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ABSTRACT

We propose an incentive pay scheme for educators that links educator compensation to
the ranks of their students within appropriately defined comparison sets, and we show that
under certain conditions this scheme induces teachers to allocate socially optimal levels of
effort to all students. Moreover, because this scheme employs only ordinal information, it
allows education authorities to employ completely new assessments at each testing date
without ever having to equate various assessment forms. This approach removes incen-
tives for teachers to teach to a particular assessment form and eliminates opportunities
to influence reward pay by corrupting the equating process or the scales used to report
assessment results. Education authorities can use the incentive scheme we propose while
employing a separate no-stakes assessment system to track student achievement levels and
create cardinal measures of school and teacher performance.



1. Introduction

In modern economies, most wealth is held in the form of human capital, and publicly
funded schools play a key role in creating this wealth. Thus, reform proposals that seek to
enhance the efficiency of schools are an omnipresent feature of debates concerning public
policy and societal welfare. In recent decades, education policy makers have increasingly
designed these reform efforts around measures of school output such as test scores rather
than measures of school inputs such as computer labs or student-teacher ratios. Although
scholars and policy makers still debate the benefits of smaller classes, improved teacher
preparation, or improved school facilities, few are willing to measure school quality using
only measures of school inputs. During the 1990s many states adopted accountability
systems that dictated sanctions and remediation for schools based on how their students
performed on standardized assessments. In 2001, the No Child Left Behind Act (NCLB)
mandated that all states adopt such systems or risk losing federal funds, and more recently,
several states and large districts have introduced incentive pay systems that link the salaries
of individual teachers to the performance of their students.

Holmstrom and Milgrom (1991) raise the possibility that assessment-based incentive
systems for educators may induce teachers to take hidden actions that increase assessment-
based performance measures without creating comparable increases in student learning, and
much empirical work on high-stakes testing systems provides evidence that this concern is
well founded. We explore how education authorities may limit the scope of these hidden
actions by improving the design of assessment based incentive systems.

We begin by noting that if the authority knows the mapping between the test score
scale and the true expected value of student skill, it can implement efficient effort using
an incentive scheme that pays teachers for the skills that their efforts help create. Some
might contend that, in practice, social scientists cannot construct mappings between test
scores and skill values and that such performance pay systems are therefore infeasible,1

but we focus on other concerns about assessments scales that are more closely related to
Holmstrom and Milgrom’s original insights.

Even if policy makers are able to discover the mapping between a particular test score
scale and the value of student skill, the authority will find it challenging to maintain this
mapping across a series of assessments. In order to maintain the integrity of a scale,

1Cunha and Heckman (2008) do describe methods for anchoring psychometric scales to adult outcomes.
Their methods cannot be applied to new incentive systems involving new assessments because data on the
adult outcomes of test takers cannot be collected before a given generation of students ages into adulthood.
See Balou (2009) for more on difficulties of interpreting psychometric scales. Cawley et al (1999) address
the task of using psychometric scales in value-added pay for performance schemes.



the authority typically needs to administer a series of assessments that contain significant
overlap in terms of item format and content. However, scores on a particular assessment
often become inflated when teachers have the opportunity and incentive to coach students
concerning the format or items expected on that assessment. Many studies provide evidence
of this type of coaching, and Neal (2010b) reviews this literature. Stecher (2002) cites two
particular districts where, in response to the introduction of high-stakes testing, teachers
eliminated assignments that involved students composing original written work and instead
asked students to practice finding mistakes in prepared passages. Stecher also reports how
some teachers in Arizona responded to high stakes testing by only assigning math story
problems that followed a specific format used on the Iowa Test of Basic Skills. These
pedagogical choices make sense as strategies for maximizing student scores on standardized
tests, but they seem less than optimal ways of creating good writers or students who can
use math tools to solve a broad range of applied problems.2

In order to deter teachers from coaching instead of teaching, education authorities may
wish to limit the predictability of future assessments by employing a series of assessments
that differ in terms of specific item content and form. But, in order to map results from
each assessment into a common scale, the authority must equate the various assessment
forms, and proper equating often requires common items that link the various forms.3 If
designers limit the number of common items, they advance the goal of preventing teachers
from coaching students for specific questions or question formats, but they hinder the goal
of properly equating and thus properly scaling the various assessment forms. In addition,
because equating is a complex task and proper equating is difficult to verify, the equating
process itself is an obvious target for corruption.4

One way to address these issues is to consider incentive systems that rely only on the
ordinal information contained in assessment results. If the mapping between assessment
outcomes and teacher rewards is scale invariant, education officials do not need to place all
2Other studies that provide either direct or indirect evidence of coaching in response to assessment-based
incentives include Koretz and Barron (1998), Klein et al (2000), Koretz (2002), Jacob (2005), Vigdor (2009),
Glewwe, Ilias, and Kremer (2010) and Carrell and West (2010).
3A common alternative approach involves randomly assigning one of several alternate forms to students
in a large population, and then developing equating procedures based on the fact that the distribution
of achievement in the population receiving each form should be constant. In practice, this approach also
invites coaching because, at the beginning of the second year of any test based incentive program, educators
know that each of their students will receive one of the forms used in the previous period.
4A significant literature on state level proficiency rates under NCLB suggests that political pressures have
compromised the meaning of proficiency cutoff scores in numerous states. States can inflate their proficiency
rates by making exams easier while holding scoring procedures constant or by introducing a completely new
assessment and then producing a crosswalk between the old and new assessment scale that effectively lowers
the proficiency threshold. See Cronin et al (2007).
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assessments on a common scale, and they can implement performance pay schemes using a
series of assessments that contain no repeated items and no common format.

We describe an ordinal system called “pay for percentile,” that works as follows. For
each student in a school system, first form a comparison set of students against which
the student will be compared. Assumptions concerning the nature of instruction dictate
exactly how to define this comparison set, but the general idea is to form a set that contains
all other students in the system who begin the school year at the same level of baseline
achievement in a comparable classroom setting. At the end of the year, give a cumulative
assessment to all students. Then, assign each student a percentile score based on his end
of year rank among the students in his comparison set. For each teacher, sum these within-
peer percentile scores over all the students she teaches and denote this sum as a percentile
performance index. Then, pay each teacher a common base salary plus a bonus that is
proportional to her percentile performance index. We demonstrate that this system can
elicit efficient effort from all teachers in all classrooms.

The linear relationship between bonus pay and our index does not imply that percentile
units are a natural or desirable scale for human capital. Rather, percentiles within com-
parison sets tell us what fraction of head-to-head contests teachers win when competing
against other teachers who educate similar students. For example, a student with a within-
comparison set percentile score of .5 performed as well or better than half of his peers.
Thus, in our scheme, his teacher gets credit for beating half of the teachers who taught
similar students. A linear relationship between total bonus pay and the fraction of contests
won works because all of the contests share an important symmetry. Each pits a student
against a peer who has the same expected final achievement when both receive the same
instruction and tutoring from their teachers.

Previous work on the use of contests as incentive mechanisms has typically dealt with
environments where workers choose actions to produce a single product. Lazear and Rosen
(1981) describe a contest between two agents who choose one effort level and produce one
output. Nalebuff and Stiglitz (1983) as well as Green and Stokey (1983) describe contests
between many agents who still choose only one effort level and produce one output, and
in all of these papers, the principal is able to rank all contestants according to their total
output. Our application involves contestants (teachers) who allocate effort among many
tasks (individual tutoring and classroom wide activities) that jointly create multiple outputs
(human capital gains for each student). Because the authority can rank the performance
of individual students relative to their peers, the authority can assign a set of performance
rankings to each teacher that describes her relative performance concerning the training

3



of each of her students. But, because ranks provide no information about the distances
between any two students, the education authority cannot rank teachers according to some
composite measure of total classroom performance. Our results imply that such a ranking
is not necessary. Principals who hire agents to produce multiple forms of output can elicit
efficient effort from these agents even if they are not able to rank them with respect to their
total productivity. In the context of current education policy debates, our insights mean
that education authorities can implement effective incentive schemes for teachers without
ever forming aggregate statistical measures of what individual teachers have contributed to
the learning of all students in their classrooms.

Since our system employs only the ordinal ranks implied by assessment outcomes, it
provides no information about the secular growth of achievement in a school district over
time. Some may view this as a serious shortcoming because public education authorities
typically want to track the evolution of student achievement over time using a consistently
scaled metric. However, we argue that education authorities should treat the provision of
incentives and the documenting of student progress as separate tasks. Our results show
that education officials can provide effective incentives without ever placing high-stakes
assessments on a common scale. Thus, authorities can use our scheme for incentive provision
and then measure secular achievement growth using a separate low stakes assessment system
that is designed to promote proper equating among assessments. This two system approach
should produce better incentives and better measures of achievement growth.

After presenting our theoretical results, we discuss issues that may arise in the imple-
mentation of pay for percentile. Our scheme requires education authorities to estimate
within-comparison set percentile scores for students. Wei and He (2006) and Betebenner
(2009) have recently developed methods that allow researchers to estimate the distribution
of assessment scores holding constant any set of baseline student characteristics. For any
student, his actual score combined with an estimate of the distribution of scores given his
characteristics yields an estimate of his percentile relative to his peers. These new methods
are currently being used to implement or develop new measures of school performance in
several states, and they can also be used to calculate our percentile performance index.

Although our system has several desirable properties, it does not address all of the hidden
action concerns that scholars and policy makers have raised when evaluating assessment-
based incentives schemes. Our system alone does nothing to address the various forms of
outright cheating that test-based incentive systems often invite. Further, it does not address
the concern that potentially important dimensions of student skill, e.g. creativity and
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curiosity, may not be included in curricular definitions.5 Our scheme provides incentives for
teachers to build student skills that can be assessed and ranked. To the extent schools desire
teachers to pursue objectives that cannot be assessed using standard testing procedures, the
scheme we propose may be viewed as one component of a larger set of personnel practices
designed to direct teacher effort.

2. Basic Model

In this section, we illustrate our main results using a simple educational production func-
tion. In later sections, we consider a production technology that permits both peer effects
and instructional spillovers within classrooms. Assume there are J classrooms, indexed by
j ∈ {1, 2...J}. Each classroom has one teacher, so j also indexes teachers. For now, we
assume all teachers are equally effective in fostering the creation of human capital among
their students, and all teachers face the same costs of providing effective instruction. We
discuss teacher heterogeneity in Section 6.

Each classroom has N students, indexed by i ∈ {1, 2...N}. Let aij denote the initial
human capital of the i-th student in the j-th class. Students within each class are ordered
from least to most able, i.e.

a1j ≤ a2j ≤ · · · ≤ aNj
We assume all J classes are identical, i.e. aij = ai for all j ∈ {1, 2...J}. However, this

does not mean that our analysis only applies to an environment where all classes share
a common baseline achievement distribution. The task of determining efficient effort for
a school system that contains heterogeneous classes can be accomplished by determining
efficient effort for each classroom type. Thus, the planner may solve the allocation problem
for the system by solving the problem we analyze for each baseline achievement distribution
that exists in one or more classes.6

Teachers can undertake two types of efforts to help students acquire additional human
capital. They can tutor individual students or teach the class as a whole. Let eij denote
the effort teacher j spends on individual instruction of student i, and tj denote the effort
she spends on classroom teaching. Here, we treat tj as a scalar. However, all of our results

5Holmstrom and Milgrom (1991) also raised this concern in their original paper.
6We assume the planner takes the composition of each class as given. One could imagine a more general
problem where the planner chooses the composition of classrooms and the effort vector for each classroom.
However, given the optimal composition of classrooms, the planner still needs to choose the optimal levels
of effort in each class. We focus on this second step because we are analyzing the provision of incentives
for educators taking as given the sorting of students among schools and classrooms.
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remain if tj is vector of teacher activities, e.g. lesson planning, drafting assignments, etc,
that provide benefits directly to all students in the classroom. We assume the following
educational production function:

(2.1) a′ij = g(ai) + tj + αeij + εij

The human capital of a student at the end of the period, denoted a′ij , depends on his initial
skill level ai, the efforts of his teacher eij and tj , and a shock εij that does not depend on
teacher effort, e.g. random disruptions to the student’s life at home. The production of
human capital is thus linear in teacher efforts and separable between the student’s initial
human capital and all other factors. Tutoring instruction, eij , is student-specific, and any
effort spent on teaching student i will not directly affect any other student. Classroom
teaching, tj , benefits all students in the class. The function g(·) is increasing and α > 0
measures the relative productivity of classroom teaching versus individual instruction, and
neither the productivity of tutoring effort or classroom instruction depend on a student’s
baseline achievement or the baseline achievement of his classmates.

The shocks εij are mean zero, pairwise independent for any pair (i, j), and identically
distributed according to a common continuous distribution F (x) ≡ Pr(εij ≤ x).

Let Xj denote teacher j’s expected income. Then her utility is

(2.2) Uj = Xj − C(e1j , ..., eNj , tj)

where C(·) denotes the teacher’s cost of effort. We assume C(·) is increasing in all of
its arguments and is strictly convex. We further assume it is symmetric with respect to
individual tutoring efforts, i.e. let ej be any vector of tutoring efforts (e1j , ..., eNj) for
teacher j, and let π(ej) be any permutation of ej , then

C(ej , tj) = C(π(ej), tj)

We also impose the usual boundary conditions on marginal costs. The lower and upper
limits of the marginal costs with respect to each dimension of effort are 0 and∞ respectively.
These conditions ensure the socially optimal plan will be interior. Although we do not make
it explicit, C(·) also depends on N . Optimal effort decisions will vary with class size, but the
trade offs between scales economies and congestion externalities at the center of this issue
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have been explored by others.7 Our goal is to analyze the optimal provision of incentives
given a fixed class size, N , and here, we suppress reference to N in the cost function.

Let R denote the social value of a unit of a′. Because all students receive the same
benefit from classroom instruction, we can normalize units of time such that R can also be
interpreted as the gross social return per student when one unit of teacher time is devoted to
effective classroom instruction. Assume that each teacher has an outside option equal to U0.
An omniscient social planner would choose teacher effort levels in each class j ∈ {1, 2, .., J}
to maximize the following:

max
ej ,tj

E
[
R

N∑
i=1

[g(ai) + tj + αeij + εij ]− C(ej , tj)− U0

]
Since C(·) is strictly convex, first-order conditions are necessary and sufficient for an

optimum. Given all teachers share the same cost of effort, the optimal allocation will
dictate the same effort levels in all classrooms, i.e. eij = e∗i and tj = t∗ for all j. Hence, the
optimal effort levels dictated by the social planner, e∗1, ..., e∗N and t∗, will solve the following
system of equations:

∂C(e∗j , t
∗
j )

∂eij
=Rα for i ∈ {1, 2..., N}

∂C(e∗j , t
∗
j )

∂tj
=RN

Given our symmetry and separability assumptions, the cost and returns associated with
devoting additional instruction time to a student are not a function of the student’s baseline
achievement or the distribution of baseline achievement in the class. Thus, in this case,
the social optimum dictates the same levels of instruction in all classrooms and the same
tutoring effort for all students. Let e∗ denote the socially optimal level of individual tutoring
effort that is common to all students and (e∗,t∗) denote the socially optimal effort vector
common to all classrooms. When we generalize the model to allow heterogeneity in returns
from instruction, instructional spillovers, and peer effects,the optimal tutoring effort and
classroom instruction for a given student varies with the baseline achievement of both the

7See Lazear (2001) for example.
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student and his classmates. However, the mechanism we propose below still elicits efficient
instruction and tutoring from each teacher.

3. Performance Pay With Invertible Scales

Next, we consider the problem faced by an education authority that supervises our J
teachers. For now, assume that this authority knows everything about the technology
of human capital production but cannot observe teacher effort eij or tj . Instead, both the
authority and teachers only observe test scores that provide a ranking of students according
to their achievement at a point in time, s = m(a) and s′ = m(a′), where m(a) is a strictly
monotonic function. For now, assume that this ranking is perfect. Below, we discuss how
the possibility of measurement error in the achievement ranks implied by test scores affects
our analyses.

Suppose the authority knows m(·), i.e. it knows how to invert the psychometric scale
s and recover a. In this setting, there are many schemes that the authority can use to
induce teachers to provide socially efficient effort levels. For example, the authority could
induce teachers to value improvements in student skill correctly simply by paying bonuses
per student equal to Ra′ij . However, from the authority’s perspective, this scheme would
be wasteful because it compensates teachers for both the skill created by their efforts and
for the stock of skills that students would have enjoyed without instruction, g(aij).8

If the authority knows both m(·) and g(·), it can elicit efficient effort while avoiding
this waste by forming an unbiased estimator, Vij , of teacher j’s contribution to student i’s
human capital,

Vij = a′ij − g(aij)

= m−1(s′ij)− g(m−1(sij))

and then paying teachers RVij per student. Further, even if the authority does not know
g(·), it can still provide incentives for teachers based only on their contributions to student
skill. For each student i, let the authority form a comparison group composed of all students
with the same initial test score as student i at the beginning of the period, i.e. the i-th

8Here, we take the assignment of students to classrooms as fixed, and we are assuming that the educa-
tion authority cannot simply hold an auction and sell teachers the opportunity to earn Ra′ij per student.
However, absent such an auction mechanism, we expect any scheme that pays teachers for skills students
possess independent of instruction would induce wasteful activities by teachers seeking assignments to
high-achieving students.
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students from all classrooms. Next, define a′i as the average achievement for this group at
the end of the period, i.e.

a′i =
1
J

J∑
j=1

a′ij

and consider a bonus schedule that pays each teacher j bonuses linked to the relative
performance of her students; specifically R(a′ij − a′i) for each student i ∈ {1, 2..., N}. If J
is large, teachers will ignore the effect of their choices on a′i, and it is straightforward to
show that this bonus scheme elicits efficient effort, (e∗,t∗).9

Because plim a′i = g(ai)+t∗+αe∗, the relative achievement of student i, (a′ij−a′i), does not
depend on g(·) or ai in equilibrium. In this scheme, the focus on variation within comparison
sets allows the authority to overcome the fact that it does not know how natural rates of
human capital growth, g(ai), differ among students of different baseline achievement levels,
ai. In the following sections, we demonstrate that by focusing on rank comparisons within
comparison sets, the authority can similarly overcome its lack of knowledge concerning how
changes in test scores map into changes in human capital at different points on a given
psychometric scale.

If the authority knows R and m(·), it can implement this bonus scheme using a standard
regression model that includes fixed effects for baseline achievement levels and classroom
assignment.10 Teachers associated with a negative classroom effect will receive a negative
bonus or what might be better described as a performance based fine, and total bonus
pay over all teachers will be zero. Because expected bonus pay per teacher is zero in this
scheme, teachers must receive a base salary that covers their costs. Let X0 denote the base
salary per student. The authority could minimize the cost of eliciting efficient effort by
choosing X0 to satisfy NX0 = C(e∗, t∗) + U0.

4. Tournaments

The scheme described in Section 3 relies on the education authority’s ability to translate
test scores into the values of students’ skills. In order to motivate why the authority might
have limited knowledge of how scores map into human capital, suppose the education

9As an alternative, one can calculate performance relative to teacher-specific means that do not involve the
scores of a teacher’s own students, i.e. a′ij = 1

J−1

P
k 6=j a

′
ik.

10For example, if the authority regresses a′ij on only a set of N +J indicator variables that identify baseline
achievement groups and classroom assignment, the estimated coefficient on the indicator for teacher j will
equal 1

N

PN
i=1(a

′
ij − a′i), and the authority can multiply these coefficients by RN to determine the total

bonus payment for each teacher j.
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authority hires a testing agency to provide s and s′, the vectors of baseline and final test
scores for all students. To implement the relative performance scheme we describe above,
the authority must announce a mapping between the distribution of student test scores, s′,
and the distribution of reward pay given to the teachers of these students. But, once the
authority announces how it will map s′ into reward pay, it must guard against at least two
ways that teachers may attempt to game this incentive system.

First, standard methods for placing the results of assessments given at different points
in time on a common scale require the testing agency to administer a series of assessments
that contain overlap in terms of item content and format. However, the presence of this
overlap allows teachers to use the specific items and format of one assessment to predict
the items and format on future assessments, and the existing literature provides much
evidence that when teachers have prior knowledge concerning the content of high-stakes
assessments, they often inflate student assessment results by providing students with the
answers to specific questions or having students practice taking tests that contain questions
in a specific format.

Second, taking as given any set of procedures that a testing agency announces concerning
how it will administer a series of assessments and place results from these assessments on a
common scale, teachers face a strong incentive to lobby the testing agency to alter its scal-
ing procedures in ways that weaken effort incentives. Concerns about scale manipulation
may seem far fetched to some, but the literature on the implementation of state account-
ability systems under NCLB contains evidence that several states inflated the growth in
their reported proficiency rates by making assessments easier without making appropriate
adjustments to how exams are scored or by introducing new assessments and equating the
scales between the old and new assessments in ways that appear generous to the most re-
cent cohorts of students.11 Teachers facing the relative performance pay scheme described
in Section 3 above benefit if they can secretly pressure the testing agency to correctly equate
various assessments but then report scores that are artificially compressed. If teachers know
that reported scores will be artificially compressed, each teacher faces weaker incentives,
but teachers still collect the same expected salary.12

Appendix A fleshes out in more detail the ways that scale dependent systems invite
coaching and scale manipulation. Given these concerns, we explore the optimal design of
teacher incentives restricting attention to incentive schemes that are scale invariant, i.e.

11See Peterson and Hess (2006), Cronin et al (2007), and Neal (2010).
12There are other ways to artificially compress the distribution of scores. The testing agency can also
manipulate the content of the exam without making appropriate adjustments to the procedures used to
score the exams.
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schemes that rely only on ordinal information and can thus be implemented without regard
to scaling. In order to develop intuition for our results, we first consider ordinal contests
among pairs of teachers. We then examine tournaments that involve simultaneous com-
petition among large numbers of teachers and show that such tournaments are essentially
a pay for percentile scheme. While there is a large previous literature on tournaments,
the problem facing our education authority requires that we generalize existing models of
economic contests to address settings where contestants produce several different outputs
simultaneously, e.g. human capital for different students in the same class. Our analysis
explores whether tournaments can be used to elicit efficient effort from workers who pro-
duce many outputs simultaneously, even in settings where it is possible to make ordinal
comparisons of worker performance with respect to particular outputs but not with respect
to total output.

Consider a scheme where each teacher j competes against one other teacher and the
results of this contest determine bonus pay for teacher j and her opponent. Teacher j does
not know who her opponent will be when she makes her effort choices. She knows only
that her opponent will be chosen from the set of other teachers in the system and that her
opponent will be facing the same compensation scheme that she faces. Let each teacher
receive a base pay of X0 per student, and at the end of the year, match teacher j with
some other teacher k and pay teacher j a bonus (X1 −X0) for each student i whose score
is higher than the corresponding student in teacher k’s class, i.e. if s′ij ≥ s′ik. The total
compensation for teacher j is thus

NX0 + (X1 −X0)
N∑
i=1

I(s′ij ≥ s′ik)

where I(A) is an indicator that equals 1 if event A is true and 0 otherwise. Because ordinal
comparisons determine all payoffs, teacher behavior and teacher welfare are invariant to
any re-scaling of the assessment results that preserves ordering.

For each i ∈ 1, 2, ..., N , let us define a new variable νi = εij − εik as the difference in
the shock terms for students in the two classes whose initial human capital is ai. If both
teachers j and k choose the same effort levels, then s

′
ij > s

′
ik if and only if νi > 0. Let

H(x) ≡ Pr(νi ≤ x) denote the distribution of νi. We assume H(·) is twice differentiable
and define h(x) = dH(x)/dx. Since εij and εik are i.i.d, νi has mean zero, and h(·) is
symmetric around zero. Moreover, h(x) attains its maximum at x = 0.13

13See Vogt (1983).
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In our framework, νi is the only source of uncertainty in contests, and since test scores
rank students perfectly according to their true achievement levels, νi reflects shocks to true
achievement. Some readers may wonder how our analyses change if test scores measure
true achievement levels with error. Incorporating measurement error makes our notation
more cumbersome, but the presence of measurement error in test scores does not alter our
basic results if we assume that the errors in measurement are drawn independently from
the same distribution for all students. Suppose test scores are given by s = m(a + δ)
where δ is a random variable with mean zero drawn independently for all students from
a common distribution, i.e. each student’s test score depends on his own human capital,
but imperfections in the testing technology create idiosyncratic deviations between the
student’s true skill and the skill level implied by his test score. In this environment, when
both teachers j and k choose the same effort levels, s′ij > s

′
ik if and only if νi > 0, where

now

νi ≡ [g(m−1(sij)− δij) + εij + δ
′
ij ]− [g(m−1(sik)− δik) + εik + δ

′
ik]

As in the case without measurement error in test scores, νi is mean zero, and its density is
symmetric around zero and maximal at zero. These are the properties of νi that we require
when proving the results presented below. To simplify our exposition, we proceed under
the assumption that test scores provide a perfect ranking of student achievement levels.14

Since the initial achievement of the students who are compared to each other is identical,
the maximization problem for teacher j is

max
ej ,tj

NX0 + (X1 −X0)
N∑
i=1

H(α(eij − eik) + tj − tk)− C(ej , tj)− U0

The first order conditions for each teacher are given by

∂C(ej , tj)
∂eij

=αh(α(eij − eik) + tj − tk)(X1 −X0) for i = 1, 2, ..., N(4.1)

∂C(ej , tj)
∂tj

=
N∑
i=1

h(α(eij − eik) + tj − tk)(X1 −X0)(4.2)

Consider setting the bonus X1 −X0 = R/h(0), and suppose both teachers j and k choose
the same effort levels, i.e. ej = ek and tj = tk. Then (4.1) and (4.2) become

14Measurement error is just one way to introduce a role for chance in these contests, and we will see below
that chance must play a sufficient role in these contests in order to sustain efficient equilibrium strategies.
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∂C(ej , tj)
∂ei

= Rα for i ∈ {1, 2, ..., N}

∂C(ej , tj)
∂tj

= RN

Recall that these are the first order conditions for the planner’s problem, and thus, the
socially optimal effort levels (e∗, t∗) solve these first order conditions. Nonetheless, the fact
that these levels satisfy teacher j’s first order conditions is not enough to show that they
are global best responses to the effort decisions of the other teacher. In particular, since
H(·) is neither strictly convex nor strictly concave everywhere, the fact that ej = e∗ and
tj = t∗ solves the first order conditions does not imply that these effort choices are optimal
responses to teacher k choosing the same effort levels.

Appendix B provides proofs for the following two propositions that summarize our main
results for two teacher contests:

Proposition 1: Let ε̃ij denote a random variable with mean zero, and let εij=σε̃ij.
There exists σ such that ∀σ > σ, in a two teacher contest, both teachers choosing the
socially optimal effort levels (e∗, t∗) is a pure strategy Nash equilibrium of the two teacher
contest.

As the previous literature on contests involving a single dimension of effort demonstrates,
the variance restriction in this proposition is essential. In any given contest, both effort
choices and chance play a role in determining the winner. When chance plays a small role,
(e∗, t∗) will not be a best response to the other teacher choosing (e∗, t∗) unless prizes are
small because, when chance plays a small role, the derivative of the probability of winning
of given contest with respect to teacher effort is large. In fact, the bonus, R

h(0) , tends to zero
as σ → 0. The restriction on σ in Proposition 1 is needed to rule out cases where, given the
other teacher is choosing (e∗, t∗), the bonus is so small that teacher j’s expected gain from
responding with (e∗, t∗) as opposed to some lower effort level does not cover the incremental
effort cost. However, if the element of chance in these contests is important enough, a pure
strategy Nash equilibrium exists which involves both teachers choosing the socially optimal
effort vectors, (e∗, t∗), and Proposition 2 adds that this equilibrium is unique.

Proposition 2: In the two teacher contest, whenever a pure strategy Nash equilibrium
exists, it involves both teachers choosing the socially optimal effort levels (e∗, t∗).

Taken together, our propositions imply that a tournament scheme can elicit efficient effort
from teachers who compete against each other in seeded competitions. Thus, the efficiency
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properties that Lazear and Rosen (1981) derived for a setting in which two players make
one effort choice and produce a single output carry over to settings in which two players
make multiple effort choices that jointly determine the levels of multiple outputs.

Finally, to ensure that teachers are willing to participate in this scheme, we need to make
sure that

NX0 +
RN

2h(0)
− C(e∗, t∗) ≥ U0

Given this constraint, the following compensation scheme minimizes the cost of providing
efficient incentives:

X0 =
U0 + C(e∗, t∗)

N
− R

2h(0)

X1 =
U0 + C(e∗, t∗)

N
+

R

2h(0)

In order to choose this cost minimizing level of base pay, X0, the authority needs to
know the teachers’ outside option, U0, and the cost of providing efficient effort, C(e∗, t∗).
However, given any base pay level that satisfies the teachers’ participation constraint, the
authority needs only four additional pieces of information to implement an efficient set of
contests. It needs to know each student’s teacher, the ranks implied by s and s′, and the
ratio R

h(0) . Recall that R is the gross social return per student generated by one effective unit
of classroom instruction. If we stipulate that the authority knows what effective instruction
is worth to society but simply cannot observe whether or not effective instruction is being
provided, h(0) is the key piece of information that the authority requires.15

The expression h(0) equals the derivative with respect to classroom instruction, t, of
the probability that a given teacher wins one of our contests when both teachers choose
the same effort vectors. It will be difficult for any authority to learn h(0) precisely, but
one can imagine experiments that could provide considerable information about h(0). The
key observation is that, for many different prize levels other than the optimal prize, R

h(0) ,
there exists a symmetric Nash equilibrium among teachers in pure strategies. Thus, given

15In the case of no measurement error in test scores, the assumption that εij are distributed identically and
independently for all students ensures that h(0) is common to all students. However, with measurement
error in test scores and non-linear g(·), h(0) may not be the same for all comparison sets even if both εij

and uij are distributed identically and independently for all students. In this case, a variation of our scheme
that involves different prizes for contests involving students with different baseline test scores can still elicit
efficient effort from all teachers to all students. In Section 6, we discuss a related result for the case where
the distribution of shocks, εij , differs among baseline achievement levels i = 1, 2.., N .
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our tournament mechanism and some initial choice for the prize structure, suppose the
authority selected a random sample of students from the entire student population and then
invited these students to a small number of weekend review classes taught by the authority
and not by teachers. If our teachers share a common prior concerning the probability
that any one student is selected to participate in these review classes, there exists a Nash
equilibrium in which both teachers choose the same effort levels. However, given any
symmetric equilibrium, the ex post probability that a particular student who received extra
instruction scores better than a peer who did not receive extra instruction should increase.
Let ∆t be the length of the review session. The associated change in the probability
of winning is ∆p ≈ h(0)+h(∆t)

2 ∆t. If we assume that the authority can perfectly monitor
instruction quality during these experimental sessions and if we choose a ∆t that is a trivial
intervention relative to the range of shocks that affect achievement during the year, ε, the
sample mean of ∆p

∆t provides a useful approximation for h(0).16

5. Pay for Percentile

The two person contest we describe allows education authorities to avoid the coaching
and scale manipulation that scale dependent incentive schemes invite, but the fact that
each teacher plays against a single opponent may raise concerns about a different type of
manipulation. Recall, we assume that the opponent for teacher j is announced at the end
of the year after students are tested. Thus, some teachers may respond to this system
by lobbying school officials to be paired with a teacher whose students performed poorly.
If one tried to avoid these lobbying efforts by announcing the pairs of contestants at the
beginning of the year, then one would worry about collusion on low effort levels within pairs
of contestants. We now turn to performance contests that involve large numbers of teachers
competing anonymously against one another. We expect that collusion on low effort among
teachers is less of a concern is this environment.

Suppose that each teacher now competes against K teachers who also have N students.
Each teacher knows that K other teachers will be drawn randomly from the population of
teachers with similar classrooms to serve as her contestants, but teachers make their effort
choices without knowing whom they are competing against. Suppose that teachers receive

16Our production technology implicitly normalizes the units of ε so that shocks to achievement can be
thought of in terms of additions to or deletions from the hours of effective classroom instruction t students
receive. Further, because R is the social value of a unit of effective instruction time, the prize R

h(0)
determined

by this procedure is the same regardless of the units used to measure instruction time, e.g. seconds, minutes,
hours.
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a base salary of X0 per student and a constant bonus of (X1 − X0) for each contest she
wins.17 In this setting, teacher j’s problem is

max
ej,tj

NX0 +
K∑
k=1

N∑
i=1

H(α(eij − eik) + tj − tk)(X1 −X0)− C(ej , tj)− U0

The first order conditions are given by

∂C(ej , tj)
∂eij

=
K∑
k=1

αh(α(eij − eik) + tj − tk)(X1 −X0) for i ∈ {1, 2...N}(5.1)

∂C(ej , tj)
∂tj

=
K∑
k=1

N∑
i=1

h(α(eij − eik) + tj − tk)(X1 −X0)(5.2)

As before, suppose all teachers put in the same effort level, i.e. given any j, tj = tk and
ej = ek for k ∈ {1, 2, ...,K}. In this case, the right-hand side of (5.1) and (5.2) reduce to
αKh(0)(X1−X0) and NKh(0)(X1−X0), respectively. Thus, if we set X1−X0 = R

Kh(0) and
assume that all teachers choose the socially optimal effort levels, the first order conditions
for each teacher are satisfied. Further, Proposition 1 extends trivially to contests against
K > 1 teachers. Given a similar restriction on the scale parameter σ from Proposition 1
and a prize R

Kh(0) per student, there exists a pure strategy Nash equilibrium in which all
teachers choose the socially optimal levels of effort.

Now let K = (J − 1) → ∞, so that each teacher competes against all other teachers.
Further, let A′i denote a terminal score chosen at random and uniformly from the set of all
terminal scores (a′i1, ..., a

′
iJ). Since the distribution (a′i1, ...a

′
i,j−1, a

′
i,j+1, ..., a

′
iJ) converges to

the distribution (a′i1, ...a
′
i,j−1, a

′
ij,a
′
i,j+1, ..., a

′
iJ) as K →∞, it follows that

lim
K→∞

K∑
k=1

I(a′ij ≥ a′ik)
K

= Pr(a′ij ≥ A′i)

and the teacher’s maximization problem reduces to

max
ej,tj

NX0 +
R

h(0)

N∑
i=1

Pr(a′ij ≥ A′i)− C(ej , tj)− U0

This pay for percentile scheme is the limiting case of our simultaneous contests scheme as
the number of teachers grows large. Thus, a system that pays teachers bonuses that are

17A constant prize per contest is not necessary for eliciting efficient effort, but we view it as natural given
the symmetry of the contests.
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proportional to the sum of the within comparison set percentile scores of their students can
elicit efficient effort from all teachers.

Green and Stokey (1983) and Nalebuff and Stiglitz (1983) demonstrate that purely ordi-
nal contests involving many workers can elicit efficient effort from all workers in a variety
of production environments. Our contribution to this literature is to demonstrate that,
when workers produce many different outputs simultaneously, the employer does not need
to create a cardinal measure of total output per worker or even a ranking of total output
per worker. If the principal can rank workers with respect to their contributions to each
type of output, these rankings can be transformed into an efficient payment system. This
result holds even though classroom instruction, t, affects the learning of all students in a
given classroom, and we show in Section 6 that this result also holds in settings where the
tutoring that one student receives affects the learning of his classmates.18

In our presentation so far, comparison sets contain students who share not only a com-
mon baseline achievement level but also, by assumption, share a common distribution of
baseline achievement among their peers. However, given the separability we impose on the
human capital production function in equation (2.1) and the symmetry we impose on the
cost function, student i’s comparison set need not be restricted to students with similar
classmates. For any given student, we can form a comparison set by choosing all students
from other classrooms who have the same baseline achievement level regardless of the dis-
tributions of baseline achievement among their classmates. This result holds because the
socially optimal allocation of effort (e∗, t∗) dictates the same level of classroom instruction
and tutoring effort from all teachers to all students regardless of the baseline achievement
of a given student or the distribution of baseline achievement in his class.

Thus, given the production technology that we have assumed so far, pay for percentile
can be implemented quite easily and transparently. The education authority can form
one comparison set for each distinct level of baseline achievement and then assign within
comparison set percentiles based on the end of year assessment results. In the following
section, we show that the existence of peer effects, instructional spillovers and observable

18One can imagine many settings where employers may find it more difficult to rank workers according to
their total output than to rank them separately with regard to many different types of output. Consider a
consulting firm that wants J consultants to simultaneously produce N different outputs by devoting effort
to T distinct tasks. The N outputs may include changes in the value of the firm’s brand name, changes
in the value of its client and referral lists, etc, and the number of tasks T that contribute to these outputs
may be greater or less than N . Our results imply that the firm does not need to be able to rank its J
consultants according to their total contribution to the firm, and it never needs to quantify any aspects
of the realized performance differences among its consultants. The firm only needs to rank consultants’
individual performances with respect to each of the N distinct forms of output.
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differences in classroom resources do not alter the efficiency properties of pay for percentile
but do complicate the task of constructing comparison sets.

6. Heterogeneous Returns, Heterogeneous Teachers, and Other
Generalizations

Thus far, we have considered a simple environment in which the education authority
desires to elicit the same level of classroom instruction and tutoring from each teacher for
all students. In this section, we consider several generalizations. First, we consider a more
general technology that incorporates student heterogeneity in gains from instruction, peer
effects among students, and instructional spillovers. We show that pay for percentile can be
used to elicit socially efficient effort from teachers in this setting, even though the optimal
efforts allocated to individual students may vary with their baseline achievements and the
distribution of baseline achievement among their peers. We then introduce heterogeneous
teachers. Here, socially efficient effort allocations vary with teacher talent holding constant
the composition of students in a classroom. Given various assumptions about the informa-
tion that teachers possess concerning their own talents and the talents of other teachers, we
discuss strategies for implementing variations of our basic pay for percentile scheme that
can elicit efficient effort from teachers of all ability levels.

6.1. Heterogeneous Returns, Peer Effects, and Spillovers. Let aj = (a1j , ..., aNj)
denote the initial levels of human capital of all students in teacher j’s class, where j ∈
{1, 2, ..., J}. We allow the production of human capital for each student i in class j to depend
generally on his own baseline achievement, aij , the composition of baseline achievement
within the class, aj , the tutoring he receives, eij , and the tutoring received by all students in
his class, ej . In the terminology commonly employed in the educational production function
literature, we allow heterogeneous rates of learning, direct peer effects and instructional
spillovers. Formally, the human capital of student i in classroom j is given by

(6.1) a′ij = gi(aj , tj , ej) + εij

Because gi (·, ·, ·) is indexed by i, this formulation allows different students in the same
class to benefit differently from the same environmental inputs, e.g.. from tutoring, lectures,
interactions with classmates, etc. Nonetheless, we place three restrictions on gi (·, ·, ·): the
first derivatives of gi (·, ·, ·) with respect to each dimension of effort are finite everywhere,
gi (·, ·, ·) is weakly concave, and gi (·, ·, ·) depends on class identity, j, only through teacher
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efforts. Our concavity assumption places restrictions on forms that peer effects and in-
structional spillovers may take. Our assumption that j enters only through teacher effort
choices implies that, for any two classrooms (j, k) with the same composition of baseline
achievement, if the two teachers in question choose the same effort levels, i.e. tj = tk and
ej = ek, the expected human capital levels for any two students in different classrooms who
share the same initial achievement are the same. Given this property and the fact that the
cost of effort is the same for both teachers, we can form comparison sets at the classroom
level and guarantee that all contests are properly seeded.

For now, we will continue to assume the εij are pairwise identically distributed across
all pairs (i, j), although we comment below on how our scheme can be modified if the
distribution of εij can vary across students with different baseline achievement levels. In
Section 2, given our separable form for gi (·, ·, ·), we could interpret the units of εij in
terms of additions to or deletions from effective classroom instruction time. Given the
more general formulation of gi (·, ·, ·) here, this interpretation need no longer apply in all
classrooms. Thus, the units of εij are now interpreted as additions to or deletions from the
stock of student skill.

We maintain our assumption that the cost of spending time teaching students does not
depend on their identity, i.e. C(ej , tj) is symmetric with respect to the elements of ej and
does not depend on the achievement distribution of the students. Our results would not
change if we allowed the cost of effort to depend on the baseline achievement distribution
in a class, i.e. C(aj , ej , tj), or to be asymmetric with respect to levels of individual tutoring
effort, as long as we maintain our assumption that C(·) is strictly convex and is the same
for all teachers.

For each class j, the optimal allocation of effort solves

(6.2) max
ej ,tj

E

[
R

N∑
i=1

[gi(aj , tj , ej) + εij ]− C(ej , tj)− U0

]
Since gi(·, ·, ·) is concave for all i and C(·) is strictly convex, this problem is strictly

concave, and the first-order conditions are both necessary and sufficient for an optimum.
These are given for all j by
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∂C(ej , tj)
∂eij

= R
N∑
m=1

∂gm(aj , tj , ej)
∂eij

for i ∈ {1, 2..., N}

∂C(ej , tj)
∂tj

= R

N∑
m=1

∂gm(aj , tj , ej)
∂tj

For any composition of baseline achievement, there will be a unique
(
e∗j , tj

)
that solves

these equations. However, this vector will differ for classes with different compositions, aj ,
and the tutoring effort, eij , for each student may differ across students in the same class.

We now argue that the same pay for percentile scheme we described above will continue
to elicit socially optimal effort vectors from all teachers. The bonus scheme is the same as
before, and again, each student will be compared to all students with the same baseline
achievement who belong to one of the K other classrooms in his comparison set.

Assume that we offer each teacher j a base pay of X0 per student, and a bonus (X1−X0)
for each student in any comparison class k ∈ {1, 2, ...,K} who scores below his counterpart
in teacher j’s class on the final assessment. Teacher j’s problem can be expressed as follows:

max
ej,tj

NX0 + (X1 −X0)
K∑
k=1

N∑
i=1

H(gi(aj , tj , ej)− gi(ak, tk, ek))− C(ej , tj)− U0

The first order conditions for teacher j are

∂C(ej , tj)
∂eij

= (X1 −X0)
K∑
k=1

N∑
m=1

∂gm(aj , tj , ej)
∂eij

h(gm(aj , tj , ej)− gm(ak, tk, ek)) ∀i ∈ {1, 2, ..., N}

∂C(ej , tj)
∂tj

= (X1 −X0)
K∑
k=1

N∑
m=1

∂gm(aj , tj , ej)
∂tj

h(gm(aj , tj , ej)− gm(ak, tk, ek))

If all teachers provide the same effort levels, and X1 − X0 = R
Kh(0) , these first order con-

ditions collapse to the planner’s first order conditions, and the proof of Proposition 1 in
Appendix B establishes that there exists a Nash equilibrium such that all teachers choose
the first best effort levels in response. Efficiency requires that all teachers earn bonus pay
at the same rate regardless of the baseline achievement of their students, aj . However, the
level of base pay required to satisfy the teachers’ participation constraints will be a func-
tion of the specific distribution of baseline achievement in her classroom since the socially
efficient effort levels induced by pay for percentile vary with classroom composition.
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Even with production technologies that depend on the level of baseline achievement,
gi (·, ·, ·), the optimal prize structure does not vary with baseline achievement because we
have assumed that the distribution of εij , and thus h(0), does not vary among students. It
is not possible to test this assumption while maintaining the hypothesis that the production
function, gi (·, ·, ·), may vary with achievement level i.19 Further, even if one assumes that
h(0) is the same for all pairwise student contests, the process of discovering h(0) given the
more general technology gi (·, ·, ·) is more involved than the process described in Section 4.
Here, R is no longer the value of instruction time provided to any given student. R must
now be interpreted as the value of the skills created when one unit of instruction time is
devoted to a particular type of student in a specific type of classroom. Thus, attempts to
learn h(0) based on experiments like those described in Section 4 must be restricted to a
specific set of students who all have the same baseline achievement level, the same peers,
and some known baseline level of instruction and tutoring. Finally, if h(0) is not the same
for given baseline achievement levels, the authority can still elicit efficient effort using a pay
for percentile scheme if it knows how hi(0) varies among baseline achievement levels. In
this setting the authority can elicit efficient effort by offering prizes, R

Khi(0) , that are specific
to each of the levels of baseline achievement that define types of student contests.

The key implication of our analyses is that performance pay for educators should be
based on ordinal rankings of student outcomes within properly chosen comparison sets.
Details concerning the determination of prize levels associated with different contests hinge
on details concerning the distributions of shocks to human capital accumulation.

6.2. Heterogeneous Teachers. To this point, we have analyzed contests among equally
talented teachers. In this section, we assume that teachers differ in their abilities to pro-
duce human capital and explore the properties of pay for percentile given several different
assumptions concerning the dispersion of information about these productivity differences.

Consider the following description of teacher heterogeneity: if a student with baseline
achievement ai is paired with teacher j, the student’s human capital at the end of year is

a′ij = λjgi(aj , tj , ej) + εij

19In the experiment we described at the end of Section 4, students are given a small amount of extra

instruction, and the experiment identifies h(0)
∂a

′
ij

∂tj
, which equals h(0) given the linear technology assumed

in Section 2. If we ran separate experiments of this type for each baseline achievement level, we could not

use variation in the product hi(0)
∂a

′
ij

∂tj
to test the hypothesis hi(0) = h(0) for all i without knowing how

∂a
′
ij

∂tj
varies with i.
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where λj is a teacher-specific productivity term drawn from a distribution with mean 1
and support [λ, λ̄] with 0 < λ < λ̄ < ∞. Here, the expected skill level of students is
increasing in the talent of their teachers, holding constant the time that teachers devote to
classroom instruction and the tutoring of individual students. Thus, socially efficient levels
of classroom instruction and tutoring are increasing functions of teacher productivity, λj .

Given this setup, consider the case where the education authority observes the talent
of each teacher. In this case, the authority can elicit efficient effort from all teachers by
simply requiring each teacher to compete only against other teachers who not only work with
classrooms of comparable students, aj = ak, but who also enjoy the same level of talent,
λj = λk. Note that, even though the efficient level of effort varies with teacher talent, the
authority can induce all types to provide efficient effort using a common prize rate, R

h(0) , as
long as the authority seeds contests using information on both student characteristics and
teacher types. This observation indicates that pay for percentile should, in practice, require
teachers to compete against other teachers who not only work with similar students but
who also share similar levels of experience and comparable levels of support in the form of
teacher’s aides, classroom computers and other resources.

However, even if education authorities sort teachers into leagues based on observed cor-
relates of teacher productivity, residual differences in productivity will likely remain. Given
these differences, what teachers know about their own ability levels relative to others in
their leagues is the key factor that determines how the authority should amend pay for per-
centile to maintain efficiency. If all teachers are uncertain about how they compare to their
competitors but share symmetric beliefs about their relative productivity levels, then in
any symmetric equilibrium of our pay for percentile game, the teachers’ uncertainty about
their own talents and the talents of other teachers simply enters our model as a symmetric,
contest-specific component of the shock terms that determine the outcomes of the contests
we describe.

Consider a classroom type defined by a specific vector of baseline achievement levels a,
and assume that teacher j competes against teacher k with aj = ak = a. If both choose
effort levels (e∗, t∗), the winner of the contest i, for all i = 1, 2, ..., N , is determined by the
sign of the realization of the random variable

ui = (λj − λk)gi(a, t∗, e∗) + (εij − εik)
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Although ui depends on the effort choices of both teachers, it has a symmetric distribution
that is maximal at zero when both teachers choose the same effort levels, and a pay for
percentile scheme still exists that elicits efficient effort from all teachers. However, the
optimal bonus rate is now greater than R

h(0) . Here, unknown differences in teacher talent
are an additional source of uncertainty in contest outcomes, and if one teacher deviates from
the equilibrium effort levels, the associated rate of change in the probability of winning a
particular contest is now less than h(0). Still, pay for percentile can be used to elicit efficient
effort from heterogeneous teachers as long as the authority observes teacher characteristics
such that, conditional on these characteristics, teachers share a common prior about their
talent and the talents of their competitors.

If instead individual teachers possess private, asymmetric information about their own
talents relative to other teachers in their league, then pay for percentile with a uniform
bonus rate for all leagues will not generally elicit efficient effort from all teachers. In this
case, the authority needs to learn the hidden type of each teacher and then elicit a different
efficient level of effort from each type. Our simple mechanism alone cannot do both jobs at
once. We noted above that a common pay for percentile rate induces efficient effort from all
ability types when the authority observes differences in teacher ability and can thus force
teachers to sort into homogeneous leagues. However, it is obvious that when the authority
chooses a common prize rate for all leagues, it is providing no incentives for teachers to sort
among leagues.20

Intuitively, one should be able to use differences in bonus rates across leagues to induce
more talented teachers to sort into leagues with higher prize spreads, but the education
authority must simultaneously employ an additional instrument that restores efficient in-
centive provision within leagues. The existing literature on asymmetric tournaments with
private information contains two mechanisms that follow this approach.

O’Keeffe, Viscusi, and Zeckhauser (1984) analyze an environment involving workers who
are either of high or low ability. They propose a mechanism that involves two leagues that
vary in base pay, prize levels, and the extent to which chance affects the outcomes of contests
given symmetric effort choices by contestants. In the context of our pay for percentile
scheme, their results suggest that by simultaneously reducing the noise in the process that
determines contest outcomes, raising base pay and lowering bonus rates, education officials
can design a league that attracts only the low ability types, and these types will choose
efficient effort levels while competing against other teachers of low ability. The high ability

20Lazear and Rosen (1981) made this observation in their seminal paper on economic contests.
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types select the league that involves lower base pay, higher prizes, and a larger role of chance
as a determinant of contest outcomes, and they also choose efficient effort.

Bhattacharya and Guasch (1998) also propose a scheme where workers select the com-
pensation rules they face, but all contestants compete only against the agents who choose
the compensation scheme designed to attract agents of the lowest ability type. Here, leagues
that offer larger prizes for winning contests also offer lower levels of base pay, and Bhat-
tacharya and Guasch establish conditions under which their menu scheme induces workers
to sort into the contract designed for their ability types and supply efficient effort levels
given their types. This scheme works because low base pay serves as an entry fee into
the high prize contests that low ability workers are not willing to pay. One can imagine a
similar variation on pay for percentile in which all teachers choose a combination of base
pay and bonus rate from a menu, and then compete ex post against only those teachers in
their comparison sets who choose the lowest bonus rate.

Both of these schemes require more information to implement than the simple pay for
percentile scheme we describe above, and they also require additional restrictions on the
model environment. In order to implement the Bhattacharya and Guasch scheme, the
authority must know the education production function and the entire distribution that
generates shocks to student achievement. Further, the Bhattacharya and Guasch results
only hold given joint restrictions on the shape of this shock distribution and the range
of differences in teacher talent. Finally, because many of the shocks that affect student
learning are beyond the control of teachers and education authorities, it may not be possible
to minimize the role of chance in determining contest outcomes by an amount sufficient to
create the self-selection patterns that O’Keeffe et al describe.21

However, even if these approaches are infeasible, the authority may be able to improve
the performance of original pay for percentile scheme. In the case where teachers possess
private information about their own talent levels, we can show that teachers of all ability
types respond to our pay for percentile scheme by supplying less than the efficient effort
levels for their types. Thus, if the equilibrium effort choices of all types are increasing in
the bonus rate, the authority can move all types closer to efficient effort levels simply by
raising the bonus rate above R

h(0) .
22

21Further, as we noted earlier, a certain amount of randomness in contest outcomes is required to sustain
Nash equilbria in these games.
22Harbring and Lunser (2008) describe one particular asymmetric contest model in which the effort of all
types is an increasing function of prize levels. Further, they provide experimental evidence that supports
this prediction.
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Finally, while we have analyzed incentive provision in a static setting, dynamic settings
may provide education authorities with additional instruments. In a single period setting,
when heterogeneous teachers compete against each other in our pay for percentile scheme,
less able teachers typically lose a disproportionate share of their contests. If this result
remains in a dynamic setting, the contests we describe would be a vehicle for learning
about teacher talent over time. As teachers accumulate histories of percentile performance
indices that describe their performance over their careers, education authorities may be
able to usefully link retention decisions, tenure decisions, decisions about changes in base
pay levels, and promises concerning future pension benefits to these performance histories.
We plan to explore these issues in future research.

7. Implementation Issues

As we stress in the previous section, pay for percentile requires that contests among
teachers are properly seeded. In practice, it may be impossible to form large comparison
sets containing classrooms with common measured resources, equally experienced teachers
and identical distributions of baseline student achievement. Thus, education authorities
that implement pay for percentile must adopt some method that employs information on
the performance of similar students and teachers to estimate the percentile scores that
would have been realized in comparison sets defined by matching on identical students
and teachers. Recent work in education statistics by Wei and He (2006) and Betebenner
(2009) has produced estimation methods and software that allow education officials to
estimate, for given sets of baseline conditioning variables, sets of predicted scores that
describe the percentiles in the corresponding conditional distributions of scores. Given a
predicted score distribution for each individual student that conditions on the characteristics
of each student’s teacher and peers, education authorities can assign a conditional percentile
score to each student. Given these estimated percentiles, one can easily estimate percentile
performance indices in systems with large student populations.

Colorado, Indiana, and Massachusetts currently estimate conditional percentile scores
for many of their students. These conditional percentile scores are also known as “student
growth percentiles,” and they serve as key inputs into new metrics of school performance
that are being used for accountability purposes under NCLB.23 Briggs and Betebenner

23According to Damian Betebenner, who developed the software package commonly used to estimate student
growth percentiles, more than fifteen other state education authorities are currently considering how they
can implement estimation of student growth percentiles for students in their states. The software is available
at http://cran.r-project.org/web/packages/SGP/index.html.

25



(2009) and others in the education statistics research community that advocate scale invari-
ant performance metrics are not concerned with the optimal design of incentive contracts.
Instead, they are interested in constructing ex post measures of educator performance that
are robust to decisions about how assessments results are scaled. We focus on ordinal sta-
tistics because we want to avoid the coaching and scale manipulation behaviors that scale
dependent systems invite. These differences in motivation notwithstanding, the Beteben-
ner (2008) software contains the basic tools required to estimate our percentile performance
indices. Because this approach involves estimating entire distributions of final test scores
given fixed sets of baseline characteristics, the practical implementation of pay for percentile
should work best in school systems that involve large student populations, e.g. entire states
or very large unified districts.

We are highlighting the potential benefits of competition based on ranks as the basis
for incentive pay systems in education, but several details concerning how to organize such
competition remain for future research. First and foremost, teachers who teach in the
same school should not compete against each other. This type of direct competition could
undermine useful cooperation among teachers. Further, although we have discussed all
our results in terms of competition among individual teachers, education authorities may
wish to implement our scheme at the school or school-grade level as a means of providing
incentives for effective cooperation.24

8. Lessons for Policy Makers

In Sections 2 through 6, we analyze incentive provision for teachers and highlight the
benefits of the relative performance incentive schemes as well as the additional benefits of
seeded contests determined by ordinal ranks. Here, we employ the same framework we used
to derive these results to discuss the advantages and deficiencies of teacher incentive schemes
that are already in place. Table 1 lists a number of recent pay for performance systems
employed in public schools.25 Each attaches bonus pay for teachers to some assessment-
based metric of classroom or school performance. The table provides a brief description of
the performance metrics used in these systems. Here, we discuss these metrics in light of
the lessons learned from our model.

24This approach is particularly attractive if one believes that peer monitoring within teams is effective. New
York City’s accountability system currently includes a component that ranks school performance within
leagues defined by student characteristics.
25Here, I restrict attention to performance pay schemes that are either on going policies or were in place
recently. See Ladd (1997), Lavy (2002), and Lavy (2009) for evaluations of experimental incentive pay
programs. Ladd employs data from Dallas, TX. Lavy uses data from Israel.
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Beginning in Section 3, our analyses highlight the value of peer comparisons as a means
of revealing what efficient achievement targets should be. With the exception of TAP
and the possible exception of PRP,26 all the systems described in Table 1 involve setting
achievement targets for individual students or collections of students and rewarding teachers
for meeting these targets. The targets and rewards in these systems can conceivably be
chosen so that teachers respond to such systems by choosing efficient effort. However, the
education authority cannot choose these targets correctly without knowing the educational
production function, gi(·, ·, ·), and the scaling of assessments, m(·). Because the education
authority may not observe the production function directly, teachers may seek to corrupt
the process that the authority uses to determine achievement targets. Further, the scales
used by testing agencies to report results to the education authority may also be vulnerable
to manipulation.

Table 1
Recent Pay for Performance Systems in Education

Name Place Description of Performance Metric
ABC NC State sets achievement targets for each school based on a model

of school achievement growth.
MAP FL Districts choose their own method for measuring teacher

contribution to achievement.
POINT TN VAM analyses on historical achievement data yield value-added

performance targets.
PRP England Teachers submit applications for bonus pay and provide

documentation of better than average performance in
promoting student achievement.

ProComp Denver Teachers and principals negotiate achievement targets for
individual students.

TAP 14 States Relative performance metrics come from a value-added model (VAM).
QComp MN Schools develop their own plans for measuring teacher

contributions to students’ achievement.
Notes: Each system employs additional measures of teacher performance that are not directly tied to

student assessment results. Here, we describe performance statistics derived from test scores.

26PRP instructed teachers to document that their students were making progress “as good or better” than
their peers. However, PRP involved no system for producing objective relative performance measures, and
ex post, the high rate of bonus awards raised questions about the leniency of education officials in setting
standards for “as good or better” performance. See Atkinson et al (2009) and Wragg et al (2001).

27



In contrast, a scheme that pays for performance relative to appropriately chosen peers rather
than for performance relative to specific thresholds is less vulnerable to corruption and
manipulation. By benchmarking performance relative to peer performance, the education
authority avoids the need to forecast E

[
m(gi(aj, e∗j , t

∗
j ) + εij)

]
, i.e. the expected end-

of-year score for student i given efficient teacher effort, which it needs to in order to set
appropriate thresholds. Moreover, relative performance schemes do not create opportunities
for influence activities that either lower performance thresholds or inflate the scales used to
report assessment results and thereby transform performance pay schemes into programs
that primarily increase effective base pay for all teachers. Total reward pay is fixed in
relative performance systems, and performance thresholds are endogenously determined
through peer comparisons.27

Among the entries in Table 1, the Value-Added Model (VAM) approach contained in the
TAP is the only scheme based on an objective mapping between student test scores and
relative performance measures for teachers.28 Our percentile performance indices provide
summary measures of how often the students in a given classroom perform better than
comparable students in other schools, while VAM models measure the distance between
the average achievement of students in a given classroom and the average achievement one
would expect from these students if they were randomly assigned to different classrooms.

Both schemes produce relative performance indices for teachers, but the VAM approach
is more ambitious. Because VAM treats the units of a given psychometric scale as a welfare
index, VAM indices provide a universal ranking of classrooms according to performance

27A previous literature examined other benefits of performance pay schemes that involve competition for a
fixed amount of reward funds. Malcomson (1984) explains that relative performance contracts are enforce-
able in circumstances where standards-based performance pay is not. Even in settings where standards are
not verifiable, the delivery of bonus payments is verifiable, and firms have an incentive ex post to make
these payments to workers who performed best in a relative sense. Carmichael (1983) also demonstrates
that relative performance schemes can be used as devices that allow firms to credibly commit to provide
efficient levels of complementary inputs for their workers.
28The POINT plan involves value-added targets that are derived from VAM analyses of achievement dis-
tributions from previous years, and thus POINT pays for performance relative to past peer performance.
However, POINT does not involve current competition for a fixed amount of bonus funds. While the targets
set for this experimental programming are quite demanding, it is possible that such demanding standards
would be compromised over time in an on-going program.
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and also provide measures of the sizes of performance gaps between classrooms.29 In con-
trast, our percentile performance indices do not permit such comparisons. If teacher A
has a higher percentile performance index than teacher B and the two teachers work with
comparable students, we know that teacher A’s students performed better than their peers
more often than teacher B’s students, but we do not know whether or not the total value
of human capital created in teacher A’s classroom actually exceeds the total value created
in teacher B’s classroom. Further, if teacher A and teacher B work with students who are
very different in terms of their baseline characteristics, their percentile performance indices
provide no information about the relative performance of these teachers because their stu-
dents do not belong to common comparison sets. As we note in Section 6, a key lesson from
our approach is that education authorities can provide effective incentives for educators
without ever forming cardinal measures of total teacher performance at the classroom level
or even an ordinal performance ranking over all teachers.

Cardinal measures of relative performance are a required component of the TAP approach
and related approaches to performance pay for teachers because these systems attempt
to first measure the contributions of educators to achievement growth and then reward
teachers according to these contributions. Donald Campbell (1976) famously claimed that
government performance statistics are always corrupted when high stakes are attached
to them, and the contrast between our percentile performance indices and VAM indices
suggests that Campbell’s Law30 is a warning about the perils of trying to accomplish two
objectives with one performance measure.

Systems, like TAP, that try to both provide incentives for teachers and produce cardi-
nal measures of educational productivity are likely to do neither well because, as we have
noted several times, assessment procedures that enhance an education authority’s capacity
to measure achievement growth consistently over time introduce opportunities for teachers
to game assessment-based incentive systems. Further, because it is reasonable to expect

29Some VAM practitioners employ functional form assumptions that allow them to produce universal rank-
ings of teacher performance and make judgements about the relative performance of two teachers even if
the baseline achievement distributions in their classes do not overlap. In contrast, our pay for percentile
scheme takes seriously the notion that teaching academically disadvantaged students may be a different job
than than teaching honors classes and provides a context-specific measure of how well teachers are doing
the job they actually have.
30Campbell (1976) concluded a review of studies concerning performance in government agencies with,
“I come to the following pessimistic laws (at least for the U.S. scene): The more any quantitative social
indicator is used for social decision-making, the more subject it will be to corruption pressures and the
more apt it will be to distort and corrupt the social processes it is intended to monitor.”
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heterogeneity in the extent of these coaching activities across classrooms, there is no guar-
antee that scale dependent measures of relative performance even provide reliable ex post
rankings of true performance over classrooms.

Scale invariant schemes like pay for percentile also provide no information about secular
changes in student achievement levels over time. If education authorities desire measures
of secular changes in achievement or achievement growth over time, they can deploy a
second assessment system that is scale dependent but with no stakes attached and with
only random samples of schools taking these scaled tests. Because educators face no direct
incentives to manipulate the results of this second assessment system, it will produce more
reliable information about trends in student achievement.

9. Conclusion

The current paradigm in education policy focuses on ways to build accountability and
incentive schemes for public educators that produce scaled measures of student performance
and educator performance while providing performance incentives for educators. Our results
suggest that education authorities can improve performance measurement and incentive
provision by addressing these goals separately.

We show that ordinal comparisons between each of a teacher’s students and the student’s
peers provide the information required for efficient performance pay. Each of these com-
parisons determines the outcome of a symmetric contest, and a policy that pays bonuses
proportional to the fraction of total contests won can elicit efficient effort from teachers.
The fact that education authorities can implement an effective scale invariant incentive
scheme is important for two reasons. First, the repeated items and common formats that
make scale integrity possible in theory invite the coaching behaviors that undermine scale
integrity in practice. Second, scale integrity is difficult to verify and therefore an obvious
target for political manipulation.

Education authorities that desire consistently scaled measures of student or teacher per-
formance should create these measures based on the results of a separate assessment series
that involves no stakes for teachers or principals. Measurement systems that involve no
stakes for educators provide no incentives for educators to take actions that contaminate
the resulting metrics.
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10. APPENDICES

Appendix A

We argue that our pay for percentile scheme is advantageous because it is robust against
certain forms of coaching and scale manipulation. Because we do not model coaching and
scale manipulation explicitly in our main analyses, this Appendix provides a more precise
explanation of what we mean by coaching and scale manipulation. To simplify notation,
we assume g (a) = 0 for all a, so that

(10.1) a′ij = tj + αeij + εij

We can think of this as a special case of our environment in which all students enjoy the
same baseline achievement level.

Coaching. First, we model coaching using a simple version of Holmstrom and Milgrom’s
(1991) multi-tasking model. Here, we define coaching as the time that teachers devote to
memorization of the answers to questions on previous exams, instruction on test taking
techniques that are specific to the format of previous exams, or test taking practice sessions
that involve repeated exposure to previous exam questions. These activities may create
human capital, but we assume that these activites are socially wasteful because they create
less human capital per hour than classroom time devoted to effective comprehensive in-
struction. However, teachers still have an incentive to coach if coaching has a large enough
effect on test scores.

Suppose that in addition to the effort choices ej and tj , teachers can also engage in
coaching. Denote the amount of time teacher j spends on this activity by τj . To facilitate
exposition, assume τj and tj are perfectly substitutable in the teacher’s cost of effort, since
both represent time working with the class as a whole. That is, the cost of effort for teacher
j is given by C (ej , tj + τj), where C (·, ·) is once again assumed to be convex.

We allow τj to affect human capital, but with a coefficient θ that is less than 1, i.e., we
replace (10.1) with

a′ij = tj + θτj + αeij + εij

Hence, τj is less effective in producing human capital than general classroom instruction
tj . At the same time, suppose τj helps to raise the test score for a student of a given
achievement level by improving their chances of getting specific items correct on a test.
That is,

s′ij = m(a′ij + µτj)
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where µ ≥ 0 reflects the productivity of coaching in improving test scores for a student
with a given level of human capital.

For any compensation scheme that is increasing in s′ij , teachers will choose to coach
rather than teach if θ + µ > 1. It seems reasonable to assert that µ is an increasing
function of the fraction of items on a given assessment that are repeated items from previous
assessments. The return to coaching kids on the answers to specific questions or how to
deal with questions in specific formats should be increasing in the frequency with which
these specific questions and formats appear on the future assessments. Because coaching is
socially wasteful, the education authority would like to make each year’s test so different
from previous exams that θ+µ < 1 and more generally so that µ is close to zero. However,
any attempt to minimize the use of previous items will make it more difficult to place
scores on a common scale across assessments, and in the limit, standard psychometric
techniques cannot be used to equate two assessments given at different points in time,
and thus presumably to populations with different distributions of human capital, if these
assessments contain no common items. Thus, in practice, scale-dependent compensation
schemes create opportunities for coaching because they require the repitition of items over
time. Scale-invariant compensation schemes, such as our pay for percentile system, can
be used to reduce coaching because these schemes can employ a series of assessments that
contain no repeated items.

Although we chose to interpret τj as coaching, teachers may try to raise test scores by
engaging in other socially inefficient activities. The ordinal system we propose can help
education authorities remove incentives for teachers to coach students concerning specific
questions that are likely to appear on the next assessment. However, in any assessment-
based performance pay system, individual teachers can often increase their reward pay
by taking actions that are hidden from the education authority. The existing empirical
literature suggests that these actions take many forms, e.g. manipulating the population of
students tested and changing students’ answers before their tests are graded. Our scheme
is less vulnerable to coaching, but no less vulnerable to these types of distortions.

Scale Manipulation. Assume that the education authority contracts with a testing agency
to test students and report the results of the tests. The testing agency knows the true map-
ping between test results and human capital, and thus the authority can contract with the
testing agency to report scores in units of human capital, so that

s = m(a) = a
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The educational authority then announces the rule by which teachers will be compen-
sated. This rule is a mapping from the set of all reported test scores to the set of incomes for
each teacher. Let xj (s′1, ..., s

′
J) equal teacher j′s income under the announced rule, where

s′j = (s1j , ..., sNj) is the vector of scores of all students in class j at the end of the year.
We argue in Section 3 that, if the educational authority knows that the scores are scaled in
units of human capital, it can maximize total surplus from the production of human capital
by adopting the following relative performance pay scheme

(10.2) xj
(
s′1, ..., s

′
J

)
= NX0 +R

N∑
i=1

s′ij − 1
J

J∑
j=1

s′ij


where s′ = m (a′) = a′ .

We assume that, after x (·) is announced, the teachers have opportunity to collectively
lobby the testing agency to report scores on a different scale, which we restrict to take the
form

s = m̂ (a) = λ̂a+ φ̂

where λ̂ > 0, which implies that any manipulation must preserve ordering. Our concern is
scaling, not errors in measurement. The teachers or their union may engage in this type of
manipulation by lobbying the testing agency to choose sets of questions that are less dis-
criminating and do not capture the true extent of human capital differences among students,
or they may lobby the testing agency to falsely equate scores from current assessments to
some established baseline scale.

Note that (10.2) is robust against efforts to inflate scores by choosing φ̂ > 0 because
payments are based on relative performance. However, the teachers can still benefit from
convincing the testing agency to choose λ̂ < 1. Given this scheme or other symmetric,
relative compensation schemes, all teachers face the same incentives and will thus put in
the same effort. This implies that, if the testing agency reports m̂(a) instead m(a), the
expected teacher payoff from (10.2) equals NX0 − C(êj , t̂j), where (êj , t̂j) denotes the
common level of effort teachers choose in response to the scale that they have convinced
the testing agency to employ. Any manipulation of the scale that induces teachers to
coordinate on a lower common level of effort will make them all better off. To see that
teachers can coordinate on less effort by manipulating λ̂, note that under (10.2), each risk
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neutral teacher faces the problem,

max
ej ,tj

NX0 +
N∑
i=1

R
[
λ̂(tj + αeij)− constant

]
− C (ej , tj)− U0

and thus (êj , t̂j) are decreasing functions of λ̂.
Of course, just because teachers have an incentive to manipulate λ̂, does not mean that

they can do so without being detected by the authority. Recall that, in equilibrium, all
teachers put in the same effort, and thus, any variation in scores is due to εij . Thus, if the
education authority knows the distribution of εij , it can detect whether λ̂ = 1 by comparing
the standard deviation of test scores with the standard deviation of εij .

However, if the education authority is uncertain about the distribution of εij but teachers
know the distribution, the education authority may be unable to detect λ̂ < 1. Suppose
there are two states of the world, each equally likely, which differ in the dispersion of the
shock term, εij . In the first state, the shock is εij , as above, and in the second state the shock
is scaled up by a constant σ > 1. If teachers observe that they are in the second state of the
world, they can set λ̂ = 1/σ (and choose φ̂ appropriately) so that the distribution of test
scores is identical to the distribution of test scores in the first state of the world when λ̂ = 1.
Thus, under the relative pay for perfromance scheme above, teachers could manipulate the
scale without being detected, and they would benefit from this manipulation.

By contrast, our pay-for-percentile scheme has the advantage of not being vulnerable to
this type of manipulation. By construction, changing the scale has no effect on the compen-
sation teachers would earn under pay for percentile. Our scheme does require identifying
which of the two states of the world we are in, since h (0) will differ in these states. However,
the procedure we suggest for recovering h (0) works in either state.31

Appendix B: Proofs

Proposition 1: Let ε̃ij denote a random variable with mean zero, and let εij=σε̃ij.
There exists σ such that ∀σ > σ, both teachers choosing the socially optimal effort levels
(e∗, t∗) is a pure strategy Nash equilibrium of the two teacher contest.

31Note that there may be scale-dependent schemes that still elicit first best. For example, if the education
authority offers a higher base pay whenever the dispersion of scores is high, it can provide incentives that
dissuade teachers from distorting the scale. Since a change in base pay does not affect the incentive to put
in effort, such a scheme can elicit first best effort.
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Proof of Proposition 1: Our proof will be for the general production function a′ij =
gi(a, , tj , ej), which includes the separable production function in Section 2 as a special
case.

Define ν̃ii = ε̃ij − ε̃ik, and let H̃(x) ≡ Pr(ṽi ≤ x). Then, H(x) = H̃(x/σ). Similarly, we

have h(x) ≡ dH(x)
dx

=
1
σ
h̃(x/σ). Note that

h(0) =
1
σ
h̃(0).

Consider the probability that teacher j wins the contest over student i when her opponent
chooses the socially optimal vector of effort, (e∗, t∗). Let a ≡ aj = ak. Then this probability
is given by

H(gi(a, tj , ej)− gi(a, t∗, e∗)) =
∫ gi(a,tj ,ej)−gi(a,t

∗,e∗)

−∞
h(x)dx

=
∫ gi(a,tj ,ej)−gi(a,t

∗,e∗)

−∞

1
σ
h̃(x/σ)dx

Teacher j’s problem is given by

max
ej ,tj

NX0 + (X1 −X0)
N∑
i=1

H(gi(a, tj , ej)− gi(a, t∗, e∗))− C(ej , tj)− U0

If we set X0 = U0+C(e∗,t∗)
N − R

2h(0) and X1−X0 = R/h(0), and use the fact that h(x)
h(0) =

eh(x/σ)eh(0)

this problem reduces to

(10.3) max
ej ,tj

R
N∑
i=1

[∫ gi(a,tj ,ej)−gi(a,t
∗,e∗)

−∞

h̃(x/σ)

h̃(0)
dx

]
+ C(e∗, t∗)− RN

2h (0)
− C(ej , tj)

We first argue that the solution to this problem is bounded in a way that does not depend
on σ. Observe that the objective function (10.3) is equal to 0 at (e, t) = (e∗,t∗). Any value
of (e, t) that yields a negative value for the objective function thus cannot be optimal. We
shall now argue that outside of a compact set, we can be assured that the objective function
will generate negative values.

To see this, let us rewrite the first term in (10.3) as follows:∫ gi(a,tj ,ej)−gi(a,t
∗,e∗)

−∞

h̃(x/σ)

h̃(0)
dx =

∫ 0

−∞

h̃(x/σ)

h̃(0)
dx+

∫ gi(a,tj ,ej)−gi(a,t
∗,e∗)

0

h̃(x/σ)

h̃(0)
dx
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Since h (x) is symmetric around zero and integrates up to 1, we know the value of the first
integral: ∫ 0

−∞

h̃(x/σ)

h̃(0)
dx =

∫ 0

−∞

h (x)
h (0)

dx =
1

2h (0)

The second integral can be bounded. If the upper limit of integration gi(aj , tj , ej) −

gi(a, t∗, e∗) is positive, then since h̃ (·) has a peak at zero, it follows that
h̃(x/σ)

h̃(0)
≤ 1

for all x and so∫ gi(aj ,tj ,ej)−gi(a,t
∗,e∗)

0

h̃(x/σ)

h̃(0)
dx ≤

∫ gi(aj ,tj ,ej)−gi(a,t
∗,e∗)

0
dx = gi(aj , tj , ej)− gi(a, t∗, e∗)

In instead gi(aj , tj , ej)− gi(a, t∗, e∗) is negative, then since h̃ (·) ≥ 0, we have∫ gi(aj ,tj ,ej)−gi(a,t
∗,e∗)

0

h̃(x/σ)

h̃(0)
dx ≤ 0

It follows that the objective function for the teacher, (10.3), is bounded above

(10.4) R

N∑
i=1

max [gi(a, tj , ej)− gi(a, t∗, e∗), 0] + C(e∗, t∗)− C(ej , tj)

Now, define the set U =
{

u ∈ RN+1
+ :

∑N+1
i=1 ui = 1

}
. Any vector (ej , tj) can be uniquely

expressed as λu for some λ ≥ 0 and some u ∈ U . Given our assumptions on C(·, ·), for any
vector u it must be the case that C(λu) is increasing and convex in λ and satisfies the limit

lim
λ→∞

∂C(λu)
∂λ

=∞. Since gi(a, λtj , λej) is concave in λ, for any u ∈ U there exists a finite

cutoff λ∗ (u) such that the expression in (10.4) evaluated at (ej , tj) = λu will be negative
for all λ > λ∗ (u). Since U is compact, λ∗ = sup {λ∗ (u) : u ∈ U} is well defined and finite.
It follows that the solution to (10.3) lies in the bounded set [0, λ∗]N+1.

Next, we argue that there exists a σ such that for σ > σ, the Hessian matrix of second
order partial derivatives for this objective function is negative definite over the bounded
set [0, λ∗]N+1. Define π(t, ej) ≡ R

∑N
i=1

[∫ gi(a,tj ,ej)−gi(a,t
∗,e∗)

−∞
eh(x/σ)eh(0)

dx
]
. Then the Hessian

matrix is the sum of two matrices, Π−C, where
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C ≡



∂2C

∂e2
1

∂2C

∂e2∂e1
· · · ∂2C

∂t∂e1

∂2C

∂e1∂e2

∂2C

∂e2
2

· · · ∂2C

∂t∂e2
...

...
. . .

...
∂2C

∂e1∂t

∂2C

∂e2∂t
· · · ∂2C

∂t2


and

Π ≡



∂2π

∂e2
1

∂2π

∂e2∂e1
· · · ∂2π

∂t∂e1

∂2π

∂e1∂e2

∂2π

∂e2
2

· · · ∂2π

∂t∂e2
...

...
. . .

...
∂2π

∂e1∂t

∂2π

∂e2∂t
· · · ∂2π

∂t2


Since the function C(·) is strictly convex, −C must be a negative definite matrix. Turning
to Π, since we assume that H(·) is twice differentiable, it follows that H̃(·) is also twice
differentiable. To determine the limit of Π as σ →∞, let us first evaluate the first derivative
of π with respect to eij :

∂π

∂eij
=

R

h̃(0)

N∑
m=1

[
∂gm(aj , tj , ej)

∂eij
h̃

(
gm(aj , tj , ej)− gm(a, t∗, e∗)

σ

)]
Differentiating again yields

∂2π

∂eij∂ei′j
=

N∑
m=1

∂gm(aj , tj , ej)
∂eij∂ei′j

h̃

(
gm(aj , tj , ej)− gm(a, t∗, e∗)

σ

)
+

N∑
m=1

∂gm(aj , tj , ej)
∂eij

h̃′
(
gm(aj , tj , ej)− gm(a, t∗, e∗)

σ

)

Because
∂gm(aj , tj , ej)

∂eij
is finite and h̃′ (0) = 0 given h (x) is maximal at 0, it follows the

second term above vanishes in the limit as σ →∞. Hence, we have

∂2π

∂eij∂ei′j
→ R

h̃(0)

N∑
m=1

[
∂gm(aj , tj , ej)
∂eij∂ei′j

h̃(0)
]

= R
N∑
m=1

[
∂gm(aj , tj , ej)
∂eij∂ei′j

]
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Given that a similar argument holds for the derivatives of π with respect to tj , Π converges to
an expression proportional to the Hessian matrix for

∑N
i=1 gi, which is negative semidefinite

given each gi is concave. Hence, the objective function is strictly concave in the region that
contains the global optimum, ensuring the first-order conditions are both necessary and
sufficient to define a global maximum.

Here, we have analyzed a two-teacher contest. However, it is straightforward to extend
the argument to the case of K rivals. In this case, the solution to teacher j’s problem, when
all K opponents choose (e∗, t∗) is the solution to

max
ej ,tj

(X1 −X0)
K∑
k=1

N∑
i=1

H(gi(a, tj , ej)− gi(a, t∗, e∗))− C(ej , tj)

Thus, since the prizes for the case where there are K opponents are given by X1−X0 =
R

Kh(0) , this expression reduces to (10.3), and the claim follows immediately.�

Proposition 2: In the two teacher contest, whenever a pure strategy Nash equilibrium
exists, it involves both teachers choosing the socially optimal effort levels (e∗, t∗).

Proof of Proposition 2: We begin our proof by establishing the following Lemma:

Lemma: Suppose C(·) is a convex differentiable function which satisfies standard bound-
ary conditions concerning the limits of the marginal costs of each dimension of effort as effort
on each dimension goes to 0 or ∞. Then for any positive real numbers a1, ..., aN and b,
there is a unique solution to the system of equations

∂C(e1, ..., eN , t)
∂ei

= ai for i = 1, ..., N

∂C(e1, ..., eN , t)
∂t

= b

Proof : Define a function bt +
∑N

i=1 aiei − C(e1, .., , eN , t). Since C(·) is strictly con-
vex, this function is strictly concave, and as such has a unique maximum. The boundary
conditions, together with the assumption that a1, ..., aN and b are positive, ensure that
this maximum must be at an interior point. Because the function is strictly concave, this
interior maximum and the solution to the above equations is unique, as claimed. �

Armed with this lemma, we can demonstrate that any pure strategy Nash equilibrium
of the two teacher contest involves both teachers choosing the socially optimal effort levels.
Note that, given any pure strategy Nash equilibrium, both teacher’s choices will satisfy the
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first order conditions for a best response to the other teacher’s actions. Further, since h(·)
is symmetric, we know that given the effort choices of j and j′,

h(α(eij − eij′) + tj − tj′) = h(α(eij′ − eij) + tj′ − tj)

In combination, these observations imply that any Nash equilibrium strategies, (ej , tj)
and (ej′ , tj′), must satisfy

h(0)
∂C(ej , tj)
∂eij

= Rαh(α(eij − eij′) + tj − tj′)

= Rαh(α(eij′ − eij) + tj′ − tj) = h(0)
∂C(ej′ , tj′)

∂eij′

and

h(0)
∂C(ej , tj)

∂tj
= RNh(α(eij − eij′) + tj − tj′)

= RNh(α(eij′ − eij) + tj′ − tj) = h(0)
∂C(ej′ , tj′)

∂tj′

Our lemma implies that these equations cannot be satisfied unless eij = eij′ = e∗ for all
i = 1, ..., N and that tj = tj′ = t∗. The only pure-strategy equilibrium possible in our two
teacher contests is one where teachers invest the classroom instruction effort and common
level of tutoring that are socially optimal. �
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