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Abstract

We analyze optimal risk sharing arrangements when losses are observable by policyholders

and insurers but not veri�able. The optimal contract to insure individual losses can be

implemented through a standard insurance contract with a deductible where the policyholder

bears all losses lower than the deductible and an upper limit that restricts the maximum

payment to the policyholder. For a group of policyholders it is optimal to choose contracts

with individual deductibles and a joint upper limit. Insurance brokers can play an important

role in implementing these contracts.
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1 Introduction

Without market frictions, it is optimal for a risk-averse policyholder to purchase full in-

surance coverage from risk-neutral insurers. The only friction that we introduce is the

non-veri�ability of losses. Thereby we capture the idea that individuals and �rms face many

risks for which it is di¢ cult to write explicit contingent insurance contracts. The optimal

self-enforcing contract for the policyholder to insure observable but non-veri�able losses can

be implemented through an insurance contract with a deductible where the policyholder

bears all losses lower than the deductible and an upper limit that restricts the maximum

payment to the policyholder.

We consider a model with in�nite periods where, in each period, risk-averse policyholders

incur a random loss. The magnitude of a policyholder�s loss is observable by the insurer but

not veri�able. At the beginning of each period, the policyholder and the insurer write a

contract that speci�es the level of the indemnity payment as a function of the realized

loss. If the insurer honors the contract, the policyholder renews the coverage for the next

period; if not, he will choose another insurer. In equilibrium, the policyholder pays an

insurance premium in excess of the expected loss so that the insurer earns a rent when

signing the contract. The expected future rent from continued business induces the insurer

to make a payment despite the non-veri�ability of losses. The maximum indemnity payment

determines the level of the required rent; losses below the maximum claim can be insured

at a fair premium that equals the expected payment. An upper limit reduces the required

rent. At the same time, reducing coverage in high-loss states increases the marginal utility

in these states and a deductible becomes optimal.

When the indemnity payment implied by the contract is lower than the upper limit,

the insurer would be willing to pay more for the continued renewal of the contract than

required by the contract. However, it is not possible for the policyholder to take advantage

of this situation by blackmailing the insurer and requiring a higher payment for future

continuation. The reason is that blackmailing reduces the insurer�s willingness to pay in the

future, which reduces the level of future risk sharing. For this reason, it would be optimal

for the blackmailing policyholder to switch the insurer after the current insurer made the
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payment. Anticipating non-renewal incentives, the insurer would require the policyholder to

commit to future renewal. But with such a commitment the insurer would not make any

payments in the future so that commitment is not feasible.

Although the �excess willingness to pay�cannot be exploited through blackmailing, pol-

icyholders can bene�t from it by writing contracts with a joint upper limit. To provide

intuition, assume that there are two individuals with two separate contracts. Each contract

has a deductible and an upper limit on each individual�s loss. Compare this situation with

a joint contract where each individual still has the same deductible on the individual loss.

But the new contract has a joint upper limit on the total payment to the two policyholders,

where the joint upper limit is equal to the sum of the two individual upper limits. This

contract involves the same rent, but results in improved risk sharing: if one policyholder has

a loss below the individual upper limit and the other policyholder has a loss in excess of

the upper limit, a joint upper limit allows for a higher total payment. Of course, the joint

contract involves a higher premium, but the increased premium merely re�ects the increased

expected insurance coverage. We show that a joint contract with individual deductibles and

a joint upper limit on the total loss is optimal for policyholders.

Implementing a contract with a joint upper limit requires that the policyholders observe

each others� losses and that they collectively switch to another insurer if the incumbent

insurer shirks. Thus, the coordination cost of directly writing an explicit joint contract with

the insurer would be high and such contracts are not observed in practice. However, an

insurance broker may step in as an intermediary to implement the implicit joint contract.

By bundling the policies of multiple policyholders, the broker has a higher bargaining power

than individual policyholders: the broker can threaten to leave with all clients if the insurer

shirks on one. Thereby, the broker increases the expected payments to policyholders for a

given level of rent paid to the insurer. Moreover, by coordinating claims settlement, the

broker oversees the claims and insurance payments of its clients.

The role for the insurance broker portrayed in our model is re�ected in the contractual

arrangement with insurers. It is normal for brokers to �own the renewal rights� on the

book of business they place with the insurer. That is, the broker is free to recommend to

its clients that they renew with the current insurer or switch to a rival. Accordingly, the
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insurer revokes any right to directly solicit business placed through the broker. This provision

vests the broker with considerable bargaining power and enables the broker to elicit higher

transfers for non-veri�able losses than would be possible (at the same rent) with individual

contracting.

The design of insurance contracts has received considerable attention in the insurance

literature. An important result is that, with proportional loading, the insurer optimally

covers claims in excess of some threshold (deductible) (see, e.g., Arrow, 1963; Raviv, 1979;

Gollier and Schlesinger, 1995). The optimality of deductible insurance is also derived by

Cummins and Mahul (2004) assuming an exogenous upper policy limit. In this literature

it is assumed that losses are observable and veri�able so that enforceable contracts can be

written contingent on the realized loss. An interesting result of our paper is that a contract

with an (endogenous) upper limit and a standard deductible is optimal with observable but

non-veri�able losses.

The costly state veri�cation literature analyzes situations in which the realized payo¤ is

observable and veri�able only at a cost (Townsend, 1979; Gale and Hellwig, 1985; Bond and

Crocker, 1997). Since losses are veri�able after auditing, the insurer can write an enforceable

contract where the policyholder is punished for false reports. It is therefore possible to

implement a risk-sharing contract where the policyholder truthfully reports the realized loss.

Focusing on the �nancing motive and assuming risk-neutral agents, a standard debt contract

is optimal with costly state veri�cation. But with risk-averse agents, the optimal risk-transfer

contract does not resemble a standard insurance contract with a deductible or an upper limit.

We assume losses are non-veri�able.

In the insurance literature non-veri�able losses are interpreted as uninsurable background

risk. The focus is on how background risk a¤ects the insurance demand for veri�able losses

(see, e.g., Doherty and Schlesinger, 1983; Gollier, 1996). In contrast, we assume that the

insurer can observe the non-veri�able loss. Thus, reputation makes it possible to insure this

risk and we focus on the optimal contract to insure non-veri�able losses.

There is a large literature that analyzes lending and risk sharing relations when pro�ts

and losses are observable but non-veri�able. One strand of the literature focuses on the

threat of liquidation as a means to induce borrowers to make payments to lenders (Bolton
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and Scharfstein, 1990; Hart and Moore 1998). Our paper is related to a second strand,

where, in a model of repeated interaction, the threat of exclusion is the only punishment

available (Kimball, 1988; Kehoe and Levine, 1993; Kocherlakota, 1996; Allen and Gale,

1999; Bond and Krishnamurthy, 2003). Kimball (1988) and Kocherlakota (1996) analyze

mutual implicit risk sharing between two risk-averse agents where the threat of exclusion

from future risk sharing provides a risk-averse agent with incentives to make payments to

another agent. In our setting, insurance is o¤ered by risk-neutral insurers that earn a rent

when selling insurance contracts and a policyholder can switch the insurer. We contribute

to the literature by deriving the optimal insurance contract in this setting.1

We also analyze how risk sharing can be improved through joint contracts and discuss the

role of brokers. Brokers act as agents who match trading partners and generate information

(e.g., Rubinstein and Wolinsky, 1987; Biglaiser, 1993; Cummins and Doherty, 2006). We

argue that brokers can also serve as a clearing house of the reputation of insurers and, in

doing so, risk sharing is more e¢ cient than with bilateral trading. The role of the broker in

our model is related to the role of intermediaries in Kingston (2006) where individuals can

defect on trades. In a repeated game, traders who shirk can be excluded from future trades

and intermediaries can act as a clearing house for information. In our model information is

also important, but in addition, the broker improves e¢ ciency through the implementation

of joint contracts.

The paper proceeds as follows. In the next section we discuss non-veri�ability in insurance

contracts. We introduce the model in Section 3 and derive the optimal incentive compatible

contract for a single policyholder in Section 4. In Section 5, we examine the optimal joint

contract for a group of agents. We discuss the role of brokers in Section 6 and conclude in

Section 7 by discussing the implications of our results. All proofs are in the appendix.

1Excluding an agent from purchasing insurance is di¢ cult in an anonymous insurance market where
insurers compete for business. If exclusion were possible in our setting, it would be possible to punish the
policyholder for false reports and the insurer would be willing to commit to a transfer mechanism that
satis�es the policyholder�s truth telling constraint. Such a mechanism does not require the policyholder to
pay a rent to the insurer, but the truth telling constraint may still be binding if the possible loss is large and
the policyholder not very risk averse. In this case, it is necessary to limit the maximum indemnity payment
to satisfy the policyholder�s truth telling constraint and, as in our setting, the optimal insurance contract
again contains a deductible and upper limit.
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2 Non-veri�ability in insurance relations

We assume that insured losses are non-veri�able. This assumption is introduced to model

the complexity and incompleteness of insurance contracts. Insurance, and in particular,

corporate insurance contracts are not a straightforward mapping from realized losses to

claims payments. Instead, losses have to be adjusted for particular circumstances and events.

Some of these events (terms and conditions) are included in the contract, but di¢ cult to

verify or enforce; other events are simply too complex to be included in the contract, but the

parties may still know that they should apply; yet other events have not been anticipated,

but the parties know what they would have agreed on ex ante if they had anticipated the

event. In the following we provide examples for such contingencies and events that cause

complexity and incompleteness of insurance contracts and are underlying the non-veri�ability

of insured losses.

Because of moral hazard, contracts require certain precautionary actions that are di¢ cult

to verify and claims may be denied when these actions were not taken. Another important

aspect of insurance is the speed with which claims are settled. This aspect of quality is also

di¢ cult to enforce, in particular, if the contracting parties can haggle over the terms of the

contract. Also, an insurance policy might be speci�c about how a claim is to be settled

(damage to an o¢ ce building or its contents might be limited to the repair cost or the cost

of replacement with something of similar condition), but the exact terms and conditions

are di¢ cult to write down in an enforceable way as the ex ante optimal claim settlement

also depends on idiosyncratic circumstances. Thus, to enforce claims in a court it is usually

important to not only verify the incurred loss but also the cause.

As an illustration consider the World Trade Center losses. Policies normally exclude war

damage. The question is whether the World Trade Center losses resulted from an act of war.

Certainly the response of the Bush administration was couched in the language of war and

the subsequent military operations in Iraq and Afghanistan are clearly considered to be wars.

But were the initiating event of 9/11 acts of �war�? There is clearly some ambiguity here.

However, the interesting point is that the domestic insurance industry never even entertained

the notion of appealing to the war exclusion. One can, of course argue, that this cooperative
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stance by US insurers was adopted in the spirit of national unity that followed 9/11 and had

little to do with the contracting problem we are presenting here. However, if we look at the

international reinsurers (presumably not caught up in nationalistic fervor) on whom much

of the ultimate loss fell, they also readily accepted to indemnify the primary companies for

9/11 losses. Indeed, there seems to be a complete meeting of the minds between primary

insurer and reinsurers, and importantly also brokers. It may be supposed that any dissenting

reinsurers might have subsequently had a tough time in attracting business in this mostly

brokered market.

Some insurers, such as Chubb Insurance company, have made and protected a reputation

for going the �extra mile�to ensure that policyholders are happy with their claims settle-

ments. The strategy is to resolve ambiguity over the amount or coverage in the policyholder�s

favor to ensure that the policyholder is adequately compensated. This �exibility cannot be

written in an enforceable contract.

Non-contractible events can arise because of unanticipated losses. Although it is clear that

unanticipated losses arise on a regular basis, individual unforeseen risks cannot be speci�ed

(excluded or included) in a formal contract. Even if they could be speci�ed, they might be

unsuited to insurance perhaps because they would incite severe ex post moral hazard, or

because they are undiversi�able. For example, consider toxic mold, which burst onto the

insurance scene as an unanticipated loss. Its coverage carries signi�cant moral hazard since

insurance may be seen as a substitute for proper repair and maintenance of property. It may

not be practical to write into contracts enforceable exclusions based, not only on the peril

which is unanticipated, but on the moral hazard it might engender. These are examples

where enforceable contracts cannot be written but where a self-enforcing insurance contract

might provide a signi�cant degree of insurance.2

2Allen and Gale (1999) also discuss the role of self-enforcing (implicit) contracts to insure against unforseen
contingencies and nonspeci�c risks. They focus on the di¤erence between �nancial transactions that are
carried out through intermediaries and direct market transactions.
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3 The Model

There are risk-averse policyholders (households or �rms) and risk-neutral insurers in an

in�nite-period economy. All policyholders are in�nitely lived and identical with strictly

increasing and concave utility function u. In each period, each policyholder j is endowed

with an initial wealth w0 and a loss of random size Lj. Losses are identically and continuously

distributed on the interval
�
0; �l
�
.

The sequence of events in each period is as follows. In a �rst step, insurers simultaneously

quote an insurance premium P and a non-negative coverage schedule I = I(l) for all loss

realizations l 2
�
0; �l
�
, which we discuss in greater detail below. Each policyholder chooses

the insurance contract that maximizes the expected utility. Then, losses are realized. Each

policyholder and the insurer observe the realized loss. However, this loss is not veri�able so

that the promised coverage schedule is not enforceable in a court. Instead, insurers can choose

the level of transfer to their policyholders after the loss has been realized. In particular, they

may choose to deviate from the coverage schedule which they initially o¤ered. Each insurer

has su¢ cient wealth to honor all claims if it wishes to do so. Finally, all policyholders

consume their end of period net wealth, which consists of the initial wealth and the insurer�s

transfer net of the premium and the realized loss. This assumption implies that there is no

intertemporal borrowing or lending by policyholders. Moreover, insurance contracts are one-

period contracts. Maximizing the present value of the expected utility in all future periods

is therefore equivalent to maximizing the one-period expected utility.

The risk-free rate of return used to discount periods is r; there is no discounting within

periods.

4 Individual contracting

We �rst consider the case where each policyholder chooses a coverage schedule that depends

on the individual loss only. Because all policyholders are identical, we suppress the index

j and the promised compensation after a loss realization l 2
�
0; �l
�
is I(l). Since the loss is

not veri�able, the compensation has to be incentive compatible. The only mechanism that
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can provide the insurer with incentives to honor the promise is the policyholder�s threat to

choose a di¤erent insurer in the future if the current insurer shirks on I (l).

In equilibrium, the policyholder chooses the insurance contract that maximizes the ex-

pected utility given the premium P and incentive-compatible compensation schedule I (l).

The policyholder forms rational expectations about an insurer�s transfer for each possible

loss l 2
�
0; �l
�
and is not fooled by compensation schedules that are not incentive compatible.

Unless the insurer shirks or another insurer�s contract yields a higher expected utility, the

policyholder will continue to do business with the insurer. The contract is incentive com-

patible if, for all l 2
�
0; �l
�
; the present value of the future rent from continued business is at

least as large as the required payment:

P � E [I (L)]
r

� I (l) . (1)

(1) is satis�ed for all indemnity payments if it is satis�ed for the maximum promised payment

Imax = maxl2[0;�l] I (l). Substituting I
max and rearranging terms yields P � E [I (L)]+rImax.

Therefore, in addition to the expected claims payment, E [I (L)], the premium includes a

rent, rImax, that provides su¢ cient incentives to the insurer to honor the claim payments.

With insurance, the policyholder�s level of consumption at the end of period is w (l) =

w0 � l � P + I (l), and the incentive-compatible insurance contract that maximizes the

policyholder�s expected utility from end of period consumption is determined by the following

optimization problem

max
(P;I(�))

E [u (w (L))] (2)

s.t. P � E [I (L)] + rImax, (3)

Imax = max
l2[0;�l]

I (l) ,

0 � I (l) for all l 2
�
0; �l
�
.

In the following proposition we derive the optimal structure of the implicit insurance contract.

Proposition 1 The optimal individual insurance contract I� (�), which maximizes the poli-
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cyholder�s expected utility and is incentive compatible, includes a strictly positive deductible,

D� > 0, an upper limit, Imax � < �l � D�; and full compensation of losses in excess of the

deductible until the upper limit is reached: I� (l) = min
�
(l �D�)+ ; Imax �

	
with D� > 0 and

D� + Imax � < �l.

The contract is piece-wise linear and resembles a standard insurance contract with a

deductible and an upper limit. The novel feature of this optimal contract is that we derive

it for non-veri�able losses and that we obtain an endogenous upper limit. Arrow (1963),

Raviv (1979), and Gollier and Schlesinger (1995) show that with veri�able losses a straight

deductible insurance policy is optimal for risk-averse policyholders if insurance involves a

frictional cost that is proportional to each indemnity payment. In that case, the marginal

cost of providing an additional dollar of insurance coverage is constant. With non-veri�able

losses, the friction stems from the incentive-compatibility constraint (3), which is binding

and requires that the insurer earns a rent that is proportional to the maximum indemnity

payment. In this case, the marginal frictional cost of providing an additional dollar of

insurance coverage is zero below the maximum coverage. An upper limit reduces the cost

of providing incentive-compatible insurance and full insurance of losses below the upper

limit is possible at a fair premium. However, a straight upper limit policy implies that the

policyholder�s marginal utility for losses above the upper limit is higher than for losses below

the upper limit. A deductible reduces the premium level and thereby allows the policyholder

to transfer wealth from the states with low marginal utility to those with high marginal

utility. This motive for a deductible is also discussed by Cummins and Mahul (2004) for

veri�able losses and an exogenous upper limit; a related argument is made by Doherty and

Schlesinger (1990) who show that non-performance of insurance contracts makes it optimal

for policyholders to choose partial insurance.

Veri�able and non-veri�able losses We focus on non-veri�able losses where the policy-

holder optimally retains some risk. This risk constitutes background risk, which can have an

e¤ect on the insurance demand and structure for other veri�able losses. If veri�able losses are

insurable at a fair premium and uncorrelated with the background risk, full insurance of the

veri�able losses is optimal. It is di¢ cult to draw general conclusions about the interactions
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if the background risk is correlated with other risks (see, e.g., Schlesinger, 2000). However,

it is interesting to note that the optimal insurance contract in Proposition 1 does not change

even if all losses below D� + Imax � are veri�able. The reason is that the policyholder could

have increased coverage for these losses at a fair premium, but voluntarily did not choose to

do so.

Patience, �nancial distress, and the level of insurance The interest rate r plays a

critical role in the level of rent that is required for an incentive-compatible maximum indem-

nity payment. The interest rate can be interpreted as a measure of patience. Alternatively,

we could have assumed that there is an exogenous probability that the policyholder (�rm)

will stop purchasing insurance, e.g., because the �rm goes bankrupt. A model with zero dis-

counting but an exogenous probability of termination yields equivalent results as our model.

A higher probability of termination is equivalent to a higher interest rate.

Proposition 2 There exists a level of interest rate �r such that no insurance is optimal for

all r � �r, i.e., D� = �l and thus I� (l) = 0 for all l 2
�
0; �l
�
. If preferences exhibit constant

absolute risk aversion (CARA), D� is strictly increasing and D�+Imax � is strictly decreasing

in r for all r < �r.

For CARA preferences, the optimal level of insurance decreases in r. In particular, the

optimal deductible D� increases and the upper limit Imax � decreases in r (faster than the

deductible level increases). This observation is particularly interesting for an exogenous

probability of termination. It implies that �rms with a higher probability of distress, which

have a higher probability of not buying insurance in the future, might optimally reduce the

insurance coverage of non-veri�able losses. Thus, we provide an additional justi�cation for

why highly levered or distressed �rms choose a lower level of insurance that does not rely

on risk shifting or wealth e¤ects. It is well known that with CARA, insurance demand

decreases when the price for insurance increases. However, the interesting e¤ect here is that

the cause for the higher cost stems from the �rms�higher probability of �nancial distress.

Although the probability of distress is unrelated to the insured risk, it increases the cost of
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providing incentives to the insurer as these incentives stem from future business with the

insurer. Moreover, one reason for a policy limit is that it reduces the insurer�s risk of �nancial

distress. We show that it may be related to the policyholder�s risk of �nancial distress.

Blackmailing If, for a given loss l, the required indemnity payment I(l) is lower than

Imax, the insurer would be willing to pay more for the continued renewal of the contract

than required by the contract. Thus, the policyholder may be tempted to blackmail the

insurer and require a total payment up to Imax. Obviously, blackmailing is not a problem

if the policyholder could commit not to engage in blackmailing. But blackmailing is not

possible without commitment either. Assume that after having been blackmailed once, the

insurer expects a level of blackmailing of E[x] > 0 in every future period. Even if E[x] is

very small, the insurer will not yield to blackmailing. The reason is that these beliefs reduce

the insurer�s incentives, which in turn reduces the policyholder�s willingness to purchase

insurance from this insurer in the future.

After blackmailing, the insurer�s incentive-compatibility constraint becomes

P � E [I (L)]� E[x]
r

� I (l) :

Given that the incentive constraint was binding for Imax without blackmailing, the insurer

no longer has an incentive to pay Imax when the policyholder incurs high losses. Thus, black-

mailing today reduces the insurer�s maximum willingness to pay in the future. Given this

adverse e¤ect of blackmailing, it is not optimal for the policyholder to renew the insurance

contract after blackmailing. Instead, it is optimal for the policyholder to switch the insurer

after the incumbent insurer made the payment. Anticipating non-renewal incentives, the in-

surer will not make a payment. We note that the policyholder cannot commit to purchasing

insurance in the future because with such a commitment the insurer�s incentive-compatibility

constraint will be violated.

Blackmailing is payo¤-equivalent to requiring the insurer to reduce the price for insurance

right before renewal of a contract. However, this cannot be optimal if such a request is likely

to come again in the future. The price was chosen to maximize the policyholder�s expected
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utility subject to the insurer�s incentive-compatibility constraint. Therefore, reducing the

price cannot be in the interest of the policyholder, who will choose a di¤erent insurer if the

insurer is willing to reduce the price.

5 Joint contracting

We now consider a group of n policyholders with individual loss exposures L1; :::; Ln. The

sequence of events is equivalent to the one with individual insurance. The notable di¤erence

is that a joint insurance contract is possible where each policyholder�s compensation is now

given by Ij = Ij (l
n) for ln = (l1; :::; ln) 2

�
0; �l
�n
and j = 1; :::; n. Each policyholder in

the group observes the entire realization of losses ln = (l1; :::; ln) of all group members and

coordinates his or her action with the other group members in the following way. If the

insurer pays Ij = Ij (l
n) to each policyholder, then each policyholder purchases insurance

from the insurer again in the future. However, if the insurer shirks on one of the policyholders,

then all policyholders switch to a rival insurer.

The incentive-compatibility constraints ensuring that the insurer honors the claim pay-

ments are then

nP � E
hPn

j=1Ij (L
n)
i
+ r �

Pn
j=1Ij (l

n)

for all ln 2
�
0; �l
�n
. The necessary and su¢ cient constraint is determined by the maximum

aggregate claim payment to the group, i.e., nP � E
hPn

j=1Ij (L
n)
i
+ rImaxn , where Imaxn =

maxln2[0;�l]
n
Pn

j=1Ij (l
n). The end of period consumption of policyholder j is w (lj; ln) =

w0 � lj � P + Ij (ln), for all ln 2
�
0; �l
�n
. The optimal premium P and incentive-compatible

compensation structure (Ij (�))j=1;:::;n that maximize the policyholders�utilities are given by

12



the solution to the following optimization problem

max
(P;(Ij(�))j=1;:::;n)

Pn
j=1E [u (w (Lj; L

n))] (4)

s.t. nP � E
hPn

j=1Ij (L
n)
i
+ rImaxn ,

Imaxn = max
ln2[0;�l]

n

Pn
j=1Ij (l

n) ,

0 � Ij (l) for all lj 2
�
0; �l
�
and j = 1; :::; n.

In the following proposition we derive the optimal structure of the implicit insurance con-

tracts.

Proposition 3 The incentive-compatible insurance contracts that maximizes the policyhold-

ers�expected utility are characterized as follows.

1. Each contract I�j (�) includes a strictly positive individual deductible D� > 0.

2. The aggregate claim payments
Pn

j=1I
�
j (�) to the group of policyholders includes a joint

upper limit Imax �n < n
�
�l �D��.

3. The optimal contract can be implemented by setting

I�j (l
n) =

8<: (lj �D�)+ if
Pn

j=1 (lj �D�)+ � Imax �n

(lj �D (ln))+ otherwise

where D (ln) is given by
Pn

j=1(lj �D (ln))+ = Imax �n .

The joint contract has the following properties. First, if the joint upper limit is not

binding, each policyholder receives the transfer I�j (l
n) = (lj �D�)+ ; which only depends on

a policyholder�s own loss. Second, if
Pn

j=1 (lj �D�)+ > Imax �n , the deductibleD� is increased

to D (ln) and I�j (l
n) = (lj�D (ln))+, where D (ln) is chosen so that the total claim payments

equal the maximum indemnity, i.e.,
Pn

j=1(lj �D (ln))+ = Imax �n :

The joint contract is bene�cial even when the joint upper limit is not binding. The reason

is that a joint upper limit allows for a more e¢ cient use of the rent that the policyholders have
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to pay to the insurer. As an example, we assume that there are two policyholders (n = 2)

and that the joint upper limit equals the sum of the individual upper limits (2Imax � = Imax �2 ).

Thus, the total rent under the two contracts is equal. Moreover, we assume that the loss

of policyholder j exceeds the individual upper limit, but the loss of policyholder i is lower

than the upper limit (li < D+ Imax � < lj; i 6= j). Thus, policyholder j�s maximum payment

is Imax � with separate contracting but can be increased to minflj �D; 2Imax � � (li �D)+g

under joint contracting without changing the transfer to policyholder i.

When the joint upper limit is binding, joint contracting allows for an improved allocation

of the total transfer from the insurer to the policyholders. It is ex ante optimal for both

policyholders to agree on an allocation where all policyholders�marginal utilities are equal

(subject to the constraint that indemnity payments are not negative). The optimal contract

for a binding upper limit resembles the contract proposed by Mahul and Wright (2004)

for catastrophic risk sharing arrangements within a pool of policyholders when �nancial

resources are limited.

6 The role of brokers

Implementing a joint contract requires that policyholders observe each others�losses and the

insurer�s transfers. Moreover, they jointly have to leave the insurer and switch to another

insurer if the insurer shirks on any one of them. The cost of joint contracting between an

insurer and n policyholders may therefore be very high and, indeed, we do not observe such

contracts in practice.

However, implementing such contracts may be an important role of intermediaries such

as brokers. A broker monitors losses and transfers to its clients and thereby has the required

information readily available. If the insurer shirks on one of his clients, the broker can

recommend all clients to switch to another insurer.

The brokers�ability to recommend to clients to switch insurers is a central element of

brokerage. Typically, brokers �own the renewal rights�on the book of business they place

with the insurer. That is, the broker is free to recommend to its clients that they renew with

the current insurer or switch to a rival. Correspondingly, the insurer revokes any right to
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direct solicitation of business placed through the broker.

The broker can monitor the execution of a joint upper limit. Even if the joint upper limit

is not explicitly stated in insurance contracts, by coordinating his clients�choice of insurer,

the broker has bargaining power that allows him to implement the same allocation. In this

case the broker bargains on behalf of his clients for a more generous transfer. However,

when total losses are very high, there are also policyholders who will receive less than what

they would receive under individual contracting given their loss realizations. Thus, it is

important that policyholders trust that their broker will act in their best interest. Trust is

particularly important since the insurer (policyholders) may be tempted to collude with the

broker to reduce (increase) transfers in its (their) interest. Of course, such a collusion with

the insurer or individual policyholders is not allowed in practice and therefore di¢ cult to

enforce. However, if the broker receives side payments from the insurer or other parties, the

broker�s clients may not trust the broker to improve risk sharing compared to an individual

direct contract.

In practice, where insurance contracts are incomplete and di¢ cult to enforce, the rela-

tionship often is brokered. For example, Chubb uses a set of independent agents and brokers.

These intermediaries �own�the renewal rights and can advise clients to move business if they

become unhappy with Chubb�s claims performance. Chubb entrusts its reputation to these

agents and brokers to commit to its promised claim settlement strategy. As another exam-

ple, contracts in the reinsurance market are not very detailed. Contracts rarely specify the

underwriting and claims settlement practices to be adopted by the primary insurer and often

are not speci�c in de�ning coverage. This allows some ex post �exibility for the reinsurer

to respond to losses that may not be covered. A feature of the reinsurance market is the

ubiquity of brokers. If a reinsurer behaves badly to the primary insurer, the broker will know

of it. The consequence for the reinsurer might be not only a loss of that contract, but a

diversion of other business from the broker to other reinsurers. This leveraging of reputation

enhances the bargaining power of the primary insurer.
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7 Discussion

We derive the structure of the optimal insurance contract when losses are non-veri�able. The

optimal contract to insure individual losses resembles a standard insurance contract with a

deductible and an upper limit on the maximum indemnity payment. The optimal joint

contract to insure the losses of a group of policyholders involves a deductible on individual

losses and a joint upper limit on the total maximum indemnity payment to the group of

policyholders.

Insurers honor policyholders�claims because they earn a rent from future business. To

limit the rent, it is optimal for policyholders to introduce a deductible and an upper limit.

With proportional loading, the frictional cost of insurance depends only on the expected

claims payment and not whether the underlying risk is a high-severity-low-probability event

or a low-severity-high-probability event. In our setting, where losses are non-veri�able, the

rent and thus the frictional cost is proportional to the maximum indemnity payment. For

high-severity-low-probability events, the maximum loss relative to the expected loss is par-

ticularly large and insuring non-veri�able high-severity-low-probability risk is particularly

costly relative to the expected coverage. This is consistent with high prices in the reinsur-

ance market for catastrophe risk. Froot (2001) and Froot and O�Connell (2008) show that

reinsurance premiums are a multiple of expected losses; during some periods up to seven

times. This multiple is particularly high for low-probability layers. Froot (2001) reviews

several explanations and argues that shortage of risk-taking capital in the reinsurance mar-

ket due to capital market imperfections is the most convincing reason. In our context, if

claims due to catastrophic events are di¢ cult to verify, high premiums in the reinsurance

market for catastrophe risks result from the high rent which the insurer has to pay for pro-

viding the reinsurer with su¢ cient incentives not to dispute the validity of claims or to delay

payments. Whereas Froot (2001) argues that it is costly for a reinsurer to hold su¢ cient

capital to cover claims (ability to pay), we suggest that it is also costly to induce a reinsurer

to honor claims (willingness to pay).

The required rent is also increasing if there is a positive probability that the insurance

relation terminates for exogenous reasons, for example, because of the client�s �nancial dis-
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tress. If the client�s probability of �nancial distress increases, covering non-veri�able losses

will become more costly. Reinsurance and retrocession are based on long term relations and

mutual trust. Large catastrophic losses in the reinsurance market tend to increase rein-

surance premiums and reduce quantities through a reduction of reinsurance capacity and

increase in counterparty risk (Gron, 1994; Winter, 1994; Cagle and Harrington, 1995; Cum-

mins and Danzon, 1997; Froot, 2001; Froot and O�Connell, 2008). Both reasons originate

from the protection seller. Our paper suggests another link related to the protection buyer.

An increase in the probability of �nancial distress of the protection buyer due to a large

catastrophic loss reduces the likelihood that a business relation is continued. Thus, premi-

ums for the reinsurance of losses increase and demand for reinsurance decreases if some of

the losses are non-veri�able.
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A Appendix: Proofs

A.1 Proof of Proposition 1

Let F denote the cumulative distribution function of the loss L with support
�
0; �l
�
and probability

density function f . The solution to the optimization problem (2) is identical to the solution of the

following problem

max
(P (�);I(�);Imax(�))

E [u (w (L))] (5)

s.t. E [P (L)] � E [I (L)] + rE [Imax (L)] , (6)

P 0 (l) = 0 for all l 2
�
0; �l
�
, (7)

Imax 0 (l) = 0 for all l 2
�
0; �l
�
, (8)

0 � I (l) � Imax (l) for all l 2
�
0; �l
�

(9)

with w (L) = w0 � L� P (L) + I (L). The Lagrangian function to this function is then given by

L = u (w (l)) f (l) + � (P (l)� I (l)� rImax (l)) f (l)

� � (l)P 0 (l)� � (l) Imax 0 (l) + � (l) I (l) + � (l) (Imax (l)� Ij (l))

where �, � (l), � (l), � (l), and � (l) are the Lagrange multipliers to the constraints (6), (7), (8), and

(9), respectively, with

� (l)

8<: = 0 if I (l) > 0

> 0 if I (l) = 0

and

� (l)

8<: = 0 if I (l) < Imax (l)

> 0 if I (l) = Imax (l)
.

De�ning the Quasi-Hamiltonian function as

H (P (l) ; I (l) ; Imax (l) ; l) = u (w (l)) f (l) + � (P (l)� I (l)� rImax (l)) f (l)
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we can write the optimization problem (5) as

max
(P (�);I(�);Imax(�))

Z �l

0
(H (P (l) ; I (l) ; Imax (l) ; l) + (� (l)� � (l)) I (l)

+� (l) Imax (l)� � (l)P 0 (l)� � (l) Imax 0 (l)
�
dl.

Variational calculus and partial integration implies

Z �l

0

��
@H
@I

+ � (l)� � (l)
�
�I (l) +

�
@H
@P

+ �0 (l)

�
�P (l) +

�
@H
@Imax

+ � (l) + � 0 (l)

�
�Imax (l)

�
dl

� (� (l) �P (l) + � (l) �Imax (l)) j�l0

= 0

The necessary conditions for optimality are

u0 (w (l)) f (l)� �f (l) + � (l)� � (l) = 0 (10)

�u0 (w (l)) f (l) + �f (l) + �0 (l) = 0 (11)

��rf (l) + � (l) + � 0 (l) = 0 (12)

�
�
�l
�
� � (l) = 0 (13)

�
�
�l
�
� � (l) = 0 (14)

The su¢ cient condition is satis�ed since

Z �l

0
u (w (l)) f (l) dl

is concave in I. Conditions (11) and (13) imply

Z �l

0
u0 (w (l)) f (l) dl = � (15)

and conditions (12) and (14) yield Z �l

0
� (l) dl = �r. (16)
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Combining conditions (10), (15), and (16) implies

Z �l

0
� (l) dl = �r. (17)

For inner solutions 0 < I� (l) < Imax (l) we have � (l) = � (l) = 0 and condition (10) simpli�es

to u0 (w (l)) = �. Marginal utility is thus constant which implies I�0 (l) = 1 for all l such that

0 < I� (l) < Imax (l). Furthermore, because u is strictly increasing, condition (15) implies � > 0.

Since r > 0, condition (17) implies that there exists a subset in
�
0; �l
�
for which � (l) > 0, i.e., for

which I� (l) = 0. Since I� (l) is strictly increasing for inner solutions, this implies that the subset

is of the form [0; D] for some deductible level D > 0. Analogously, condition (16) implies that

there exists a subset in
�
0; �l
�
for which � (l) > 0, i.e., for which I� (l) = Imax � (l) = Imax �. Again,

since I� (l) is strictly increasing for inner solutions, this subset is of the form
�
U; �l
�
for some U < �l.

Combining these three conditions implies that U = D+ Imax � and I� (l) = min
�
(l �D)+ ; Imax �

	
with D > 0 and D + Imax � < �l.

A.2 Proof of Proposition 2

In Proposition 1, we have shown that the optimal contract is of the form I� (l) = min
�
(l �D�)+ ; Imax �

	
with D� > 0 and D + Imax � < �l. The optimal deductible level D� and maximum compensation

Imax � are given by the maximization of expected utility, that is

max
(D;Imax)

E [u (w0 � L� P � + I� (L))]

= max
(D;Imax)

Z D

0
u (w0 � l � P ) f (l) dl + u (w0 �D � P ) (F (D + Imax)� F (D))

+

Z �l

D+Imax
u (w0 � l � P + Imax) f (l) dl

with P � = E [I� (L)]+rImax �. For arbitrarily small r > 0, the rent included in the premium is close

to zero and some strictly positive level of insurance is optimal. For r = 1, the premium is greater

than the maximum payment of the insurance policy and it is thus optimal not to buy insurance,

i.e. I� (l) = 0 for all l 2
�
0; �l
�
. Since the solutions D� = D� (r) and Imax � = Imax � (r) to the above

maximization problem are continuous in r (see the �rst-order conditions below), there exists a level
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�r such that, for all r � �r, I� (l) = 0 for all l 2
�
0; �l
�
. Note that

P =

Z D+Imax

D
(l �D) f (l) dl + Imax (1� F (D + Imax) + r)

and thus @P=@D = � (F (D + Imax)� F (D)) and @P=@Imax = 1 � F (D + Imax) + r. The �rst-

order conditions for inner solutionsD� = D� (r) and Imax � = Imax � (r) of the maximization problem

are

@E [u (w (L))]

@D
= (F (D� (r) + Imax � (r))� F (D� (r)))

�
�
E
�
u0 (w0 � L� P � + I� (L))

�
� u0 (w0 �D� (r)� P �)

�
= 0

and

@E [u (w (L))]

@Imax
=� (1� F (D� (r) + Imax � (r)) + r)E

�
u0 (w0 � L� P � + I (L))

�
+

Z �l

D�(r)+Imax �(r)
u0 (w0 � l � P � + Imax � (r)) f (l) dl

=0.

These two equations can be simpli�ed to

E
�
u0 (w0 � L� P � + I� (L))

�
� u0 (w0 �D� (r)� P �) = 0 (18)

and

(1� F (D� (r) + Imax � (r)) + r)u0 (w0 �D� (r)� P �) (19)

�
Z �l

D�(r)+Imax �(r)
u0 (w0 � l � P � + Imax � (r)) f (l) dl = 0.
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Implicitly di¤erentiating the �rst condition (18) with respect to r yields

d

dr

�
E
�
u0 (w0 � L� P � + I� (L))

�
� u0 (w0 �D� (r)� P �)

�
=� P �0 (r)E

�
u00 (w0 � L� P � + I� (L))

�
�D�0 (r)u00 (w0 �D� (r)� P �) (F (D� (r) + Imax � (r))� F (D� (r))� 1)

+ Imax �0 (r)

Z �l

D�(r)+Imax �(r)
u00 (w0 � l � P � + Imax � (r)) f (l) dl

=D�0 (r) (F (D� (r) + Imax � (r))� F (D� (r)))
�
E
�
u00 (w0 � L� P � + I� (L))

�
� u00 (w0 �D� (r)� P �)

�
� Imax �0 (r)

0@ (1� F (D� (r) + Imax � (r)) + r)E [u00 (w0 � L� P � + I� (L))]

�
R �l
D�(r)+Imax �(r) u

00 (w0 � l � P � + Imax � (r)) f (l) dl

1A
� Imax � (r)E

�
u00 (w0 � L� P � + I� (L))

�
+D�0 (r)u00 (w0 �D� (r)� P �)

=0

Note that

P �0 (r) = �D�0 (r) (F (D� (r) + Imax � (r))� F (D� (r)))

+ Imax �0 (r) (1� F (D� (r) + Imax � (r)) + r) + Imax � (r) .

CARA implies u00 (w) = ��u0 (w) where � is the coe¢ cient of absolute risk aversion. The two

conditions (18) and (19) then imply

E
�
u00 (w0 � L� P � + I� (L))

�
� u00 (w0 �D� (r)� P �) = 0

and

(1� F (D� (r) + Imax � (r)) + r)E
�
u00 (w0 � L� P � + I� (L))

�
�
Z �l

D�(r)+Imax �(r)
u00 (w0 � l � P � + Imax � (r)) f (l) dl = 0.
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Therefore

d

dr

�
E
�
u0 (w0 � L� P � + I� (L))

�
� u0 (w0 �D� (r)� P �)

�
=
�
�Imax � (r) +D�0 (r)

�
u00 (w0 �D� (r)� P �)

=0

and thus

D�0 (r) = Imax � (r) > 0.

Implicitly di¤erentiating the second condition (19) with respect to r yields

d

dr

0@ (1� F (D� (r) + Imax � (r)) + r)u0 (w0 �D� (r)� P �)

�
R �l
D�(r)+Imax �(r) u

0 (w0 � l � P � + Imax � (r)) f (l) dl

1A
=� P 0 (r)

0@ (1� F (D� (r) + Imax � (r)) + r)u00 (w0 �D� (r)� P �)

�
R �l
D�(r)+Imax �(r) u

00 (w0 � l � P � + Imax � (r)) f (l) dl

1A
� Imax �0 (r)

Z �l

D�(r)+Imax �(r)
u00 (w0 � l � P � + Imax � (r)) f (l) dl

�D�0 (r) (1� F (D� (r) + Imax � (r)) + r)u00 (w0 �D� (r)� P �) + u0 (w0 �D� (r)� P �)

=0

CARA and condition (19) imply

d

dr

0@ (1� F (D� (r) + Imax � (r)) + r)u0 (w0 �D� (r)� P �)

�
R �l
D�(r)+Imax �(r) u

0 (w0 � l � P � + Imax � (r)) f (l) dl

1A
=� Imax �0 (r) (1� F (D� (r) + Imax � (r)) + r)u00 (w0 �D� (r)� P �)

�D�0 (r) (1� F (D� (r) + Imax � (r)) + r)u00 (w0 �D� (r)� P �) + u0 (w0 �D� (r)� P �)

=0
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and thus

Imax 0 (r) = �D�0 (r) + u0 (w0 �D� (r)� P �)
u00 (w0 �D� (r)� P �)

� 1

1� F (D� (r) + Imax � (r)) + r

= �D�0 (r)� 1

�
� 1

1� F (D� (r) + Imax � (r)) + r

< 0.

Therefore
d

dr
(Imax � (r) +D� (r)) = � 1

�
� 1

1� F (D� (r) + Imax � (r)) + r < 0.

A.3 Proof of Proposition 3

The proof is analogous to the proof of Proposition 1. Let Fn denote the joint cumulative distribution

function of Ln = (L1; :::; Ln) with support
�
0; �l
�n and joint probability density function fn. The

solution to the optimization problem (4) is identical to the solution of the following problem

max
(P (�);(Ij(�))j=1;:::;n;Imaxn (�))

Pn
j=1E [u (w (Lj ; L

n))] (20)

s.t. nE [P (Ln)] � E
hPn

j=1Ij (L
n)
i
+ rE [Imaxn (Ln)] , (21)

@P (ln)

@lj
= 0 for all ln 2

�
0; �l
�n and j = 1; :::; n, (22)

@Imaxn (ln)

@lj
= 0 for all ln 2

�
0; �l
�n and j = 1; :::; n, (23)

0 � Ij (ln) and
Pn
j=1Ij (l

n) � Imaxn (ln) for all ln 2
�
0; �l
�n and j = 1; :::; n.

(24)

with w (Lj ; Ln) = w0 � Lj � P (Ln) + Ij (Ln). The Lagrangian function to this function is then

given by

L =
Pn
j=1u (w (lj ; l

n)) f (ln) + �
�
nP (ln)�

Pn
j=1Ij (l

n)� rImaxn (ln)
�
f (ln)

�
Xn

j=1
�j (l

n)
@P (ln)

@lj
�
Xn

j=1
�j (l

n)
@Imaxn (ln)

@lj

+
Pn
j=1�j (l

n) Ij (l
n) + � (ln)

�
Imaxn (ln)�

Pn
j=1Ij (l

n)
�
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where �, �j (ln), �j (ln), �j (ln), and � (ln) are the Lagrange multipliers to the constraints (21), (22),

(23), and (24), respectively, with

�j (l
n)

8<: = 0 if Ij (ln) > 0

> 0 if Ij (ln) = 0

and

� (ln)

8<: = 0 if
Pn
j=1Ij (l

n) < Imaxn (ln)

> 0 if
Pn
j=1Ij (l

n) = Imaxn (ln)
.

De�ning the Quasi-Hamiltonian function as

H
�
P (ln) ; (Ij (l

n))j=1;:::;n ; I
max
n (ln) ; ln

�
=
Pn
j=1u (w (lj ; l

n)) f (ln) + �
�
nP (ln)�

Pn
j=1Ij (l

n)� rImaxn (ln)
�
f (ln)

we can write the optimization problem (20) as

max
(P (�);(Ij(�))j=1;:::;n;Imaxn (�))

Z �l

0
:::

Z �l

0

�
H
�
P (ln) ; (Ij (l

n))j=1;:::;n ; I
max
n (ln) ; ln

�
+
Pn
j=1 (�j (l

n)� � (ln)) Ij (ln) + � (ln) Imaxn (ln)

�
Xn

j=1
�j (l

n)
@P (ln)

@lj
�
Xn

j=1
�j (l

n)
@Imaxn (ln)

@lj

�
dln.

Variational calculus and partial integration implies

Z �l

0
:::

Z �l

0

�Xn

j=1

�
@H
@Ij

+ �j (l
n)� � (ln)

�
�Ij (l

n) +

�
@H
@P

+
Xn

j=1

@�j (l
n)

@lj

�
�P (ln)

+

�
@H
@Imaxn

+ � (ln) +
Xn

j=1

@�j (l
n)

@lj

�
�Imax (ln)

�
dln

�
Xn

j=1

Z �l

0
:::

Z �l

0| {z }
n�1

(�j (l
n) �P (ln) + �j (l

n) �Imax (ln)) j�llj=0dl
n
�j

= 0
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where ln�j = (l1; :::; lj�1; lj+1; :::; ln) 2
�
0; �l
�n�1. The necessary conditions for optimality are

u0 (w (lj ; l
n)) f (ln)� �f (ln) + �j (ln)� � (ln) = 0 for all j = 1; :::; n (25)Xn

j=1

�
�u0 (w (lj ; ln)) f (ln) + �f (ln) +

@�j (l
n)

@lj

�
= 0 (26)

��rf (ln) + � (ln) +
Pn
j=1

@�j (l
n)

@lj
= 0 (27)

Xn

j=1

Z �l

0
:::

Z �l

0| {z }
n�1

�
�j
�
l1; :::; lj�1; �l; ; lj+1; :::; ln

�
� �j (l1; :::; lj�1; 0; lj+1; :::; ln)

�
dln�j = 0 (28)

Xn

j=1

Z �l

0
:::

Z �l

0| {z }
n�1

�
�j
�
l1; :::; lj�1; �l; ; lj+1; :::; ln

�
� �j (l1; :::; lj�1; 0; lj+1; :::; ln)

�
dln�j = 0 (29)

The su¢ cient condition is satis�ed since

Xn

j=1

Z �l

0
:::

Z �l

0
u (w (lj ; l

n)) f (ln) dln

is concave in Ij . Conditions (26) and (28) imply

Z �l

0
:::

Z �l

0
u0 (w (lj ; l

n)) f (ln) dln = � (30)

and conditions (27) and (29) yield

Z �l

0
:::

Z �l

0
� (ln) dln = �r. (31)

Combining conditions (25), (30), and (31) implies

Z �l

0
:::

Z �l

0
�j (l

n) dln = �r for all j = 1; :::; n. (32)

We �rst show that I�j (l
n) = (lj �D)+ for some D > 0 and all ln if

Pn
j=1Ij (l

n) < Imaxn (ln).

For inner solutions Ij (ln) > 0 we have �j (ln) = � (ln) = 0 for all j = 1; :::; n and condition (25)

simpli�es to u0 (w0 � lj � P + Ij (ln)) = �. This implies Ij (ln) = lj �D for some D � 0. Next we

show that D > 0. Since u is strictly increasing, condition (30) implies � > 0 and condition (32)
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thus yields that there exists a subset in
�
0; �l
�n for which �j (ln) > 0 for all j = 1; :::; n, i.e., for which

Ij (l
n) = 0. Since Ij (ln) is strictly increasing in lj for inner solutions and does not depend on other

policyholders�losses, this implies Ij (ln) = 0 for lj � D and D > 0.

Next, if
Pn
j=1 (lj �D)

+ � Imaxn (ln) we show that I�j (l
n) = (lj �D (ln))+ for some D (ln) > 0

where D (ln) is de�ned by
Pn
j=1(lj � D (ln))+ = Imaxn (ln). For inner solutions Ij (ln) > 0 we

have �j (ln) = 0 for all j = 1; :::; n and condition (25) simpli�es to u0 (w0 � lj � P + Ij (ln)) =

�+� (ln) =f (ln). This implies that lj�Ij (ln) is identical for all j = 1; :::; n and Ij (ln) = lj�D (ln).

As shown above, condition (32) implies Ij (ln) = 0 for lj � D (ln).

Finally, condition (31) implies that there exists a subset in
�
0; n�l

�
for which � (ln) > 0, i.e.,

for which
Pn
j=1I

�
j (l

n) = Imax �n (ln) = Imax �n . Again, since
Pn
j=1I

�
j (l

n) is strictly increasing in lj

for inner solutions, this subset is of the form
�
U; n�l

�
for some U < n�l. Since I�j (l

n) = (lj �D)+,

Imax �n = U � nD < n
�
�l �D

�
.
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