Why Is This Paper In This Conference?

General principle of scientific method:

- Study same question using as many different tools as possible
- There’s only one reality
- Where tools overlap they should agree

Methodology of economists is too often:

- Use one source of data and one theory
- Ignore everything we know from any other source
Why Is This Paper In This Conference?

General principle of scientific method:

- Study same question using as many different tools as possible
- There’s only one reality
- ⇒ Where tools overlap they should agree

Methodology of economists is too often:

- Use one source of data and one theory
- Ignore everything we know from any other source
General principle of scientific method:

- Study same question using as many different tools as possible
- There’s only one reality

⇒ Where tools overlap they should agree

Methodology of economists is too often:

- Use one source of data and one theory
- Ignore everything we know from any other source
General principle of scientific method:
- Study same question using as many different tools as possible
- There’s only one reality
- Where tools overlap they should agree

Methodology of economists is too often:
- Use one source of data and one theory
- Ignore everything we know from any other source
Why Is This Paper In This Conference?

General principle of scientific method:
- Study same question using as many different tools as possible
- There’s only one reality
- \implies Where tools overlap they should agree

Methodology of economists is too often:
- Use one source of data and one theory
- Ignore everything we know from any other source
Why Is This Paper In This Conference?

General principle of scientific method:
- Study same question using as many different tools as possible
- There’s only one reality
- ⇒ Where tools overlap they should agree

Methodology of economists is too often:
- Use one source of data and one theory
- Ignore everything we know from any other source
Impossible to measure every last expenditure

When would undermeasurement NOT be a problem:

- Every HH of type k underreports c by same proportion
- We know what that proportion is for all types k

Then for some Ω we could measure ‘true’ c from CE-measured \tilde{c}:

$$c^k_t = \Omega \tilde{c}^k_t$$

Obviously false. But a starting point.
Impossible to measure every last expenditure

When would undermeasurement NOT be a problem:

1. Every HH of type k underreports c by same proportion
2. We know what that proportion is for all types k

Then for some Ω we could measure ‘true’ c from CE-measured \tilde{c}:

$$c_t^k = \Omega \tilde{c}_t^k$$

Obviously false. But a starting point.
Impossible to measure every last expenditure

When would undermeasurement NOT be a problem:

1. Every HH of type k underreports c by same proportion
2. We know what that proportion is for all types k

Then for some Ω we could measure ‘true’ c from CE-measured \tilde{c}:

$$c_t^k = \Omega \tilde{c}_t^k$$

Obviously false. But a starting point.
Motivation

Ideal Case

Ideal Plausible Measurement

Actual Measurement

Where Are We?

Dynamic Budget Constraint

\[a_{t+1} - a_t = a_t r_{t+1} + y_{t+1} - c_{t+1} \]

Haig-Simons Saving

where

\[a_t \] — Total net worth at end of period \(t \)

\[r_{t+1} \] — Portfolio-weighted return between \(t \) and \(t + 1 \)

\[y_{t+1} \] — Noncapital income (labor, transfer, etc)

\[c_{t+1} \] — Total expenditures in period \(t + 1 \)

implies

\[c_{t+1} = a_t r_{t+1} + y_{t+1} - (a_{t+1} - a_t) \]
Household balance sheet in t

- a_t^j where j are asset categories (debt is negative asset),

$$a_t = \sum_{j=0}^{n} a_t^j$$

- r_t^j (return including capital gains/losses) for the j categories

$$r_{t+1} = \sum_{j=1}^{n} \left[\frac{a_t^j}{a_t} \right] r_{t+1}^j$$

- Noncapital income y_t
Household balance sheet in t

- a_t^j where j are asset categories (debt is negative asset),

$$a_t = \sum_{j=0}^{n} a_t^j$$

- r_t^j (return including capital gains/losses) for the j categories

$$r_{t+1}^j \equiv \omega_t^j$$

- Noncapital income y_t
Household balance sheet in t

- a^j_t where j are asset categories (debt is negative asset),

$$a_t = \sum_{j=0}^{n} a^j_t$$

- r^j_t (return including capital gains/losses) for the j categories

$$r_{t+1}^+ = \sum_{j=1}^{n} \left(\frac{a^j_t}{a_t} \right) r_{t+1}^j$$

- Noncapital income y_t
Household balance sheet in t

- a^j_t where j are asset categories (debt is negative asset),
 \[a_t = \sum_{j=0}^{n} a^j_t \]

- r^j_t (return including capital gains/losses) for the j categories
 \[r^j_{t+1} \equiv \sum_{j=1}^{n} \left(\frac{a^j_t}{a_t} \right) r^j_{t+1} \]

- Noncapital income y_t
Household balance sheet in t

- a_t^j where j are asset categories (debt is negative asset),

$$a_t = \sum_{j=0}^{n} a_t^j$$

- r_t^j (return *including capital gains/losses*) for the j categories

$$r_{t+1} \equiv \sum_{j=1}^{n} \left(\frac{a_t^j}{a_t} \right) r_{t+1}^j$$

- Noncapital income y_t
Only item missing from DBC in the SCF:

- Idiosyncratic asset returns by asset class r_{t+1}^j
- Most variation in this is from capital gains and losses
- Very hard to measure idiosyncratic component of these
Only item missing from DBC in the SCF:

- Idiosyncratic asset returns by asset class r_{t+1}^j
- Most variation in this is from capital gains and losses
- Very hard to measure idiosyncratic component of these
Annual Survey of Consumer Finances

Only item missing from DBC in the SCF:
- Idiosyncratic asset returns by asset class r^j_{t+1}
- Most variation in this is from capital gains and losses
- Very hard to measure idiosyncratic component of these
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can't find them
- Won't agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can't find them
- Won't agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?
- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:
- Focus on stable categories of HH’s
 - Period \(t \) sample: Middle-aged married couples
 - Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
‘Household Instability’ Problem

What happens if HH \(i \) does not exist in \(t + 1 \)?

- Can’t find them
- Won’t agree to participate
- Divorce, death of one or both members
- Marriage, etc

We will punt:

- Focus on stable categories of HH’s
- Period \(t \) sample: Middle-aged married couples
- Period \(t + 1 \) sample: Middle-aged couples married for at least 3 years
What *Can We Measure (in U.S.)*?

Survey of Consumer Finances (every three years):
- a_t
- y_t

Flow of Funds (every quarter):
- \bar{r}_t^j (bar means it’s an average or aggregate number)

NIPA Accounts
- Aggregate consumption growth $\chi_{t+1} \equiv C_{t+1}/C_t$
What Can We Measure (in U.S.)?

Survey of Consumer Finances (every three years):
- a_t
- y_t

Flow of Funds (every quarter):
- \bar{r}_t (bar means it’s an average or aggregate number)

NIPA Accounts
- Aggregate consumption growth $\chi_{t+1} \equiv C_{t+1}/C_t$
What Can We Measure (in U.S.)?

Survey of Consumer Finances (every three years):
- a_t
- y_t

Flow of Funds (every quarter):
- \bar{r}_t (bar means it’s an average or aggregate number)

NIPA Accounts
- Aggregate consumption growth $\chi_{t+1} = C_{t+1}/C_t$
What Can We Measure (in U.S.)?

Survey of Consumer Finances (every three years):
- a_t
- y_t

Flow of Funds (every quarter):
- \bar{r}_t^j (bar means it’s an average or aggregate number)

NIPA Accounts
- Aggregate consumption growth $\chi_{t+1} \equiv C_{t+1}/C_t$
Method

- Assume growth rate of \bar{c} matches aggregate:
 \[
 \frac{\bar{c}_{t+1}}{\bar{c}_t} = \chi_{t+1}
 \]

- Assume noncapital income growth between t and $t + 3$ matches surveys:
 \[
 \frac{\bar{y}_{s+1}}{\bar{y}_s} = \left(\frac{\bar{y}_{2007}}{\bar{y}_{2004}}\right)^{1/3} \quad \forall \ s \in \{t, t + 2\}
 \]

- Alternative 1: Make annual growth match NIPA DPI
- Alternative 2: Use DPI growth for year-to-year, but SCF for endpoints

- FoF for returns by asset category.
Motivation
Ideal Case
Ideal Plausible Measurement
Actual Measurement
Where Are We?

Target: Representative Middle-Aged Married Couple

Method

- Assume growth rate of \bar{c} matches aggregate:
 \[
 \frac{\bar{c}_{t+1}}{\bar{c}_t} = \chi_{t+1}
 \]

- Assume noncapital income growth between t and $t+3$ matches surveys:
 \[
 \frac{\bar{y}_{s+1}}{\bar{y}_s} = \left(\frac{\bar{y}_{2007}}{\bar{y}_{2004}}\right)^{1/3} \quad \forall \ s \in \{t, t+2\}
 \]

- Alternative 1: Make annual growth match NIPA DPI
- Alternative 2: Use DPI growth for year-to-year, but SCF for endpoints

- FoF for returns by asset category.
Method

- Assume growth rate of \bar{c} matches aggregate:
 \[\frac{\bar{c}_{t+1}}{\bar{c}_t} = \chi_{t+1} \]

- Assume noncapital income growth between t and $t + 3$ matches surveys:
 \[\frac{\bar{y}_{s+1}}{\bar{y}_s} = \left(\frac{\bar{y}_{2007}}{\bar{y}_{2004}}\right)^{1/3} \quad \forall \ s \in \{t, t + 2\} \]

- Alternative 1: Make annual growth match NIPA DPI
- Alternative 2: Use DPI growth for year-to-year, but SCF for endpoints

- FoF for returns by asset category.
Method

- Assume growth rate of \bar{c} matches aggregate:
 \[
 \frac{\bar{c}_{t+1}}{\bar{c}_t} = \chi_{t+1}
 \]

- Assume noncapital income growth between t and $t + 3$ matches surveys:
 \[
 \frac{\bar{y}_{s+1}}{\bar{y}_s} = \left(\frac{\bar{y}_{2007}}{\bar{y}_{2004}}\right)^{1/3} \quad \forall \ s \in \{t, t + 2\}
 \]

- Alternative 1: Make annual growth match NIPA DPI
- Alternative 2: Use DPI growth for year-to-year, but SCF for endpoints

- FoF for returns by asset category.
Method

- Assume growth rate of \bar{c} matches aggregate:
 \[
 \frac{\bar{c}_{t+1}}{\bar{c}_t} = \chi_{t+1}
 \]

- Assume noncapital income growth between t and $t + 3$ matches surveys:
 \[
 \frac{\bar{y}_{s+1}}{\bar{y}_s} = \left(\frac{\bar{y}_{2007}}{\bar{y}_{2004}}\right)^{1/3} \forall s \in \{t, t + 2\}
 \]

 - Alternative 1: Make annual growth match NIPA DPI
 - Alternative 2: Use DPI growth for year-to-year, but SCF for endpoints

- FoF for returns by asset category.
Then we have

\[
\begin{align*}
\hat{a}_{t+1} &= \bar{a}_t (1 + \hat{r}_{t+1}) + \hat{y}_{t+1} - \bar{c}_{t+1} \\
\hat{a}_{t+2} &= \hat{a}_{t+1}(1 + \hat{r}_{t+2}) + \hat{y}_{t+2} - \chi \bar{c}_{t+1} \\
\hat{a}_{t+3} &= \hat{a}_{t+2}(1 + \hat{r}_{t+3}) + \hat{y}_{t+3} - \chi^2 \bar{c}_{t+1}
\end{align*}
\]

but given the assumptions above, there will be a unique value of \(\bar{c}_{t+1} \) such that

\[
\hat{a}_{t+3} = \bar{a}_{t+3}
\]

which will be our estimate of spending, \(\hat{c}_{t+1} \).
We are now in a position to compare the expenditures that (under our assumptions) satisfy the dynamic budget constraint with expenditures as measured by the CE survey over the corresponding period. Neglecting the role of interest rates, and using \tilde{c} for the measure of expenditures in the CE survey, we can calculate a ratio of ‘SCF’ expenditures to ‘CE’ expenditures directly as

$$\Omega = \left(\frac{\hat{c}_{t+1}(1 + \chi + \chi^2)}{\tilde{c}_{t+1} + \tilde{c}_{t+2} + \tilde{c}_{t+3}} \right)$$

which measures the scaling factor necessary to ‘blow up’ CE expenditures so that they are consistent with wealth accumulation as measured in the SCF.
Almost There ...

... but not close enough to post numbers on the Web

Need a coauthor for CE comparisons

email me! ccarroll@jhu.edu
Almost There ...

... but not close enough to post numbers on the Web

Need a coauthor for CE comparisons

email me! ccarroll@jhu.edu
Almost There ...

... but not close enough to post numbers on the Web

Need a coauthor for CE comparisons

 email me! ccarroll@jhu.edu