The Case for a Social Science Genetic Association Consortium

Daniel J. Benjamin

Economics Department Cornell University

2nd SSGAC Workshop • 29 October 2011

Heritability of Social Science Outcomes

Socioeconomic Outcomes

- Educational attainment: ~50% (Behrman et al., 1975; Miller et al., 2001; Scarr and Weinberg, 1994; Lichtenstein et al., 1992)
- Income: ~40% (Björklund, Jäntti and Solon, 2005; Sacerdote, 2007; Taubman, 1976)

Economic Preferences

- Risk preferences: ~30% (Cesarini et al., 2009; Zhong et al. 2009;
 Zyphur et al. 2009)
- Bargaining behavior, altruism and trust: ~30% (Wallace et al., 2007; Cesarini et al., 2008)

Economic Behaviors

- Financial decision-making: ~30% (Barnea et al., 2010; Cesarini et al, 2010)
- Susceptibility to decision-making anomalies: ~25% (Cesarini et al., 2011)

Comparison to Other Traits

- Compared to other traits (e.g., height, personality), the heritabilities of economic phenotypes are lower, often ~30-40%.
- These differences are diminished when measurement error/transitory variance is accounted for.
 - MZ correlation in income rises to 0.55 when smoothing out transitory fluctuations by taking a 20 year average (Benjamin et al. 2011).
 - MZ correlation in a measure of risk aversion rises to 0.70 when adjusting for low reliability (Beauchamp et al., 2011).

Some Payoffs from "Genoeconomics"

- 1. Direct measures of previously latent parameters
 - Abilities and preferences are latent in most econ models.
- 2. Biological mechanisms for social behavior
 - Could decompose crude concepts like "risk aversion" and "patience."
- 3. Genes as instrumental variables
- 4. Prediction using genetic information
 - Would facilitate targeting social-science interventions.
 - E.g., children with dyslexia-susceptibility genotypes could be taught to read differently from an early age.
 - Parents could expose children at a young age to activities that appeal to child's preferences and abilities.

Challenge #1: Phenotype selection

- Want high-reliability phenotypes, consistently measured across many datasets.
 - E.g., height, g, years of education.
- Want proximate biological pathway for effect.
 - If pathway too distal, effect will likely be small, so low power.
 - If different pathways in different local environments, few datasets available to replicate.
 - Proximate pathway more likely for phenotypes shared with animal models.
 - E.g., aggression? Risk aversion? Impulsivity?

Challenge #2: Causal inference

- Confounds, e.g.:
 - Ethnicity
 - Gene-environment correlation
 - Gene-gene correlation
- Need convergent evidence from:
 - Large family samples
 - Modeling and estimation of environmental effects
 - Knock-out experiments with animal models
 - Biological evidence on protein products of genes
- Will take a long time to accumulate evidence.

Challenge #3: Statistical power

- Low power is due to small effect sizes.
 - COMT has $R^2 = .1\%$ for cognitive ability.
 - Largest height association is $R^2 = .3\%$.
- Low power exacerbated by:
 - Multiple hypothesis testing + publication bias.
 - Inconsistent or low-reliability phenotypes.
 - Search for GxE or GxG interaction.
- Evidence for low power:
 - Many published associations not reproducible.

Calibration: Power Analysis

- Two alleles: High and Low.
- Equal frequency of High and Low.
- Phenotype distributed normally.
- Either there is a true association or not.
- If associated, $R^2 = .1\%$ (large for behavior).
- Sample size for 80% power: 7,845.
- Now suppose significant association at $\alpha = .05$.

Posterior probability of a true association

Conditional on significant at $\alpha = .05...$

		N = 100 (power = .06)	Sample size N = 5,000 (power = .61)	N = 30,000 (power = .99)
Prior	.01%	.01%	.12%	.20%
prob-	1%	1%	11%	17%
ability	10%	12%	58%	69%

Calculated by Bayes' Rule: $P(true | significant) = \frac{power \cdot prior}{power \cdot prior + 0.05(1 - prior)}$

Posterior probability of a true association

Conditional on significant at $\alpha = 5 \times 10^{-8}...$

		N = 100 (power = .00)	<u>Sample size</u> <i>N</i> = 5,000 (power = .00)	N = 30,000 (power = .51)
Prior	.01%	.03%	57%	100%
prob-	1%	3%	99%	100%
ability	10%	25%	100%	100%

Calculated by Bayes' Rule: $P(true | significant) = \frac{power \cdot prior}{power \cdot prior + 0.05(1 - prior)}$

My own experiences

- We could not replicate a promising candidate gene result (Benjamin et al., 2011).
 - Using AGES-RS data, we found a an association between educational attainment and a candidate gene previously associated with brain development (N = 2,349).
 - The association was found to be mediated by cognitive function.
 - The result survived a replication attempt from a non-overlapping sample from AGES-RS that had been genotyped subsequently (N = 1,759).
 - The association completely failed to replicate in the Framingham Heart Study (N = 7,357), the Wisconsin Longitudinal Study (N = 3,408), and the controls in the NIMH Swedish Schizophrenia Study (N = 1,235).
- Our experience is not unique.
 - Beauchamp et al (forthcoming) find 20 suggestive SNP associations in an education GWAS in Framingham (N = 7,574).
 - In replication attempt with Rotterdam Study (N = 9,535), none significant at
 .05 level, and only 9 of 20 had same sign.

Pooled estimates (11 SNPs + APOE)

Concluding Thoughts

- Why pursue molecular genetics in the social sciences?
 - It may be transformative for the social sciences.
 - Effects may be too small...but if so, better to find out sooner.
 - There is no way to know whether it will succeed without trying!
- In any event, it will be hot in the near future because there are major potential payoffs, and the data are there.
 - As genotyping costs plummet, GWAS data will be collected in many major social surveys.
- As we pursue it, it is urgent that we stop recapitulating the mistakes of medical genetics and set high standards.
- For this reason, we formed the SSGAC in Feb, 2011.
 - Proof-of-concept phenotype: Educational attainment.
 - This workshop: Discuss and launch GWAS of other phenotypes, harmonize collection of new phenotypes, and discuss other analyses SSGAC could help push forward.