with subsequent steps of the USMA algorithm until the algorithm terminates,

essentially reinterpreting the USMA algorithm as a cumulative offer algorithm for a specific

order of offers. ♦

Proof of Lemma 1∗: By construction of the chosen set, all contracts of a given agent can be

rejected by an object only when it reaches full capacity. Hence the size of the chosen set can

never shrink as the set of available contracts grows. ♦

Proof Lemma 2∗: Let x = (i, b, tub ) ∈ X ′ with u ∈ {1, . . . , k(b)} be the only contract in X ′

that involves cadet i and suppose x 6∈ Cb(X ′). Let X ′′ ⊃ X ′. Since (i, b, tub ) 6∈ Cb(X ′), we must

have ∣∣∣∣ {j ∈ I : {(j, b, t1b), . . . , (j, b, tub )} ∩X ′ 6= ∅ and π(j) < π(i)
}

︸ ︷︷ ︸
=Ī(X′)

∣∣∣∣ ≥ u∑
r=1

qrb .

Moreover, for u < k(b) and for all ` ∈ {u+ 1, . . . , k(b)}, we must have∣∣∣∣Ī(X ′) ∪
{
j ∈ I : {(j, b, tu+1

b ), . . . , (j, b, t`b)} ∩X ′ 6= ∅
}∣∣∣∣ ≥ ∑̀

r=1

qrb .

Therefore, since X ′′ ⊃ X ′,∣∣∣∣ {j ∈ I : {(j, b, t1b), . . . , (j, b, tub )} ∩X ′′ 6= ∅ and π(j) < π(i)
}

︸ ︷︷ ︸
=Ī(X′′)

∣∣∣∣ ≥ u∑
r=1

qrb
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and for all ` ∈ {u+ 1, . . . , k(b)},∣∣∣∣Ī(X ′′) ∪
{
j ∈ I : {(j, b, tu+1

b ), . . . , (j, b, t`b)} ∩X ′′ 6= ∅
}∣∣∣∣ ≥ ∑̀

r=1

qrb

if u < k(b). Hence x 6∈ Cb(X ′′), completing the proof. ♦
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