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Abstract

We use data on insurance deductible choices to estimate a structural model of risky

choice that permits "standard" risk aversion, loss aversion, and probability weighting.

We show that loss aversion and probability weighting– though not separately identified

without strong parametric assumptions– both imply a distortion of probabilities, and

we demonstrate that such probability distortions are identified. We find that probabil-

ity distortions– in the form of substantial overweighting of claim probabilities– play

an important role in explaining the aversion to risk manifested in deductible choices.

Once we allow for probability distortions, standard risk aversion is relatively small.
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1 Introduction

Households are averse to risk– they require a premium to invest in equity and they purchase

insurance at actuarially unfair rates. The standard expected utility model attributes risk

aversion to a concave utility function defined over final wealth states (diminishing marginal

utility for wealth). Indeed, many empirical studies of risk preferences assume expected utility

and estimate such "standard" risk aversion (e.g., Cohen and Einav 2007).

A considerable body of research, however, suggests that the expected utility model may

be inadequate. For instance, Rabin (2000) uses a calibration argument to demonstrate that

reliance on the expected utility model to explain aversion to moderate-stakes risk implies an

"absurd" degree of risk aversion over large-stakes risk. Sydnor (2010) applies a similar cri-

tique to argue that the level of standard risk aversion implied by most households’deductible

choices in home insurance is implausibly large.

The leading alternatives to the expected utility model conjecture several features of risk

preferences that may play a role in explaining aversion to risk. In terms of explaining

aversion to moderate-stakes risk, the literature has focused on two features– loss aversion

and probability weighting– both of which originate with prospect theory (Kahneman and

Tversky 1979). For example, Kőszegi and Rabin (2007) and Sydnor (2010) argue that a form

of "rational expectations" loss aversion proposed by Kőszegi and Rabin (2006) can explain

the aversion to risk manifested in insurance deductible choices,1 while Sydnor (2010) also

mentions probability weighting and systematic risk misperceptions as possible explanations.2

In this paper, we investigate empirically the extent to which loss aversion and probability

weighting can help explain aversion to moderate-stakes risk. We use data on households’

deductible choices in auto and home insurance to estimate a structural model of risky choice

that allows for loss aversion and probability weighting, as well as standard risk aversion.

We explain that, without making strong assumptions regarding the form of the probability

weighting function, one cannot separately identify loss aversion and probability weighting

in our data. However, we show that loss aversion and probability weighting (alone and

together) imply a distortion of probabilities relative to the expected utility model, and we

demonstrate that such probability distortions are identified. Our estimates indicate that

1Under the original, "status quo" loss aversion proposed by Kahneman and Tversky (1979), gains and
losses are defined relative to initial wealth. Under Kőszegi-Rabin loss aversion, gains and losses are defined
relative to expectations about outcomes given choices. Unless we specify otherwise, we use "loss aversion"
throughout the paper as shorthand for Kőszegi-Rabin loss aversion. On occasion, we say "KR loss aversion"
to emphasize that we mean Kőszegi-Rabin loss aversion.

2As we discuss later, in our data literal probability weighting is indistinguishable from systematic risk
misperceptions. Hence, we use "probability weighting" throughout the paper as shorthand for either literal
probability weighting or systematic risk misperceptions.
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probability distortions play a key role in explaining households’deductible choices. More

specifically, we find large probability distortions in the form of substantial overweighting of

claim probabilities. We also find that, once we allow for probability distortions, the mean

estimate for standard risk aversion is relatively small– smaller than in Cohen and Einav

(2007) or Sydnor (2010), but perhaps still larger than many economists typically assume.

In Section 2, we provide an overview of our data. The source of the data is a large U.S.

property and casualty insurance company that offers multiple lines of insurance, including

auto and home coverage. The full dataset comprises yearly information on more than 400,000

households who held auto or home policies between 1998 and 2006. For reasons we explain,

we restrict attention in our main analysis to a core sample of 4170 households who hold

both auto and home policies and who first purchased their auto and home policies from

the company in the same year, in either 2005 or 2006. For each household, we observe the

household’s deductible choices in three lines of coverage– auto collision, auto comprehensive,

and home all perils. We also observe the coverage-specific menus of premium-deductible

combinations from which each household’s choices were made. In addition, we observe each

household’s claims history for each coverage, as well as a rich set of demographic information.

We utilize the data on claim realizations and demographics to assign each household a

predicted claim probability for each coverage.

In Section 3, we develop our theoretical framework. We begin with an expected utility

model of deductible choice, which incorporates standard risk aversion (Cohen and Einav

2007). To account for observationally equivalent households choosing different deductibles,

and for individual households making "inconsistent" choices across coverages (Barseghyan

et al. 2011; Einav et al. 2011), we follow McFadden (1974, 1981) and assume random utility

with additively separable choice noise.

Next, we generalize the model to allow for loss aversion and probability weighting. We in-

corporate loss aversion by adopting a variant of the model of reference-dependent preferences

proposed by Kőszegi and Rabin (2006, 2007). We show that loss aversion and probability

weighting are not separately identified without strong assumptions regarding the form of the

probability weighting function. Thus, although we could proceed to estimate the model by

specifying one of the inverse-S-shaped probability weighting functions commonly used in the

literature (e.g., Tversky and Kahneman 1992; Lattimore et al. 1992; Prelec 1998), we prefer

not to rely on a parametric assumption to identify loss aversion. Instead, we show that loss

aversion and probability weighting (alone and together) imply a distortion of probabilities

relative to the expected utility model. Hence, we estimate a model that includes standard

risk aversion and a probability distortion function (which is an amalgam of loss aversion and

probability weighting). We conclude Section 3 by highlighting certain implications of our
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model, describing our estimation procedure, and discussing identification.

In Sections 4 and 5, we report the results of our main analysis. In Section 4, we as-

sume homogenous preferences– i.e., we assume each household has the same coeffi cient of

absolute risk aversion r and the same probability distortion function Ω(µ)– and take three

nonparametric approaches to estimating Ω(µ). Under each approach, we find large probabil-

ity distortions in the form of substantial overweighting of claim probabilities on the relevant

range (zero to twenty percent).3 Under our primary approach, for example, the estimated

probability distortion function implies Ω(0.02) = 0.08, Ω(0.05) = 0.11, and Ω(0.10) = 0.16.

We also find that, once we allow for probability distortions, the estimated degree of standard

risk aversion declines substantially. At the end of Section 4, we highlight two key implications

of our results for loss aversion and probability weighting. First, although we can say nothing

about whether or not there is loss aversion, our results show that there indeed is probability

weighting. Second, our results are suggestive of a probability weighting function that has

the form originally posited by Kahneman and Tversky (1979), which is discontinuous at zero

and trends toward a positive intercept.

In Section 5, we allow for heterogeneous preferences by permitting r and Ω(µ) to depend

on observables. The results are nearly identical. We also extend this model to account for

household wealth or unobserved heterogeneity in risk, and little changes. Thus, whether we

assume homogenous preferences or allow for heterogenous preferences, we find large proba-

bility distortions and concomitantly smaller standard risk aversion.

In Sections 6 and 7, we explore the robustness of our results. In Section 6, we investigate

the sensitivity of our estimates to certain modeling assumptions, and we find that they are

quite robust. In Section 7, we investigate whether unobserved heterogeneity in preferences

(for which our model does not allow) might bias our results in favor of finding probability

distortions. Specifically, we generate simulated deductible choices using models that include

unobserved heterogeneity in preferences, and then estimate our empirical specification on

such simulated data. The results lead us to conclude that unobserved heterogeneity in

preferences cannot explain the large probability distortions we find in the actual data. We

conclude in Section 8 by discussing certain implications and limitations of our study.

Numerous previous studies estimate risk preferences from observed choices, relying in

most cases on survey and experimental data and in some cases on economic field data. Most

of the studies in the literature– including two that use data on insurance deductible choices

(Cohen and Einav 2007; Sydnor 2010)– estimate expected utility models, which permit only

standard risk aversion. A handful of studies estimate models that allow for "status quo"

loss aversion, probability weighting, or both– usually cumulative prospect theory models

3In the core sample, 99.4 percent of the predicted claim probabilities lie in the interval (0, 0.20).
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(Tversky and Kahneman 1992).4 To our knowledge, no prior study estimates a model that

permits standard risk aversion, KR loss aversion and probability weighting. Furthermore,

the vast majority of the studies that estimate models with probability weighting take a

parametric approach and assume one of the common inverse-S-shaped probability weighting

functions. Hence, our paper contributes to the literature principally by estimating a model

that allows for standard risk aversion, KR loss aversion, and probability weighting and that

does not make strong parametric assumptions regarding the form of probability weighting.

Three recent studies echo our conclusion that probability weighting is important. Bruhin

et al. (2010) use experimental data on subjects’choices over binary money lotteries to es-

timate a mixture model of cumulative prospect theory. They find that approximately 20

percent of subjects can essentially be characterized as expected value maximizers, while

approximately 80 percent exhibit significant probability weighting. Snowberg and Wolfers

(2010) use data on gamblers’bets on horse races to test the fit of two models– a model

with standard risk aversion alone and a model with probability weighting alone– and find

that the latter model better fits their data. Lastly, Kliger and Levy (2009) use data on

call options on the S&P 500 index to estimate a cumulative prospect theory model, and

they find that "status quo" loss aversion and probability weighting are manifested by their

data. None of these studies, however, estimate models that combine standard risk aversion,

KR loss aversion and probability weighting. Moreover, they all use typical inverse-S-shaped

probability weighting functions. Finally, the latter two studies have only aggregate data,

which necessitates that they take a representative agent approach and rely on equilibrium

"ratio" conditions to identify the agent’s utility function.

2 Data Description

2.1 Overview and Core Sample

We acquired the data from a large U.S. property and casualty insurance company. The

company offers multiple lines of insurance, including auto, home, and umbrella policies.

The full dataset comprises yearly information on more than 400,000 households who held

auto or home policies between 1998 and 2006. For each household, the data contain all the

information in the company’s records regarding the household’s characteristics (other than

identifying information) and its policies (e.g., the limits on liability coverages, the limits and

4In addition to the studies discussed below, see, e.g., Tversky and Kahneman (1992), Cicchetti and Dubin
(1994), Hey and Orme (1994), Jullien and Salanié (2000), Choi et al. (2007), Post et al. (2008), and Tanaka
et al. (2010). Virtually all studies that estimate models with "status quo" loss aversion do not also permit
standard risk aversion (over final wealth states), though some permit diminishing sensitivity.
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deductibles on property damage coverages, and the premiums associated with each coverage).

The data also record the number of claims that each household filed with the company under

each of its policies during the period of observation.

In this paper, we restrict attention to households’deductible choices in three lines of

coverage: (i) auto collision coverage; (ii) auto comprehensive coverage; and (iii) home all

perils coverage.5 In addition, we consider only the initial deductible choices of each house-

hold. This is meant to increase confidence that we are working with active choices; one

might be concerned that some households renew their policies without actively reassessing

their deductible choices. Finally, we restrict attention to households who hold both auto and

home policies and who first purchased their auto and home policies from the company in the

same year, in either 2005 or 2006. The latter restriction is meant to avoid temporal issues,

such as changes in household characteristics and in the economic environment. In the end,

we are left with a core sample of 4170 households.6 Table 1 provides descriptive statistics

for the variables we use later to estimate the households’utility parameters.

TABLE 1

2.2 Deductibles and Premiums

For each household in the core sample, we observe the household’s deductible choices for auto

collision, auto comprehensive, and home, as well as the premiums paid by the household for

each type of coverage. In addition, the data contain the exact menus of premium-deductible

combinations that were available to each household at the time it made its deductible choices.

Table 2 summarizes the deductible choices of the households in the core sample. For each

coverage, the most popular deductible choice is $500.

TABLE 2

Table 3 summarizes the premium menus. For each type of coverage, it summarizes the

premium for coverage with a $500 deductible, as well as the marginal cost of decreasing the

deductible from $500 to $250 and the marginal savings from increasing the deductible from

$500 to $1000. The average annual premium for coverage with a $500 deductible is $180

for auto collision, $115 for auto comprehensive, and $679 for home. The average annual

cost of decreasing the deductible from $500 to $250 is $54 for auto collision, $30 for auto

5A brief description of each type of coverage appears in the Appendix. For simplicity, we often refer to
home all perils simply as home.

6As part of our sensitivity analysis in Section 6, we consider alternative samples with less restrictive
inclusion criteria.
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comprehensive, and $56 for home. The average annual savings from increasing the deductible

from $500 to $1000 is $41 for auto collision, $23 for auto comprehensive, and $74 for home.7

TABLE 3

Because it is important to understand the sources of variation in premiums, we briefly

describe the plan the company uses to rate a policy in each line of coverage. Upon observing

the household’s coverage-relevant characteristics, the company determines a base price p̄

according to a coverage-specific rating function. Using the base price, the company then

generates a household-specific menu {(pd, d) : d ∈ D}, which associates a premium pd with

each deductible d in the coverage-specific set of deductible optionsD, according to a coverage-
specific multiplication rule, pd = (g(d) · p̄) + c, where g (·) > 0 and c > 0. The multiplicative

factors {g(d) : d ∈ D} are known in the industry as deductible factors, and c is known
as an expense fee. The deductible factors and the expense fees are coverage specific but

household invariant. Moreover, the expense fees are small markups that do not depend on

the deductibles. The company’s rating plan, including its rating function and multiplication

rule, are subject to state regulation. Among other things, the regulations require that the

company base its rating plan on actuarial considerations (losses and expenses) and prohibit

the company and its agents from charging rates that depart from the company’s rating plan.8

2.3 Claim Probabilities

For purposes of our analysis, we need to estimate for each household the likelihood of ex-

periencing a claim for each coverage. We begin by estimating how claim rates depend on

observables. In an effort to obtain the most precise estimates, we use the full dataset:

1,348,020 household-year records for auto and 1,265,229 household-year records for home.

For each household-year record, the data record the number of claims filed by the household

in that year. We assume that household i’s claims under coverage j in year t follow a Pois-

son distribution with arrival rate λijt. In addition, we assume that deductible choices do not

influence claim rates, i.e., households do not suffer from moral hazard.9 We treat the claim

7Tables A.1 through A.3 in the Appendix summarize the premium menus conditional on households’
actual deductible choices.

8They also prohibit "excessive" rates and provide that insurers shall consider only "reasonable profits"
in making rates. See, e.g., N.Y. Ins. Law §§ 2303, 2304 & 2314 (Consol. 2010), N.Y. Comp. Codes R. &
Regis. tit. 11, § 160.2 (2010), and Dunham (2009, §§ 26.03 & 43.10).

9We follow Cohen and Einav (2007) and Barseghyan et al. (2011) in making this assumption. Note that
it subsumes that there is neither ex ante moral hazard (deductible choice does not influence the frequency of
claimable events) nor ex post moral hazard (deductible choice does not influence the decision to file a claim).
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rates as latent random variables and assume that

lnλijt = βjXijt + εij,

where Xijt is a vector of observables,10 εij is an unobserved iid error term, and exp(εij)

follows a gamma distribution with unit mean and variance φj. We perform standard Poisson

panel regressions with random effects to obtain maximum likelihood estimates of βj and φj
for each coverage j. The results are reported in Tables A.4 and A.5 in the Appendix.

Next, we use the results of the claim rate regressions to generate predicted claim prob-

abilities. Specifically, for each household i, we use the regression estimates to generate a

predicted claim rate λ̂ij for each coverage j, conditional on the household’s (ex ante) char-

acteristics Xij and (ex post) claims experience. In principle, during the policy period, a

household may experience zero claims, one claim, two claims, and so forth. In the model, we

assume that households disregard the possibility of more than one claim (see Section 3.1).11

Given this assumption, we transform λ̂ij into a predicted claim probability µ̂ij using
12

µ̂ij = 1− exp(−λ̂ij).

Table 4 summarizes the predicted claim probabilities for the core sample. The mean

predicted claim probabilities for auto collision, auto comprehensive, and home are 0.069,

0.021, and 0.084, respectively, and there is substantial variation across households and cov-

erages. Table 4 also reports pairwise correlations among the predicted claim probabilities

and between the predicted claim probabilities and the premiums for coverage with a $500

deductible. Each of the pairwise correlations is positive, though none are large.

TABLE 4

2.4 Variation in Premiums and Claim Probabilities

Tables 3 and 4 reveal that, within each coverage, there is substantial variation in premiums

and claim probabilities, and that premiums and claim probabilities are largely uncorrelated.

A key identifying assumption is that there is variation in premiums and claim probabilities

10In addition to the variables in Table 1 (which we use later to estimate the households’utility parameters),
Xijt includes numerous other variables (see Tables A.4 and A.5 in the Appendix).
11Because claim rates are small (85 percent of the predicted claim rates in the core sample are less than

0.1, and 99 percent are less than 0.2), the likelihood of two or more claims is very small.
12The Poisson probability mass function is f(x, λ) = exp(−λ)λx/x! for x = 0, 1, 2, ... and λ ≥ 0. Thus, if

the number of claims x follow a Poisson distribution with arrival rate λ, then the probability of experiencing
at least one claim is 1− exp(−λ).
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that is exogenous to the households’risk preferences. Hence, in our estimation procedure,

we assume that a household’s utility parameters depend on a vector of observables Z that is

a strict subset of the variables that determine premiums and claim probabilities.13 Many of

the variables outside Z that determine premiums and claim probabilities, such as protection

class and territory code,14 are undoubtedly exogenous to the households’risk preferences.

In addition, there are other variables outside Z that determine premiums but not claim

probabilities, including numerous discount programs, which also are undoubtedly exogenous

to the households’risk preferences.

Given our choice of Z, there is substantial variation in premiums and claim probabilities

that is not explained by Z. In particular, regressions of premiums and predicted claim proba-

bilities on Z yield low coeffi cients of determination. In the case of auto collision coverage, for

example, regressions of premiums (for coverage with a $500 deductible) on Z and predicted

claim probabilities on Z yield coeffi cients of determination of 0.16 and 0.34, respectively.15

In addition to the substantial variation in premiums and claim probabilities within a

coverage, there also is substantial variation in premiums and claim probabilities across cov-

erages. A key feature of the data is that for each household we observe deductible choices

for three coverages, and (even for a fixed Z) there is substantial variation in premiums and

claim probabilities across the three coverages. Hence, even if the within-coverage variation

in premiums and claim probabilities were insuffi cient in practice, we still might be able to

estimate the model using across-coverage variation.

3 Theoretical Framework

3.1 Deductible Lotteries

We assume that a household treats its three deductible choices as independent decisions.

This assumption is motivated in part by computational considerations,16 but also by the

literature on "narrow bracketing" (e.g., Read et al. 1999), which suggests that when people

make multiple choices, they frequently do not assess the consequences in an integrated way,

but rather tend to make each choice in isolation. Thus, we develop a model for how a house-

13In general, Z comprises the variables in Table 1.
14Protection class guages the effectiveness of local fire protection and building codes. Territory codes

are based on actuarial risk factors, such as traffi c and weather patterns, population demographics, wildlife
density, and the cost of goods and services.
15They are even lower for auto comprehensive and home. In the case of auto comprehensive the coeffi cients

of determination are 0.07 and 0.31, and in the case of home they are 0.04 and 0.15.
16If instead we were to assume that a household treats its deductible choices as a joint decision, then the

household would face 120 options and the utility function would have several hundred terms.
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hold chooses the deductible for a single type of insurance coverage. To simplify notation,

we suppress the subscripts for household and coverage (though we remind the reader that

premiums and claim probabilities are household and coverage specific).

The household faces a menu of premium-deductible pairs {(pd, d) : d ∈ D}, where pd is
the premium associated with deductible d and D is the coverage-specific set of deductible
options. We assume that the household disregards the possibility of experiencing more

than one claim during the policy period, and that the household believes the probability

of experiencing one claim is µ. In addition, we assume that the household believes that its

choice of deductible does not influence its claim probability, and that every claim exceeds

the highest available deductible.17 Under the foregoing assumptions, the choice of deductible

involves a choice among lotteries of the form

Ld ≡ (−pd, 1− µ;−pd − d, µ) ,

to which we refer as deductible lotteries.

3.2 Standard Risk Aversion

To fix ideas, we initially assume that a household’s preferences over deductible lotteries are

influenced only by standard risk aversion– i.e., households are expected utility maximizers.

The expected utility of deductible lottery Ld is

EU(Ld) = (1− µ)u(w − pd) + µu(w − pd − d).

The function u represents standard utility defined over final wealth states, where w denotes

initial wealth, and standard risk aversion is captured by the concavity of u.

To estimate the model, we first must specify utility u. We follow Cohen and Einav

(2007) and Barseghyan et al. (2011) and consider a second-order Taylor expansion under the

assumption that u has a negligible third derivative.18 Also, because u is unique only up to

an affi ne transformation, we normalize the scale of utility by dividing u′(w). This yields

u(w + ∆)

u′(w)
− u(w)

u′(w)
= ∆− r

2
∆2,

17We make the latter assumption more plausible by excluding the $2500 and $5000 deductible options
from the home menu. Only 1.6 percent of households in the core sample chose a home deductible of $2500
or $5000. We assign these households a home deductible of $1000. In this respect, we follow Cohen and
Einav (2007), who also exclude the two highest deductible options (chosen by 1 percent of the policyholders
in their sample) and assign the third highest deductible to policyholders who chose the two highest options.
18While we use this utility specification in most of our analysis, we consider CRRA utility and CARA

utility in Sections 5.2 and 6.1, respectively.
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where r ≡ −u′′(w)/u′(w) is the coeffi cient of absolute risk aversion. Because the term

u(w)/u′(w) enters as an additive constant, it does not affect utility comparisons. With this

specification, we have

U(Ld) ≡
EU(Ld)

u′(w)
− u(w)

u′(w)
= − [pd + µd]− r

2

[
(1− µ) (pd)

2 + µ (pd + d)2] . (1)

The first term on the right-hand side of equation (1) reflects the expected value of deductible

lottery Ld. The second term reflects the disutility from risk– it is the expected value of the

squared losses, scaled by standard risk aversion.19

Next, we must account for observationally equivalent households choosing different de-

ductibles, and for individual households making "inconsistent" choices across coverages

(Barseghyan et al. 2011; Einav et al. 2011). We follow McFadden (1974, 1981) and as-

sume random utility with additively separable choice noise. Specifically, we assume that the

utility from deductible d ∈ D is given by

U(d) ≡ U(Ld) + εd, (2)

where εd is an iid random variable that represents error in evaluating utility. We initially

assume that εd follows a type 1 extreme value distribution (also known as a Gumbel distribu-

tion) with scale parameter σ.20 Hence, a household chooses deductible d when U(d) > U(d′)

for all d′ 6= d, and thus the probability that a household chooses deductible d is

Pr (d) = Pr (εd′ − εd < U(Ld)− U(Ld′) for all d′ 6= d) (3)

=
exp (U(Ld)/σ)∑

d′∈D exp (U(Ld′)/σ)
.

In the estimation, we construct the likelihood function from these choice probabilities.

At this point, we could estimate equation (2) assuming that utility is specified by equation

(1) and recover an estimate for r. When we do so, the estimated degree of risk aversion is

quite large (see Section 4). This is consistent with Sydnor’s (2010) main result, namely that,

under the hypothesis of expected utility, homeowners’ deductible choices imply absurdly

large risk aversion. However, we are interested in going beyond standard risk aversion, and

assessing whether we can enrich the model to better explain households’deductible choices.

19Note that this specification differs slightly from Cohen and Einav (2007) and Barseghyan et al. (2011),
who use U(Ld) = − [pd + λd]− r

2

[
λd2
]
(where λ is the Poisson arrival rate). The difference derives from the

fact that those papers additionally take the limit as the policy period becomes arbitrarily small.
20The scale parameter σ is a monotone transformation of the variance of εd, and thus a larger σ means

larger variance. Our estimation procedure permits σ to vary across coverages (see Section 3.4).
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3.3 Probability Distortions

The behavioral economics literature conjectures several features of risk preferences that may

play a role in explaining aversion to risk. In terms of explaining aversion to moderate-stakes

risk, the literature focuses on two features– loss aversion and probability weighting– both of

which originate with prospect theory (Kahneman and Tversky 1979). As we explain below,

both loss aversion and probability weighting imply a distortion of probabilities relative to

the expected utility model. We enrich our model by allowing for such probability distortions.

3.3.1 Loss Aversion

The original, "status quo" loss aversion proposed by Kahneman and Tversky (1979)–

wherein gains and losses are defined relative to initial wealth– cannot explain aversion to

risk in the context of insurance deductible choices, because all outcomes are losses relative to

initial wealth. More recently, however, Kőszegi and Rabin (2006, 2007) and Sydnor (2010)

have suggested that a form of "rational expectations" loss aversion– wherein gains and losses

are defined relative to expectations about outcomes given choices– can explain the aversion

to moderate-stakes risk manifested in insurance deductible choices.

In the Kőszegi-Rabin (KR) model, the expected utility from choosing a lottery depends

both on standard "intrinsic" utility, which is defined over final wealth states, and on "gain-

loss" utility, which results from experiencing outcomes that are better or worse than expected.

Using the KR specification for gain-loss utility, and applying "choice-acclimating personal

equilibrium" (which KR suggest is the appropriate equilibrium concept for insurance choices),

equation (1) becomes

U(Ld) = − [pd + µd]− r

2

[
(1− µ) (pd)

2 + µ (pd + d)2] (4)

−Λ (1− µ)µ
[
d+

r

2

[
(pd + d)2 − (pd)

2
]]
.

For an overview of the KRmodel and a derivation of equation (4), see the Appendix. The first

two terms of equation (4) are equivalent to equation (1) and reflect the standard expected

utility component of the KR model. The third term reflects the expected gain-loss utility

component, where Λ captures the degree of loss aversion.21 For Λ = 0, the household is loss

neutral and the model reduces to expected utility. For Λ > 0, the household is loss averse.

21The KR model actually contains two parameters, one (λ) that captures the degree of loss aversion and
one (η) that captures the importance of gain-loss utility relative to standard utility. Under choice-acclimating
personal equilibrium, however, these parameters always appear as the product η(λ− 1), which we label Λ.
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We can rewrite equation (4) as

U(Ld) = − [pd + δ(µ)d]− r

2

[
(1− δ(µ)) (pd)

2 + δ(µ) (pd + d)2] , (5)

where δ(µ) ≡ µ [1 + Λ (1− µ)]. Equation (5) is equivalent to equation (1), except that µ has

been replaced by δ(µ). Thus, KR loss aversion effectively implies a distortion of probabilities

relative to the expected utility model. Moreover, because Λ > 0 implies δ(µ) > µ, KR loss

aversion increases the household’s willingness to pay for lower deductibles.

3.3.2 Probability Weighting

In their original prospect theory paper, Kahneman and Tversky (1979) introduce probability

weighting, whereby individual probabilities are transformed into decision weights. Incorpo-

rating probability weighting, and adopting the rank-dependent approach of Quiggin (1982),

equation (1) becomes

U(Ld) = − [pd + π(µ)d]− r

2

[
(1− π(µ))(pd)

2 + π(µ)(pd + d)2
]
, (6)

where π(µ) is the probability weighting function. From equation (6), we can see that prob-

ability weighting directly implies a distortion of probabilities relative to expected utility.

Over the years, several functional forms for π(µ) have been proposed (e.g., Tversky

and Kahneman 1992; Lattimore et al. 1992; Prelec 1998), all of which share the same basic

properties originally posited by Kahneman and Tversky (1979): overweighting of small prob-

abilities, underweighting of large probabilities, and some insensitivity to probability changes

in the intermediate range. It follows that in the domain of auto and home insurance, where

claim probabilities generally are small, such probability weighting would increase the house-

hold’s willingness to pay for lower deductibles.

3.3.3 Probability Distortions

As we have seen, both KR loss aversion and probability weighting imply a distortion of

probabilities relative to the expected utility model. Incorporating both KR loss aversion and

probability weighting into the model, equation (1) becomes

U(Ld) = − [pd + Ω(µ)d]− r

2

[
(1− Ω(µ)) (pd)

2 + Ω(µ) (pd + d)2] , (7)

where

Ω(µ) ≡ π(µ) [1 + Λ (1− π(µ))] . (8)

12



We refer to Ω(µ) as the probability distortion function.

From equation (8), it is clear that if we impose a functional form for π(µ), we (poten-

tially) can separately identify Λ and π(µ). If, however, we impose no functional form for

π(µ)– which is our preferred approach– then we cannot separately identify Λ and π(µ). In

particular, even though (as we demonstrate below) we can identify the probability distortion

function Ω(µ), this function can comprise many different combinations of Λ and π(µ). In

our analysis, therefore, we focus on estimating Ω(µ), and then we discuss the implications

for Λ and π(µ) (see Section 4.4).

Of course, even if we separate Λ from π(µ), we still face the issue of interpreting π(µ). As

we discuss in Section 4.4, our estimates for Ω(µ) suggest that π(µ) 6= µ (assuming Λ ≥ 0).

Given our data, however, we cannot say whether π(µ) 6= µ implies that households are

engaging in probability weighting per se or that their subjective beliefs deviate systematically

from the objective probabilities (or some combination of both). Hence, although we use the

label probability weighting, we caution the reader that we use it as shorthand for either

literal probability weighting or systematic risk misperceptions.

3.3.4 Model Implications

It is worth highlighting certain implications of equation (7) that play a role in identifying r

versus Ω(µ). Take any three deductible options a, b, c ∈ D, with a > b > c. For a household

with premium pa for deductible a and claim probability µ, define p̃b(pa, µ) as the premium

for deductible b that makes the household indifferent between a and b, and define p̃c(pa, µ) as

the the premium for deductible c that makes the household indifferent between a and c. In

other words, p̃b(pa, µ) − pa reflects the household’s maximum willingness to pay (WTP ) to

reduce its deductible from a to b, and p̃c(pa, µ)− pa reflects the household’s WTP to reduce

its deductible from a to c. To simplify notation, we let p̃b ≡ p̃b(pa, µ) and p̃c ≡ p̃c(pa, µ). In

the Appendix, we prove the following properties of p̃b and p̃c as functions of r and Ω(µ).22

Property 1. Both p̃b and p̃c are strictly increasing in r and Ω(µ).

Property 2. If r = 0 then p̃b−pa
p̃c−p̃b = a−b

b−c . If r > 0 then p̃b−pa
p̃c−p̃b >

a−b
b−c .

Property 3. Holding Ω(µ) fixed, the ratio p̃b−pa
p̃c−p̃b is strictly increasing in r.

Property 4. If p̃c is the same for (r,Ω(µ)) and a different (r′,Ω(µ)′), then p̃b is different

for (r,Ω(µ)) and (r′,Ω(µ)′). In particular, if r > r′ (in which case Ω(µ) < Ω(µ)′), then p̃b
is greater for (r,Ω(µ)).

22We supress the explicit dependence of p̃b and p̃c on r and Ω(µ) to simplify notation.
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Property 1 is straightforward. A household’sWTP to reduce its deductible (and thereby

reduce its exposure to risk) will be larger if either it is more risk averse (in the standard

sense) or its (distorted) claim probability is larger.

Property 2 is an implication of standard risk aversion. For a given Ω(µ), a risk neutral

household is willing to pay, for instance, exactly twice as much to reduce its deductible from

$1000 to $500 as it is willing to pay to reduce its deductible from $500 to $250. In contrast, a

risk averse household is willing to pay more than twice as much. This is because a risk averse

household’s WTP to avoid an incremental loss depends positively on the magnitude of the

absolute loss. Property 3 states that the higher is the household’s standard risk aversion,

the stronger is this effect.

Property 4 is the key property for identification. Given Property 1, any particular p̃c is

consistent with multiple pairs of r andΩ(µ). In particular, if we observe that p̃c−pa > µ(a−c)
(i.e., WTP is larger than what is actuarially fair), this could be due to r > 0, Ω(µ) > µ, or

both. However, using the same underlying intuition behind Property 3, one can show that,

holding p̃c constant, the ratio (p̃b − pa)/(p̃c − p̃b) is increasing in r. That is, the decline in
Ω(µ) required to keep p̃c constant in response to an increase in r does not outweigh the direct

effect of an increase in r on the ratio (p̃b − pa)/(p̃c − p̃b) from Property 3. Property 4 then

immediately follows– if two (r,Ω(µ)) combinations both are consistent with a particular p̃c,

the combination with more standard risk aversion implies a greater p̃b.

3.4 Estimation Procedure

We observe data {Dij,Γij}, where Dij is household i’s deductible choice for coverage j and

Γij ≡ (Zi, µ̂ij, Pij). In Γij, Zi is a vector of household characteristics, µ̂ij is household i’s

predicted claim probability for coverage j, and Pij denotes household i’s menu of premium-

deductible pairs for coverage j. In our analysis in Section 4, in which we assume homogenous

preferences, Zi comprises only a constant. When we allow for heterogeneous preferences in

Section 5, Zi comprises a constant and the variables in Table 1 (except, in most specifications,

home value).

We estimate equation (2) assuming that utility is specified by equation (7). We generally

assume that, for each coverage j, household i’s predicted claim probability µ̂ij corresponds

to it subjective claim probability µij.
23 The parameters to be estimated are:

23Of course, µ̂ij may not correspond to µij due to risk misperceptions, which could explain why we find
probability distortions (see Section 3.3). It also is possible, however, that µ̂ij may not correspond to µij due
to unobserved heterogeneity in risk. We address this issue in Section 5.3.
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ri — coeffi cient of absolute risk aversion (ri = 0 means no standard risk aversion);

Ωi(µ) — probability distortion function (Ωi(µ) = µ means no probability distortions); and

σj — scale of choice noise for coverage j (σj = 0 means no choice noise).

We assume throughout that ln ri = βrZi. We take several approaches to estimating the

probability distortion function. For now, we write Ωi(µ|βΩ, Zi), where βΩ is a vector of

parameters that will depend on the specific approach. Finally, we assume that σj does not

vary across households but does vary across coverages. Hence, we estimate σL, σM , and σH
for auto collision, auto comprehensive, and home, respectively.

We estimate the model via maximum likelihood using combined data for all three cover-

ages. For each household i, the conditional loglikelihood function is

`i (θ) ≡
∑
j

∑
d∈Dj

1 (Dij = d) ln [Pr (Dij = d|Γij, θ)] ,

where θ = (βr, βΩ, σL, σM , σH), the indicator function selects the deductible chosen by house-

hold i for coverage j, and Pr (Dij = d|Γij, θ) denotes the choice probability in equation (3).
We estimate θ by maximizing

∑
i `i (θ).

3.5 Identification

The random utility model in equation (2) comprises the sum of a utility function U(Ld) and

an error term εd. Using the results of Matzkin (1991), normalizations that fix scale and

location, plus regularity conditions that are satisfied in our model, allow us to identify non-

parametrically the utility function U(Ld) within the class of monotone and concave utility

functions. Identification of U(Ld) allows us to identify r and Ω(µ). To see this, note that

identification of U(Ld) allows us to identify– for any three deductible options a, b, c ∈ D,
with a > b > c, and any given premium pa for deductible a– the pair of indifference pre-

miums p̃b(pa, µ) and p̃c(pa, µ), where p̃b(pa, µ) is the premium for deductible b that makes

the household indifferent between a and b, and p̃c(pa, µ) is the the premium for deductible c

that makes the household indifferent between a and c. As we show in Section 3.3.4, different

pairs of indifference premiums imply different combinations of r and Ω(µ) (and vice versa).

Thus, it is the variation in premiums for a fixed µ that allows us to pin down r and Ω(µ).

Variation in claim probabilities allows us to map out Ω(µ) for all µ.

15



4 Analysis with Homogenous Preferences

We begin our analysis by assuming homogeneous preferences– i.e., r and Ω(µ) are the same

for all households. This permits us to take a nonparametric approach to estimating Ω(µ)

without facing a (prohibitive) curse of dimensionality. As a point of reference for our analysis,

we note that if we do not allow for probability distortions (i.e., we restrict Ω(µ) = µ), the

estimate for r is 0.0129 (standard error: 0.0004).

4.1 Estimates

We take three nonparametric approaches to estimating Ω(µ), none of which constrain Ω(µ)

to be continuous at µ = 0. In Model 1a, we estimate a quadratic Chebyshev polynomial

expansion of ln Ω(µ).24 This approach naturally constrains Ω(µ) > 0. In Model 1b, we

estimate a quadratic Chebyshev polynomial expansion of Ω(µ) (and we restrict Ω(µ) > 0).25

This approach naturally nests the case Ω(µ) = µ. In Model 1c, we estimate Ω(µ) using an

11-point cubic spline on the interval (0, 0.20) (wherein lie 99.4 percent of the predicted claim

probabilities in the core sample). Because it is a local approximation method, the cubic

spline approach serves as a robustness check of both polynomial approaches.

Table 5 reports our results. The estimates for Ω(µ) indicate large probability distortions.

To illustrate, Figure 1 depicts the estimated Ω(µ) for Models 1a, 1b, and 1c, along with

the 95 percent pointwise confidence bands for Model 1c. In each model, there is substantial

overweighting of claim probabilities. Moreover, all three models imply nearly identical dis-

tortions of claim probabilities between zero and 14 percent (wherein lie 96.7 percent of the

predicted claim probabilities in the core sample), and even for claim probabilities greater

than 14 percent the three models are statistically indistinguishable (Models 1a and 1b lie

within the 95 percent confidence bands for Model 1c). Naturally, given this overweighting,

the estimates for r are smaller than without probability distortions. Specifically, r̂ is 0.00064,

0.00063, and 0.00049 in Models 1a, 1b, and 1c, respectively.

TABLE 5 & FIGURE 1

24We considered expansions up to the 20th degree, and selected a quadratic on the basis of the Bayesian
information criterion (BIC).
25As before, we considered expansions up to the 20th degree. Here, the BIC selected a cubic. However,

because the BIC for the quadratic and cubic were essentially the same, we report results for the quadratic
to faciliate direct comparisons with Model 1a.
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4.2 Statistical Significance

To assess the relative statistical importance of probability distortions and standard risk

aversion, we estimate restricted models and perform Vuong (1989) model selection tests.26

We find that a model with probability distortions alone is "better" at the 1 percent level

than a model with standard risk aversion alone. However, a likelihood ratio test rejects

at the 1 percent level both (i) the null hypothesis of standard risk neutrality (r = 0) for

Models 1a and 1b and (ii) the null hypothesis of no probability distortions (Ω(µ) = µ) for

Model 1b.27 This suggests that probability distortions and standard risk aversion both play

a statistically significant role.

4.3 Economic Significance

To give a sense of the economic significance of our estimates, we consider the implications for a

household’s maximum willingness to pay (WTP ) for lower deductibles. Specifically, consider

the household’s WTP to reduce its deductible from $1000 to $500 when the premium for

coverage with a $1000 deductible is $200. Note that this WTP corresponds to p̃$500 − $200,

where p̃$500 is the premium for coverage with a $500 deductible that makes the household

indifferent between coverage with a $1000 deductible and coverage with a $500 deductible

when the premium for coverage with a $1000 deductible is $200. Table 6 displays WTP

for selected claim probabilities µ and various preference combinations, using the estimates

for r and Ω(µ) from Model 1a. It reveals that our estimated probability distortions and

our estimated standard risk aversion both have an economically significant impact on a

household’s WTP for lower deductibles. More specifically, Table 6 illustrates two main

points. First, in general, our estimated probability distortions have a large effect on WTP ,

while our estimated standard risk aversion has a relatively moderate effect onWTP . Second,

the relative disparity in the effects of probability distortions and standard risk aversion

diminishes at high claim probabilities, where both generate substantial aversion to risk.

TABLE 6

26Vuong’s (1989) test allows one to select between two nonnested models on the basis of which best fits
the data. Neither model is assumed to be correctly specified. Vuong (1989) shows that testing whether one
model is significantly closer to the truth (its loglikelihood value is significantly greater) than another model
amounts to testing the null hypothesis that the loglikelihoods have the same expected value.
27We do not perform a likelihood ratio test of the null hypothesis of no probability distortions for Model

1a because it does not nest the case Ω(µ) = µ.

17



4.4 Loss Aversion and Probability Weighting

As we discuss in Section 3.3, the probability distortions we estimate could derive from KR

loss aversion, probability weighting, or both. Moreover, without specifying a functional

form for the probability weighting function, we cannot separately identify the degree of loss

aversion Λ and the probability weighting function π(µ). Nevertheless, we can investigate

which combinations of Λ and π(µ) are consistent with our estimated Ω(µ).

Specifically, one can use equation (8) to derive an implied π(µ) as a function of Λ and

the estimated Ω(µ). Figure 2 performs this exercise using our estimated Ω(µ) from Model

1a. As is clear from equation (8), if there is no loss aversion (Λ = 0), then the implied π(µ)

is exactly equal to the estimated Ω(µ). Furthermore, if households are loss averse (Λ > 0),

the implied π(µ) is lower than the estimated Ω(µ), and the larger is Λ the lower is the

implied π(µ) (as illustrated in Figure 2). Notice the conclusion that emerges Figure 2. Our

analysis can say nothing about whether or not there is any KR loss aversion. However, if

households are either loss neutral or loss averse (i.e., Λ ≥ 0)– as is typically assumed in the

literature– our analysis implies that there indeed is probability weighting (i.e., π(µ) 6= µ).

There is another way to see that KR loss aversion alone cannot explain the Ω(µ) that

we estimate. From equation (8), we readily can see if households are loss averse but do not

weight probabilities (π(µ) = µ), then (i) Ω(µ) > µ for all µ and (ii) Ω′(µ) > 1 for µ < 1
2
.

Neither, however, is consistent with our estimated Ω(µ).

Finally, note that among the probability weighting functions that have been proposed in

the literature, our estimated Ω(µ) is suggestive of the form originally posited by Kahneman

and Tversky (1979). In particular, it is consistent with a probability weighting function

that is discontinuous at µ = 0 and trends toward a positive intercept as µ approaches zero

(although we have relatively little data for µ < 0.01). In contrast, the functional forms

suggested by Tversky and Kahneman (1992), Lattimore et al. (1992), and Prelec (1998),

among others, require π(µ) to be continuous at µ = 0 and π(0) = 0. Figure 2, however,

suggests that such functional forms will not fit our data well, because they imply that π(µ)

becomes very steep as µ approaches zero.28

FIGURE 2

28In Barseghyan et al. (2010), we estimate a similar model asuming one of these functional forms for π(µ)
(in which case Λ and the relevant probability weighting parameter are separately identified), and we find
Λ ≈ 0. In light of Figure 2, this result is not surprising, because Λ > 0 would only exacerbate the excess
steepness that these functions imply for small probabilities.
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5 Analysis with Heterogenous Preferences

In this section, we allow for heterogenous preferences. Because Models 1a, 1b, and 1c yield

nearly identical results, and because it naturally constrains Ω(µ) > 0, throughout this section

we estimate a quadratic Chebyshev polynomial expansion of ln Ω(µ) (which is the best fit in

Model 1a). Thus, we permit preferences to depend on observables Zi, as follows:

ln ri = βrZi and ln Ωi(µ) = βΩ,1Zi +
(
βΩ,2Zi

)
µ+

(
βΩ,3Zi

)
µ2.

As explained in Section 3.4, we estimate θ = (βr, βΩ,1, βΩ,2, βΩ,3, σL, σM , σH) via maximum

likelihood. We then use θ̂ to assign fitted values of ri and Ωi(µ) to each household i.

5.1 Benchmark Estimates

Table 7 reports the estimates of our benchmark specification with heterogenous preferences,

which we label Model 2. In Model 2, Zi includes a constant and the variables in Table 1,

except for home value. We view home value primarily as a proxy for wealth, and thus we

introduce it below when we endeavor to account for wealth. The top panel presents the

coeffi cient estimates, β̂r, β̂Ω,1, β̂Ω,2, and β̂Ω,3, and the bottom panel presents the estimates of

the scale of choice noise, σ̂L, σ̂M , and σ̂H . These estimates imply nontrivial heterogeneity in

preferences and nonzero choice noise. The middle panel presents the mean and median fitted

values for r and Ω(µ). The estimates for Ω(µ) are virtually identical to the estimates in Model

1a. Figure 3 depicts the mean estimated Ω(µ), along with the 2.5th, 5th, 95th, and 97.5th

percentiles. For comparison, it also depicts the mean estimated Ω(µ) in Model 1a. Hence,

whether we assume homogenous preferences or allow for heterogenous preferences, the main

message is the same: large probability distortions in the form of substantial overweighting

of claim probabilities. For r, the mean estimate is 0.00073, slightly higher than in Model 1a,

while the median estimate is 0.00056, slightly lower than in Model 1a.29

TABLE 7 & FIGURE 3

5.2 Accounting for Wealth

Models 1a, 1b, 1c, and 2 all estimate a local approximation of standard risk aversion. Econo-

mists generally believe, however, that standard risk aversion depends on wealth. In this

section, we endeavor to account for household wealth by using home value as a proxy. We

pursue three approaches.

29The 2.5th, 5th, 95th, and 97.5th percentiles are 0.00028, 0.00028, 0.00177, and 0.00223, respectively.
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In Model 3, we merely reestimate Model 2 when we add home value to the vector of

observables Zi upon which a household’s utility parameters depend. However, economists

typically do not assume that the parameters of utility functions depend on wealth, but rather

that utility is a function of wealth (i.e., wealth is the domain of the utility function). Hence,

Model 3 is perhaps a misspecified model.

In Model 4, we continue to specify utility by equation (7)– so we still are estimating a

local approximation of standard risk aversion– but we assume that the underlying utility

function exhibits constant relative risk aversion (CRRA), i.e., u(w) = w1−ρ/(1 − ρ), where

ρ > 0 is the coeffi cient of relative risk aversion. Under CRRA utility, r = ρ/w. For each

household i, we assume ln ρi = βρZi and take home value as a proxy for wealth, to wit

ri = ρi/(home value)i.
30 We also include home value in Zi, because in addition to being a

proxy for wealth, home value might also be a signal of household type.

In Model 5, we directly specify CRRA utility. That is, we replace equation (7) with

U(Ld) =
EU(Ld)

u′(w)
= (1− Ω(µ))

(w − pd)1−ρ

(1− ρ)w−ρ
+ Ω(µ)

(w − pd − d)1−ρ

(1− ρ)w−ρ
.

This approach requires that we specify wealth for each household. We assume that (i)

wealth is proportional to home value and (ii) average wealth is $33,000 (2010 U.S. per capita

disposable personal income), viz. w = (33/191) × (home value).31 As before, we assume

ln ρi = βρZi and include home value in Zi. Once we estimate ρi for each household i, we

recover an estimate for ri using ri = ρi/wi.

Table 8 reports the mean and median of the utility parameter estimates for Models 3, 4,

and 5.32 For comparison, it also restates the benchmark estimates from Model 2. Models

3, 4, and 5 all yield estimates for Ω(µ) that are very similar to the benchmark estimates.

Hence, our main result– large probability distortions in the form of substantial overweighting

of claim probabilities– seems robust to various methods of accounting for wealth.

The estimates for standard risk aversion also are noteworthy. In Model 3, the estimates

for r are larger than the benchmark estimates, but again we believe this is a misspecified

model. In Models 4 and 5, the estimates for r are somewhat smaller than the benchmark

estimates– the mean and median estimates for r are 0.00050 and 0.00028 in Model 4 and

0.00056 and 0.00044 in Model 5. Finally, in Model 5, where we directly estimate relative risk

30Given an underlying assumption that wi = βw × (home value)i, in this model we cannot separately
identify βw and the constant in βρ, as these parameters appear always via the ratio ri = ρi/wi and ρi =
exp(βρZi). Hence, we can estimate ρi only up to a scale. On the other hand, by the same logic the scale of
βw (which we fix to βw = 1) does not affect our estimates of ri and Ωi(µ).
31Recall from Table 1 that the average home value in the core sample is approximately $191,000.
32For the sake of brevity, Table 8 does not report the coeffi cient estimates or the estimates of the scale of

choice noise. The complete results, however, are reported in Tables A.6 through A.8 in the Appendix.
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aversion, the mean and median estimates for ρ are roughly 18 and 13. These estimates for

ρ reflect that, in general, our estimates for standard risk aversion, though smaller than in

Cohen and Einav (2007) or Sydnor (2010),33 are perhaps still larger than many economists

typically assume. We return to this issue in our concluding remarks in Section 8.

TABLE 8

5.3 Accounting for Unobserved Heterogeneity in Risk

In our analysis up to this point, we assign to each household in the core sample a predicted

claim probability µ̂ for each coverage. While this approach allows for heterogeneity in risk

based on observable characteristics, it does not permit unobserved heterogeneity. Such un-

observed heterogeneity, however, is potentially important (Cohen and Einav 2007). In order

to account for unobserved heterogeneity in risk, we expand our approach and assign to each

household a predicted distribution of claim probabilities for each coverage.

More specifically, in Section 3 we derive a household’s choice probability as a function

of its subjective claim probability µ. Up to this point, we assume that µ corresponds to

the predicted claim probability µ̂ derived from the claim rate regressions. Of course, the

regressions yield not only the conditional expectation, but also the conditional distribution

of claim rates. Hence, we can use the regression estimates to assign to each household, not

just a predicted claim probability µ̂, but also predicted claim probability distribution F̂ (µ).

We can then construct the likelihood function by integrating over F̂ (µ).34

Table 9 reports the mean and median of the utility parameter estimates for Models 2,

4, and 5– relabeled as Models 2u, 4u, and 5u– when we allow for unobserved heterogeneity

in risk.35 As compared to Models 2, 4, and 5, respectively, Models 2u, 4u, and 5u indicate

similar probability distortions, except at high claim probabilities where the overweighting is

more pronounced. Models 2u, 4u, and 5u also indicate somewhat higher levels of standard

risk aversion, with mean and median estimates for r ranging from 0.00081 to 0.00097 and

from 0.00055 to 0.00082, respectively.36

33To be precise, our estimates for r are smaller than the mean estimates in Cohen and Einav (2007) and
the median estimates in Sydnor (2010) (which does not report mean estimates).
34Just as the predicted claim rate underlying µ̂ is conditional on the household’s (ex ante) characteristics

and (ex post) claims experience, the predicted claim rate distribution underlying F̂ (µ) also is conditional on
the household’s (ex ante) characteristics and (ex post) claims experience. When integrating over F̂ (µ) to
construct the likelihood function, we compute the integral using the Gauss-Laguerre quadrature method.
35The complete results, with the coeffi cient estimates and the estimates of the scale of choice noise, are

reported in Tables A.9, A.10, and A.11 in the Appendix.
36When we estimate Models 1a and 1b allowing for unobserved heterogeneity in risk, the estimates for r

and Ω(µ) are similar to the estimates reported in Section 4.
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TABLE 9

6 Sensitivity Analysis

The results of our main analysis yield a clear main message: large probability distortions in

the form of substantial overweighting of claim probabilities. In this section, we investigate

the sensitivity of this message, and we find that it is quite robust to a variety of alternative

modeling assumptions. In addition, we find that standard risk aversion remains relatively

small, though the estimates for r vary somewhat across specifications. To conserve space,

we only summarize the results of the sensitivity analysis below. The complete results are

available in the Appendix (Tables A.12 through A.20).

6.1 CARA Utility

In our main analysis, we consider a second-order Taylor expansion of the utility function,

and also CRRA utility. Here we take yet another approach: we assume constant absolute

risk aversion (CARA) utility, u(w) = − exp(−rw). That is, we specify utility as

U(Ld) =
EU(Ld)

u′(w)
= (1− Ω(µ))

− exp (rpd)

r
+ Ω(µ)

− exp (r (pd + d))

r
,

which we note is independent of wealth w. When we estimate Model 2 with CARA utility,

the main message is the same. The estimates for Ω(µ) indicate similar probability distortions,

albeit somewhat less pronounced than the benchmark. Consequently, the mean and median

estimates for r are higher than the benchmark, at 0.00113 and 0.00103, respectively.

6.2 Alternative Samples

In the core sample, we restrict attention to households who hold both auto and home policies

and who first purchased their auto and home policies from the company in the same year,

in either 2005 or 2006. Here we estimate Model 2 using two less restrictive samples: (1)

households who hold auto policies and who first purchased their auto policies from the

company in the same year, in either 2005 or 2006; and (2) households who hold both auto

and home policies and who first purchased their auto and home policies from the company

in the same year, in either 2004, 2005, or 2006. Again, the main message is the same. In

both samples, the estimates for Ω(µ) indicate probability distortions that are very similar to

the benchmark. As for standard risk aversion, in sample 1 the mean and median estimates
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for r are higher than the benchmark estimates, at 0.00113 and 0.00112, while in sample 2

they are lower than the benchmark estimates, at 0.00060 and 0.00048.

6.3 Restricted Menus

In our main analysis, we use the full menu of deductible options for each coverage, up to

$1000. This raises two potential concerns. The first concern arises from the fact that,

in each coverage, the vast majority of households choose one of three deductibles: 92.3

percent of households choose a deductible of $200, $250, or $500 in auto collision; 87.1

percent of households choose a deductible of $200, $250, or $500 in auto comprehensive;

and 97.5 percent of households choose a deductible of $250, $500, or $1000 in home. Given

these choice patterns, one might worry that households do not really consider the other

deductible options, which could bias our estimates.37 The second concern arises from our

assumption that every claim exceeds the highest available deductible ($1000). One might

worry that this assumption is too strong, which would imply that the model (specifically,

the form of the deductible lottery) is misspecified. To address these concerns, we estimate

Model 2 for two cases of restricted menus: (I) we restrict the menu of deductible options to

{$200, $250, $500} for each auto coverage and to {$250, $500, $1000} for home coverage; and
(II) we restrict the menu of deductible options to {$200, $250, $500} for each auto coverage
and to {$100, $250, $500} for home coverage.38 In each case, the estimates for Ω(µ) indicate

probability distortions that are similar to the benchmark. Indeed, in case I the overweighting

is more pronounced at high claim probabilities, while in case II it is more pronounced at

low and high claim probabilities. The mean and median estimates for r are lower than the

benchmark estimates, at 0.00029 and 0.00013 in case I and 0.00066 and 0.00048 in case II.

6.4 Alternative Error Structures

In our main analysis, we assume that the utility from every deductible d ∈ D is given by

U(d) = U(Ld) + εd, where εd is an iid Gumbel random variable. Here, we estimate Model

2 under two alternative assumptions (and, for computational and theoretical reasons, using

37For instance, when a household chooses a $250 deductible in home, we are using the fact that it did
not choose a $100 deductible to infer an upper bound on its aversion to risk. But if the household in fact
does not even consider the $100 deductible as an option, our inference would be invalid. Similarly, when a
household chooses a $500 deductible in auto comprehensive, we are using the fact that it did not choose a
$1000 deductible to infer a lower bound on its aversion to risk. Again, if the household in fact does not even
consider the $1000 deductible as an option, our inference would be invalid.
38In each case, if a household’s actual deductible choice is outside the restricted menu, we assign to the

household the deductible option from the restricted menu that is closest to their actual deductible choice.
In this respect, we follow Cohen and Einav (2007).
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the restricted menus from Section 6.3): (A) we assume (as before) that the utility from every

deductible d ∈ D is given by U(d) = U(Ld) + εd, but we assume that εd is an iid normal

random variable; and (B) we assume that the utility from the maximum deductible, D, is

given by U(D) = U(LD) + εD, where εD is an iid normal random variable, but that the

utility from the other deductibles are given by U(d) = U(Ld) + ζd, where ζd = −εD for the
minimum deductible and ζd = 0 for the intermediate deductible. Alternative A provides a

check of the Gumbel error assumption. Alternative B adds a check of the iid assumption.

More specifically, we consider alternative B to address concerns arising from the fact that in

principle the iid assumption allows for nonmonotonic ranking of deductibles. Once again, the

main message is the same. Under both alternatives, the estimates for Ω(µ) indicate similar

probability distortions, though generally somewhat more pronounced. In addition, under

alternative A the mean and median estimates for r are lower than the benchmark estimates–

0.00022 and 0.00008 under restricted menu I and 0.00035 and 0.00015 under restricted menu

II– while under alternative B they are higher than the benchmark estimates– 0.00101 and

0.00081 under restricted menu I and 0.00093 and 0.00082 under restricted menu II.

7 Robustness to Unobserved Heterogeneity in Prefer-

ences

In our main analysis, we do not allow for unobserved heterogeneity in preferences. In this

section, we investigate whether this modeling choice might bias our results in favor of our

main finding– namely, large probability distortions. Specifically, we perform robustness

exercises in which we generate simulated deductible choices using alternative models and then

estimate our model on the "simulated data"– i.e., the actual data but with the simulated

deductible choices substituted for the actual deductible choices. We pursue this approach

instead of a sensitivity analysis in which we directly allow for unobserved heterogeneity

in preferences because the latter would require estimating two distributions of unobserved

heterogeneity, each of which might be correlated with unobserved heterogeneity in risk, and

doing so would impose an undue computational burden and put a strain on identification.39

We emphasize that at the simulation stage of each exercise, we allow for both observed

and unobserved heterogeneity in preferences and risk. However, because of severe computa-

tional burden, at the estimation stage we use Models 1a and 1b, which assume homogenous

preferences and do not allow for unobserved heterogeneity in risk (although in one case in

which we find some small bias in favor of probability distortions, we also estimate Model 1b
39Moreover, these problems would be amplified if we were to permit a flexible correlation structure among

the various sources of unobserved heterogeneity.
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allowing for unobserved heterogeneity in risk).40 We report the full details of each exercise

in the Appendix. Here, we summarize our methods and conclusions.

7.1 Unobserved Heterogeneity in Standard Risk Aversion

We first consider whether unobserved heterogeneity in standard risk aversion could lead us to

find large probability distortions when in fact none exist. Cohen and Einav (2007) estimate

an expected utility model that permits unobserved heterogeneity in standard risk aversion,

and they conclude that it is substantial. They further conclude that it is strongly positively

correlated with unobserved heterogeneity in risk. Using a variant of the Cohen-Einav model,

we generate simulated deductible choices for each household i and coverage j, as follows.

First, we generate the subjective claim probability µij = 1− exp(−λij) using the claim rate

λij = λ̂ij exp(ελij), where λ̂ij is household i’s predicted claim rate for coverage j and ελij is a

draw from a gamma distribution with unit mean and variance φ̂ij (the estimated variance

from the claim rate regression for coverage j updated for household i’s (ex post) claims

experience). Second, we generate standard risk aversion rij = exp(β̂rZi + εrij), where β̂r is

the vector of coeffi cient estimates assuming only standard risk aversion and εrij is a draw

from a standard normal distribution.41 We consider several correlations between ελij and ε
r
ij.

Finally, we generate the simulated deductible choice D̃ij by applying the expected utility

model (equation (1)) when the household faces menu Pij.42 In the end, the simulated data

comprise {D̃ij, µ̂ij, Pij}, where D̃ij is household i’s simulated deductible choice for coverage

j and µ̂ij and Pij come from the actual data.43

Using this simulated data, we estimate Models 1a and 1b– i.e., homogenous preferences

with a quadratic Chebyshev polynomial expansion of ln Ω(µ) (Model 1a) or Ω(µ) (Model

1b). Figure 4 depicts, for each model, the mean estimated Ω(µ) using the simulated data

(along with the 2.5th and 97.5th percentiles) when there is a strong positive correlation

between ελij and ε
r
ij, which is the case where we find the greatest bias.

44 For comparison, it

40In each exercise, we generate 100 independent simulated datasets of 4170 households making the three
deductible choices. We then estimate our model on each dataset, and report the mean estimated Ω(µ) along
with the 2.5th and 97.5th percentiles.
41Increasing the variance of εrij increases the potential for bias, but at the same time it increases the

frequency with which the alternative model predicts extreme deductible choices (because it increases the
number of households with a very low or very high ri). We limit the variance of εrij to keep this frequency
from becoming excessive relative to the actual data, and with a variance of one the simulated data generating
process already implies a substantially higher frequency than we observe in the data.
42Note that our procedure permits household i’s risk aversion rij to be coverage specific. Thus, it is as

if each household-coverage observation is a distinct household. If instead we assume that household i’s risk
aversion ri is the same across coverages, the results are nearly identical.
43Recall that µ̂ij is household i’s predicted claim probability for coverage j and Pij denotes household i’s

menu of premium-deductible pairs for coverage j.
44In the Appendix, we report in detail the results of many simulations in which we vary the correlation
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also depicts the estimated Ω(µ) using the actual data. We find some bias in favor of finding

probability distortions (Ω(µ) > µ); however, the distortions we find using the simulated

data are rather small and significantly less than the large distortions we find using the

actual data. In order to investigate the source of the bias, we also estimate Model 1b when

we allow for unobserved heterogeneity in risk (Model 1bu). As Figure 4 illustrates, when we

estimate Model 1bu on the simulated data, we now find no bias in favor of finding probability

distortions. By contrast, when we estimate Model 1bu on the actual data, the probability

distortions do not go away– indeed, they are very similar to the probability distortions we

find when we estimate Model 1b on the actual data. Moreover, recall that in our analysis in

Section 5 (where we allow for observed heterogeneity in preferences) the estimated probability

distortions also persist when we allow for unobserved heterogeneity in risk (Models 2u, 4u,

and 5u). These results lead us to conclude that unobserved heterogeneity in standard risk

aversion cannot explain the large probability distortions we find in the data.

FIGURE 4

7.2 Unobserved Heterogeneity in Standard Risk Aversion and

Probability Distortions

We next consider whether unobserved heterogeneity in both r and Ω(µ) could bias our

results in favor of finding probability distortions. To investigate this possibility, we generate

simulated deductible choices for each household i and coverage j, as follows. First, we

generate the subjective claim probability µij exactly as above. Second, we generate standard

risk aversion rij = exp(β̂rZi + εrij) as above, except that now β̂r is the vector of coeffi cient

estimates from Model 2. Third, we generate probability distortions Ωij(µ) = exp(β̂Ω,1Zi +

β̂Ω,2Ziµ+ β̂Ω,3Ziµ
2 + εΩ

ij), where β̂Ω,1, β̂Ω,2, and β̂Ω,3 are the vectors of coeffi cient estimates

from Model 2 and εΩ
ij is a draw from a standard normal distribution. We consider several

correlation structures among ελij, ε
r
ij, and ε

Ω
ij. Finally, we generate the simulated deductible

choice D̃ij by applying our model (equation (7)) when the household faces menu Pij. In

the end, the simulated data comprise {D̃ij, µ̂ij, Pij}, where D̃ij is household i’s simulated

deductible choice for coverage j and µ̂ij and Pij come from the actual data.

Using this simulated data, we estimate Model 1a– homogenous preferences with a quadratic

Chebyshev polynomial expansion of ln Ω(µ).45 Figure 5 depicts (i) the mean Ω(µ) used to

generate the simulated data (along with the 2.5th and 97.5th percentiles) and (ii) the mean

between ελij and ε
r
ij as well as the variance of ε

r
ij .

45Here, we estimate only Model 1a because the process by which we generate the simulated data assumes
the log form for Ω(µ).
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estimated Ω(µ) using the simulated data (along with the 2.5th and 97.5th percentiles) for

the cases where ελij, ε
r
ij, and ε

Ω
ij are uncorrelated (left panel) and where ε

λ
ij, ε

r
ij, and ε

Ω
ij are

strongly positively correlated (right panel). In each case, disregarding unobserved hetero-

geneity in r and Ω(µ) biases against finding probability distortions. Moreover, when εrij and

εΩ
ij are strongly negatively correlated (not depicted), there appears to be no bias. Intuitively,

with strong negative correlation, the two sources of unobserved heterogeneity roughly offset

each other in terms of their effects on choices. If anything, therefore, this exercise indicates

that disregarding unobserved heterogeneity in both standard risk aversion and probability

distortions might lead us to underestimate the magnitude of probability distortions.

FIGURE 5

7.3 Correlated Unobserved Heterogeneity in Risk

The exercises reported in Sections 7.1 and 7.2 assume that the unobserved heterogeneity

in risk is not correlated across coverages (i.e., ελiH , ε
λ
iL, and ε

λ
iM are uncorrelated). In fact,

the results of these exercises are robust to various correlation structures. For instance,

whether we assume ελiH , ε
λ
iL, and ε

λ
iM are perfectly correlated or have pairwise correlations

of −0.33 (the strongest possible given three pairs), our conclusions in Sections 7.1 and 7.2

do not change in any noticeable way. It is worth noting that, in some instances, allowing

for correlation among ελiH , ε
λ
iL, and ε

λ
iM causes unobserved heterogeneity in preferences to be

correlated across coverages. Finally, we note that if we assume the same correlation structures

for unobserved heterogeneity in risk, but without permitting unobserved heterogeneity in

preferences, we again find essentially no bias in favor of finding probability distortions.

8 Discussion

We develop a structural model of risky choice that permits standard risk aversion and prob-

ability distortions, where the latter can arise from loss aversion or probability weighting. We

estimate the model using data on households’deductible choices in auto and home insurance.

We find that large probability distortions– in the form of substantial overweighting of small

probabilities– play a statistically and economically significant role in explaining households’

deductible choices. Given our data, we cannot say whether or to what extent loss aversion

accounts for these probability distortions. However, our analysis provides clear evidence of

probability weighting.

Perhaps the main takeaway of the paper is that economists should pay greater attention

to the question of how people evaluate risk. Prospect theory incorporates two key features: a
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value function that describes how people evaluate outcomes and a probability weighting func-

tion that describes how people evaluate risk. The literature, however, has focused primarily

on the value function, and there has been relatively little focus on probability weighting.46

In light of our work, as well as the work discussed in the introduction that reaches similar

conclusions using different methods (Bruhin et al. 2010; Snowberg and Wolfers 2010; Kliger

and Levy 2009), it seems clear that future research on decision making under uncertainty

should focus more attention on probability weighting.47

That said, it is worth highlighting certain limitations of our analysis. An important

limitation is that, while our analysis clearly indicates that a lot "action" lies in how people

evaluate risk, it does not enable us to say whether households are engaging in probability

weighting per se– i.e., they know the probabilities but weight them nonlinearly– or whether

their subjective beliefs simply do not correspond to the objective probabilities. Relatedly, al-

though probability weighting is a natural candidate for explaining the probability distortions

that we find, other mechanisms, such as ambiguity aversion, also could give rise to similar

probability distortions. An important avenue of future research, therefore, is to investigate

different accounts of how people evaluate risk and uncertainty.

Another limitation is that our analysis relies exclusively on insurance deductible choices,

and hence we urge caution when generalizing our conclusions to other choices or settings.

In particular, the vast majority of the claim probabilities we observe lie between zero and

twenty percent, and thus our analysis implies little about what probability distortions might

look like outside that range. While we suspect that our main message would resonate in

many domains beyond insurance deductible choices that involve similar probabilities, we

hesitate to make any conjectures about contexts where larger probabilities are involved.

Finally, it is worth discussing the magnitude of our estimates of standard risk aversion.

As we note in the introduction, an important critique of the standard expected utility model,

offered by Rabin (2000), is that reliance on the expected utility model to explain aversion to

moderate-stakes risk implies an absurd degree of risk aversion over large-stakes risk. When

we estimate an expected utility model– which does not permit probability distortions– our

estimate of absolute risk aversion is 0.0129. Assuming wealth of $33,000 (2010 U.S. per capita

disposable personal income), this implies relative risk aversion in the triple digits.48 In light of

46Two prominent review papers– an early paper that helped set the agenda for behavioral economics
(Rabin 1998) and a recent paper that surveys the current state of empirical behavioral economics (DellaVigna
2009)– contain almost no discussion of probability weighting. The behavioral finance literature has paid more
attention to probability weighting (see, e.g., Barberis and Huang 2008; Barberis 2010)
47Indeed, Prelec (2000) conjectured that "probability nonlinearity will eventually be recognized as a more

important determinant of risk attitudes than money nonlinearity."
48Using data similar to ours and assuming expected utility, Sydnor (2010) also estimates triple-digit

coeffi cients of relative risk aversion.
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the Rabin critique, triple-digit relative risk aversion is implausibly large. Indeed, economists

frequently argue that a reasonable value is in the low single digits. By comparison, when

we estimate our model– which permits probability distortions– there is far less standard

risk aversion. Under our benchmark model, our mean estimate of absolute risk aversion is

0.0007, which, assuming wealth of $33,000, implies relative risk aversion of 23. Moreover, our

mean estimates of absolute risk aversion in other specifications imply coeffi cients of relative

risk aversion that range from 7 to 42, and when we directly specify CRRA utility our mean

estimate of relative risk aversion is 18. Clearly, these estimates come much closer to what

economists generally view as reasonable. However, they are perhaps still "too large." Hence,

more work is necessary to fully understand the aversion to moderate-stakes risk manifested

in insurance deductible choices.
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Variable Mean Std Dev 1st Pctl 99th Pctl

Driver 1 age (years) 54.5 15.4 26 84

Driver 1 female 0.37

Driver 1 single 0.24

Driver 1 married 0.51

Driver 1 credit score 766 113 530 987

Driver 2 indicator 0.42

Home value (thousands of dollars) 191 125 10 619

Note: Omitted category for driver 1 marital status is divorced or separated.

Deductible Collision Comp Home

$50 5.2

$100 1.0 4.1 0.9

$200 13.4 33.5

$250 11.2 10.6 29.7

$500 67.7 43.0 51.9

$1000 6.7 3.6 15.9

$2500 1.2

$5000 0.4

Note: Values are percent of households.

Table 1: Descriptive Statistics

Core Sample (4170 Households)

Table 2: Summary of Deductible Choices

Core Sample (4170 Households)
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Coverage Mean Std Dev 1st Pctl 99th Pctl

Auto collision premium for $500 deductible 180 100 50 555

Auto comprehensive premium for $500 deductible 115 81 26 403

Home all perils premium for $500 deductible 679 519 216 2511

Cost of decreasing deductible from $500 to $250:

Auto collision 54 31 14 169

Auto comprehensive 30 22 6 107

Home all perils 56 43 11 220

Savings from increasing deductible from $500 to $1000:

Auto collision 41 23 11 127

Auto comprehensive 23 16 5 80

Home all perils 74 58 15 294

Note: Annual amounts in dollars.

Table 3: Summary of Premium Menus

Core Sample (4170 Households)

Table 4: Predicted Claim Probabilities (Annual)

Collision Comp Home

Mean 0.069 0.021 0.084

Standard deviation 0.024 0.011 0.044

1st percentile 0.026 0.004 0.024

5th percentile 0.035 0.007 0.034

25th percentile 0.052 0.013 0.053

Median 0.066 0.019 0.076

75th percentile 0.083 0.027 0.104

95th percentile 0.114 0.041 0.163

99th percentile 0.139 0.054 0.233

Correlations Collision Comp Home

Auto collision 1

Auto comprehensive 0.13 1

Home all perils 0.28 0.21 1

Premium for coverage with $500 deductible 0.35 0.15 0.18

Note: Each of the correlations is significant at the 1 percent level.

Table 4: Predicted Claim Probabilities (Annual)

Core Sample (4170 Households)
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Std Err Std Err Estimate

r 0.00064 *** 0.00010 0.00063 *** 0.00004 0.00049 0.0000 0.0009

Ω(μ): constant ‐2.71 *** 0.03 0.061 *** 0.002

Ω(μ): linear coef 12.03 *** 0.30 1.186 *** 0.078

Ω(μ): quadratic coef ‐35.15 *** 2.17 ‐2.634 *** 0.498

σL 26.31 *** 1.14 26.32 *** 0.44 30.00 25.18 32.84

σM 17.50 *** 0.50 17.49 *** 0.69 25.20 20.88 27.80

σH 68.53 *** 5.76 66.89 *** 2.11 169.40 112.39 217.38

*** Significant at 1 percent level.

Note: In Model 1a, we estimate a quadratic Chebyshev polynomial expansion of log Ω(μ). In Model 1b, we estimate a quadraric 

Chebyshev polynomial expansion of Ω(μ). In Model 1c, we estimate Ω(μ) using an 11‐point cubic spline on the interval (0,0.20).

95% Bootstrap CI

Model 1a: Log Ω(μ) Model 1b: Ω(μ) Model 1c: Cubic Spline

Table 5: Estimates (Model 1)

Core Sample (4170 Households)

Estimate Estimate

(1) (2) (3) (4)

Standard risk aversion r=0 r=0.00064 r=0 r=0.00064

Probability distortions? No No Yes Yes

μ WTP WTP WTP WTP

0.020 10.00 14.12 41.73 57.20

0.050 25.00 34.80 55.60 75.28

0.075 37.50 51.60 67.30 90.19

0.100 50.00 68.03 77.95 103.51

0.150 75.00 99.84 91.67 120.32

Table 6: Economic Significance of Estimates (Model 1a)

Note: WTP denotes‐‐for a household with claim rate μ, the utility function 

in equation (7), and the specified utility parameters‐‐the household's 

maximum willingness to pay to reduce its deductible from $1000 to $500 

when the premium for coverage with a $1000 deductible is $200.
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Std Err Std Err Std Err Std Err

Constant ‐7.39 ** 0.09 ‐2.73 ** 0.02 12.40 ** 0.41 ‐35.61 ** 2.47

Driver 1 age ‐1.47 ** 0.14 0.18 ** 0.05 2.52 ** 0.48 1.00 ** 0.31

Driver 1 age squared 1.09 ** 0.15 0.00 0.05 ‐4.94 ** 0.43 9.92 ** 1.82

Driver 1 female 0.15 ** 0.04 ‐0.05 ** 0.01 1.57 ** 0.28 ‐12.29 ** 1.66

Driver 1 single 0.08 0.05 ‐0.01 0.01 0.77 ** 0.26 ‐5.93 ** 1.91

Driver 1 married 0.09 0.06 ‐0.03 0.02 1.40 ** 0.27 ‐9.34 ** 1.40

Driver 1 credit score ‐0.15 ** 0.05 ‐0.02 0.01 2.31 ** 0.21 ‐11.00 ** 1.23

Driver 2 indicator ‐0.04 0.06 0.00 0.02 ‐1.44 ** 0.38 7.63 ** 2.19

Parameter mean

Parameter median

σ 27.22 ** 0.76 17.91 ** 0.48 65.45 ** 2.68

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

‐2.73

Coef

‐2.73

‐14936.00

Comprehensive Home Loglikelihood value

Coef

Collision

Coef

‐35.61

‐34.46

0.00073 12.40

12.42

Coef

0.00056

Table 7: Benchmark Estimates (Model 2)

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Model 2:

Parameter mean

Parameter median

Model 3:

Parameter mean

Parameter median

Model 4:

Parameter mean

Parameter median

Model 5:

Parameter mean

Parameter median

Note: In Model 5, the mean and median estimates for ρ are 17.84 and 12.81, respectively.

Model 2u:

Parameter mean

Parameter median

Model 4u:

Parameter mean

Parameter median

Model 5u:

Parameter mean

Parameter median

Note: In Model 5u, the mean and median estimates for ρ are 31.73 and 22.72, respectively.

0.00082 ‐2.96 12.81 ‐31.62

0.00093 ‐2.96 13.06 ‐33.78

‐21.78

‐19.49

‐35.90

‐35.52

‐35.42

Table 8: Accounting for Wealth (Models 3‐5)

Core Sample (4170 Households)

Table 9: Accounting for Unobserved Heterogeneity (Models 2u, 4u, and 5u)

Log Ω(μ): quadratic

‐35.61

‐34.46

‐37.61

‐37.29

‐36.50

0.00097 ‐2.73 11.04

Log Ω(μ): quadratic

0.00028 ‐2.65

0.00076 ‐2.74 11.05

0.00044 ‐2.75 12.01

r Log Ω(μ): constant Log Ω(μ): linear

Core Sample (4170 Households)

0.00056 ‐2.75 12.00

0.00110 ‐2.85 12.66

0.00050 ‐2.65 12.22

‐2.73 12.42

0.00126 ‐2.83 12.55

12.24

r Log Ω(μ): constant Log Ω(μ): linear

0.00073 ‐2.73 12.40

0.00081 ‐2.69 11.68 ‐26.98

0.00055 ‐2.71 11.65 ‐27.08

0.00056
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Figure 1: Estimated Ω(µ) —Model 1
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Figure 2: Loss Aversion and Probability Weighting
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Figure 3: Mean Estimated Ω(µ) —Model 2
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Figure 4: Mean Estimated Ω(µ) —Unobserved Heterogeneity in r
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Figure 5: Unobserved Heterogeneity in r and Ω(µ) —Model 1a
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A Coverage Descriptions

Auto collision coverage pays for damage to the insured vehicle caused by a collision with

another vehicle or object, without regard to fault. Auto comprehensive coverage pays for

damage to the insured vehicle from all other causes (e.g., theft, fire, flood, windstorm, glass

breakage, vandalism, hitting or being hit by an animal, or by falling or flying objects),

without regard to fault. If the insured vehicle is stolen, auto comprehensive coverage also

provides a certain amount per day for transportation expenses (e.g., rental car or public

transportation). Home all perils coverage pays for damage to the insured home from all

causes (e.g., fire, windstorm, hail, tornadoes, vandalism, or smoke damage), except those

that are specifically excluded (e.g., flood, earthquake, or war). For simplicity, we often refer

to home all perils simply as home.

B Kőszegi-Rabin Model

In this section, we describe the Kőszegi-Rabin (KR) model and derive the utility function

in equation (4) from Section 3.3.1. In the KR model, the utility from choosing lottery

Y ≡ (yn, qn)Nn=1 given a reference lottery Ỹ ≡ (ỹm, q̃m)Mm=1 is

U(Y |Ỹ ) ≡
N∑
n=1

M∑
m=1

qnq̃m [u(yn) + v(yn|ỹm)] .

The function u represents standard "intrinsic" utility defined over final wealth states, just

as in the expected utility model. The function v represents "gain-loss" utility that results

from experiencing gains or losses relative to the reference point. For v, KR use

v(y|ỹ) =

{
η [u(y)− u(ỹ)] if u(y) > u(ỹ)

ηλ [u(y)− u(ỹ)] if u(y) ≤ u(ỹ)
.

In this formulation, the magnitude of gain-loss utility is determined by the intrinsic utility

gain or loss relative to consuming the reference point. Moreover, gain-loss utility takes a

two-part linear form, where η ≥ 0 captures the importance of gain-loss utility relative to

intrinsic utility and λ ≥ 1 captures loss aversion. The model reduces to expected utility

when η = 0 or λ = 1.

KR propose that the reference lottery equals recent expectations about outcomes– i.e.,

if a household expects to face lottery Ỹ , then its reference lottery becomes Ỹ . However,

because situations vary in terms of when a household deliberates about its choices and when
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it commits to its choices, KR offer a number of solution concepts for the determination of

the reference lottery. We assume that the reference lottery is determined according to what

KR call a "choice-acclimating personal equilibrium" (CPE). Formally:

Definition (CPE). Given a choice set Y, a lottery Y ∈ Y is a choice-acclimating personal
equilibrium if for all Y ′ ∈ Y, U(Y |Y ) ≥ U(Y ′|Y ′).

In a CPE, a household’s reference lottery corresponds to its choice. KR argue that CPE is

appropriate in situations where the household commits to a choice well in advance of the

resolution of uncertainty, and thus it knows that by the time the uncertainty is resolved

and it experiences utility, it will have become accustomed to its choice and hence expect

the lottery induced by its choice.1 In particular, KR suggest that CPE is the appropriate

solution concept for insurance applications.

Under the KR model using CPE, the utility to the household from choosing deductible

lottery Ld = (−pd, 1− µ;−pd − d, µ) is

U(Ld|Ld) = (1− µ)u(w − pd) + µu(w − pd − d) (A.1)

−Λ(1− µ)µ[u(w − pd)− u(w − pd − d)],

where Λ ≡ η(λ − 1) and w is the household’s initial wealth. From equation (A.1), it is

clear that we can not separately identify the parameters η and λ. Instead, we estimate the

product η(λ− 1) ≡ Λ.2 Under the assumption

u(w + ∆)

u′(w)
− u(w)

u′(w)
= ∆− r

2
∆2

from Section 3.2, equation (A.1) becomes

U(Ld) = − [pd + µd]− r

2

[
(1− µ) (pd)

2 + µ (pd + d)2]
−Λ (1− µ)µ

[
d+

r

2

[
(pd + d)2 − (pd)

2
]]
,

which is equation (4) from Section 3.3.1.

1The assumption that the household commits to its choice is important. Suppose instead that the
household has the opportunity to revise its choice just before the uncertainty is resolved. Then even after
"choosing" Y and coming to expect it, if U(Y ′|Y ) > U(Y |Y ) the household would want to revise its choice
just before the uncertainty is resolved. KR propose alternative solution concepts that are more appropriate
in such situations, where a household thinks about the problem in advance but does not commit to a choice
until just before the uncertainty is resolved.

2The inability to separately identify η and λ applies to any application of CPE, and not just deductible
lotteries, because for any lottery Y , η and λ appear in U(Y |Y ) only as the product η(λ − 1). For other
solution concepts, η and λ become separately identified.
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C Model Implications

In this section, we prove Properties 1, 2, 3, and 4 from Section 3.3.4. Take any three

deductible options a, b, c ∈ D, a > b > c. For a household with premium pa for deductible

a and claim probability µ, define p̃b(pa, µ) as the premium for deductible b that makes the

household indifferent between a and b, and define p̃c(pa, µ) as the the premium for deductible

c that makes the household indifferent between a and c. In other words, p̃b(pa, µ)−pa reflects
the household’s maximum willingness to pay (WTP ) to reduce its deductible from a to b,

and p̃c(pa, µ)−pa reflects the household’sWTP to reduce its deductible from a to c. In what

follows, we simplify notation by suppressing the explicit dependence of p̃b and p̃c on pa, µ,

r, and Ω(µ). We also suppress the argument of Ω. In addition, let La denote the deductible

lottery associated with deductible a at premium pa.

Recall equation (7) from Section 3.3.3:

U(Ld) = − [pd + Ωd]− r

2

[
(1− Ω) (pd)

2 + Ω (pd + d)2] .
Define p(x) as the premium for deductible x such that the household is indifferent between

the resulting lottery and lottery La. Hence, p(b) = p̃b and p(c) = p̃c. Applying equation (7),

p(x) is defined by each of the following equations (both of which we use below):3

− p(x)− Ωx− r

2

[
(1− Ω)(p(x))2 + Ω(p(x) + x)2

]
= U(La) (A.2)

(p(x)− pa)− Ω (a− x) +
r

2
(p(x)2 − p2

a) + Ω
r

2

{
(x2 − a2) + 2(p(x)x− paa)

}
= 0. (A.3)

For the proofs below, it is useful to define W and V as

W (p, x, r,Ω) ≡ −p− Ωx− r

2

[
(1− Ω)(p)2 + Ω(p+ x)2

]
V (p, x, r,Ω) ≡ (p− pa)− Ω (a− x) +

r

2
(p2 − p2

a) + Ω
r

2

{
(x2 − a2) + 2(px− paa)

}
.

Our first lemma establishes that p(x) is well behaved.

Lemma 1. For any r ≥ 0, Ω ∈ (0, 1), pa > 0, and x ≤ a, p(x) is a continuous and

differentiable function with dp/dx < 0 (and thus p(c) > p(b) > pa).

Proof. It is straightforward to derive thatW is twice differentiable and satisfies the conditions

3These equations are equivalent, where the latter merely expands U(La) and rearranges terms.
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of the implicit function theorem. Thus p(x) is a continuous and differentiable function, and

dp

dx
=
−∂W

∂x
∂W
∂p

=
−Ω [1 + r(p(x) + x)]

1 + rp(x) + rΩx
< 0.

Our second lemma states that standard risk aversion implies that a household’s WTP to

reduce its deductible is strictly greater than the expected reduction in the deductible paid

(evaluated at a claim probability of Ω).

Lemma 2. For any x′ < x ≤ a, if r = 0 then p(x′) − p(x) = Ω(x − x′), and if r > 0 then

p(x′)− p(x) > Ω(x− x′).

Proof. The result for r = 0 is straightforward. For r > 0, define Ṽ as

Ṽ (p, x′, r,Ω) ≡ [p− p(x)]− Ω (x− x′) +
r

2
(p2 − p(x)2) + Ω

r

2

{
(x′2 − x2) + 2(px′ − p(x)x)

}
,

in which case p(x′) is defined by Ṽ (p(x′), x′, r,Ω) = 0. Note that p = Ω(x−x′)+p(x) implies

Ṽ (p, x′, r,Ω) ≡ [(Ω(x− x′) + p(x))− p(x)]− Ω (x− x′) +
r

2
((Ω(x− x′) + p(x))2 − (p(x))2)

+Ω
r

2

{
(x′2 − x2) + 2((Ω(x− x′) + p(x))x′ − p(x)x)

}
=

r

2
(Ω2(x− x′)2 + 2p(x)Ω(x− x′))

+Ω
r

2

{
(x′2 − x2) + 2(Ω(x− x′)x′ + p(x)(x′ − x))

}
=

r

2
Ω(x− x′)[Ω(x+ x′)− (x+ x′)] < 0.

Since ∂Ṽ /∂p = 1 + rp+ Ωrx′ > 0, it follows that p(x′) > Ω(x− x′) + p(x).

Property 1 establishes the relationship between the magnitude of willingness to pay and

risk preferences.

Property 1. For any x < a, p(x) is strictly increasing in r and Ω.

Proof. By implicit function theorem:

∂p(x)

∂r
=
−∂V

∂r
∂V
∂p

and
∂p(x)

∂Ω
=
−∂V
∂Ω
∂V
∂p

.

Note that
∂V

∂r
= −1

r
[(p(x)− pa)− Ω (a− x)] < 0,
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where the equality uses equation (A.3) and the inequality follows from Lemma 2. Note

further that
∂V

∂Ω
= − 1

Ω
[(p(x)− pa) +

r

2
(p(x)2 − p2

a)] < 0,

where the equality uses equation (A.3) and the inequality follows from Lemma 1. Finally,

given that ∂V/∂p = 1 + rp+ Ωrx > 0, it follows that ∂p(x)
∂r

> 0 and ∂p(x)
∂Ω

> 0.

We next establish Property 2, which shows that a risk averse household’s WTP to avoid

an incremental loss depends positively on the magnitude of the absolute loss.

Property 2. If r = 0 then p(b)−pa
p(c)−p(b) = a−b

b−c . If r > 0 then p(b)−pa
p(c)−p(b) >

a−b
b−c .

Proof. The result for r = 0 is straightforward. From Lemma 1, p(x) is continuous and

differentiable, and thus

p(b)− p(a) =

∫ a

b

(
−dp
dx

)
dx and p(c)− p(b) =

∫ b

c

(
−dp
dx

)
dx.

From the proof of Lemma 1, − dp
dx

= Ω[1+rp(x)+rx]
1+rp(x)+rΩx

> 0, and thus

d
[
− dp
dx

]
dx

= Ω
r(1− Ω)(1 + rp− rx dp

dx
)

[1 + rp(x) + rΩx]2
> 0.

In words, − dp
dx
reflects the household’s marginal willingness to pay to reduce its deductible,

and − dp
dx
> 0 reflects that a household is indeed willing to pay a higher premium to reduce its

deductible. More importantly, d
[
− dp
dx

]
/dx > 0 reflects that the larger is its deductible, the

larger is the household’s marginal willingness to pay to reduce that deductible (or equivalently

the smaller is its deductible, the smaller is the household’s marginal willingness to pay to

reduce that deductible). Finally, d
[
− dp
dx

]
/dx > 0 implies

p(b)− p(a) =

∫ a

b

(
−dp
dx

)
dx > (a− b)

(
− dp

dx

∣∣∣∣
x=b

)
p(c)− p(b) =

∫ b

c

(
−dp
dx

)
dx < (b− c)

(
− dp

dx

∣∣∣∣
x=b

)
,

which together imply p(b)−p(a)
a−b > p(c)−p(b)

b−c , from which the result follows.

Property 3 states that the implication of risk aversion in Property 2 is magnified as a

household gets more risk averse.

Property 3. Holding Ω fixed, the ratio p(b)−pa
p(c)−p(b) is strictly increasing in r.
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Proof. Note that d
(

p(b)−pa
p(c)−p(b)

)
/dr > 0 if and only if 1

p(b)−pa
∂p(b)
∂r

> 1
p(c)−pa

∂p(c)
∂r
. Applying ∂p(x)

∂r

from the proof of Property 1,

1

p(b)− pa
∂p(b)

∂r
=

1

p(b)− pa

1
r
[(p(b)− pa)− Ω (a− b)]

1 + rp(b) + Ωrb
,

1

p(c)− pa
∂p(c)

∂r
=

1

p(c)− pa

1
r
[(p(c)− pa)− Ω (a− c)]

1 + rp(c) + Ωrc
.

We have 1
p(b)−pa

1
r
[(p(b)− pa)− Ω (a− b)] > 1

p(c)−pa
1
r
[(p(c)− pa)− Ω (a− c)], because

(p(c)− pa) [(p(b)− pa)− Ω (a− b)] > (p(b)− pa) [(p(c)− pa)− Ω (a− c)]
⇔ (p(b)− pa) (a− c) > (p(c)− pa) (a− b) ,

where the last inequality follows from Property 2– specifically, because p(c)−pa
a−c is a convex

combination of p(b)−pa
a−b and p(c)−p(b)

b−c , Property 2 implies p(c)−pa
a−c < p(b)−pa

a−b . Finally, we have

1 + rp(b) + Ωrb < 1 + rp(c) + Ωrc, because

rp(b) + Ωrb < rp(c) + Ωrc

⇔ Ω (b− c) < p(c)− p(b),

where the last inequality follows from Lemma 2. The result follows.

We conclude with the key property for identification, which establishes that different

pairs of r and Ω have different implications for willingness to pay (provided there are at least

three deductible options on the menu).

Property 4. If p(c) is the same for (r,Ω(µ)) and a different (r′,Ω(µ)′), then p(b) is different

for (r,Ω(µ)) and (r′,Ω(µ)′). In particular, if r > r′ (in which case Ω(µ) < Ω(µ)′), then p(b)

is larger for (r,Ω(µ)).

Proof. For a fixed p(c), define Ωc(r) by V (p(c), c, r,Ωc(r)) = 0, so that any pair (r,Ωc(r))

yields the same p(c). Then

dΩc

dr
=
−∂V

∂r
∂V
∂Ω

= −
1
r
[(p(c)− pa)− Ωc(r) (a− c)]

1
Ωc(r)

[(p(c)− pa) + r
2
(p(c)2 − p2

a)]
.

Next, define p̌b(r) by V (p̌b(r), b, r,Ω
c(r)) = 0, so that p̌b(r) is the p(b) associated with

pair (r,Ωc(r)). The goal is to show that dp̌b(r)/dr > 0, from which the result follows.
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Differentiating V (p̌b(r), b, r,Ω
c(r)) = 0 yields

d [V (p̌b(r), b, r,Ω
c(r))]

dr
=
∂V

∂p

dp̌b(r)

dr
+
∂V

∂r
+
∂V

∂Ω

dΩc

dr
= 0.

Note that

∂V

∂r
+
∂V

∂Ω

dΩc

dr
= −1

r
[(p̌b(r)− pa)− Ωc(r) (a− b)]

+
1

Ωc(r)

[
(p̌b(r)− pa) +

r

2
(p̌b(r)

2 − p2
a)
] 1

r
[(p(c)− pa)− Ωc(r) (a− c)]

1
Ωc(r)

[(p(c)− pa) + r
2
(p(c)2 − p2

a)]
.

We have

(p(c)− pa)
1

r
[(p̌b(r)− pa)− Ωc(r) (a− b)] > (p̌b(r)− pa)

1

r
[(p(c)− pa)− Ωc(r) (a− c)]

as in the proof of Property 3. In addition,

(p(c)− pa)[(p̌b(r)− pa) +
r

2
(p̌b(r)

2 − p2
a)] < (p̌b(r)− pa)[(p(c)− pa) +

r

2
(p(c)2 − p2

a)],

because

(p(c)− pa)(p̌b(r)2 − p2
a) < (p̌b(r)− pa)(p(c)2 − p2

a)

⇔ (p(c)− pa)(p̌b(r)− pa)(p̌b(r) + pa) < (p̌b(r)− pa)(p(c)− pa)(p(c) + pa)

⇔ p̌b(r) < p(c),

where the last inequality follows from Lemma 1. Together, these imply ∂V
∂r

+ ∂V
∂Ω

dΩc

dr
< 0, and

therefore ∂V
∂p

dp̌b(r)
dr

> 0. Hence, ∂V
∂p
> 0 implies dp̌b(r)

dr
> 0. The result follows.

D Robustness to Unobserved Heterogeneity in Prefer-

ences

In this section, we describe in detail the robustness exercises reported in Section 7. In

each exercise, we generate simulated deductible choices using an alternative model and then

estimate our model on the "simulated data"– i.e., the actual data but with the simulated

deductible choices substituted for the actual deductible choices.

At the simulation stage of each exercise, we allow for both observed and unobserved

heterogeneity in preferences and risk. However, because of severe computational burden, at
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the estimation stage we use Models 1a and 1b, which assume homogenous preferences and

do not allow for unobserved heterogeneity in risk (although in one case in which we find

some small bias in favor of probability distortions, we also estimate Model 1b allowing for

unobserved heterogeneity in risk).4

D.1 Unobserved Heterogeneity in Standard Risk Aversion

We first consider whether unobserved heterogeneity in standard risk aversion could lead us

to find large probability distortions when in fact none exist.

Alternative Model We use a variant of the Cohen-Einav model to generate the simulated

deductible choices. For each coverage j, each household i has a subjective claim probability

µij and coeffi cient of absolute risk aversion rij.
5 Given its menu of premium-deductible pairs

{(pd, d) : d ∈ D}, the household chooses the deductible that maximizes its expected utility
(i.e., maximizes equation (1)).

Data Generating Process (DGP) We generate simulated deductible choices for each

household i and coverage j, as follows. First, we generate the subjective claim probability

µij = 1−exp(−λij) using the claim rate λij = λ̂ij exp(ελij), where λ̂ij is household i’s predicted

claim rate for coverage j and ελij is a draw from a gamma distribution with unit mean and

variance φ̂ij (the estimated variance from the claim rate regression for coverage j updated

for household i’s (ex post) claims experience). Second, we generate standard risk aversion

rij = exp(β̂rZi + εrij), where β̂r is the vector of coeffi cient estimates assuming only standard

risk aversion and εrij is a draw from a normal distribution with variance α. We consider

several values of α and several correlations between ελij and ε
r
ij defined as ρ ≡ corr(ελij, ε

r
ij).

We assume that ελij and ε
r
ij are not correlated across coverages. Finally, we generate the

simulated deductible choice D̃ij by applying the expected utility model (equation (1)) when

the household faces menu Pij. In the end, the simulated data comprise {D̃ij, µ̂ij, Pij}, where
4In each exercise, we generate 100 independent simulated datasets of 4170 households making the three

deductible choices. We then estimate our model on each dataset, and report the mean estimated Ω(µ) along
with the 2.5th and 97.5th percentiles.

5This formulation permits household i’s risk aversion rij to be coverage specific. Thus, it is as if each
household-coverage observation is coming from a distinct household. This approach permits us to assume a
strong correlation between unobserved heterogeneity in risk and unobserved heterogeneity in risk aversion,
while still assuming that unobserved heterogeneity in risk is uncorrelated across coverages. An alternative
approach is to instead assume that household i’s risk aversion ri is the same across coverages, but then to
further assume that unobserved heterogeneity in risk is perfectly correlated across coverages so that we can
permit a strong correlation between unobserved heterogeneity in risk and unobserved heterogeneity in risk
aversion (see Section D.3 below). Under that approach, the results do not change in any noticeable way.
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D̃ij is household i’s simulated deductible choice for coverage j and µ̂ij and Pij come from

the actual data.

Parameter Values In the DGP, the predicted claim rate λ̂ij, the distribution of ελij, and

the vector of coeffi cient estimates β̂r are taken from our main analysis. In contrast, α

and ρ are new parameters that emerge when we introduce unobserved heterogeneity in risk

aversion, and because our main analysis does not permit such heterogeneity, it provides no

guidance on their magnitudes.

We consider three values of ρ. First, as a benchmark, we consider ρ = 0. Second, we

consider ρ = 0.84, which is the correlation estimated by Cohen and Einav (2007). Finally,

for symmetry, we also consider ρ = −0.84.

In choosing α, we face a tradeoff. Increasing α increases the potential for bias, but at

the same time it increases the frequency with which the alternative model predicts extreme

deductible choices (because it increases the number of households with a very low or very

high rij). In our simulations, we found that, even at α = 1, the DGP already implies a

substantially higher frequency of extreme deductible choices than we observe in the actual

data. Hence, we focus on two values, α = 1 and α = 3.15, where the latter is the value

estimated by Cohen and Einav (2007).

Estimating our Model using the Simulated Data After choosing α and ρ and gen-

erating the simulated data, we estimate Models 1a and 1b– i.e., homogenous preferences

with a quadratic Chebyshev polynomial expansion of ln Ω(µ) (Model 1a) or Ω(µ) (Model

1b). Figures A.1 and A.2 depict the estimated probability distortion function Ω(µ) when we

estimate Models 1a and 1b, respectively. Each panel presents, for a specific combination of

α and ρ, the mean estimated Ω(µ) using the simulated data (along with the 2.5th and 97.5th

percentiles). For comparison, it also depicts the mean estimated Ω(µ) using the actual data.

For each model, the message is the same. When ελij and ε
r
ij are uncorrelated (ρ = 0), there

is some bias in favor of finding probability distortions (which is roughly the same for both

variances), but it is nothing close to the estimated Ω(µ) using the actual data. When ελij and

εrij are strongly positively correlated, the bias is somewhat larger (and more pronounced for

the higher variance), but again nothing close to the estimated Ω(µ) using the actual data.

When ελij and ε
r
ij are strongly negatively correlated, the bias is small when the variance is

small, and the bias disappears when the variance is high.

In sum, the probability distortions we find using the simulated data are rather small and

significantly less than the large probability distortions we find using the actual data. In order

to investigate the source of the bias towards finding probability distortions, we also estimate
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Model 1b when we allow for unobserved heterogeneity in risk (Model 1bu). As Figure A.3

illustrates, when we estimate Model 1bu on the simulated data, we now find no bias in favor of

finding probability distortions. By contrast, when we estimate Model 1bu on the actual data,

the probability distortions do not go away– indeed, they are very similar to the probability

distortions we find when we estimate Model 1b on the actual data. Moreover, recall that

in our analysis in Section 5 (where we allow for observed heterogeneity in preferences) the

estimated probability distortions also persist when we allow for unobserved heterogeneity in

risk (Models 2u, 4u, and 5u). These results lead us to conclude that unobserved heterogeneity

in standard risk aversion cannot explain the large probability distortions we find in the data.

FIGURES A.1, A.2 & A.3

D.2 Unobserved Heterogeneity in Standard Risk Aversion and

Probability Distortions

We next consider whether unobserved heterogeneity in both r and Ω(µ) could bias our results

in favor of finding probability distortions.

Alternative Model Here we use equation (7) to generate the simulated deductible choices.

For each coverage j, each household i has a subjective claim probability µij, a coeffi cient

of absolute risk aversion rij, and a probability distortion function Ωij(µ). Given its menu

of premium-deductible pairs {(pd, d) : d ∈ D}, the household chooses the deductible that
maximizes equation (7).

Data Generating Process (DGP) We generate simulated deductible choices for each

household i and coverage j, as follows. First, we generate the subjective claim probability µij
exactly as in Section D.1. Second, we generate standard risk aversion rij = exp(β̂rZi+ε

r
ij) as

in Section D.1, except that now β̂r is the vector of coeffi cient estimates from Model 2. Third,

we generate probability distortions Ωij(µ) = exp(β̂Ω,1Zi + β̂Ω,2Ziµ + β̂Ω,3Ziµ
2 + εΩ

ij), where

β̂Ω,1, β̂Ω,2, and β̂Ω,3 are the vectors of coeffi cient estimates fromModel 2 and ε
Ω
ij is a draw from

a normal distribution with variance α (same as εrij). As before, we consider several values of

α and several correlation structures among ελij, ε
r
ij, and ε

Ω
ij, and we assume that ε

λ
ij, ε

r
ij, and

εΩ
ij are not correlated across coverages. Finally, we generate the simulated deductible choice

D̃ij by applying our model (equation (7)) when the household faces menu Pij. In the end,

the simulated data comprise {D̃ij, µ̂ij, Pij}, where D̃ij is household i’s simulated deductible

choice for coverage j and µ̂ij and Pij come from the actual data.
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Parameter Values In the DGP, the predicted claim rate λ̂ij, the distribution of ελij, and

the coeffi cient vectors β̂r and β̂Ω are taken from our main analysis. The new parameters

(relative to our model) are α and the correlations among ελij, ε
r
ij, and ε

Ω
ij. For α, we re-

strict attention to α = 1.6 For the correlations, we consider the case where there is no

correlation among ελij, ε
r
ij, and ε

Ω
ij as well as three extreme cases of possible pairwise cor-

relations: corr(εrij, ε
Ω
ij) = 1 and corr(εrij, ε

λ
ij) = 0.84 for each j; corr(εrij, ε

Ω
ij) = −1 and

corr(εrij, ε
λ
ij) = 0.84 for each j; and corr(εrij, ε

Ω
ij) = −1 and corr(εΩ

ij, ε
λ
ij) = 0.84 for each j.

Estimating our Model using the Simulated Data We proceed exactly as in the previ-

ous exercise, except that we estimate only Model 1a because the DGP assumes the log form

for Ωij(µ). Figure A.4 depicts (i) the mean Ω(µ) used to generate the simulated data (along

with the 2.5th and 97.5th percentiles) and (ii) the mean estimated Ω(µ) using the simulated

data (along with the 2.5th and 97.5th percentiles) for the cases (A) where ελij, ε
r
ij, and ε

Ω
ij

are uncorrelated, (B) where ελij, ε
r
ij, and ε

Ω
ij are strongly positively correlated, (C) where ε

λ
ij

and εrij are strongly positively correlated and ε
r
ij and ε

Ω
ij are perfectly negatively correlated,

and (D) where ελij and ε
Ω
ij are strongly positively correlated and ε

r
ij and ε

Ω
ij are perfectly

negatively correlated. In each case, disregarding unobserved heterogeneity in r and Ω(µ)

either leads to essentially no bias or leads to a bias against finding probability distortions.

If anything, therefore, this exercise indicates that disregarding unobserved heterogeneity in

both standard risk aversion and probability distortions might lead us to underestimate the

magnitude of probability distortions.

FIGURE A.4

D.3 Correlated Unobserved Heterogeneity in Risk

The exercises reported in Sections D.1 and D.2 assume that unobserved heterogeneity in

risk is not correlated across coverages (i.e., ελiH , ε
λ
iL, and ε

λ
iM are uncorrelated). In fact, the

results of these exercises are robust to various correlation structures. For instance, whether

we assume ελiH , ε
λ
iL, and ε

λ
iM are perfectly correlated or have pairwise correlations of −0.33

(the strongest possible negative pairwise correlations given three pairs), our conclusions in

Sections D.1 and D.2 do not change in any noticeable way. It is worth noting that, in some

instances, allowing for correlation among ελiH , ε
λ
iL, and ε

λ
iM causes unobserved heterogeneity

in preferences to be correlated across coverages. In particular, we considered: (1) the case in

which standard risk aversion is the same across coverages and unobserved heterogeneity in

6For larger values of α (e.g., α = 3.15, which we consider in Section D.1 above), this alternative model is
not well behaved, because too many households are assigned an Ωij(µ) ≈ 0.
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risk is perfectly correlated across coverages and perfectly positively (negatively) correlated

with εri ; and (2) the case in which both standard risk aversion and probability distortions

are the same across coverages and unobserved heterogeneity in risk is perfectly correlated

across coverages, perfectly positively (negatively) correlated with εri , and perfectly positively

(negatively) correlated with εΩ
i . Finally, we note that if we assume the same correlation

structures for unobserved heterogeneity in risk, but without permitting unobserved hetero-

geneity in preferences (i.e., setting α = 0), we again find essentially no bias in favor of finding

probability distortions.

E Appendix Tables

On the ensuing pages, we report Tables A.1 through A.20.
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$100 $200 $250 $500 $1000

Mean annual premium for coverage with $500 deductible 110 129 146 189 255

Standard deviation 54 54 66 96 168

Mean cost of decreasing deductible from $500 to $250 33 38 44 57 77

Standard deviation 17 17 20 29 52

Mean savings from increasing deductible from $500 to $1000 24 29 33 43 58

Standard deviation 12 12 15 22 39

Number of households 42 559 467 2822 280

Note: All values in dollars, except number of households.

$50 $100 $200 $250 $500 $1000

Mean annual premium for coverage with $500 deductible 61 70 92 98 136 258

Standard deviation 27 33 43 41 71 247

Mean cost of decreasing deductible from $500 to $250 16 18 24 26 36 68

Standard deviation 7 9 11 11 19 66

Mean savings from increasing deductible from $500 to $1000 12 14 18 19 27 51

Standard deviation 5 7 9 8 14 49

Number of households 216 171 1397 440 1795 151

Note: All values in dollars, except number of households.

$100 $250 $500 $1000 $2500 $5000

Mean annual premium for coverage with $500 deductible 366 520 631 972 2218 3366

Standard deviation 113 218 308 593 2289 1808

Mean cost of decreasing deductible from $500 to $250 31 42 52 80 183 275

Standard deviation 6 18 26 48 201 140

Mean savings from increasing deductible from $500 to $1000 41 57 69 107 244 368

Standard deviation 8 23 34 64 268 188

Number of households 36 1239 2166 664 50 15

Note: All values in dollars, except number of households.

Deductible Choice

Table A.1: Summary of Premium Menus ‐ Auto Collision

Core Sample (4170 Households)

Deductible Choice

Deductible Choice

Table A.2: Summary of Premium Menus ‐ Auto Comprehensive

Core Sample (4170 Households)

Table A.3: Summary of Premium Menus ‐ Home

Core Sample (4170 Households)
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Std Err Std Err

Constant ‐6.7646 ** 0.0616 ‐7.9277 ** 0.1057

Driver 2 Indicator ‐0.0485 0.0593 ‐0.3542 ** 0.1022

Driver 3+ Indicator 0.3215 ** 0.0733 ‐0.1261 0.1201

Vehicle 2 Indicator 0.5991 ** 0.0466 0.6502 ** 0.0782

Vehicle 3+ Indicator 0.7312 ** 0.0596 0.8766 ** 0.0937

Young Driver ‐0.0058 0.0296 0.0895 ** 0.0453

Driver 1 Age ‐0.0210 ** 0.0015 0.0113 ** 0.0029

Driver 1 Age Squared 0.0002 ** 0.0000 ‐0.0002 ** 0.0000

Driver 1 Female 0.1040 ** 0.0093 ‐0.0672 ** 0.0168

Driver 1 Married 0.0630 ** 0.0111 0.0640 ** 0.0201

Driver 1 Divorced 0.0186 0.0141 0.0914 ** 0.0247

Driver 1 Separated 0.0392 0.0256 0.0791 0.0428

Driver 1 Single . . . .

Driver 1 Widowed 0.0031 0.0160 ‐0.0170 0.0335

Vehicle 1 Age ‐0.0354 ** 0.0019 ‐0.0286 ** 0.0030

Vehicle 1 Age Squared ‐0.0006 ** 0.0001 0.0000 0.0002

Vehicle 1 Business . . . .

Vehicle 1 Farm ‐0.2575 ** 0.0872 0.0206 0.1194

Vehicle 1 Pleasure ‐0.1094 ** 0.0306 ‐0.1118 ** 0.0526

Vehicle 1 Work ‐0.0831 ** 0.0304 ‐0.0620 0.0523

Vehicle 1 Passive Restraint ‐0.1087 ** 0.0239 ‐0.0858 ** 0.0352

Vehicle 1 Anti‐Theft 0.0754 ** 0.0078 0.0735 ** 0.0136

Vehicle 1 Anti‐Lock 0.0581 ** 0.0080 0.0729 ** 0.0139

Driver 2 Age 0.0115 ** 0.0024 0.0181 ** 0.0042

Driver 2 Age Squared ‐0.0001 ** 0.0000 ‐0.0001 ** 0.0000

Driver 2 Female 0.1204 ** 0.0151 ‐0.0376 0.0257

Driver 2 Married ‐0.0835 ** 0.0191 ‐0.0408 0.0326

Driver 2 Divorced ‐0.1579 0.1027 ‐0.1347 0.1636

Driver 2 Separated 0.0254 0.2130 0.1796 0.3226

Driver 2 Single . . . .

Driver 2 Widowed ‐0.0802 0.1383 ‐1.1835 ** 0.3864

Vehicle 2 Age ‐0.0332 ** 0.0016 ‐0.0229 ** 0.0027

Vehicle 2 Age Squared 0.0004 ** 0.0001 0.0002 ** 0.0001

Vehicle 2 Business . . . .

Vehicle 2 Farm ‐0.1703 0.1056 ‐0.1345 0.1500

Vehicle 2 Pleasure ‐0.1805 ** 0.0380 ‐0.0563 0.0663

Vehicle 2 Work ‐0.1670 ** 0.0381 0.0119 0.0664

Vehicle 2 Passive Restraint ‐0.0428 ** 0.0201 ‐0.0875 ** 0.0294

Vehicle 2 Anti‐Theft 0.0547 ** 0.0103 0.0385 ** 0.0171

Vehicle 2 Anti‐Lock 0.0317 ** 0.0105 0.0199 0.0170

Driver 1 Credit Score ‐0.0017 ** 0.0000 ‐0.0013 ** 0.0001

Driver 1 Previous Accident 0.0913 ** 0.0156 0.0756 ** 0.0277

Driver 1 Previous Convictions 0.1476 0.0888 0.0648 0.1670

Driver 1 Previous Reinstated 0.0170 0.0558 0.0003 0.0996

Driver 1 Previous Revocation ‐0.0218 0.1456 0.3156 0.1967

Driver 1 Previous Suspension 0.0463 0.0564 0.0125 0.1026

Driver 1 Previous Violation 0.0827 ** 0.0093 0.0577 ** 0.0161

Year Dummies

Territory Codes

Variance (φ) 0.2242 ** 0.0065 0.5661 0.0198

Loglikelihood

** Significant at 5 percent level.

Note: Territory codes indicate rating territories, which are based on actuarial risk factors, 

such as traffic and weather patterns, population demographics, wildlife density, and the 

cost of goods and services.

Table A.4: Claim Rate Regressions ‐ Auto

Poisson Panel Regression Model with Random Effects

Full Data Set (1,348,020 Household‐Year Records )

Collision Comprehensive

‐399,318

Coef

‐169,817

Coef

Yes

Yes

Yes

Yes
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Std Err

Constant ‐7.3642 ** 0.0978

Dwelling Value 0.0000 ** 0.0000

Home Age 0.0016 ** 0.0006

Home Age Squared 0.0000 ** 0.0000

Number of Families ‐0.0021 0.0023

Distance to Hydrant 0.0000 0.0000

Alarm Discount 0.2463 ** 0.0195

Protection Devices ‐0.1852 ** 0.0239

Farm/Business 0.1044 ** 0.0242

Primary Home 0.4832 ** 0.0819

Owner Occupied 0.2674 ** 0.0419

Construction: Fire Resistant 0.1525 0.1342

Construction: Masonry 0.0751 ** 0.0172

Construction: Masonry/Veneer 0.0755 ** 0.0252

Construction: Frame . .

Credit Score ‐0.0026 ** 0.0000

Year Dummies

Protection Classes

Territory Codes

Variance (φ) 0.4514 ** 0.0086

Loglikelihood

** Significant at 5 percent level.

Note: Territory codes indicate rating territories, which are 

based on actuarial risk factors, such as traffic and weather 

patterns, population demographics, wildlife density, and the 

cost of goods and services. Protection classes guage the 

effectiveness of local fire protection and building codes.

Yes

‐347,278

Table A.5: Claim Rate Regression ‐ Home

Poisson Panel Regression Model with Random Effects

Full Data Set (1,265,229 Household‐Year Records )

Coef

Yes

Yes
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Std Err Std Err Std Err Std Err

Constant ‐6.88 ** 0.08 ‐2.83 ** 0.03 12.55 ** 0.50 ‐37.61 ** 2.98

Driver 1 age ‐0.81 ** 0.23 0.06 0.11 3.16 2.05 ‐6.05 11.97

Driver 1 age squared 0.49 ** 0.25 0.12 0.11 ‐5.63 ** 2.21 17.59 12.97

Driver 1 female 0.06 0.04 ‐0.03 0.02 1.33 ** 0.53 ‐10.24 ** 3.03

Driver 1 single ‐0.04 0.05 0.02 0.03 0.45 0.58 ‐3.71 3.00

Driver 1 married 0.02 0.07 ‐0.01 0.04 1.10 1.01 ‐7.61 5.01

Driver 1 credit score ‐0.07 0.04 ‐0.02 0.02 2.16 ** 0.48 ‐10.75 ** 2.59

Driver 2 indicator ‐0.01 0.06 0.01 0.03 ‐1.55 ** 0.71 7.93 ** 3.77

Home value ‐0.70 ** 0.05 0.03 ** 0.01 0.40 * 0.23 0.13 0.75

Parameter mean

Parameter median

σ 31.83 ** 1.09 20.19 ** 0.62 70.52 ** 2.79

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err Std Err

Constant 3.70 ** 0.14 ‐2.65 ** 0.02 12.22 ** 0.54 ‐36.50 ** 3.47

Driver 1 age ‐0.62 0.40 0.23 ** 0.09 2.17 1.40 ‐1.23 7.19

Driver 1 age squared ‐0.52 0.48 ‐0.04 0.09 ‐4.08 ** 1.45 9.79 7.79

Driver 1 female 0.03 0.06 ‐0.03 0.02 1.38 ** 0.50 ‐10.88 ** 2.81

Driver 1 single ‐0.11 0.07 0.01 0.02 0.56 0.47 ‐4.46 * 2.66

Driver 1 married ‐0.03 0.10 0.00 0.03 0.90 * 0.52 ‐6.88 ** 3.05

Driver 1 credit score ‐0.08 0.06 ‐0.03 0.02 2.07 ** 0.48 ‐10.21 ** 2.70

Driver 2 indicator 0.10 0.09 ‐0.01 0.02 ‐1.31 ** 0.54 6.14 * 3.22

Home value 0.20 ** 0.03 ‐0.01 0.01 0.67 ** 0.13 ‐0.34 0.34

Parameter mean

Parameter median

σ 25.23 ** 0.63 16.94 ** 0.50 53.76 ** 2.05

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐14985.31

0.00028 ‐2.65 12.24 ‐35.90

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00050 ‐2.65 12.22 ‐36.50

‐14819.51

Table A.7: Model 4 Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00110 ‐2.85 12.66 ‐37.29

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00126 ‐2.83 12.55 ‐37.61

Table A.6: Model 3 Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant 2.62 ** 0.05 ‐2.75 ** 0.02 12.00 ** 0.57 ‐35.52 ** 3.43

Driver 1 age ‐1.17 ** 0.32 0.31 ** 0.12 6.84 ** 1.06 ‐14.43 ** 2.43

Driver 1 age squared 0.69 0.37 ‐0.10 0.11 ‐8.71 ** 1.10 23.78 ** 2.49

Driver 1 female ‐0.01 0.04 0.00 0.02 0.80 ** 0.20 ‐8.07 ** 1.96

Driver 1 single ‐0.10 ** 0.04 0.02 0.02 0.67 ** 0.32 ‐4.00 ** 2.00

Driver 1 married ‐0.01 0.05 0.01 0.02 0.84 ** 0.29 ‐6.07 ** 2.24

Driver 1 credit score ‐0.10 ** 0.03 ‐0.02 0.02 2.33 ** 0.35 ‐10.71 ** 1.46

Driver 2 indicator 0.01 0.05 0.01 0.02 ‐1.72 ** 0.23 8.54 ** 1.54

Home value 0.45 ** 0.01 ‐0.05 ** 0.01 0.95 ** 0.07 ‐0.71 ** 0.15

Parameter mean

Parameter median

σ 0.45 ** 0.02 0.30 ** 0.02 1.08 ** 0.07

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err Std Err

Constant ‐7.11 ** 0.08 ‐2.73 ** 0.02 11.04 ** 0.41 ‐21.78 ** 1.95

Driver 1 age ‐1.22 ** 0.19 0.15 ** 0.07 3.31 ** 0.57 ‐3.86 ** 1.66

Driver 1 age squared 0.75 ** 0.20 0.02 0.06 ‐4.92 ** 0.61 7.64 ** 1.10

Driver 1 female 0.05 0.05 ‐0.01 0.02 1.24 ** 0.29 ‐9.90 ** 1.32

Driver 1 single 0.03 0.07 0.00 0.02 0.56 ** 0.21 ‐3.25 ** 1.20

Driver 1 married 0.02 0.12 ‐0.01 0.05 1.24 ** 0.46 ‐6.87 ** 1.00

Driver 1 credit score ‐0.12 ** 0.05 ‐0.01 0.03 1.49 ** 0.62 ‐3.64 2.73

Driver 2 indicator ‐0.09 0.08 0.01 0.04 ‐1.40 * 0.75 5.27 ** 1.99

Parameter mean

Parameter median

σ 25.93 ** 0.80 18.02 ** 0.56 66.01 ** 2.78

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐14952.75

0.00076 ‐2.74 11.05 ‐19.49

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00097 ‐2.73 11.04 ‐21.78

‐14942.46

Table A.9: Model 2u Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00044 ‐2.75 12.01 ‐35.42

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00056 ‐2.75 12.00 ‐35.52

Table A.8: Model 5 Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant 4.33 ** 0.12 ‐2.69 ** 0.02 11.68 ** 0.40 ‐26.98 ** 1.88

Driver 1 age 0.02 0.21 0.19 ** 0.06 0.12 0.37 8.20 ** 2.39

Driver 1 age squared ‐1.04 ** 0.26 0.05 0.06 ‐3.14 ** 0.43 5.86 ** 2.45

Driver 1 female ‐0.01 0.05 0.03 * 0.02 ‐0.66 0.44 2.35 1.89

Driver 1 single ‐0.12 ** 0.06 0.02 0.03 0.52 0.78 ‐3.74 3.70

Driver 1 married 0.02 0.08 0.00 0.02 0.77 ** 0.20 ‐5.87 ** 1.15

Driver 1 credit score ‐0.08 0.05 ‐0.02 0.02 1.97 ** 0.42 ‐7.92 ** 1.87

Driver 2 indicator ‐0.04 0.08 0.03 0.03 ‐1.98 ** 0.57 8.82 ** 2.70

Home value 0.27 ** 0.04 ‐0.04 ** 0.01 1.85 ** 0.13 ‐1.92 ** 0.18

Parameter mean

Parameter median

σ 24.66 ** 0.68 17.34 ** 0.53 53.30 ** 2.29

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err Std Err

Constant 3.16 ** 0.04 ‐2.96 ** 0.02 13.06 ** 0.40 ‐33.78 ** 1.71

Driver 1 age ‐0.60 ** 0.11 0.50 ** 0.12 6.69 ** 1.47 ‐19.57 ** 6.07

Driver 1 age squared 0.09 0.14 ‐0.17 0.11 ‐8.80 ** 1.57 28.18 ** 6.73

Driver 1 female ‐0.01 0.02 0.08 ** 0.02 ‐1.46 ** 0.33 4.73 ** 1.16

Driver 1 single ‐0.09 ** 0.02 0.03 0.02 0.69 ** 0.32 ‐3.90 ** 0.77

Driver 1 married 0.00 0.03 0.07 ** 0.03 ‐1.58 ** 0.52 7.56 ** 1.78

Driver 1 credit score ‐0.07 ** 0.02 0.00 0.02 1.75 ** 0.29 ‐4.48 ** 0.95

Driver 2 indicator ‐0.02 0.02 0.02 0.03 ‐1.25 ** 0.51 3.95 ** 1.83

Home value 0.68 ** 0.01 ‐0.14 ** 0.02 1.78 ** 0.21 1.75 ** 0.64

Parameter mean

Parameter median

σ 0.87 ** 0.04 0.60 ** 0.02 1.67 ** 0.09

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

‐14718.29

0.00082 ‐2.96 12.81 ‐31.62

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00093 ‐2.96 13.06 ‐33.78

‐14976.45

Table A.11: Model 5u Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00055 ‐2.71 11.65 ‐27.08

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00081 ‐2.69 11.68 ‐26.98

Table A.10: Model 4u Estimates

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant ‐6.83 ** 0.05 ‐3.01 ** 0.03 11.94 ** 0.65 ‐34.82 ** 3.94

Driver 1 age ‐0.75 ** 0.34 0.33 ** 0.15 8.43 ** 1.33 ‐18.69 ** 2.73

Driver 1 age squared 0.53 0.39 ‐0.08 0.16 ‐10.42 ** 1.49 28.08 ** 3.37

Driver 1 female 0.04 0.02 ‐0.02 0.03 0.90 0.75 ‐9.00 ** 4.25

Driver 1 single 0.02 0.02 ‐0.01 0.02 0.34 0.23 ‐3.13 * 1.90

Driver 1 married ‐0.02 0.03 0.02 0.04 0.67 0.89 ‐4.54 * 2.74

Driver 1 credit score ‐0.04 0.03 ‐0.02 0.03 2.30 ** 0.78 ‐10.59 ** 3.83

Driver 2 indicator ‐0.05 0.03 0.01 0.03 ‐0.95 ** 0.46 6.21 ** 1.57

Parameter mean

Parameter median

σ 33.31 ** 0.98 21.30 ** 0.64 104.30 ** 5.29

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐14713.74

0.00103 ‐3.01 12.06 ‐34.67

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00113 ‐3.01 11.94 ‐34.82

Table A.12: Model 2 with CARA Utility

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant ‐6.83 ** 0.04 ‐2.88 ** 0.01 14.01 ** 0.34 ‐43.10 ** 2.78

Driver 1 age 1.14 ** 0.34 ‐0.31 ** 0.09 ‐1.14 ** 0.54 ‐7.11 ** 2.75

Driver 1 age squared ‐1.28 ** 0.36 0.41 ** 0.08 ‐2.79 ** 0.34 26.03 ** 1.11

Driver 1 female 0.16 ** 0.02 ‐0.01 0.01 ‐0.89 ** 0.22 2.40 ** 0.86

Driver 1 single ‐0.08 ** 0.04 0.03 ** 0.02 0.14 0.21 ‐1.65 1.27

Driver 1 married 0.01 0.03 0.03 ** 0.01 ‐0.97 ** 0.14 2.68 ** 0.32

Driver 1 credit score ‐0.07 ** 0.02 0.03 ** 0.01 0.86 ** 0.25 ‐4.51 ** 1.21

Driver 2 indicator 0.10 ** 0.03 0.01 0.01 ‐2.23 ** 0.30 10.63 ** 2.04

Parameter mean

Parameter median

σ 31.17 ** 0.48 17.91 ** 0.43 18.93 ** 0.27

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err Std Err

Constant ‐7.57 ** 0.08 ‐2.63 ** 0.02 12.91 ** 0.43 ‐42.12 ** 2.97

Driver 1 age ‐1.31 ** 0.21 0.06 0.09 4.52 * 2.46 ‐11.77 15.32

Driver 1 age squared 0.91 ** 0.22 0.08 0.09 ‐6.73 ** 2.53 22.96 16.35

Driver 1 female 0.15 ** 0.04 ‐0.03 0.02 0.94 ** 0.29 ‐7.90 ** 1.65

Driver 1 single 0.05 0.05 0.02 0.02 ‐0.10 0.33 ‐0.18 2.01

Driver 1 married ‐0.13 0.08 0.04 ** 0.02 0.42 0.45 ‐4.30 * 2.58

Driver 1 credit score ‐0.08 ** 0.04 ‐0.01 0.02 2.19 ** 0.38 ‐12.41 ** 2.31

Driver 2 indicator 0.13 0.07 ‐0.03 0.02 ‐1.32 ** 0.41 8.32 ** 2.86

Parameter mean

Parameter median

σ 28.61 ** 0.71 18.78 ** 0.47 58.74 ** 2.00

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐24690.75

0.00048 ‐2.65 12.99 ‐42.40

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00060 ‐2.63 12.91 ‐42.12

‐49570.46

Table A.14: Model 2 with Alternative Sample 2

Alternative Sample 2 (6824 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00112 ‐2.92 14.26 ‐45.60

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00113 ‐2.88 14.01 ‐43.10

Table A.13: Model 2 with Alternative Sample 1

Alternative Sample 1 (20,662 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant ‐8.79 ** 0.27 ‐2.81 ** 0.04 12.88 ** 0.65 ‐30.29 ** 3.12

Driver 1 age ‐4.22 ** 0.85 0.03 0.17 6.47 ** 2.37 ‐8.09 8.02

Driver 1 age squared 3.92 ** 0.94 0.38 ** 0.17 ‐10.94 ** 2.28 23.24 ** 7.44

Driver 1 female 0.14 0.16 0.03 0.04 0.91 1.00 ‐9.94 ** 5.00

Driver 1 single 0.18 0.19 ‐0.01 0.04 0.96 0.99 ‐6.98 5.07

Driver 1 married 0.20 0.27 ‐0.02 0.04 1.31 * 0.76 ‐8.92 ** 3.09

Driver 1 credit score ‐0.54 ** 0.17 ‐0.04 0.03 2.59 ** 0.66 ‐10.26 ** 2.93

Driver 2 indicator ‐0.07 0.21 0.00 0.04 ‐1.19 0.79 5.52 4.05

Parameter mean

Parameter median

σ 26.26 ** 0.84 19.83 ** 0.89 76.56 ** 4.49

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err Std Err

Constant ‐7.52 ** 0.11 ‐2.34 ** 0.03 8.43 ** 0.55 ‐23.31 ** 3.26

Driver 1 age ‐1.85 ** 0.44 0.29 ** 0.13 1.97 2.39 0.66 3.08

Driver 1 age squared 1.49 ** 0.52 ‐0.06 0.11 ‐4.39 ** 1.57 9.50 ** 4.03

Driver 1 female 0.17 ** 0.06 ‐0.05 * 0.02 1.63 ** 0.63 ‐12.81 ** 4.15

Driver 1 single 0.17 0.09 ‐0.04 0.02 0.68 ** 0.32 ‐5.30 ** 1.39

Driver 1 married 0.16 0.12 ‐0.03 0.03 1.16 ** 0.56 ‐8.66 ** 2.92

Driver 1 credit score ‐0.17 ** 0.07 0.01 0.03 1.51 ** 0.69 ‐7.41 * 3.92

Driver 2 indicator ‐0.02 0.10 ‐0.01 0.04 ‐0.91 0.78 4.67 4.19

Parameter mean

Parameter median

σ 33.21 ** 1.28 19.70 ** 0.74 73.79 ** 4.37

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐10299.92

0.00048 ‐2.34 8.48 ‐21.94

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00066 ‐2.34 8.43 ‐23.31

‐11517.11

Table A.16: Model 2 with Restricted Menu II

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00013 ‐2.88 13.46 ‐30.35

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00029 ‐2.81 12.88 ‐30.29

Table A.15: Model 2 with Restricted Menu I

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant ‐9.22 ** 0.20 ‐2.81 ** 0.05 13.48 ** 0.80 ‐32.52 ** 3.46

Driver 1 age ‐4.89 ** 0.97 0.04 0.20 6.23 ** 1.69 ‐6.01 5.40

Driver 1 age squared 4.61 ** 1.22 0.35 0.24 ‐10.31 ** 2.68 19.36 ** 2.34

Driver 1 female 0.09 0.10 0.03 0.02 0.91 ** 0.27 ‐9.67 ** 2.15

Driver 1 single 0.30 ** 0.13 ‐0.01 0.02 0.84 ** 0.37 ‐5.96 ** 1.87

Driver 1 married 0.44 ** 0.13 ‐0.02 0.03 1.22 ** 0.32 ‐8.34 ** 1.26

Driver 1 credit score ‐0.61 ** 0.13 ‐0.04 0.03 2.57 ** 0.76 ‐10.16 ** 3.30

Driver 2 indicator ‐0.07 0.18 0.00 0.03 ‐1.18 ** 0.47 5.43 ** 2.14

Parameter mean

Parameter median

σ 51.63 ** 1.34 36.49 ** 1.46 130.57 ** 6.96

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

Std Err Std Err Std Err Std Err

Constant ‐9.28 ** 0.37 ‐2.23 ** 0.02 8.13 ** 0.41 ‐22.78 ** 1.88

Driver 1 age 0.41 0.50 0.34 ** 0.11 2.76 1.79 ‐5.28 8.67

Driver 1 age squared ‐2.42 ** 0.80 ‐0.06 0.11 ‐5.23 ** 1.76 16.15 * 8.63

Driver 1 female 0.14 ** 0.06 ‐0.03 0.02 1.68 ** 0.50 ‐13.36 ** 2.83

Driver 1 single 0.10 0.08 ‐0.02 0.02 0.62 0.41 ‐4.63 * 2.45

Driver 1 married 0.09 0.12 ‐0.02 0.03 1.04 ** 0.42 ‐7.85 ** 2.53

Driver 1 credit score ‐0.01 0.06 ‐0.02 0.02 1.27 ** 0.38 ‐6.43 ** 1.89

Driver 2 indicator ‐0.04 0.10 ‐0.02 0.03 ‐0.53 0.50 2.62 2.71

Parameter mean

Parameter median

σ 60.77 ** 2.12 37.66 ** 1.42 114.41 ** 5.55

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

‐10337.61

0.00015 ‐2.23 8.27 ‐21.79

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00035 ‐2.23 8.13 ‐22.78

‐11571.67

Table A.18: Model 2 with Alternative Error Structure A and Restricted Menu II

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00008 ‐2.87 13.96 ‐32.32

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00022 ‐2.81 13.48 ‐32.52

Table A.17: Model 2 with Alternative Error Structure A and Restricted Menu I

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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Std Err Std Err Std Err Std Err

Constant ‐7.04 ** 0.09 ‐2.04 ** 0.03 3.21 ** 0.64 ‐7.30 ** 3.34

Driver 1 age ‐1.43 ** 0.18 0.42 ** 0.11 2.89 1.90 ‐7.31 5.79

Driver 1 age squared 1.16 ** 0.19 ‐0.28 ** 0.12 ‐3.60 2.27 10.37 8.06

Driver 1 female 0.00 0.03 0.03 0.02 0.08 0.50 ‐2.96 1.98

Driver 1 single ‐0.05 0.04 ‐0.09 ** 0.04 2.03 * 1.11 ‐7.82 5.07

Driver 1 married ‐0.11 ** 0.06 0.01 0.05 1.32 1.01 ‐7.73 ** 3.23

Driver 1 credit score ‐0.26 ** 0.03 ‐0.01 0.01 2.25 ** 0.29 ‐8.80 ** 1.26

Driver 2 indicator ‐0.07 0.05 ‐0.02 0.02 0.14 0.22 2.25 2.11

Parameter mean

Parameter median

σ 62.75 ** 2.22 53.33 ** 3.23 65.80 ** 2.94

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

  * Significant at 10 percent level.

Std Err Std Err Std Err Std Err

Constant ‐7.06 ** 0.07 ‐2.26 ** 0.03 7.22 ** 0.55 ‐21.34 ** 2.58

Driver 1 age ‐1.07 ** 0.37 0.15 ** 0.07 3.29 ** 1.33 ‐6.44 13.08

Driver 1 age squared 0.83 ** 0.37 0.04 0.06 ‐5.43 ** 1.45 14.89 14.72

Driver 1 female 0.09 ** 0.03 ‐0.03 0.02 0.85 ** 0.28 ‐6.66 ** 1.92

Driver 1 single ‐0.01 0.06 0.00 0.02 0.51 0.62 ‐2.99 4.11

Driver 1 married ‐0.04 0.06 0.00 0.05 0.89 1.01 ‐5.66 3.89

Driver 1 credit score ‐0.15 ** 0.05 0.02 0.02 1.62 ** 0.24 ‐8.35 ** 1.30

Driver 2 indicator ‐0.05 0.05 0.00 0.03 ‐0.52 ** 0.25 4.09 3.24

Parameter mean

Parameter median

σ 53.09 ** 1.58 38.37 ** 1.24 66.17 ** 2.65

Note: Each variable z  is normalized as (z ‐mean(z ))/stdev(z ).

** Significant at 5 percent level.

‐10996.25

0.00082 ‐2.27 7.39 ‐21.42

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00093 ‐2.26 7.22 ‐21.34

‐11702.47

Table A.20: Model 2 with Alternative Error Structure B and Restricted Menu II

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic

0.00081 ‐2.01 3.36 ‐7.54

Collision Comprehensive Home Loglikelihood value

Coef Coef Coef Coef

0.00101 ‐2.04 3.21 ‐7.30

Table A.19: Model 2 with Alternative Error Structure B and Restricted Menu I

Core Sample (4170 Households)

r Log Ω(μ): constant Log Ω(μ): linear Log Ω(μ): quadratic
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