Matching Firms, Managers, and Incentives*

Oriana Bandiera
London School of Economics

Luigi Guiso
European University Institute and EIEF

Andrea Prat
London School of Economics

Raffaella Sadun
Harvard Business School

February 27, 2010

Abstract

We provide evidence on the match between firms, managers, and incentives using a new survey that contains information on managers’ risk preferences and human capital, on their compensation schemes, and on the firms they work for. The data is consistent with the equilibrium correlations predicted by a model where firms with different ownership structure and managers with different risk aversion and talent match endogenously through incentive contracts. The model predicts and the data support that, compared to widely-held firms, family firms use contracts that are less sensitive to performance; these contracts attract less talented and more risk averse managers; these managers work less hard, earn less, and display lower job satisfaction.

1 Introduction

Given the importance of labor as an input in the production process, human resource management is crucial for the success of many organizations and has long been at the core of a rich case study literature in sociology and business studies. Systematic data collection and statistical analysis by economists have started more recently but are expanding at a rapid pace (Ichniowski and Shaw 2003). Using customized survey data, recent studies present evidence on the heterogeneity of human resource and managerial practices across firms and on

*We thank seminar participants at Columbia GSB, Duke, Kellogg, Leicester, LSE, Peking University, Shanghai School of Finance and Economics, and Tsinghua University for useful comments. We are grateful to Pat Bayer, Nick Bloom, Tito Boeri, Patrick Bolton, Daniel Ferreira, Luis Garicano, Joseph Hotz, Casey Ichniowski, Rachel Kranton, Marco Ottaviani, Steve Pischke, Michael Riordan, Fabiano Schivardi, Scott Stern, Seth Sanders, Duncan Thomas, John Van Reenen, Eric Verhoogen and Till von Wachter for useful discussions at various stages of the project. We are thankful to Enrico Pedretti and Francesco Papa for their help in data collection. This research was made possible by generous funding from Fondazione Rodolfo Debenedetti.

A central tenet of incentive theory is that human resource practices affect performance both by influencing the agents’ behavior and by determining the selection of agents into the job. For instance, more able and more risk loving agents will find compensation schemes that reward individual performance more attractive (Lazear 2005). To the extent that some firms have a comparative advantage in providing high-powered incentives, managerial practices can therefore be the mechanism through which firms and agents match.

While there is evidence of considerable heterogeneity among individual managers that matters for firm performance (Bertrand and Schoar 2003), the link between managerial practices and the selection of managers remains unexplored, as surveys that collect information on firms’ managerial practices typically do not have information on managers’ characteristics and vice-versa.

This paper aims to provide evidence on the match between firms and managers through the adoption of different managerial practices. Using a survey specifically designed for this purpose we collect detailed information on managerial incentive policies – both explicit as performance bonuses and implicit as career advancement – and on the individual characteristics of managers and firms. Informed by incentive theory, we collect measures of the managers’ talent and risk aversion, as both variables affect the managers’ preference towards different incentive schemes. Likewise, we follow recent developments in organizational theory and evidence (Burkart, Panunzi, and Shleifer 2003, Bertrand and Schoar 2006, Bloom and Van Reenen 2007, Leslie and Oyer 2008), and study firm ownership as the key firm characteristics that drives the adoption of different managerial practices. In particular we focus on the difference between the two most common ownership modes and compare family firms to firms that are widely held, namely that have no dominant owner.¹

We develop a simple theoretical framework to study the role of incentives schemes in matching firms and managers. The model is based on the following primitives. There is a continuum of potential managers, who are heterogenous in terms of talent and risk aversion, and a continuum of potential firms, which can be family-owned or widely-held and which can differ in their idiosyncratic cost or revenue component. There is a set of possible contracts that managers and firms can sign, defined by a fixed compensation and the slope of the performance-based component. The power of the contract should be viewed broadly, both as

¹ For evidence on the relevance of family ownership see Claessens, Djankov, and Lang, 2000, Faccio and Lang (2002), and La Porta, Lopez-de-Silanes, and Shleifer (1999).
explicit incentives (bonus) and implicit incentives (promotions and dismissals).

An equilibrium is such that: (i) matches between firms, managers, and contracts are stable; (ii) firms are active if and only if their expected payoff is non-negative; (iii) managers are employed if and only if they receive at least their reservation utility.

It is important to stress that our model does not assume an exogenous distribution of family firms and non-family firms. In equilibrium, only firms that generate a non-negative payoff to their owners will be active. Rather than trying ex-post to correct for a “survivorship bias,” our model offers a set of testable predictions that build on equilibrium firm entry conditions.

The model is based on the key assumption that, in line with the “cultural” view of family firms (Bertrand and Schoar 2006), the objective function of family owners contains a non-monetary component. We interpret this as family firms valuing direct control per se, so that retaining direct control gives rise to private benefits that the owner (the family) can enjoy in addition to the utility from monetary profits. Private benefits can derive from the status associated with leading a business, from the “amenity potential” of influencing the firm’s choices (Demsetz and Lehn 1985), from the use of firm resources for personal purposes, or from the opportunity to use the firm to address family issues, for example finding a prestigious job for a low ability offspring. Valuing direct control is not inconsistent with family ownership per se having a positive effect on performance, because, for instance, trust among family members can substitute for poor governance as suggested by Burkart, Panunzi, and Shleifer (2003). Our model indeed allows for family firms to have a comparative advantage on other dimensions.

The assumption that family firms value direct control per se implies that family firms have a comparative disadvantage in incentive provision, for three related reasons. First, if extracting the private benefits of control requires a family member to retain top management roles (usually CEO, but often other top positions too), the sensitivity of career progression to performance is necessarily limited as external managers will not be promoted to positions reserved for family members. Second, to the extent that the effort of the CEO and of other executives are complements, the marginal return to managerial effort is lower in family firms if these are led by family CEOs who do not maximize firm performance. Third, regardless of the skills and motive of the CEO, the presence of talented and motivated managers makes it harder for the owner of a family firm to extract the control benefit. To see this, consider a manager who has been promised a sizeable share of the value added he creates (the “motivated” part) and who knows that he has the potential to create value (the “talented” part).
This manager will vehemently oppose anything that reduces firm performance and hence his payoff. A family owner who faces such a manager will struggle to get her way when she proposes a pet project, or she pushes for a relative to be hired, or takes any action that increases the non-monetary benefit of control at the expense of firm performance.

This means that family firm owners may be willing to trade off higher profits arising from good management to contain the risk of losing control. The owner/manager of an Italian family firm puts it in colorful terms:2

“I’d rather be worth 100 million euros, have fun now and enjoy people’s respect when I am the senile chairman of my firm, than be worth a billion and get paid fat dividends by a little ******** with a Harvard MBA, who runs my firm and lectures me at board meetings.”

Starting from these parsimonious assumptions about the difference between family and non-family firms, we analyze how firms and managers decide to become active, how they match, and which contracts they choose to sign. Moreover, we describe the effort that each manager will exert once employed and the firm’s performance, both in terms of profit and control. While the set of equilibrium variables is large and it requires a certain amount of analysis, the resulting equilibrium characterization is quite simple.

The unique equilibrium is characterized by assortative matching and yields four testable implications: (1) Widely held firms have a comparative advantage in incentive provision and tend to offer more performance-sensitive contracts; (2) In a stable assignment of managers to firms, the slope of the contract a firm offers is positively correlated to the talent of a manager and negatively correlated to its risk aversion; (3) Managerial performance is also linked to incentives: in equilibrium managers who face steep contracts exert a higher level of effort, receive a higher expected compensation (both total and variable), and obtain a higher overall expected utility; (4) Controlling for ownership, firms that offer more high powered incentives have higher profits. While each individual prediction is consistent with other models, we are not aware of a framework that can account for all four of them.

Our empirical analysis is based on a novel data set that we collected through a survey specifically designed for this purpose. The distinctive feature of our survey is that it collects detailed information on all three components of the match, namely managers’ talent and risk aversion, the sensitivity of their pay and career prospects to their performance, and the ownership structure of the firms they work for. The survey was administered to 603 individuals sampled from the universe of Italian service sector executives. Our sample managers

2 Related to us in an email by a top-50 European CEO, with a Harvard MBA. Our translation.
rank high in the hierarchy of the firms they work for: 60% report directly to the CEO and a further 28% to the board. Finally, almost none of our sample managers belong to the family who owns the firm, when this is family-owned. For external validation we confront our survey data with managers’ compensation history from social security records, and with firms’ performance measures from balance sheet data. To the best of our knowledge, this is the first dataset – for any category of workers – that combines individual social security data with individual survey evidence, as well as with firm balance sheet information.

The aim of our empirical analysis is to present evidence on the rich set of equilibrium correlations suggested by the theory. While our data does not allow us to identify causal relations directly, the consistency of all the correlations we estimate with the predictions of the model strongly supports its validity. Furthermore, we show that reasonable alternative stories, while able to account for a subset of the correlations cannot explain the whole set, allowing us to rule them out.

The empirical analysis yields four findings, all in line with the theoretical predictions. First, we find that family firms offer flatter compensation schemes. Namely, family firms are less likely to offer bonuses as a function of individual or team performance, to promote and fire their managers based on their performance, and to use formal appraisals throughout the managers’ career. Differences are sizeable: unconditionally, the difference between the percentage of widely held and family firm that offer performance bonuses is 13 percentage points, and the corresponding difference among firms that offer fast track promotions for exceptional performers is 9 percentage points. For ease of exposition we summarize the information on the different dimensions of the firms’ incentive policy in a single index. Controlling for sector and firm size, we show that the incentive index is significantly weaker for family firms – up to 30% of one standard deviation.

Second, we show that steeper incentives attract managers who are more risk tolerant and more talented. Firms offering a one standard deviation steeper contract are more likely to attract high-talent managers by 16 percentage points of the sample mean and the ones they attract have a degree of risk tolerance that is 10 percent above the mean.

Third, we find that managers who are offered steeper incentives exert more effort, receive higher fixed and variable pay, receive more non-pecuniary benefits, and (not obviously) are more satisfied with their job. For instance, raising our incentive index by one standard deviation is associated with an increase in the probability that the manager works more than 60 hours a week by 16% of the sample mean, an increase in variable pay by a third of the sample mean, and higher chances that he is very satisfied about his job as large as
12% of the sample mean. Reassuringly, the estimated correlation between incentives and pay is robust to using administrative (and thus error-free) social security earnings data instead of our survey measures: hence, the correlation is not due to reporting errors or to survey reporting biases. Even more interestingly, when we use the time variation in social security earnings to compute the volatility of managers earnings through time, we find that steeper incentives are correlated with observed higher earnings variability, consistent with the fact that steeper contracts (as measured in the survey) implies that the managers bear more risk (as measured in observed time series of earnings).

Fourth, we estimate the correlation between incentives and firm performance measures from balance sheet data and find that firms that offer high powered incentives have higher productivity, profits, and returns on capital. As this correlation is known in the literature we do not view it as an original contribution of this paper, but rather as a further external validation of our survey measure of incentives.

We stress that while plausible alternatives can rationalize each of the findings in isolation, they are unlikely to be able to account for them jointly. One such prominent alternative is that family firms have a more effective monitoring technology and hence they do not need to offer high powered incentives. If that hypothesis were driving the results, however, we would expect managers who are better monitored to work harder and to have a higher fixed wage, to compensate for the higher effort. Our estimates indicate that the opposite is true: managers who face weaker incentives work less hard and have a lower base wage. Section 4 discusses this and other alternative explanations in more detail.

Our paper contributes to the literature on human resources management and, more specifically, managerial practices (Black and Lynch 2001, Bloom and Van Reenen 2007, Bonin et al 2007, and Ichniowski, Shaw, and Prennushi 1997) by providing evidence on the role of managerial practices for the matching of managers and firms. We highlight one channel through which the adoption of managerial practices that reward individual performance can affect firm performance, that is the selection of more talented and courageous managers.

Relatedly, we provide evidence in support of the trade-off between risk and incentives. In line with classic agency theory but contrary to most available evidence (Prendergast 2002), measures of risk tolerance and incentive power are positively related in our data. Our findings can however be reconciled with the existing evidence by noting that we measure the agent’s risk preferences directly rather than relying on proxies for risk aversion such as the agent’s wealth or using variation in the riskiness of the environment instead of the agent’s preferences. Our estimates therefore do not suffer from the bias due to correlated unobservables or
endogenous matching discussed in Prendergast (2002) and Ackerberg and Botticini (2002), respectively.³ Our findings are complementary to existing evidence on executive pay that shows a positive correlation between stock volatility and pay performance sensitivity (Aggarwal and Samwick 1999). That literature focusses on endogenous variations in risk due to the characteristics of the environment, whereas we measure the characteristics of the managers that determine their preferences for performance pay.

Our paper also contributes to the large literature on firm-employee matching (see Lazear and Oyer 2007, for a review). The distinctive feature of our work is that we highlight one possible determinant of the match value, namely the firm’s and the managers’ preferences over high powered incentives. Our paper is therefore complementary to Gabaix and Landier (2008) and Terviö (2008), who model the match between CEOs that differ in talent and firms that differ in size to explain the level rather than the structure of managerial pay. While this is not the focus of our analysis, our evidence shows that some of the key patterns described by Gabaix and Landier (2008) and Terviö (2008) for CEOs also apply to top executives. In particular, more talented managers are matched with larger firms and the level of managerial pay is increasing in firm size.

Our paper is also related to Friebel and Giannetti (2009), who study endogenous matching between firms and workers. In their model, large firms have better access than small firms to financing but they also investigate more thoroughly new ideas and are more likely to reject them. Workers differ in their creativity, namely in how likely they are to have promising ideas. The authors characterize the matching equilibrium and analyze the effects of relaxing individual borrowing constraints. The key predictions of the model are consistent with evidence available from the US Survey of Consumer Finances. While we consider a different set of employees – managers rather than creative workers – and we utilize a different empirical approach – a purpose-designed employee-employer survey – our paper shares Friebel and Giannetti’s goal of identifying the role of talent and risk aversion in the allocation of workers to firms.⁴

³ Prendergast (2002) argues that delegation is more likely when the environment is more uncertain, and that, because performance pay is positively correlated with delegation, this generates a spurious positive correlation between environment uncertainty and incentive power when the degree of delegation is unobservable. Ackerberg and Botticini (2002) argue that a spurious positive correlation can emerge because risk loving agents are endogenously matched to risky environments and at the same time prefer high powered incentives. Using agents’ wealth as a proxy for risk aversion does not solve the problem because the riskiness of the environment is correlated with the error through the proxy error.

⁴ Other examples of recent worker-firm endogenous matching models include Garicano and Hubbard (2007) for law firms, and Besley and Ghatak (2005) and Francois (2007) for the non-profit sector.
Finally, we contribute to the literature on family firms that focuses on the effect of family ownership on performance through the choice of CEO and management (Bertrand and Schoar 2006, Pérez-González 2006, Bennedsen, Nielsen, Perez-Gonzalez, and Wolfenzon 2007, and Lippi and Schivardi 2008). Like these papers we find that family firms may twist the choice of the manager towards less talented ones and thus provide a rationale for why they might perform worse even when not intrinsically less efficient – as the family firm owner’s quote reported earlier seems to suggest. However, while in these papers what affects firm performance is the refusal to choose from a wider set of managers and rely on the restricted pool of family (or social network) members, in our case performance may be affected because less able and risk tolerant managers self-select into family businesses at any time, not only at succession and even among family businesses that choose to be run by professional managers. Our findings that family firms offer contracts that attract risk averse and less talented managers and pay them less, are consistent with Sraer and Thesmar (2007) who show that, compared to widely held firms, French family firms employ less skilled workers, offer long-run labor contracts that provide implicit insurance, and pay lower wages. Our paper is complementary with work by Cai, Li, Park, and Zhou (2008). While in our study we compare managers in non-family firms with non-family managers in family firms, they focus their attention on the difference between family managers and outside managers employed by family firms. Evidence from their detailed survey of Chinese family firms reveals that outside managers are offered contracts that are more performance-sensitive. Our and their papers taken together indicate that governance issues play a key role in the process of selecting and motivating managerial talent.

The rest of the paper proceeds as follows. Section 2 discusses the theoretical model and illustrates its main testable predictions. Section 3 presents our data and shows how we map the model’s variables into their empirical counterpart. Section 4 shows the evidence. Section 5 summarizes and concludes.

2 Theory

This short theoretical section adapts a workhorse agency model – linear contracts, quadratic payoffs, normally distributed additive noise – to the problem at hand. Our main contribution

See also Rose and Sheppard’s (1997) analysis of the link between firm diversification and CEO compensation. The authors provide evidence that managers of diversified companies appear to be paid more. By comparing the compensation of newly appointed and experienced CEOs, the paper shows that the premium is due to higher ability rather than entrenchment.

8
lies in allowing heterogeneity on both sides of the managerial market and in letting the terms of the contract be decided by the two parties. While some of our results have already been discussed individually elsewhere and none of them will surprise people familiar with agency problems, it is useful to provide a unified conceptual framework to interpret the rich set of patterns that emerge from our data.

The theory presents an informal analysis of the model. A formal characterization and all the proofs are available in the attached Appendix.

2.1 Model

To produce, a firm requires one manager. Suppose firm i is matched with manager j. The manager generates a product

$$y_j = \sqrt{\theta_j} (x_j + \varepsilon_j),$$

where $x_j \geq 0$ is the effort level chosen by the manager, θ_j is the manager’s talent, and ε_j is normally distributed with mean zero and variance σ^2 and it’s uncorrelated across firms (or managers). The parameter θ_j will be discussed shortly.

The wage that firm i pays to manager j is a linear function of the productivity signal

$$w^i_j = a^i + b^i y_j$$

The compensation scheme should be interpreted broadly. Besides explicit contingent payments, such as bonuses and stock options, the manager can also be offered implicit incentives (career concerns): if he performs well, he will be promoted.

The manager has a CARA utility function

$$U_j = -\exp \gamma_j \left(w^j - \frac{1}{2}\dot{\sigma}^2 \right),$$

where γ_j denotes j’s risk aversion coefficient. There is a mass of potential managers, whose human capital θ_j and risk aversion coefficient γ_j are uniformly and independently distributed on a rectangle $[0, \tilde{\gamma}] \times [0, \tilde{\theta}]$. The total mass is $\tilde{\gamma} \tilde{\theta}$.\footnote{An important assumption here is that talent and risk aversion are independently distributed. While there is some evidence that (cognitive) ability is positively related to risk taking (Frederick 2005), in our data there appears to be no correlation between risk attitudes and measures of human capital.} To avoid difficult signaling and screening issues, we assume that the characteristics of individual managers θ_j, γ_j are observable.\footnote{If the characteristics were not observable, the manager will have an incentive to pretend that he is more talented than he actually is. However, given θ_j, the manager would have no incentive to mis-represent his risk attitudes because the contract that he is offered in equilibrium maximizes his expected utility given his risk-aversion coefficient γ_j.}
We now turn to firms, which can be owned either by a family \((F)\) or by disperse shareholders \((N)\). The owners of firm \(i\) pursue the following objective:

\[
V^i = \Pi^i + (1 - \phi_g) \Gamma^i,
\]

where \(\Pi^i\) denotes the standard corporate profit, while \(\Gamma^i\) represents some other form of benefit that the owners may receive from the company. This benefit has to do with direct control and can be material (use of company resources for personal entertainment) or of a less tangible sort (the status that derives from managing a company, the utility of keeping the firm “in the family,” or the guarantee of prestigious jobs for relatives). The parameter \(\phi_g\) represents the weight that the owners put on the benefit of direct control and it depends on \(g\), the ownership form (to be discussed shortly).\(^7\)

The firm profit is given by:

\[
\Pi^i = y_j - w^i_j + h_g - k^i,
\]

where the production \(y_j\) and the compensation \(w^i_j\) have already been discussed. The third term, \(h_g\), represents an intrinsic profit differential between family and non-family firms. We remain agnostic as to whether this difference is positive or negative. The fourth term, \(k^i\), represents idiosyncratic fixed costs (or profit opportunities) faced by different firms. For both \(N\)-firms and \(F\)-firms, there is a potential mass of entrants and each entrant \(i\) is characterized by an idiosyncratic cost \(k^i\). We assume that firms are distributed as follows: For every \(k \geq 0\), the mass of firms with \(k^i \leq k\) is equal to \(k.\)^{8,9}

The weight that owners put on direct control is \(\phi_F\) in family firms and \(\phi_N\) in non-family firms. Our key assumption is that families put more weight on direct control than shareholders of widely held firms.\(^10\)

Indeed, in family-owned firms, the firm is often perceived as an opportunity to address family issues and frictions and thus owners of these firms naturally value more its role as an “amenities provider.” Alternatively, since the boundaries of the firm and those of the family

\(^7\) The results would continue to hold if we assumed \(V^i = \delta^0 \Pi^i + \left(1 - \delta^0\right) \Gamma^i\).

\(^8\) Qualitatively, results would be unchanged if one assumed that the distribution of potential \(F\)-firms is different from the distribution of potential \(N\)-firms.

\(^9\) The entry condition could be extended to allow for the possibility of \(N\)-firms to be bought out by families and \(F\)-firms to be sold to the market.

\(^10\) In particular, one can assume – although it is not necessary – that shareholders of widely held firms have no direct control benefit: \(\phi_N = 1\).

\[\phi_F < \phi_N.\]
are less clearly defined in family-firms, the transfer of these amenities from the firm to the family is more efficient in family firms and thus more of these amenities are transferred. In either case, \(\phi_F < \phi_N \).

The (potential) control benefit is given by

\[
\Gamma^i = \Gamma_g - b^i \theta_j,
\]

where \(\Gamma_g \) is a constant, which may depend on the ownership form \(g \). The second term, \(b^i \theta_j \), captures one of the key ideas of this paper: granting control to an outside manager dilutes the owners’ ability to extract private benefits from the firm.\(^{11}\)

The second term is crucial for our analysis and requires a careful discussion. Why is the control benefit that an owner can extract from her firm decreasing in her manager’s talent and incentive? We view the term as the reduced form of an un-modeled subgame between the owner and the manager. Suppose the owner can obtain a private benefit by misusing some of the firm’s productive inputs (buying a private jet, hiring friends and family, running a pet project, etc.). This happens after the manager is hired and it is non-contractible ex ante. Suppose that the manager can spend effort to prevent the owner from appropriating resources. How motivated will the manager be to fight back?

Owner appropriation reduces the pool of resources that is available to the manager. It is reasonable to expect that the amount of resources available and the manager’s talent are complements in the creation of profits. The manager’s bonus is then the product of resources times talent times profit share. The manager’s willingness to fight resource appropriation is an increasing function of \(b^i \theta_j \).\(^{12}\)

Besides fitting the quote in the Introduction, our specification is general enough to accommodate various forms of conflict of interest between managers and owners, such as those identified by Burkart, Panunzi, and Shleifer (2003) and discussed in the introduction.

To keep notation to a minimum, we set \(\Gamma_N = 0 \), and \(h_N = 0 \). These two variables do not affect matching and contract choice; they only determine the number of \(N \)-firms and \(F \)-firms that are active in equilibrium. Note that \(\Gamma_F \) and \(h_F \) can be positive or negative.

\(^{11}\) Even if one assumes that the benefit \(\Gamma^i \) does not depend on the manager’s talent \(\theta_j \) directly (namely that \(\Gamma^i = \Gamma_g - b^i \)), there is still an indirect complementarity between incentives and talent, because firms that offer high-performance schemes attract more talented workers. Hence, one should expect all our main results to go through (albeit in a less tractable setting).

\(^{12}\) One could make this argument explicit in the model. It would require adding a second dimension to the manager effort (fighting back the owner) and modeling the owner’s strategic choices. The theory section would become even longer and more complex, without much gain.
Firm entry is endogenous. In equilibrium: (i) The owners of every active firm \(i \) maximize \(V^i \); (ii) A firm \(i \) is active if and only if the maximized \(V^i \) is greater than the outside option (normalized at zero).\(^{13}\)

The timeline is as follows: (i) Each firm chooses whether to become active; (ii) A matching market between firms and managers opens. Manager-firm pairs sign linear contracts; (iii) Managers who are hired by firms choose how much effort they exert.

2.2 Equilibrium

An equilibrium (in pure-strategies) of this model is a situation where: (a) A firm is active if and only if it receives a non-negative expected payoff; (b) All manager-firm matches are stable, namely no pair made of one manager and one firm, who are currently not matched to each other, can increase their payoffs by leaving their current partners (if any) and signing an employment contract with each other; (c) All matched pairs select the contract that maximizes joint surplus; (d) All managers choose the optimal level of effort, given the contracts they have signed.

The present section offers an informal analysis of the model. A formal result is provided in the end of the section and proven in the appendix.

Let us begin from the last step: effort choice. Given a contract with slope \(b^i \), manager chooses effort

\[
\hat{x}_j = b^i \sqrt{\theta_j}.
\]

As the surplus created by the relationship can be allocated costlessly to the firm or the manager through the fixed compensation variable \(a \), the contract between the two parties must maximize the sum of their expected payoffs. The surplus-maximizing contract has slope

\[
\hat{b}^i (\gamma_j) = \frac{\phi_g}{1 + \gamma_j \sigma^2}.
\]

The contract power is decreasing in the risk aversion coefficient of the manager, \(\gamma_j \), and in the profit weight of the firm owners, \(\phi_g \). The manager’s product given the optimal contract is

\[
y_j = \sqrt{\theta_j \hat{x}_j} = \frac{\phi_g}{1 + \gamma_j \sigma^2} \theta_j.
\]

This means that there is a positive complementarity between the profit weight \(\phi_g \) and managerial talent \(\theta_j \) and a negative complementarity between \(\phi_g \) and the risk-aversion coefficient \(\gamma_j \). \(F \)-firms have a comparative advantage in low-talent, risk-averse managers.

\(^{13}\) One could have different outside options for \(F \)-firms and \(N \)-firms, but that would be equivalent to a change in \(h_F \) and \(h_N \).
This comparative advantage translates into a matching equilibrium where managers with high talent and low risk aversion work for N-firms, managers with medium talent and higher risk aversion work for F-firms, and less talented managers are unemployed.

To see that this must be the case, consider two managers, A and B, and assume that A is more talented and less risk-averse than B. Suppose for contradiction that A works for an F-firm and B works for an N-firm. The total surplus (the sum of V_i and U_j) generated by the two firms is lower than the total surplus that would be generated by the same two firms if they swapped managers. This means that either the F-firm and manager B or the N-firm and manager A can increase their joint payoff by leaving their current partners and forming a new match. The same line of reasoning applies to an unemployed manager who is more talented and risk tolerant than a manager who is currently employed.

See the figure below for an example of such a matching equilibrium. Managers are uniformly distributed on a two-dimensional space of talent and risk aversion. The space is divided into three regions. The upper left region contains talented risk-takers employed by N-firms. The middle region is made of less talented and more risk-averse managers who work for F-firms. The managers in the remaining region are unemployed.

The regions in the figure are determined by indifference conditions. Managers on the line that separates the F-region from the unemployment region receive an expected utility equal to their outside option. Managers on the line between the F-region and the N-region are
indifferent between working for an N-firm or for an F-firm.

The expected payoff of firm i is

\[
E \left[V^i \right] = E \left[\Pi^i + (1 - \phi_g) \Gamma^i \right] \\
= \pi^i + E \left[h_g - k^i + (1 - \phi_g) \Gamma_g \right],
\]

where the term

\[
\pi^i = E \left[y_j - w^i_j - (1 - \phi_g) b^j \theta_j \right]
\]
can be seen as management-related payoff. Competition among firms guarantees that all active F-firms have the same management-related payoff π_F and all active N-firm have the same management-related payoff π^N. The comparative advantage of N-firms in incentive provision means that $\pi^N > \pi_F$.

The size of the F-region in the figure above corresponds to the mass of F-firms that are active, n_F. Similarly, the size of the N-region equals the mass of N-firms, n_N. The variables n_F and n_N are determined endogenously by the free entry condition. Firm i is active if and only if $E \left[V^i \right] \geq 0$. This means that the F-firm with the lowest payoff satisfies

\[
\pi_F + h_F - k^i + (1 - \phi_F) \Gamma_F = 0
\]
while the N-firm with the lowest payoff satisfies

\[
\pi_N - k^i = 0
\]

2.3 Testable implications

The equilibrium characterization in the main proposition yields an array of predictions regarding observable variables, which we group into four implications.

The first set of predictions relates to incentive power. If an F-firm and an N-firm hire managers with identical risk aversion, the F-firm will offer a flatter contract because it has a higher control premium. Formally, $\phi_F > \phi_N$ implies:

\[
\hat{b}_F (\gamma_j) = \frac{\phi_F}{1 + \gamma_j \sigma^2} < \frac{\phi_N}{1 + \gamma_j \sigma^2} = \hat{b}_N (\gamma_j).
\]

We can write this result as:

Implication 1 (Firm-Incentive Match) F-firms offer less steep contracts than N firms.

This result constitutes a first testable implication: F-firms offer contracts that are less performance-sensitive. Note that this prediction holds a fortiori if we do not condition for the manager’s characteristics, as more risk-averse managers work for F-firms.

Second, the model predicts how managers are matched to incentive schemes:
Implication 2 (Manager-Incentive Match) The slope of the contract that manager j faces in equilibrium is negatively correlated with his risk aversion coefficient and positively correlated with his talent.

Implication 2 shows how managerial human capital is matched to firms in equilibrium. Managers with high risk aversion and low talent face low-powered incentives. If that was not the case, there could be gains from breaking existing pairs and forming new matches.

We can also predict how the manager’s effort and his performance will be related to the incentive scheme he faces:

Implication 3 (Manager Performance) Controlling for risk aversion, the slope of the contract that manager j faces in equilibrium is positively correlated with the manager’s: (a) Effort; (b) Variable compensation; (c) Total compensation; and (d) Utility.

Implication 3 describes what happens to the manager once he is matched to a firm. Managers who face steep contracts work harder. That’s both because of the direct incentive effect and because they are more talented (and talent and effort are complements). As a result, they produce more output and they receive more performance-related compensation. Finally, a revealed preference argument shows that managers who are offered a high contract slope must have a higher utility than managers who are offered a less steep contract (because being talented can obtain the same product with less effort).

An additional prediction of our theory is that managers do not have an intrinsic productivity advantage in family or non-family firms. Implications 2 and 3 imply that all the effects on manager’s characteristics and performance come from the incentive structure. Once controlling for incentives, the data should display no residual firm ownership effect.

The model also makes some predictions on the link between incentive provision and firm performance. Before getting into that, it is important to stress that our theory does not say whether performance will be higher in N-firms or in F-firms. This is for two reasons. First, family firms may have some intrinsic business advantage or disadvantage, captured by h_F. Second, the fixed component of Γ_F determines endogenously the threshold of idiosyncratic cost k^i that induces family firms to be active, and hence their performance. As a result, we can construct numerical examples where profits are higher in F-firms and numerical examples where they are higher in N-firms.

However, our model makes predictions on the correlation between firm performance and incentive provision, conditional on governance:
Implication 4 (Firm Performance) *Controlling for ownership, the slope of the contract is positively correlated with the firm’s profit* Π'.

The intuition for this last prediction is immediate. As an increase in the contract slope b^i reduces control benefits, the firms who choose a higher slope must in equilibrium be compensated with a higher expected profit.

3 Empirical Analysis: Data Description

3.1 Data Sources

Our empirical analysis exploits three data sources: (i) a novel survey of Italian managers that we designed to collect detailed information on their characteristics, the firms they work for and the incentives they face, (ii) Amadeus and the Italian Company Accounts Database, which contain information on the firms’ balance sheets, demographics, and employment levels, and (iii) the Social Security Database, which contains longitudinal information from administrative records on the managers’ job position, pay, and employer since they joined the labor force.

The distinctive and unique feature of our survey is that it collects information on both sides of the market: the firms and the managers they employ. In particular, we collect measures of the firms’ ownership structure and details on their incentive policies on three dimensions: bonus pay, promotion, and dismissal decisions. On the managers’ side, we collect information on the managers’ risk aversion, talent, work effort, compensation package, and job satisfaction.

One advantage of using data from a continental European country like Italy is that all-encompassing rules about collective labor bargaining result in unambiguous job definitions. The job title of “manager” (*dirigente* in Italian) applies only to the set of workers that have a manager collective contract, a fact that is recorded by social security data.\(^{15}\) Italy has four

\(^{14}\) Amadeus is an extensive accounting database covering more than 9 million public and private companies across Europe, of which approximately 580,000 are in Italy. The Company Accounts Database is based on information provided by commercial banks that covers all the banks’ largest clients. The data is collected by Centrale dei Bilanci, an organization established in the early 80s by the Bank of Italy and Italian Banks with the purpose of recording and sharing information on borrowers.

\(^{15}\) There is a very clear distinction between being a manager and the closest collective contract job title, which corresponds to “clerical employee” (*quadro* in Italian). Indeed the two categories are represented by different trade unions and have different pensions schemes. The difference in terms of social status is also immediately perceived.
managerial collective agreements: manufacturing, credit and insurance, trade and services, and public sector.

To avoid dealing with sector-specific contractual provisions, we focused on the managers in the trade and service sector. Managers in our sample are selected from the members directory of Manageritalia, an association of professional managers operating in the Italian trade and services sectors. Importantly, Manageritalia members account for 96% of all managers in the trade and service sectors. Hence, by sampling from the Manageritalia directory we are sampling from almost all the population of managers in that sector. These, in turn, make up for 20% of all Italian managers. The Manageritalia members directory contains 22,100 managers employed by 8,739 firms. To make sure we obtain balance sheet data, we sample from the 2,012 firms that can be matched with Amadeus and the Italian Company Accounts Database. The balance sheet data-sets and, a fortiori, our sampling universe, are skewed towards large firms. To maintain comparability across managerial tasks we focus on managers employed in the three main operational areas – general administration, finance, and sales. We randomly assign each firm to one of the three areas and randomly select one manager within each firm. The final sampling universe contains 605 each of general directors, finance directors, and sales directors, for a total of 1,815 observations.

The administration of the survey was outsourced to Erminero & Co. – a well established survey firm located in Milan, Italy. The 1,815 sample managers were contacted by phone to schedule a subsequent phone interview, administered by a team of 35 analysts trained by Erminero & Co, and closely monitored by our research team. The response rate was 33%, with an average duration of 21 minutes per interview. Thus, our final sample contains 603 observations, equally split across the three operational areas. Our sample managers rank high in the firm hierarchy: most of them (60%) report only to the CEO, and a further 28% directly to the board. Only 2% rank three layers below the CEO. Moreover, 97.5% of

16 Social security data indicate that in 2006, the number of individuals employed on a “manager contract” in the private sector were 117,000. Of these, 23,000 belong to the trade and private service sectors, and 22,100 belong to Manageritalia. Managers working for Italian branches of multinational firms belong to the trade and service sectors even if the firm itself is classified as industry—e.g. car manufacturers—as long as no production plants are located in Italy.

17 We do not sample from the 197 firms for which the Manageritalia member list does not contain managers employed in the main three operational areas.

18 In our regressions we always include controls for manager operational area. We also collected detailed information on the interview process, including information on the interviewees’ tenure in the company, tenure in the post, seniority and gender, and interviewer identifiers. We use these variables to account for measurement error in the survey variables across some specifications.
sample managers are outsiders, namely they do not belong to the family when the firm is family owned. Reassuringly, respondents and non-respondents are employed by observationally identical firms. Indeed we find no evidence that the probability of participating in the survey is correlated to firm’s size, labor productivity, profits, return on capital employed, or sector (Table A1 in the Appendix). Respondents also look similar to non-respondents on demographics (gender and age) and tenure on the job. Respondents however have lower wages but the difference, while precisely estimated, is small as the median weekly wage for respondents is 8% lower than for non-respondents (€1648 vs. €1786). This is consistent with non-respondents having a higher opportunity cost of time, as expected. Reassuringly, however, the pay distribution have considerable overlap, and, as discussed below, there is considerable variation within our sample. Moreover, despite this level difference, respondents and non-respondents have a similar career path, as we find no difference in the average yearly rate of pay growth. Finally, while social security data do not contain information on incentive policies, we can proxy sensitivity of pay to performance by calculating the standard deviation of pay of the same manager across years in the same firm. Table A1 shows that respondents and non-respondents do not differ on this dimension.

3.2 Firm Characteristics and Performance

The main characteristics of our sample firms are summarized in Table 1, Panel A. The table shows that family ownership is the most common ownership structure: 47% of the firms are owned by the founder (19%) or their family (28%). The percentage of family firms is in line with the findings of La Porta, Lopez-de-Silanes, and Shleifer (1999), who report that 60% of Italian medium-sized publicly traded firms belong to a family (including both founders and second generations firms). Widely held firms account for 30% of the sample. The remaining 23% is divided between cooperatives and firms owned by the State (8%), firms owned by their management (2%), and firms owned by a group of private individuals (13%). As there is no a priori reason to believe that the importance attached to the “amenity potential” of control by these firms is similar to either family firms or widely held firms, we keep this category separate in the analysis that follows.

The survey also contains information on firm size, sector, and multinational status. Over 90% of the sample firms employ less than 500 people. In more detail, 39% are small firms

19 Widely held firms are companies where no party detains more than 25% of the shares. We include in this category also private equity firms (8% of the sample), but the results are qualitatively similar once we include private equity in the residual ownership category.
with 10 or fewer employees, a further 20% have between 50 and 100 employees, and the remaining 41% have more than 100 employees. All sample firms belong to the service sector, within which the three most frequent categories are Wholesale (45% of the sample), Business Services (11%), and Retail and Specialized IT services (4%). Finally, 58% of the firms in our sample are subsidiaries of a multinational company and in 21% of the cases the multinational’s headquarters are in Italy.\footnote{Most sample firms are incorporated in the region of Lombardy (58%), followed by Emilia (9%), Lazio (9%), Veneto (8%), Piedmont (5%), and Tuscany (5%). This reflects the uneven geographical distribution of firms across the country.}

The last three rows of Table 1, Panel A report measures of firm performance from Amadeus. For each firm we use the last year for which data is available, which is 2007 for 62% of the sample firms and 2006 for 35% of them. We use three measures of performance: labor productivity (defined as operating revenues divided by the number of employees), profits per worker (computed as earnings before interests and tax divided by the number of employees), and ROCE (operating income scaled with capital employed). For each measure we drop the top and bottom 1%, to remove outliers possibly due to measurement errors. Table 1 shows that the distribution of productivity and profits is heavily skewed to the left, the median is much smaller than the mean, indicating that there is a long tail of firms that perform considerably better than most of the sample. Finally, we observe considerable heterogeneity along all three measures – the standard deviation is between 1.3 and 2.3 times the mean.

3.3 Incentive Policies

The model in Section 2 makes it precise how different ownership structures affect the choice of incentive policies and how these attract different types of managers. To provide evidence on this issue we collected information on three types of firms’ policies that can be made conditional on manager’s performance: pay, promotions, and dismissals. This way we obtain a detailed picture of the firms’ incentive policies and can exploit variation along all three dimensions. For each type of policy we ask whether the outcome depends on the manager’s performance and whether this is evaluated through a formal appraisal system. The latter is crucial to ensure that managers know the exact mapping from performance to reward, which determines the effectiveness of the incentive scheme. In fact, our data shows that two thirds of the managers who are formally appraised know exactly how bonus payments are calculated, whereas the corresponding share in firms that do not have a formal appraisal system is one half.
To measure the sensitivity of pay to performance, we asked whether managers can earn a bonus, whether this is a function of performance and whether it is awarded through an established appraisal process. We summarize this information into two variables, \textit{bonus 1} (equal to 1 if bonus is conditional on performance and zero otherwise) and \textit{bonus 2} (equal to 1 if bonus is based on formal appraisal; zero otherwise). Half of the firms in our sample offer bonuses as a function of individual or team performance targets that are agreed in advance;21 in 33\% of firms, bonuses are awarded through a formal appraisal system (Table 1, Panel B).

To measure the effect of performance on the manager’s career prospects within the firm we asked whether fast promotion tracks for star performers exist, whether promotions depend on performance (as opposed to tenure or good relationships with the owners), and whether they are decided through formal appraisals. The variable \textit{promotion 1} equals one when fast tracks exist and zero otherwise. We define \textit{promotion 2} to equal one if performance is an important factor for promotion. Finally, \textit{promotion 3} equals one if promotions are decided within a well-defined system of formal appraisal. On average, 37\% of sample firms report to have fast tracks for star performers, promotions depend on performance in 74\% of the cases, and 34\% of firms have a formal appraisal system to determine promotions (Table 1, Panel B).

Finally, we measure whether poor performance can be cause for dismissal, and, again, whether dismissals are decided through a formal appraisal system. The variable \textit{firing 1} is equal to 1 if in the past five years managers have been dismissed due to failure in meeting their performance objectives, and 0 otherwise. Overall, only 11\% of firms have dismissed managers in the last five years, and 5\% of these report doing so because of poor performance.22 Finally, \textit{firing 2} equals one when dismissals are decided through a formal appraisal system, and this happens in 23\% of the sample firms (Table 1, Panel B).

For parsimony, we combine the various incentive policies in a sole index that equals the sum of the measures described above. The findings are qualitatively unchanged if we use other summary measures, such as the first principal component. The resulting index takes values between 0 and 7, with higher values denoting policies that create a tighter link between reward and performance. The median firm adopts 2 out of the 7 incentive policies we consider, and the standard deviation of the index is 1.74. Just under 10\% of the sample firms offer no explicit reward for performance, while only 0.5\% adopt all seven measures.

21 Overall, 70\% of the firms offer a bonus scheme, but for 20\% the bonus is either a function of firm-wide performance or awarded at the discretion of the owners.

22 The other, non-exclusive, reasons given for dismissals are “poor market conditions” (4\%) and “disagreement with the owners” (6\%).
3.4 Manager Characteristics, Pay and Performance

The manager survey provides a wealth of information on manager characteristics that are summarized in Table 1, Panel C. Managers are on average 47 years old, and 90% of them are males.23

The theoretical model of Section 2 implies that the key variable driving the firm-manager match is the manager’s attitude towards risk. To shed light on this, we follow an emerging literature that tries to elicit individual risk preference parameters and characterize their heterogeneity by using large-scale surveys (e.g. Barsky et. al. 1997, Guiso and Paiella 2008, and Dohmen et al 2006). Our approach differs from most of the literature that analyzes the risk-incentive trade-off using measures of the riskiness of the environment or agents’ wealth as a proxy for their risk aversion. As such, it does not suffer from the bias caused by omitted variables and endogenous matching discussed by Prendergast (2002) and Ackerberg and Botticini (2002).

We collected two measures of risk attitudes that aim at measuring the managers’ own preference and the riskiness of the choices they make for the firm, respectively. Measures of this sort have been shown to correlate with actual risk taking in a field experiment by Dohmen et al (2006).

To measure the managers’ own risk preference we ask them to choose between a prospect that yields 1 million euros for sure (the safe choice) and a binary risky prospect that yields 0 with probability p and 10 million with the complementary probability ($1-p$), where p varies between 0.01 and 0.8 at intervals of size 0.1. Suppose that for very low probability of zero return (and thus a very high probability of making 10 million) the manager prefers the risky prospect to 1 million euro for sure. We take as our risk attitude measure p^*, defined to be the level of p at which the manager switches from the risky to the safe prospect. Obviously p^* is inversely related to risk aversion, that is risk averse managers are willing to bear losses only if the probability is low. Table 1 shows that the average manager prefers the safe prospect when the risky one fails with probability 0.2 or higher. More interestingly, Table 1 also shows that managers’ risk attitudes are quite heterogeneous – the standard deviation of our measure is 18.94.

To measure the managers’ choice of risk for the firm we ask them explicitly to choose between alternative projects that present a trade-off between risk and expected profits in a

23 This is in line with the figures for the manager population as a whole from social security records. In the last available year (2004), average age was 47 and the share of males 88%. See Bandiera et al (2008) for details.
The question reads as follows: “We would now like you to think to some important decisions you have taken or might take on behalf of your firm. These are strategic decisions whose outcome is uncertain, with a positive correlation between expected earnings and risk. On a scale from 0 to 10, where 0 means you would choose the safest option with the lowest expected earnings while 10 refers to very risky projects that have a very high rate of return in case of success, what would you choose?”

26 This relatively low figure is consistent with the information arising from existing surveys of Italian managers (see Bandiera et. al. 2008).
our sample 37% of managers works 60 hours or longer.27 The average annual fixed salary of a manager is approximately 100,000 Euro, while the bonus amounts, on average, to 15% of the fixed salary. On average, managers in our sample receive 4.2 non-monetary benefits out of a list of seven potential benefits.28 Finally 50% of the managers in our sample report to be “extremely satisfied” about their job. Only 5% report to be “unsatisfied,” while the remaining part of the sample is “satisfied.”

4 Empirical Analysis: Findings

We organize the empirical evidence in four parts that match the four set of predictions obtained in Section 2. We start estimating the correlation between the firm ownership and the strength of managerial incentives. We will show that, in line with the model, family firms are less likely to adopt bonus systems related to individual or team performance, and to promote and fire their employees based on performance. Second, we estimate the relation between the firms’ incentive policies and the risk and talent of the managers they hire in equilibrium. We will show that firms offering stronger incentives attract managers who are more risk tolerant and more talented. Third, we estimate the link between the strength of incentives and managers’ outcomes. We will show that managers who are offered stronger incentives exert more effort, receive higher fixed and variable pay, receive more non-pecuniary benefits, and are more satisfied with their job. Fourth, we estimate the correlation between incentives and firm performance. We will show that firms that offer high powered incentives have higher productivity, profits, and returns on capital.

It is important to make precise that our aim is to present evidence on a rich set of equilibrium correlations that are suggested by the theory. We do not, at any stage, aim at identifying the causal effect of ownership on incentives or incentives on performance, as neither varies exogenously. However, at the end of this section we discuss a number of alternative interpretations of our findings and argue that, when taken together our evidence while consistent with the matching model, is not consistent with any of these alternatives.

27 To minimize measurement error due to the choice of a particular week, the survey asks managers to pick the number of hours they work in the “typical” week out of 5 possible choices: (i) 40 hours or fewer, (ii) about 40 hours, (iii) about 50 hours, (iv) about 60 hours, (v) 60 hours or more.

28 The list of benefits include: company car (available to 83% of our sample managers), flexible hours (85%), telecommuting (27%), training (71%), sabbatical periods (6%), health insurance (74%), and life insurance (74%).
4.1 Firm Ownership and Incentives

We first test Prediction 1, namely that, compared to firms owned by disperse shareholders, family firms offer a weaker link between reward and performance. Unconditionally we find that this is indeed the case. Family firms are less likely to offer bonuses based on individual performance (44% versus 57%), to have promotion fast tracks (32% versus 41%), and to have dismissed managers for failure to meet performance targets (3% versus 6%). Family firms are also less likely to award bonuses, decide on promotions, and fire employees through a formal appraisal process and in all cases the gap between the two types of firms is not only statistically significant (see last column) but also substantial. Only performance seems to matter for promotions regardless of ownership.

In Table 2 we test whether these differences are robust to controlling for a rich set of manager and firm characteristics, which might create a spurious correlation between firm ownership and incentive policies. We estimate the conditional correlation:

\[P_{ij} = \alpha^F D_j^F + \alpha^O D_j^O + X_j \beta + Y_i \delta + \varepsilon_{ij} \]

where \(P_{ij} \) are the different incentive policies adopted by firm \(j \) as reported by manager \(i \), \(D_j^F = 1 \) if firm \(j \) belongs to its founder or a family and 0 otherwise, \(D_j^O = 1 \) if the firm belongs to the government, a cooperative or its managers and 0 otherwise. The coefficient of interest is \(\alpha^F \), namely the difference in incentive policies between family-owned and dispersedly owned firms. Throughout \(X_j \) includes the firm’s multinational status, employment levels, and SIC2 industry codes. \(Y_i \) includes the manager’s tenure, seniority level, whether he belongs to the owner family, and his operational area (general administration, finance, sales).\(^{29}\) Finally we add interviewers’ dummies and control for the duration of the interview to account for potential noise in the measurement of the incentive policies.

Table 2 shows that the difference in personnel policies between family firms and firms owned by disperse shareholders are robust to the inclusion of this rich set of controls. The first two columns estimate (1) for the aggregate index built as the sum of all seven policy measures. Both in Columns (1) and (2) \(\alpha^F \) is negative and significantly different from zero at conventional levels. The magnitude of the coefficient indicates that the differences between

\(^{29}\) On average, managers have 6.6 years of tenure (standard deviation is 3.6). Seniority is characteristic of the standardized managerial contract. In our sample 7% have a lower management contract, 72% a middle management contract, and 21% an upper management contract. Only 2.5% of our sample managers belong to the family who owns the firm. Finally, by construction, managers are equally split between the three operational areas.
family and dispersed shareholder firms are large: with the full set of controls the incentive index is 0.51 points smaller in family compared to dispersedly owned firms. This difference amounts to 18% of the sample mean and 30% of a standard deviation of the incentive index. The remaining columns estimate (1) for the three subcomponent of the index: bonuses, promotions, and dismissals. Throughout α^F is negative and significantly different from zero at conventional levels, indicating that family firms choose low powered incentives on all dimensions.

Table 2 also shows that high powered incentives are more likely to be offered by firms that are part of multinational corporations. None of the other controls are correlated with incentive policies. Namely, the strength of incentives is not correlated with firm size or industry sector, or with the managers’ tenure, seniority, and operational area.

While the findings are consistent with the Prediction 1, and hence with the assumption that family firms put more weight on the “amenity value” of control, ε_{ij} contains all other unobservable characteristics that differ by ownership and could be driving the results. For instance, family firms might have a better monitoring technology and hence less need to offer performance incentives. We will discuss this and other alternative explanations at the end of this section.

4.2 Incentives and Managers’ Characteristics

Next we test Prediction 2, namely that high powered incentives attract managers who are less risk averse and, conditional on risk aversion, more talented. Starting with risk aversion, we estimate the conditional correlation:

$$R_i = \eta^R I_j + X_j \sigma^R + Y_i \sigma^R + \epsilon^R_{ij}$$

where R_i is a measure of the manager risk aversion, I_j is the incentive policies index, and X_j and Y_i are the vectors of firm, manager, and interview controls defined above.

Columns (1) and (2) of Table 3 estimate (2) for our measure of the manager own risk preferences with and without the controls vectors X_j and Y_i. Recall that our risk preference measure – the probability of failure of the risky project the manager is willing to bear – is inversely related to risk aversion. Columns (1) and (2) then show that risk tolerant managers are more likely to be offered high powered incentives. The estimates of η^R are positive and significantly different from zero at conventional levels. Column (2) estimate implies that one standard deviation increase in the index is associated with a 1.75 increase in the risk preference measure, or 10% of a standard deviation of the risk tolerance measure.
It is important to note that the interpretation of the findings is qualitatively unaffected if our measure captures the manager’s risk attitudes when he takes a decision on behalf of his firm instead of his individual risk aversion parameter γ_j. If so, our measure effectively captures $b^i \gamma_j$, namely the portion of the risk taken by the firm that ends up to the manager through his incentive scheme. Note that the finding that $b^i \gamma_j$ is smaller when b^i is higher implies a fortiori that γ_j is smaller when b^i is higher.

In Columns (3) and (4) we define R_i directly as the manager’s own account of the risks he takes on behalf of the firm using our second measure of the manager’s risk attitude. The findings indicate that high powered incentives are associated with managers who take more risks. The estimates in Column (4) show that one standard deviation increase of the index is associated with a 0.17 increase in the risk measure, or 10% of its standard deviation.

As a complement to our measures of attitude towards risk, in Columns (5) and (6) we regress the manager’s father education level, as a proxy for the availability of informal insurance through his family, on the incentive index. In line with the earlier results, we find that managers whose fathers are better equipped to offer insurance are matched to firms that offer steeper incentives. One standard deviation increase in the incentive index increases the probability that the manager’s father has a college degree by 0.05 (30% of the sample mean).

The second part of Implication 2 indicates that, conditional on risk aversion, high powered incentives attract more talented managers. To test this, in Table 4 we estimate the conditional correlation:

$$T_i = \eta^T I_j + \lambda^T R_i + X_j \zeta^T + Y_i \sigma^T + \epsilon^T_{ij} \quad (3)$$

where T_i are measures of the manager’s talent, R_i is the measure of the manager’s own risk tolerance, and all the other variables are defined above. The findings in Table 4 provide broad support to the prediction that “better” managers are attracted by steep incentives. For all our measures of talent, η^T is positive and significantly different from zero at conventional levels. Namely, managers who work under high powered incentives are more likely to have a college degree, to have attained executive education, and to be “desirable,” namely to have received job offers from other firms in the last three years. Using the estimates with the full set of controls, we find that one standard deviation increase in the incentive index increases the probability that the manager has a college degree by 0.08 (16% of the unconditional mean), that he has an executive education degree by 0.10 (18% of the mean), and that he has received outside offers by 0.08 (17% of the mean). Finally, we note that there is a positive correlation between firm size and managerial talent: larger firms are more likely to hire more
skilled managers. This is in line with the prediction of a large class of manager-firm matching models, from Lucas (1978), to Rosen, (1982) and Terviö (2008).

4.3 Incentives and Managers’ Outcomes

Implication 3 links the firms’ incentive policies to managers’ effort, pay, and job satisfaction. It predicts that, holding constant their risk tolerance, managers who are offered steeper incentives work harder, receive higher fixed and variable pay, and have higher utility. To provide evidence on this, Table 5 reports estimates of the conditional correlation:

\[O_i = \eta^O I_j + \lambda^O R_i + X_j \zeta^O + Y_i \sigma^O + \epsilon_{ij}^O \]

(4)

where \(O_i \) are our measures of managers’ outcomes and all the other variables are defined above. Proxying effort by hours worked, Columns (1) and (2) show that managers who are offered steeper incentives work longer hours. The estimate of \(\eta^O \) is positive, and statistically and economically significant. One standard deviation increase in the incentive index is associated with a 0.06 increase in the probability that the manager works more than 60 hours per week, which corresponds to 16% of the sample mean.

Columns (3) to (6) show that managers who are offered steeper incentives receive higher fixed and variable pay. The estimates of \(\eta^O \) with the full set of firm and manager controls indicate that one standard deviation increase in the incentive index is associated with an increase of 2,900 euros in fixed pay and an even larger amount of 4,375 euros in variable pay. These correspond to 10% and 25% of one standard deviation in fixed and variable pay, respectively. Managers who are offered steeper incentives also receive a larger number of job benefits. The estimates in Column (8) imply that one standard deviation increase in the incentive index is associated with 0.24 more benefits, equal to 17% of a standard deviation of the number of benefits in the sample.

Finally, to measure the managers’ level of utility we ask them to report their level of satisfaction on the job. Only 5% report to be unsatisfied, while 45% is satisfied, and 50% is very satisfied. Columns (9) and (10) show that managers who are offered steeper incentives feel happier. According to the estimate in Column (10), one standard deviation increase in the incentive index is associated with a 0.06 increase in the probability that the manager reports to be very satisfied, which is as large as 12% of the sample mean.
4.4 Incentives and Firms’ Outcomes

The final step of our analysis presents evidence on Prediction 4, which suggests a positive correlation between incentive policies and firm performance. Though, as said, our data does not allow us to identify a causal relationship, we are nevertheless interested in establishing whether the data are consistent with this model prediction.

In Table 6 we estimate the conditional correlation over a repeated cross section:

\[Z_{jt} = \theta I_j + X_{jt} \vartheta + \kappa_t + \omega_{jt} \]

(5)

where \(Z_{jt} \) measures the performance of firm \(j \) in year \(t \), \(\kappa_t \) are year fixed effects, and all other variables are as defined above. We consider three alternative measures of firm performance a) labour productivity (log of sales/employees); b) profits per employee; and c) return on capital employed, all measured yearly for the period 2004 to 2007. To account for the fact that error terms \(\omega_{jt} \) are correlated within firm across years we cluster the standard errors at the firm level. Firm performance measures are obtained by matching our survey data with Amadeus, an extensive accounting database covering more than 9 million public and private companies across Europe, of which approximately 580,000 are in Italy.\(^{30}\) Once we clean the accounting data dropping the first and the bottom percentiles of the performance variables and taking into account missing observations for some items, we end up with a sample of 554 observations.\(^{31}\)

The estimation results are reported in Table 6. Two points are worth of note. First, the incentive index carries a positive coefficient significant at conventional levels for all measures of productivity. A one standard deviation increase in the incentive index is associated with a 5%, 8%, and 9% of a standard deviation increase of log-productivity, profits, and return on capital, respectively. Second, this finding is robust to controlling for ownership structure; namely it is not merely due to the incentive index capturing systematic differences in performance directly due to different ownership structures. The estimates of the coefficient on family ownership is negative throughout but only precisely estimated for labor productivity. Thus, once differences in the power of incentives are accounted for, we find no evidence of a systematic difference in profits between family and shareholder owned firms, a feature itself in line with the implications of our model with endogenous firm entry.

\(^{30}\) To match the two datasets we use the unique company identifier Codice Cerved.

\(^{31}\) The results are qualitatively similar without these cleaning procedures.
4.5 Alternative Interpretations and Other Concerns

Taken together our findings are consistent with the rich set of equilibrium correlations suggested by the model outlined in Section 2. Ownership type is correlated with incentive policies: compared to firms owned by disperse shareholders, family firms offer lower powered incentives. In turn, incentive policies are correlated with the type of managers hired in equilibrium: the strength of incentives is positively correlated with the managers risk tolerance and with their talent. Incentive policies are also correlated with managers’ effort, their compensation package, and their utility: managers who face stronger incentives work harder, receive higher fixed and variable pay, and (not obviously) are happier. Finally, stronger incentives are positively correlated with firm performance.

We stress again that we do not aim, at any stage, to identify the causal effect of ownership on incentives or of incentives on performance, as neither varies exogenously. Rather, the purpose of our empirical analysis is to show evidence on a comprehensive set of correlations that are predicted by our theoretical framework. The force of the evidence rests on the consistency of the findings across different domains. In this final section we discuss whether our findings can also be consistent with some plausible alternatives. We will show that while single findings may indeed be consistent with one or another of these stories, the entire set is not.

We first note that while the estimates of (1) are consistent with the interpretation that family firms offer weaker incentives because they put relatively more weight on the amenity value of control than non-family firms, other interpretations are possible. In fact, the error term \(\varepsilon_{ij} \) contains unobservable firm characteristics that may be correlated with both ownership and incentives.

A first concern is that both ownership and incentives are reported by the same survey respondent and might therefore be correlated through the response error. To allay this concern we use external ownership information from the AMADEUS data base and find that the estimates of (1) are qualitatively and quantitatively similar to those reported in Table 2.\(^{32}\)

A second possibility is that family firms have a better monitoring technology and hence less need to offer explicit performance incentives (Roe 2003, Mueller and Philippon 2006). This would explain the observed correlation between ownership and incentives. However, such a hypothesis implies that family firms have a comparative advantage in incentive provision,

\(^{32}\) AMADEUS contains ownership information for 552 of the 603 sample firms. Results, not reported for reasons of space, are available upon request.
which in turn would lead to three conclusions, which are all falsified in the data.

First, managers who face better monitoring should work harder. To the extent that hours worked are a proxy for effort, the estimates of (4) indicate that the opposite is true: managers who face weaker explicit incentives work less hard.33

Second, better monitoring implies higher productivity. In a competitive labor market, where firms are competing to hire managers, then more productive managers should be paid more. The estimates in Table 6 show that the opposite is true: both fixed and variable pay are lower in family firms.

Third, if effort and talent are complements in the production function (as it is standard to assume), a comparative advantage in monitoring should translate in a comparative advantage in employing talented managers. But the estimates of (3) suggest the opposite: managers who face stronger incentives are more talented.

A related hypothesis is that family firms have access to other technologies to motivate managers, e.g. non-taxable benefits, and hence need not offer explicit monetary incentives to reward performance so that effective performance is better rewarded when our measure of incentives is low. If this were the case, however, we should observe low powered incentives to be correlated with higher managerial talent and effort. The estimates of (3) and (4) indicate the opposite.

The key contribution of our paper is to show that different preferences over incentives are a matching mechanism between firms and managers. While we stress that family owned and widely held firms have different preferences over incentives because they put different weights on the non-monetary benefit of control, any reason that makes the returns to managerial effort lower in family firms would yield similar implications and would therefore be consistent with our results. A plausible alternative is that family firms happen to be in sectors where managerial effort is less relevant. To shed light on this hypothesis we estimate (1) without industry controls, then with SIC2 industry codes, and finally with SIC3 industry codes. The estimated coefficient of family ownership in the three specifications is -.57, -.53, and -.59, significantly different from zero at the 5\% level. The fact that the estimated coefficient of family ownership remains constant as we add increasingly fine industry controls rules out that family owned and widely held firms sort into different sectors. While it remains possible that firms sort within each three digit industry, for instance different types of beauty salons or dry cleaners, the extent to which the returns to managerial effort can differ within such

33 Of course, one can always argue that the number of hours and weekends worked is not a good proxy of effort.
narrowly defined groups is likely to be limited.

A second class of concerns arises because the residuals in (2), (3), and (4), contain unobservable managers’ characteristics that can generate a spurious correlation between the incentive index and the outcome of interest. This concern is particularly serious in survey-data because unobservable psychological characteristics of the respondent may lead to systematic mis-reporting.

For instance, managers who are more self-confident might be more likely to overestimate their control over their pay, hence more likely to report facing high powered incentives, and at the same time more likely to take risks and to overestimate their earnings. Unobservable self-confidence could therefore generate a spurious correlation between incentive power and risk tolerance, and between incentive power and earnings.

We begin by noting that, at a minimum, the estimated correlations cannot be entirely driven by unobservable characteristics, because, as we have seen in the previous sections, the incentive policies reported by managers are significantly correlated with a number of firm variables which we obtained from objective balance sheet information (see for instance Table 6).

Next, we can probe the robustness of our survey data directly using social security records that contain detailed information on the managers’ pay and occupation since the beginning of their careers. Hence we can estimate (4) using the social security administrative earnings data that are not affected by perception errors or other managers’ unobservable traits that may contaminate self-reported variables. Table 7 reports the estimates of:

\[Q_i = \varphi I_j + Y_i \psi + \zeta_i \]

where \(Q_i \) is the logarithm of manager \(i \)'s pay and the vector of controls \(Y_i \) includes the manager’s seniority level, whether he belongs to the owner family, his tenure in the current firm and category (general administration, finance, sales), overall tenure since his first job, the number of firms he has worked for, and the average number of weeks worked in a year, duration of the interview and interviewer dummies. For comparison, columns (1) and (2) report the estimate of (6) using pay data from the survey, whereas in Columns (3) and (4) we use pay data from the social security records. Throughout \(\varphi \) is positive and precisely estimated. Moreover, the estimates of \(\varphi \) obtained with our survey data or with the social security records are quantitatively similar, reassuring us directly on the reliability of our survey earnings and indirectly on our incentive index.

Since the social security records contain information on the managers’ entire careers, we can further refine the evidence that incentive policies are matched to the managers’ type
by regressing managerial pay in previous jobs on current incentives. Under the plausible assumption that managers’ risk attitudes and ability are stable traits one should find that a given managers matches with firms that offer similar types of incentive contracts. Consistent with this, columns (5) and (6) show that managers who currently face high powered incentives, had higher levels of pay throughout their career.

Finally, while the social security records do not contain information on the managers’ risk preferences, it allow us to measure earnings variability, which, by revealed preference, is an indicator of the risk the manager is willing to bear. To provide further evidence on the validity of our incentive measure we exploit the time variation in earnings in the social security records and test whether high powered incentives result in a higher earnings variability, as they should if the managers who face steep incentives bear more risk in equilibrium.34

We estimate the same specification as in (6) with the standard deviation of yearly pay computed over the managers’ time at the firm on the left hand side. Columns (7) to (10) show that earnings variability and the power of incentives are correlated: managers hired by firms that offer high powered incentives face more earnings variability, and have done so throughout their careers. This is additional evidence in support of our matching model: throughout his career, a bold, talented manager tends to be matched with firms that offer steep incentives.

5 Conclusions

Models of corporate control, theories of the firm, and models of entrepreneurship have each emphasized a particular type of heterogeneity: corporate control models have stressed the distinction between family and non-family firms; heterogeneity in managerial ability has been argued to be central for understanding the size and success distribution of firms; diversity in preference for risk has been taken to be a critical feature in models of occupational choice and entrepreneurship. In this paper we argue that these three fundamental sources of heterogeneity, when brought together, can shed light on the matching of firms and managers. We show theoretically that the greater weight attached by family firms to benefits from control induces a conflict of interest between family-firm owners and high-ability, risk tolerant managers. Since family firms attach higher value to control at the expense of profits while

34 In our model, earnings variability can be computed directly. The realized wage variance is

\[Var(w) = Var \left(\hat{b}'y_i \right) = \left(\hat{b}' \right)^2 \sigma^2. \]

Hence the realized standard deviation is linear in the power of the incentive contract faced by the manager.

32
Managers only value profits - the more so the more able and risk tolerant they are - if matched with a family firm high-talent and adventurous managers would be a source of internal conflict over control. Hence, to avoid it, in equilibrium family firms will offer less powered contracts than widely held firms and attract more conservative and less talented managers.

We test a rich set of equilibrium correlation that stem from our theoretical framework with endogenous matching on a dataset tailored to this scope; it uniquely features information on firms corporate ownership, on one side, managers traits on the other and, in between, detailed information on pay, promotions, and incentives design.

We find strong empirical support for the correlations predicted by the model. Family firms are shown to systematically offer low powered incentive contracts to external managers compared to widely held firms and the differences are economically large. The power of incentives is positively correlated with managers risk tolerance and measured ability and where incentives are more powerful managers exert more effort, are paid more, and are more satisfied, as implied by our theory. We also show that firms that offer high powered incentives perform better and this result holds even after controlling for the type of ownership. Though this is only a conditional correlation, it suggests a possible channel, not emphasized in the literature, through which family firms may underperform widely held ones even when they may have some direct productive advantage: their failure to offer high-powered incentives.

We discuss plausible alternatives and argue that while they may explain some of the predicted correlations, they cannot consistently account for all of them.

At a general level, our contribution highlights the role of firms’ and managers’ preferences over incentives as determinants of the match value. Our focus on equilibrium relations shows clearly the difficulties in identifying any casual effects of managerial policies on firms performance, as they arise as equilibrium phenomenon.

Our focus on corporate ownership and heterogeneity in talent and risk aversion to understand the market for managers may have more general implications when integrated with a theory of the diffusion of family firms as that developed by Burkart, Panunzi, and Shleifer (2003). Economies where family firms prevail because of institutional or cultural constraints, are also economies were the demand for highly-skilled and risk tolerant managers languishes. Individuals with these attributes will accordingly opt out of business and self-select into personally more rewarding but probably less socially productive occupations, such as political careers. It may than be that relaxing these institutional constraints may have little impact on corporate ownership and control (and on the average size of the firm) as family-firm owners may not find enough attractive managers to manage their firms.
References

6 Appendix: Formal Result and Proofs

The model presented above yields the following equilibrium characterization:35

Proposition 1 Suppose that \(\gamma \) is sufficiently small. In equilibrium, N-firms and F-firms use contracts with slopes

\[
\hat{b}_N (\gamma_j) = \frac{\phi_N}{1 + \gamma_j \sigma^2}
\]

\[
\hat{b}_F (\gamma_j) = \frac{\phi_F}{1 + \gamma_j \sigma^2}
\]

Manager \(j \) is matched with an N-firm if and only if

\[
\theta_j \geq \frac{2(\pi_N - \pi_F)}{\phi_N^2 - \phi_F^2} (1 + \gamma_j \sigma^2)
\]

and, if not, he is matched with an F-firm if and only if

\[
\theta_j \geq \frac{2\pi_F}{\phi_F^2} (1 + \gamma_j \sigma^2)
\]

where

\[
\pi_F = \frac{\phi_F^2 (2 + \gamma \sigma^2)}{D} \hat{\theta} \hat{\gamma}
\]

\[
\pi_N = \frac{\phi_N^2 (2 + \gamma \sigma^2)}{D} \hat{\gamma} + \frac{\phi_F^2 (\phi_N^2 - \phi_F^2)}{D} \hat{\theta} \hat{\gamma}
\]

With

\[
D = (\phi_F^2 + \phi_N^2) (2 + \gamma \sigma^2) \hat{\gamma} + (2 + \gamma \sigma^2)^2 \hat{\gamma}^2 + \phi_F^2 (\phi_N^2 - \phi_F^2)
\]

Proof. See Appendix. ■

Equation (7) is the condition that determines the boundary between the N-region and the F-region. Similarly, (8) describes the boundary between the F-region and the unemployment region. The proposition also provides precise expressions for the management-related equilibrium payoffs \(\pi_F \) and \(\pi_N \), which in turn pin down the region boundaries. It is immediately visible that the management-related payoff is greater in N-firms than in F-firms, which – as we discussed above – is due to the comparative advantage that N-firms have when it comes to incentive provision.

The proof of Proposition 1 follows the informal discussion above, with the addition of a somewhat laborious computation of the actual fixed point of the matching problem.

35 The technical condition that \(\gamma \) is sufficiently small (i.e. there is more heterogeneity in talent than in risk aversion) guarantees that the regions depicted in figure 1 are trapezoids rather than triangles. If the condition fails, one would have a different characterization but with similar properties.
6.1 Proof of proposition refp:equilibrium

Given the CARA assumption, if \(w \) is normally distributed, the manager’s expected payoff can be written as

\[
E[u] = E[w] - \frac{1}{2} \gamma V[w] - \frac{1}{2} x^2.
\]

Given \(a \) and \(b \), the manager chooses \(x \) to maximize \(E(u) \):

\[
\dot{x} = \arg \max_x E[w] - \frac{1}{2} \gamma V[w] - \frac{1}{2} x^2
\]

\[
= \arg \max_x a + bE[y] - \frac{1}{2} b^2 \gamma V[y] - \frac{1}{2} x^2
\]

\[
= \arg \max_x a + bE[\sqrt{\theta_j} (x + \varepsilon)] - \frac{1}{2} b^2 \gamma V[\sqrt{\theta_j} (x + \varepsilon)] - \frac{1}{2} x^2
\]

\[
= \arg \max_x a + b\sqrt{\theta_j} x - \frac{1}{2} b^2 \gamma \theta_j \sigma^2 - \frac{1}{2} x^2
\]

The first-order condition on \(x \) yields

\[
\dot{x}_j = b^i \sqrt{\theta_j}.
\]

The manager’s expected payoff is hence

\[
E[U_j] = a^i + b^i \sqrt{\theta_j} \dot{x} - \frac{1}{2} (b^i)^2 \gamma \theta_j \sigma^2 - \frac{1}{2} \dot{x}_j^2
\]

\[
= a^i + (b^i)^2 \theta_j - \frac{1}{2} (b^i)^2 \gamma \theta_j \sigma^2 - \frac{1}{2} (b^i)^2 \theta_j
\]

The expected payoff for a firm that employs manager \(j \) at wage \((a, b)\) is

\[
E[V^i] = E[y_j - w_j^i + h^g - k^i] + (1 - \phi_g) (\Gamma - b^i \theta_j)
\]

\[
= b^i \theta_j - a^i - (b^i)^2 \theta_j + h^g - k^i + (1 - \phi_g) (\Gamma - b^i \theta_j)
\]

Let \(S^i_j = E[U_j] + E[V^i] \) denote the total surplus generated by the match between firm \(i \) and manager \(j \). As the fixed component can be used to distribute the surplus between the firm and the worker, it is easy to see that the firm will always want to maximize surplus and pay the manager her reservation wage (determined in equilibrium by what he could get if he worked for another firm).

The surplus is

\[
S^i_j = E[U_j] + E[V^i]
\]

\[
= \left(\phi_g b^i - \frac{1}{2} (1 + \gamma \sigma^2) (b^i)^2 \right) \theta_j + (h^g - k^i + (1 - \phi_g) \Gamma)
\]

Differentiating the surplus function with respect to \(b^i \) we obtain the optimal contract slope:

\[
b^i = \frac{\phi_g}{1 + \gamma_j \sigma^2}
\]
Hence, the maximal surplus is

\[S_j^i = \left(\phi_g \sigma^2 \gamma_j + 1 \right)^2 \left(\frac{\phi_g}{1 + \gamma_j \sigma^2} \right) \frac{1}{2} \left(1 + \gamma_j \sigma^2 \right)^2 \theta_j + \left(h^q - k^i + (1 - \phi_g) \Gamma \right) \]

\[= \frac{1}{2} \left(\frac{\phi_g^2}{1 + \gamma_j \sigma^2} \right) \theta_j + \left(h^q - k^i + (1 - \phi_g) \Gamma \right) \]

Restrict attention to the first term of \(S_j^i \), which can be thought of as the management-related component of the match surplus. It depends on \(\phi_g \). We let:

\[S_F (\theta_j, \gamma_j) = \frac{\phi_F^2}{2} \left(1 + \gamma_j \sigma^2 \right)^2 \theta_j \]

\[S_N (\theta_j, \gamma_j) = \frac{\phi_N^2}{2} \left(1 + \gamma_j \sigma^2 \right)^2 \theta_j \]

Next, we examine match stability. Note that, for all \(\theta_j \) and \(\gamma_j \),

\[S_N (\theta_j, \gamma_j) > S_F (\theta_j, \gamma_j) \]

Also, given \(\theta_j \geq \theta_k \) and \(\gamma_j \leq \gamma_k \) (with at least a strict inequality), the following three inequalities hold

\[S_N (\theta_j, \gamma_j) > S_N (\theta_k, \gamma_k) \]

\[S_F (\theta_j, \gamma_j) > S_F (\theta_k, \gamma_k) \]

\[S_N (\theta_j, \gamma_j) - S_F (\theta_j, \gamma_j) > S_N (\theta_k, \gamma_k) - S_F (\theta_k, \gamma_k) \]

Given two managers \(j \) and \(k \) with \(\theta_j > \theta_k \) and \(\gamma_j < \gamma_k \), the following three statements are always false (because they contradict, respectively, one of the three inequalities just stated – a new match could be formed with a higher surplus):

- Manager \(k \) works for an \(N \)-firm and manager \(j \) is unemployed
- Manager \(k \) works for an \(F \)-firm and manager \(j \) is unemployed
- Manager \(k \) works for an \(N \)-firm and manager \(j \) works for an \(F \)-firm

This restricts the shape of the regions of manager types that work for \(N, F \), or are unemployed. It is easy to see that if \(\bar{\gamma} \) is sufficiently small, the regions must be trapezes, as in figure 1.

Note that we can write

\[S_F (\theta_j, \gamma_j) = E [U_j] + \phi_F b^i \theta_j - a^i - \left(b^i \right)^2 \theta_j \]

\[S_N (\theta_j, \gamma_j) = E [U_j] + \phi_N b^i \theta_j - a^i - \left(b^i \right)^2 \theta_j \]
Perfect competition among firms means that all F-firms must have the same management-related payoff

$$\pi_F = \phi_F b^i \theta_j - a^i - (b^i)^2 \theta_j$$

and all N-firms must have the same management-related payoff

$$\pi_N = \phi_N b^i \theta_j - a^i - (b^i)^2 \theta_j$$

A manager j who is employed by an F-firm receives expected utility

$$u_j = S_F (\theta_j, \gamma_j) - \pi_F$$

and every manager j that is employed by an N-firm receives utility

$$u_j = S_N (\theta_j, \gamma_j) - \pi_N$$

The managers on the line that separates the F region from the unemployment region receive their outside option: zero. Hence all the surplus goes to the firm

$$S_F (\theta_j, \gamma_j) = \pi_F$$

The managers on the line that separates the F region and the N region are indifferent between working for an N-firm and an F-firm. Hence

$$S_N (\theta_j, \gamma_j) - \pi_N = S_F (\theta_j, \gamma_j) - \pi_F$$

These two indifference condition can be applied to the extreme cases: $\gamma_j = 0$ and $\gamma_j = \bar{\gamma}$, yielding

$$S_F (t_F, 0) = \pi_F$$

$$S_F (s_F, \bar{\gamma}) = \pi_F$$

$$S_N (t_N, 0) - S_F (t_N, 0) = \pi_N - \pi_F$$

$$S_N (s_N, \bar{\gamma}) - S_F (s_N, \bar{\gamma}) = \pi_N - \pi_F$$

We can re-write the first four equations as

$$\frac{1}{2} \phi^2_F t_F = \pi_F$$

$$\frac{1}{2} \phi^2_F s_F = \pi_F$$

$$\frac{1}{2} \phi^2_N t_N - \frac{1}{2} \phi^2_F t_N = \pi_N - \pi_F$$

$$\frac{1}{2} \phi^2_N s_N - \frac{1}{2} \phi^2_F s_N = \pi_N - \pi_F$$
That is

\[t_F = \frac{2\pi_F}{\phi^2_F} \]

\[s_F = \frac{2\pi_F}{\phi^2_F} (1 + \tilde{\gamma} \sigma^2) \]

\[t_N = \frac{2(\pi_N - \pi_F)}{\phi^2_N - \phi^2_F} \]

\[s_N = \frac{2(\pi_N - \pi_F)}{\phi^2_N - \phi^2_F} (1 + \tilde{\gamma} \sigma^2) \]

The area of the regions (trapezoids) correspond to the mass of firms in business. Hence

\[\frac{(t_F + s_F) \tilde{\gamma}}{2} = \tilde{\theta} \gamma - n_F - n_N \]

\[\frac{(t_N + s_N) \tilde{\gamma}}{2} = \tilde{\theta} \gamma - n_N \]

Then

\[\frac{\pi_F}{\phi^2_F} (2 + \tilde{\gamma} \sigma^2) \tilde{\gamma} = \tilde{\theta} \gamma - n_N - n_F \quad (9) \]

\[\frac{\pi_N - \pi_F}{\phi^2_N - \phi^2_F} (2 + \tilde{\gamma} \sigma^2) \tilde{\gamma} = \tilde{\theta} \gamma - n_N \quad (10) \]

Finally, the entry condition on \(F \)-firms implies that the expected payoff of the least profitable \(F \)-firm (let’s call it \(\bar{\tilde{\gamma}} \)) is zero:

\[E \left[V^i \right] = E \left[y_j - w_j + h_F - k^i \right] + (1 - \phi_F) \left(\Gamma_F - b^i \theta_j \right) \]

\[= b^i \theta_j - a^i - (b^i)^2 \theta_j + h_F - k^i + (1 - \phi_F) \left(\Gamma_F - b^i \theta_j \right) \]

\[= \pi_F + h_F - k^i + (1 - \phi_F) \Gamma_F = 0 \]

implying

\[k^i = \pi_F + h_F + (1 - \phi_F) \Gamma_F \]

As there are \(k^i \) \(F \)-firms with a lower \(k \), the mass of active \(F \)-firms is

\[n_F = \pi_F + h_F + (1 - \phi_F) \Gamma_F \]

Similarly, the mass of active \(F \)-firms is

\[n_F = \pi_F \]

Hence (9) and (10) become

\[\pi_F (2 + \tilde{\gamma} \sigma^2) \tilde{\gamma} = \phi^2_F (\tilde{\theta} \gamma - \pi_N + h_N + (1 - \phi_N) \Gamma - \pi_F - h_F - (1 - \phi_F) \Gamma) \]

\[(\pi_N - \pi_F) (2 + \tilde{\gamma} \sigma^2) \tilde{\gamma} = \left(\phi^2_N - \phi^2_F \right) (\tilde{\theta} \gamma - \pi_N) \]
Let $G_F = h_F + (1 - \phi_F) \Gamma_F$, $H = (2 + \gamma \sigma^2) \tilde{\gamma}$, $F \equiv \phi_F^2$ and $N \equiv \phi_F^2 - \phi_N^2$. Then,

$$\pi_F H = F \left(\theta \tilde{\gamma} - \pi_N - \pi_F - G_F \right)$$

$$(\pi_N - \pi_F) H = N \left(\theta \tilde{\gamma} - \pi_N \right)$$

with solution

$$\pi_F = \frac{F \left(H \theta \gamma - (H + N) G_F \right)}{2F H + F N + H N + H^2}$$

$$\pi_N = \frac{F H \theta \gamma + F N \theta \gamma + H N \theta \gamma - F H G_F}{2F H + F N + H N + H^2}$$

which can be written as

$$\pi_F = \frac{\phi_F^2 (2 + \gamma \sigma^2) \tilde{\gamma} - (2 + \gamma \sigma^2 + \phi_N^2 - \phi_F^2) G_F}{D} \theta \tilde{\gamma}$$

$$\pi_N = \frac{\phi_F^2 (2 + \gamma \sigma^2) \tilde{\gamma} \theta \tilde{\gamma} + \phi_F^2 (\phi_N^2 - \phi_F^2) \tilde{\gamma} + (2 + \gamma \sigma^2) \tilde{\gamma} (\phi_N^2 - \phi_F^2) \tilde{\gamma} - \phi_F^2 (2 + \gamma \sigma^2) \tilde{\gamma} G_F}{D} \theta \tilde{\gamma} - \phi_F^2 (2 + \gamma \sigma^2) \tilde{\gamma} G_F$$

With

$$D = 2F H + F N + H N + H^2$$

$$= 2\phi_F^2 H + \phi_F^2 (\phi_N^2 - \phi_F^2) + H (\phi_N^2 - \phi_F^2) + H^2$$

$$= \phi_F^2 H + \phi_F^2 (\phi_N^2 - \phi_F^2) + \phi_N^2 H + H^2$$

$$= \phi_F^2 (2 + \gamma \sigma^2) \tilde{\gamma} + \phi_N^2 (2 + \gamma \sigma^2) \tilde{\gamma} + (2 + \gamma \sigma^2) \tilde{\gamma}^2 + \phi_F^2 (\phi_N^2 - \phi_F^2)$$

$$= (\phi_F^2 + \phi_N^2) (2 + \gamma \sigma^2) \tilde{\gamma} + (2 + \gamma \sigma^2) \tilde{\gamma}^2 + \phi_F^2 (\phi_N^2 - \phi_F^2)$$

6.2 Proof of implication 2

Manager j is characterized by talent θ_j and risk aversion γ_j. An increase in the risk-aversion coefficient γ_j leads to a decrease in

$$\hat{b}^j (\gamma_j) = \frac{\phi_g}{1 + \gamma_j \sigma^2}$$

both because $\frac{\phi_g}{1 + \gamma_j \sigma^2}$ is decreasing in γ_j and because, for γ_j large enough, the value of $\hat{b}^j (\gamma_j)$ jumps from $\frac{\phi_N}{1 + \gamma_j \sigma^2}$ down to $\frac{\phi_F}{1 + \gamma_j \sigma^2}$.

The contract slope \hat{b}^j is non-decreasing in θ_j: while $\frac{\phi_g}{1 + \gamma_j \sigma^2}$ does not depend on θ_j, for θ_j large enough, the value of $\hat{b}^j (\gamma_j)$ jumps from $\frac{\phi_F}{1 + \gamma_j \sigma^2}$ up to $\frac{\phi_N}{1 + \gamma_j \sigma^2}$.

43
6.3 Proof of implication 3

For (a), note that the manager’s effort is \(\hat{x}_j = b^i \sqrt{\theta_j} \). Hence, it is positively correlated to \(b^i \) both directly and indirectly (because, by implication 2 the contract slope is positively correlated with \(\theta_j \)).

Part (b) is immediate as the (expected) variable compensation is \(b^i \hat{x}_j \). Hence, it is increasing in \(b^i \) both directly and indirectly (through \(\hat{x}_j \), as per (a)).

It is useful to show (d) before (c). The proof relies on a revealed preference argument. Consider two employed managers with the same risk-aversion coefficient \(\gamma \), but different talent levels: \(\theta'' > \theta' \). In equilibrium, the first manager has contract \((a'',b'')\) while the second receives \((a',b')\). We already know that \(b'' \geq b' \), but we cannot say anything about the fixed part.

The two managers have respectively expected utilities

\[
U'' = a'' + (b'')^2 \theta'' - \frac{1}{2} (b'')^2 \gamma \theta'' \sigma^2 - \frac{1}{2} (b'')^2 \theta''
\]

\[
U' = a' + (b')^2 \theta' - \frac{1}{2} (b')^2 \gamma \theta' \sigma^2 - \frac{1}{2} (b')^2 \theta'
\]

If the \(\theta'' \)-manager were offered contract \((a',b')\) and exerted the same effort as the other manager, he would still have a higher utility because he is more productive. By a revealed preference argument, if the manager chooses to work for a firm that offers contract \((a'',b'')\) and chooses a higher level of effort, he must get a utility level that is at least as high.

For (c), consider the same two managers as in point (d) and note that \(U'' \geq U' \) implies that the difference between the expected total compensation of the two managers can be written as:

\[
\left(a'' + (b'')^2 \theta'' \right) - \left(a' + (b')^2 \theta' \right) \geq \left(\frac{1}{2} (b'')^2 \gamma \theta'' \sigma^2 + \frac{1}{2} (b'')^2 \theta'' \right) - \left(\frac{1}{2} (b')^2 \gamma \theta' \sigma^2 + \frac{1}{2} (b')^2 \theta' \right)
\]

\[
= \frac{1}{2} (\gamma \sigma^2 + 1) \left((b'')^2 \theta'' - (b')^2 \theta' \right)
\]

\[
\geq 0
\]

6.4 Proof of implication 4

As we saw in the proof of proposition 1, in equilibrium all \(F \)-firms have the same management-related payoff \(\pi_F \) and all \(N \)-firms have the same management-related payoff \(\pi_N \).

Recall that management-related payoff is defined as

\[
\pi_g = \phi_g b^i \theta_j - a^i - (b^i)^2 \theta_j
\]
Hence, if π_g is constant and the direct-control part of the payoff, namely $-(b^j)^2 \theta_j$, becomes more negative, the profit part $\phi_g b^j \theta_j - a^j$ must increase.
Table 1 - Summary Statistics

<table>
<thead>
<tr>
<th>Panel A - Firm Characteristics</th>
<th>Obs</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownership: Family of Founder</td>
<td>603</td>
<td>0.47</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Ownership: Widely Held</td>
<td>603</td>
<td>0.30</td>
<td>0</td>
<td>0.46</td>
</tr>
<tr>
<td>Ownership: Other</td>
<td>603</td>
<td>0.23</td>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>Size: between 50 and 100 employees</td>
<td>603</td>
<td>0.20</td>
<td>0</td>
<td>0.27</td>
</tr>
<tr>
<td>Size: over 100 employees</td>
<td>603</td>
<td>0.41</td>
<td>0</td>
<td>0.49</td>
</tr>
<tr>
<td>Multinational (+1 if firm is a subsidiary of a multinational)</td>
<td>603</td>
<td>0.58</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Productivity (x 1000 USD)</td>
<td>547</td>
<td>1720.14</td>
<td>895.80</td>
<td>2310.40</td>
</tr>
<tr>
<td>Profits (x 1000 USD)</td>
<td>561</td>
<td>74.90</td>
<td>32.29</td>
<td>169.80</td>
</tr>
<tr>
<td>ROCE</td>
<td>541</td>
<td>17.04</td>
<td>15.71</td>
<td>23.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B - Incentive Policies</th>
<th>Obs</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonus depend on team or individual performance (bonus 1)</td>
<td>603</td>
<td>0.50</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td>Bonus based on formal appraisals (bonus 2)</td>
<td>603</td>
<td>0.33</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>The firm has fast tracks for star performers (promotion 1)</td>
<td>603</td>
<td>0.37</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>Promotions depend on performance (promotion 2)</td>
<td>603</td>
<td>0.74</td>
<td>1</td>
<td>0.44</td>
</tr>
<tr>
<td>Promotions based on formal appraisals (promotion 3)</td>
<td>603</td>
<td>0.34</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>Managers fired in the last 3 years due to poor performance (firing 1)</td>
<td>603</td>
<td>0.05</td>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>Decisions to dismiss based on formal appraisal (firing 2)</td>
<td>603</td>
<td>0.23</td>
<td>0</td>
<td>0.42</td>
</tr>
<tr>
<td>Incentive Index (Sum across variables listed in Panel B)</td>
<td>603</td>
<td>2.56</td>
<td>2.00</td>
<td>1.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C - Managers Characteristics</th>
<th>Obs</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>603</td>
<td>46.98</td>
<td>46</td>
<td>7.12</td>
</tr>
<tr>
<td>Gender (1=mens)</td>
<td>603</td>
<td>0.90</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>Risk and Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk preferences (investment lottery)</td>
<td>603</td>
<td>20.36</td>
<td>20</td>
<td>18.94</td>
</tr>
<tr>
<td>Risk choices</td>
<td>603</td>
<td>5.70</td>
<td>6</td>
<td>1.74</td>
</tr>
<tr>
<td>Father has College Degree</td>
<td>603</td>
<td>0.16</td>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>Talent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Degree</td>
<td>603</td>
<td>0.50</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td>Executive Education</td>
<td>603</td>
<td>0.56</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td>Manager has received offers over past 3 years</td>
<td>603</td>
<td>0.71</td>
<td>1</td>
<td>0.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D - Managers Outcomes</th>
<th>Obs</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works 60 or more hours per week</td>
<td>603</td>
<td>0.37</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>Monthly weekends worked</td>
<td>603</td>
<td>1.19</td>
<td>1</td>
<td>1.10</td>
</tr>
<tr>
<td>Fixed pay (Euros x Week)</td>
<td>603</td>
<td>1903.70</td>
<td>1682.7</td>
<td>568.2</td>
</tr>
<tr>
<td>Variable pay (Euros x Week)</td>
<td>603</td>
<td>299.60</td>
<td>216.3</td>
<td>325.6</td>
</tr>
<tr>
<td>Number of benefits</td>
<td>603</td>
<td>4.20</td>
<td>4</td>
<td>1.38</td>
</tr>
<tr>
<td>Manager is very satisfied about his job (+1 if yes)</td>
<td>603</td>
<td>0.50</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>from Social Security Records</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pay, current firm, last available year (Euros x Week)</td>
<td>572</td>
<td>1830.10</td>
<td>1658.7</td>
<td>877.30</td>
</tr>
<tr>
<td>Average total pay, all past firms and years (Euros x Week)</td>
<td>527</td>
<td>588.90</td>
<td>521.9</td>
<td>324.3</td>
</tr>
<tr>
<td>Yearly standard deviation of pay, current firm</td>
<td>419</td>
<td>443.30</td>
<td>333.9</td>
<td>526.88</td>
</tr>
<tr>
<td>Average yearly standard deviation of pay, all firms and years</td>
<td>465</td>
<td>221.69</td>
<td>159.7</td>
<td>282.46</td>
</tr>
</tbody>
</table>

Notes: All variables are from the Managerialia survey, with the exception of Productivity, Profits and ROCE, from AMADEUS and Compensation data in Panel D from INPS (Social Security) records. Other ownership includes: government owned, cooperatives, manager owned and firms owned by a group of private individuals. Productivity is defined as operating revenues over the number of employees. Profits are defined as earnings before interests and taxation over the number of employees. ROCE is defined as operating income over capital employed. The number of observations for Social Security records variables is smaller due to missing values. The last available year is 2004 for 79% of the sample, 2005 for 2.5%, 2006 for 2.5% and 2007 for the remaining 20%. The average fixed compensation is computed over all years and firms the manager has worked for (including non-managerial positions). The standard deviation is computed only if the manager has worked for at least 3 years in the same firm.
Table 2 - Firm Ownership and Personnel Policies

<table>
<thead>
<tr>
<th>Family or Founder Ownership</th>
<th>Incentive Index</th>
<th>Bonus Index</th>
<th>Promotions Index</th>
<th>Dismissal Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.640***</td>
<td>-0.527***</td>
<td>-0.272***</td>
<td>-0.178***</td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
<td>(0.186)</td>
<td>(0.072)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>Other Ownership</td>
<td>-0.203</td>
<td>-0.240</td>
<td>-0.063</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.194)</td>
<td>(0.216)</td>
<td>(0.085)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>MNE</td>
<td>0.836***</td>
<td>0.417***</td>
<td>0.309***</td>
<td>0.110**</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.072)</td>
<td>(0.086)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>-0.220</td>
<td>-0.060</td>
<td>-0.059</td>
<td>-0.102*</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>(0.090)</td>
<td>(0.107)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>100+ employees</td>
<td>-0.035</td>
<td>0.018</td>
<td>0.027</td>
<td>-0.080</td>
</tr>
<tr>
<td></td>
<td>(0.172)</td>
<td>(0.077)</td>
<td>(0.092)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.910***</td>
<td>0.196</td>
<td>-0.303</td>
<td>1.590***</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(2.556)</td>
<td>(1.149)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Observations</td>
<td>603</td>
<td>603</td>
<td>603</td>
<td>603</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parenthesis. *** (**) (*) indicates significance at the 1%, 5% and 10% level, respectively. The incentive index is the sum of all seven incentive policies listed in Panel B, Table 1. The bonus index is the sum of bonus1 and bonus2, as defined in Table 1. The promotions index is the sum of promotion1, promotion2, promotion3. The dismissal index is the sum of firing1, firing2. Controls include the manager’s seniority level, whether he belongs to the owner family, his tenure and category (general administration, finance, sales), indicators for the firm’s SIC 2 codes, duration of the interview and interviewer dummies.

Table 3- Incentives and Risk

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive Index</td>
<td>0.868***</td>
<td>0.989***</td>
</tr>
<tr>
<td></td>
<td>(0.423)</td>
<td>(0.481)</td>
</tr>
<tr>
<td>MNE</td>
<td>-0.157</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(1.852)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>-0.686</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td>(2.187)</td>
<td>(0.209)</td>
</tr>
<tr>
<td>100+ employees</td>
<td>2.407</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(2.200)</td>
<td>(0.186)</td>
</tr>
<tr>
<td>Constant</td>
<td>18.141***</td>
<td>67.973***</td>
</tr>
<tr>
<td></td>
<td>(1.317)</td>
<td>(8.970)</td>
</tr>
<tr>
<td>Observations</td>
<td>603</td>
<td>603</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parenthesis. *** (**) (*) indicates significance at the 1%, 5% and 10% level, respectively. Controls include the manager’s seniority level, whether he belongs to the owner family, his tenure and category (general administration, finance, sales), indicators for the firm’s SIC 2 codes, duration of the interview and interviewer dummies. Risk preference is the probability of failure the manager is willing to bear to choose a risky investment project that yields 10 million euros if successful and 0 if not, instead of a safe project that yields 1 million with certainty. Risk choices is the self-reported riskiness of investment choices on behalf of the firm over a 1-10 scale. Father’s Education equals 1 if the manager’s father has a college degree, 0 otherwise.
Table 4 - Incentives and Manager Talent

<table>
<thead>
<tr>
<th>Incentive Index</th>
<th>Manager College Degree (1 if yes)</th>
<th>Manager Executive Education (1 if yes)</th>
<th>Desirability (1 if Manager has received job offers in past three years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.045*** (0.012)</td>
<td>0.043*** (0.013)</td>
<td>0.060*** (0.011) 0.050*** (0.013) 0.050*** (0.010) 0.043*** (0.012)</td>
</tr>
<tr>
<td>Risk Preference</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.001)</td>
<td>0.001 (0.001) 0.002*** (0.001) 0.002*** (0.001) 0.002*** (0.001)</td>
</tr>
<tr>
<td>MNE</td>
<td>-0.013 (0.047)</td>
<td>0.118** (0.048)</td>
<td>0.014 (0.044)</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>0.060 (0.060)</td>
<td>0.098 (0.061)</td>
<td>-0.003 (0.057)</td>
</tr>
<tr>
<td>100+ employees</td>
<td>0.100* (0.052)</td>
<td>0.117** (0.051)</td>
<td>0.063 (0.045)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.360*** (0.040)</td>
<td>0.380*** (0.040)</td>
<td>0.072 (0.038) 0.532*** (0.038) 1.440*** (0.0317)</td>
</tr>
<tr>
<td>Observations</td>
<td>603 603 603 603 603 603 603 603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>No Yes No Yes No Yes No Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parenthesis. *** (**) (*) indicates significance at the 1%, 5%, and 10% level, respectively. Controls include the manager’s seniority level, whether he belongs to the owner family, his tenure and category (general administration, finance, sales) indicators for the firm’s SIC 2 codes, duration of the interview and interviewer dummies. Risk preference is the probability of failure the manager is willing to bear to choose a risky investment project that yields 10 million euros if successful and 0 if not, instead of a safe project that yields 1 million with certainty.

Table 5 - Incentives and Manager Behavior

<table>
<thead>
<tr>
<th>Incentive Index</th>
<th>Works more than 60 hours per week</th>
<th>Fixed Pay</th>
<th>Variable Pay</th>
<th>Number of Benefits</th>
<th>Job satisfaction (1 if very happy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.036*** (0.011)</td>
<td>0.035***</td>
<td>0.043***</td>
<td>0.033***</td>
<td>0.056*** 0.048*** 0.160*** 0.136*** 0.030*** 0.035***</td>
</tr>
<tr>
<td>Risk Preference</td>
<td>-0.000 (0.001)</td>
<td>-0.000</td>
<td>0.002</td>
<td>0.003**</td>
<td>0.003*** 0.003*** 0.002 0.002 0.001 0.000</td>
</tr>
<tr>
<td>MNE</td>
<td>-0.060 (0.045)</td>
<td>0.018</td>
<td>0.093**</td>
<td>0.208</td>
<td>-0.020</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>-0.042 (0.050)</td>
<td>0.144**</td>
<td>0.036</td>
<td>0.093</td>
<td>-0.028</td>
</tr>
<tr>
<td>100+ employees</td>
<td>0.093* (0.050)</td>
<td>0.159***</td>
<td>0.009</td>
<td>0.056</td>
<td>-0.034</td>
</tr>
<tr>
<td>Constant</td>
<td>0.285*** (0.039)</td>
<td>-0.263</td>
<td>1.752***</td>
<td>0.955***</td>
<td>0.102*** 0.154 3.745*** 7.099*** 0.401*** 1.498***</td>
</tr>
<tr>
<td>Observations</td>
<td>603 603 603 603 603 603 603 603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>No Yes No No Yes No Yes No Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parenthesis. *** (**) (*) indicates significance at the 1%, 5%, and 10% level, respectively. Controls include the manager’s seniority level, whether he belongs to the owner family, his tenure and category (general administration, finance, sales) indicators for the firm’s SIC 2 codes, duration of the interview and interviewer dummies. Risk preference is the probability of failure the manager is willing to bear to choose a risky investment project that yields 10 million euros if successful and 0 if not, instead of a safe project that yields 1 million with certainty.
Table 6- Incentives, Ownership and Performance

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Ln(Sales/Employees)</th>
<th>Profits/Employees</th>
<th>Roe</th>
<th>Ln(Sales/Employees)</th>
<th>Profits/Employees</th>
<th>Roe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive Index</td>
<td>0.044* (0.023)</td>
<td>7.606** (3.717)</td>
<td>1.185** (0.574)</td>
<td>0.038* (0.023)</td>
<td>7.287** (3.705)</td>
<td>1.125** (0.575)</td>
</tr>
<tr>
<td>Family or Founder Ownership</td>
<td>-0.221** (0.100)</td>
<td>-15.406 (13.051)</td>
<td>0.956 (2.191)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Ownership</td>
<td>-0.082 (0.121)</td>
<td>-26.486* (14.816)</td>
<td>-1.239 (2.993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNE</td>
<td>0.059 (0.080)</td>
<td>12.536 (10.578)</td>
<td>-3.074* (1.764)</td>
<td>-0.011 (0.083)</td>
<td>8.677 (10.634)</td>
<td>-2.709 (1.817)</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>0.153 (0.108)</td>
<td>42.616*** (13.162)</td>
<td>6.934*** (2.334)</td>
<td>0.154 (0.108)</td>
<td>43.345*** (13.133)</td>
<td>6.969*** (2.328)</td>
</tr>
<tr>
<td>100+ employees</td>
<td>0.746*** (0.119)</td>
<td>77.305*** (19.358)</td>
<td>5.461** (2.427)</td>
<td>0.727*** (0.118)</td>
<td>77.194*** (19.311)</td>
<td>5.629** (2.436)</td>
</tr>
<tr>
<td>Constant</td>
<td>8.827*** (0.365)</td>
<td>65.308 (50.027)</td>
<td>-12.018 (7.626)</td>
<td>8.911*** (0.356)</td>
<td>65.505 (50.376)</td>
<td>-11.970 (7.833)</td>
</tr>
<tr>
<td>Observations</td>
<td>1813</td>
<td>1851</td>
<td>1792</td>
<td>1813</td>
<td>1851</td>
<td>1792</td>
</tr>
<tr>
<td>Number of firms</td>
<td>557</td>
<td>568</td>
<td>567</td>
<td>557</td>
<td>568</td>
<td>567</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors clustered at the firm level in parenthesis. *** (**) (*) indicates significance at the 1%, 5% and 10% level, respectively. The number of observations varies due to the different availability of the performance measures. In all columns we drop the top and bottom 1% firms ranked by performance. Controls include indicators for the firm’s SIC 2 codes, duration of the interview and interviewer dummies.
Table 7: Incentives and Managerial Pay (Social Security Data)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ln(Pay) Survey Data</td>
<td>ln(Pay) Social Security Records</td>
<td>Current Firm-Last Available Year</td>
<td>Average over past jobs</td>
<td>Current Firm</td>
<td>Average over past jobs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentive Index</td>
<td>0.050***</td>
<td>0.049***</td>
<td>0.045***</td>
<td>0.044***</td>
<td>0.048***</td>
<td>0.037***</td>
<td>0.071***</td>
<td>0.055**</td>
<td>0.059**</td>
<td>0.060**</td>
</tr>
<tr>
<td>MNE</td>
<td>0.027</td>
<td>0.045</td>
<td>0.045</td>
<td>0.099*</td>
<td>0.046</td>
<td>0.075</td>
<td>0.085</td>
<td>0.091</td>
<td>0.094</td>
<td>0.029</td>
</tr>
<tr>
<td>50-100 employees</td>
<td>0.083**</td>
<td>0.116**</td>
<td>0.045</td>
<td>0.075</td>
<td>0.046</td>
<td>0.075</td>
<td>0.085</td>
<td>0.112</td>
<td>0.118</td>
<td>0.031</td>
</tr>
<tr>
<td>100+ employees</td>
<td>0.097***</td>
<td>0.056</td>
<td>0.056</td>
<td>0.043</td>
<td>0.056</td>
<td>0.075</td>
<td>0.059</td>
<td>0.098</td>
<td>0.101</td>
<td>0.067</td>
</tr>
<tr>
<td>Observations</td>
<td>572</td>
<td>572</td>
<td>572</td>
<td>572</td>
<td>527</td>
<td>527</td>
<td>419</td>
<td>419</td>
<td>465</td>
<td>465</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parenthesis. *** (** *) indicates significance at the 1%, 5%, and 10% level, respectively. The number of observations is smaller due to missing values in the Social Security records. The last available year is 2004 for 75% of the sample, 2005 for 2.5%, 2006 for 2.5%, and 2007 for the remaining 20%. The average duration is 2.5 years. All standard deviations are computed only if the manager has worked for at least 3 years in the same firm. Controls include: the manager’s seniority level, whether he belongs to the owner family of the current firm, his tenure in the current firm and category (general administration, finance, sales), overall tenure since his first job, the number of firms he has worked for, and the average number of weeks worked in a year, duration of the interview and interviewer dummies.
APPENDIX TABLES- NOT FOR PUBLICATION

Table A1 Sample Selection

<table>
<thead>
<tr>
<th>Panel A: Firm Characteristics</th>
<th>Probit Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable equals 1 if the firm is in the sample, 0 otherwise</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (Employment)</td>
<td>-0.032 (0.024)</td>
<td>-0.041 (0.026)</td>
<td>-0.034 (0.024)</td>
<td>-0.033 (0.024)</td>
<td></td>
</tr>
<tr>
<td>Log (Sales/Employees)</td>
<td>-0.027 (0.033)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profits/Employees</td>
<td>-0.000 (0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCE</td>
<td></td>
<td>-0.001 (0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Firms in Population	1660	1660	1660	1649
Number of Firms in Sample	560	560	560	557
Sic2 dummies	yes	yes	yes	yes
Year dummies	yes	yes	yes	yes

Notes: *** (**) (*) indicates significance at the 1%, 5% and 10% level, respectively. Robust standard errors clustered at the firm level in parenthesis. The number of firms is lower than the population we sampled from (1815) due to missing values in the balance sheet data.

Panel B: Manager Characteristics

| Probit Estimates |
| Dependent variable equals 1 if the firm is in the sample, 0 otherwise |

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (Age)</td>
<td>-0.149 (0.220)</td>
<td>-0.097 (0.227)</td>
<td>0.205 (0.237)</td>
<td>0.185 (0.239)</td>
<td>0.138 (0.295)</td>
</tr>
<tr>
<td>Gender (1=men)</td>
<td>0.145 (0.099)</td>
<td>0.141 (0.099)</td>
<td>0.191* (0.101)</td>
<td>0.191* (0.101)</td>
<td>0.221* (0.115)</td>
</tr>
<tr>
<td>Log (tenure in current firm)</td>
<td>-0.032 (0.035)</td>
<td>-0.028 (0.035)</td>
<td>-0.030 (0.035)</td>
<td>0.000 (0.078)</td>
<td></td>
</tr>
<tr>
<td>Log (current pay)</td>
<td></td>
<td>-0.298*** (0.072)</td>
<td>-0.286*** (0.073)</td>
<td>-0.223* (0.128)</td>
<td></td>
</tr>
<tr>
<td>Log (mean yearly pay growth)</td>
<td></td>
<td>-0.046 (0.065)</td>
<td>-0.052 (0.083)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (standard deviation of pay)</td>
<td></td>
<td>-0.068 (0.079)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations	1731	1731	1731	1731	1295
Number of Managers in Population	1731	1731	1731	1731	1295
Number of Managers in Sample	572	572	572	572	419

Notes: Robust standard errors in parenthesis. *** (**) (*) indicates significance at the 1%, 5% and 10% level, respectively. The number of observations (1731) is smaller than the number of managers we sampled from (1815) due to missing values in the Social Security records. Tenure is the number of years the manager has been working for the current firm. Current pay is equal to total annual pay divided by weeks worked in 2004. Mean yearly pay growth equals the mean yearly change in pay since the manager's first job until 2004. The standard deviation of pay is computed over the years worked in the current firm if the manager has worked for at least 3 years.