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Abstract

Sponsored links that appear beside Internet search results on the major search engines are sold using

real-time auctions. Advertisers place standing bids, and each time a user enters a search query,

the search engine holds an auction. Ranks and prices depend on advertiser bids as well as “quality

scores” that are assigned for each advertisement and user query. Existing models assume that bids

are customized for a single user query. In practice queries arrive more quickly than advertisers can

change their bids, and quality scores vary over time and across user queries. This paper develops a

new model that incorporates these features. In contrast to prior models, which produce multiplicity

of equilibria, we provide sufficient conditions for existence and uniqueness of equilibria. In addition,

we propose a homotopy-based method for computing equilibria.

We propose a structural econometric model. With sufficient uncertainty in the environment, the

valuations are point-identified, otherwise, we consider bounds on valuations. We develop an estimator

which we show is consistent and asymptotically normal, and we assess the small sample properties of

the estimator using Monte Carlo.

We apply the model to historical data for several keywords. Our model yields lower implied

valuations and bidder profits than approaches that ignore uncertainty. Bidders have substantial

strategic incentives to reduce their expressed demand in order to reduce the unit prices they pay in the

auctions, and these incentives are asymmetric across bidders, leading to inefficient allocation, which

does not arise in models that ignore uncertainty. For the keywords we study, the auction mechanism

used in practice is not only less efficient than a Vickrey auction, but also for some keywords it raises

less revenue.
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1 Introduction

Online advertising is a big business. Search advertising is an important way for businesses, both online

and offline, to attract qualified leads; Google revenues from search advertising auctions top $20 billion
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per year.

This paper develops and analyzes original theoretical and econometric models of advertiser behavior in

the auctions, and applies these models to a real-world dataset. The methods can be used to infer bid-

der valuations from their observed bids, and to reliably and quickly compute counterfactual equilibrium

outcomes for differing economic environments (e.g. different auction format, altered competitive environ-

ment). We apply the tools to address economic questions. For example, we quantify the extent to which

existing auction rules lead to inefficient allocation as compared to a Vickrey auction, as well as the way

in which the competition affects the magnitude of the inefficiency.

The model proposed in this paper differs from existing economic models (e.g. [7], [17]) by incorporating

more realistic features of the real-world bidding environment. We show that our more realistic model

has several advantages in terms of tractability, ability to rationalize bidding data in an equilibrium

framework, and in the specificity of the predictions it generates: it simultaneously avoids the problems

of multiplicity of equilibrium and lack of point-identification of values that are the focus of much of the

existing literature.

Sponsored links that appear beside Internet search results on the major search engines are sold using real-

time auctions. Advertisers place standing bids that are stored in a database, where bids are associated

with keywords that form part or all of a user’s search query. Each time a user enters a search query,

applicable bids from the database are entered in an auction. The ranking of advertisements and the

prices paid depend on advertiser bids as well as “quality scores” that are assigned for each advertisement

and user query. These quality scores vary over time, as the statistical algorithms incorporate the most

recent data about user clicking behavior on this and related advertisements and search queries; and they

may also vary with the characteristics of the individual user query, such as the time of day or the user’s

location.

[7] and [17] assume that bids are customized for a single user query and the associated quality scores;

alternatively, one can interpret the models as applying to a situation where quality scores, advertisement

texts, and user behavior are static over a long period of time which is known to advertisers. However,

in practice quality scores do vary from query to query, queries arrive more quickly than advertisers

can change their bids,1 and advertisers cannot perfectly predict changes in quality scores. This paper

develops a new model where bids apply to many user queries, while the quality scores and the set of

competing advertisements may vary from query to query. In contrast to existing models that ignore

uncertainty, which produce multiplicity of equilibria, we provide sufficient conditions for existence and

1Although bids can be changed in real time, the system that runs the real-time auction is updated only periodically

based on the state at the time of the update, so that if bids are adjusted in rapid succession, some values of the bids might

never be applied.
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uniqueness of equilibria, and we provide evidence that these conditions are satisfied empirically. One

requirement is sufficient uncertainty about quality scores relative to the gaps between bids. We show

that the necessary conditions for equilibrium bids can be expressed as an ordinary differential equation,

and we develop a homotopy-based method for calculating equilibria given bidder valuations and the

distribution of uncertainty.

Thus, the model that incorporates uncertainty, in addition to being more realistic, is more tractable and

in many ways easier to analyze than the no-uncertainty alternative. Uniqueness of equilibria is especially

useful for precise inference and counterfactual predictions in empirical applications.

We then propose a structural econometric model. With sufficient uncertainty in the environment, valua-

tions are point-identified, otherwise, we propose a bounds approach. We develop an estimator for bidder

valuations, establish consistency and asymptotically normality, and use Monte Carlo simulation to assess

the small sample properties of the estimator.

In the last part of the paper, we apply the model to historical data for several search phrases. We start

by comparing the estimates implied by our model to those implied by prior approaches, showing that

our model yields lower implied valuations and bidder profits. We then use our estimates to examine

the magnitude of bidders’ incentives to shade their bids and reduce their expressed demands in order to

maximize profits, focusing on the degree to which such incentives are asymmetric across bidders with

high versus low valuations. We demonstrate that differential bid-shading leads to inefficient allocation.

The incentives for “demand-reduction” are created by the use of a “generalized second-price auction”

(GSP), which [7] and [17] show is different from a Vickrey auction. In a model without uncertainty, one

of the main results of [7] and [17] is that the GSP auction is outcome-equivalent to a Vickrey auction for

a particular equilibrium selection, which we refer to as the “EOS” equilibrium; however, we show that

the equivalence breaks down when bidders use differential bid shading and the same bids apply to many

user queries with varying quality scores.

Because a Vickrey auction, run query by query, would lead bidders to bid their values and thus would

result in efficient allocation in each auction even when quality scores vary query by query, our findings

suggest that there is a non-trivial role for auction format to make a difference in this setting, a finding

that would not be possible without uncertainty and using the EOS equilibrium, since then, auction format

plays no role.

In our model, the revenue ranking of the GSP and the Vickrey auction is ambiguous. For two of our

search phrases, we find that the Vickrey auction raises up to 4though the efficiency difference is only

about .5phrase, the GSP raises slightly more revenue.
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Finally, we show that our computational approach is tractable in practice, and we use it to compute

counterfactual equilibria in order to evaluate the impact of an increase in entry of advertisers.

2 Overview of Sponsored Search Auctions

Auction design for sponsored search auctions has evolved over time; see [7] for a brief history. Since

the late 1990s, most sponsored search in the U.S. has been sold at real-time auctions. Advertisers enter

per-click bids into a database of standing bids. They pay the search engine only when a user clicks on

their ad. Each time a user enters a search query, bids from the database of standing bids compete in an

auction. Applicable bids are collected, the bids are ranked, per-click prices are determined as a function

of the bids (where the function varies with auction design), and advertisements are displayed in rank

order, for a fixed number of slots J . Clicks are counted by the ad platform and the advertiser pays the

per-click price for each click. For simplicity, we will focus exposition on a single search phrase, where all

advertisers place a distinct bid that is applicable to that search phrase alone.2

In this setting, even when there are fewer bidders than positions, bidders are motivated to bid more

aggressively in order to get to a higher position and receive more clicks. Empirically, it has been well

established that appearing in a higher position on the screen causes the advertisement to receive more

clicks. We let αi,j be the ratio of the “click-through rate” (CTR, or the probability that a given query

makes a click on the ad) that advertiser i would receive if its ad appears in position j, and the CTR of

the ad in position 1. These effects are substantial, in that the “click-through rates” for the highest slot

can be tens to hundreds of times higher than for slots a few positions below. The way in which CTRs

diminish with position depends on the search phrase in question.

The mapping between bids, ranks and prices has varied over time. Initially, Yahoo! used first-price

(pay-your-bid) auctions. As [8] show, in a static model, this auction does not have a pure strategy ex

post equilibrium.3 Since bidders can adjust their bids in real time, a configuration of bids that is not an

ex post equilibrium creates incentives for some players to adjust their bids. Indeed, [8] demonstrate that

in practice, bidding behavior was characterized by cycling.

In 2002, Google introduced the “generalized second price” auction. The main idea of this auction is that

advertisements are ranked in order of the per-click bids (say, b1, .., bN with bi > bi+1) and a bidder pays

2In general, bidders can place “broad match” bids that apply to any search phrase that includes a specified set of

“keywords,” but for very high-value search phrases, such as the ones we study here, most advertisers who appear on the

first page use exact match bidding.
3By ex post equilibrium, we mean a Nash equilibrium where each bidder’s bid is a best response to the realized bids of

other players; in a setting where each player is certain of her own value per click (no common values), the concepts of ex

post equilibrium, complete information Nash equilibrium, and dominant strategy equilibrium all coincide.
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the minimum per-click price required to keep the bidder in her position (so bidder i has position i and

pays bi+1). When there is only a single slot, this auction is equivalent to a second-price auction, but with

multiple slots, it differs. Subsequently, Google modified the auction to include weights, called “quality

scores,” for each advertisement, where scores are calculated separately for each advertisement on each

search phrase. These scores were initially based primarily on the estimated click-through rate the bidder

would attain if it were in the first position. The logic behind this design is straightforward: allocating

an advertisement to a given slot yields expected revenue equal to the product of the price charged per

click, and the click-through rate. Thus, ranking advertisements by the product of the click-through rate

and the per-click bid is equivalent to ranking them by the expected revenue per impression (that is, the

revenue from displaying the ad). Later, Google introduced additional variables into the determination of

the weights, including measures of the match between the advertisement and the query. Although the

formulas used by each search advertising platform are proprietary information and can change at any

time, the initial introduction of quality scores by Microsoft and Yahoo! was described in the industry as

a generalized second price auction using the “click-weighting” version of quality scores, that is, quality

scores reflect primarily the expected click-through rate of the advertisement.

In practice, there are also a number of reserve prices that apply for the different advertising platform,

but as our empirical application generally has non-binding reserve prices, we ignore them for the baseline

model in this paper.

3 The Model

3.1 A Static Model of a Score-Weighted Generalized Second-Price Auction

We begin with a static model, where I advertisers simultaneously place per-click bids bi on a single search

phrase. The bids are then held fixed and applied to all of the users who enter that search phrase over a

pre-specified time period (e.g. a few hours, a day or a week), and bidders pay their per-click bids when

users actually click on their ads. There is a fixed number of advertising slots J in the search results page.

We model consumer searches as an exogenous process, where each consumer’s clicking behavior is random

and ci,j , the average probability that a consumer clicks on a particular ad in a given position, is the same

for all consumers. It will greatly simplify exposition and analysis to maintain the assumption that the

parameters αi,j (the ratio of advertisement i’s CTR in position j to its CTR in position 1) satisfy

αi,j = αi′,j ≡ αj for all advertisements i, i′; we will maintain that assumption throughout the paper.4

4Empirically, this assumption can be rejected for many search phrases, but the deviations are often small, and the

assumption is more likely to hold when the advertisements are fairly similar, as is the case for the search phrases in our

sample.
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That is, there exists a vector of advertisement effects, γi, i = 1, .., I, and position effects αj , j = 1, .., J,

with α1 = 1, such that ci,j can be written

ci,j = αjγi.

The ad platform conducts a click-weighted generalized second price auction. Each advertisement i is

assigned score si, and bids are ranked in order of the product bi si. In general discussion we will use j to

index slots of the position auction and i to index bidders. However, if the bidders are arranged in order

of their score-weighted bids bi si, bidder i will be in slot j = i. The per-click price pi that the bidder in

position i pays is determined as the minimum price such that the bidder remains in her position

pi = min{bi : sibi ≥ si+1bi+1} =
si+1bi+1

si
.

Note that advertiser i does not directly influence the price that she pays, except when it causes her to

change positions, so in effect an advertiser’s choice of bid determines which position she attains, where

the price per click for each position is exogenous to the bidder and rises with position.

To interpret this auction, observe that if for each i, si = γi, then the expected revenue the ad platform

receives from placing bidder i in position i is αiγi+1bi+1, which is what the platform would receive if

instead, it had placed bidder i+ 1 in position i and charged bidder i+ 1 her per-click bid, bi+1, for each

click. So bidder i pays, in expectation, the per-impression revenue that would have been received from

the next lowest bidder.

We assume that advertisers are interested in consumer clicks and each advertiser i has a value vi associated

with the consumer click. The profile of advertiser valuations in a particular market V = (v1, . . . , vI)
′
is

fixed, and advertisers know their valuations with certainty. Each click provides the advertiser i with the

surplus vi − pi. The advertisers are assumed to be risk-neutral.

3.2 Equilibrium Behavior with No Uncertainty (NU)

The structure of Nash equilibria in the environment similar to that described in the previous subsection

has been considered in [7] and [17]. We can write the expected surplus of advertiser i from occupying the

slot j as

ci,j (vi − pj) = αjγi

(
vi −

skj+1
bkj+1

si

)
,

where bidder kj+1 is in slot j + 1.

The existing literature, including [7] and [17], focus on the case where the bidders know the set of

competitors as well as the score-weighted bids of the opponents, and they consider ex post equilibria,

where each bidder’s score-weighted bid must be a best response to the realizations of skj+1
bkj+1

(and
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recall we have also assumed that the ci,j are known). Let us start with this case, which we will refer to

as the “No Uncertainty” (NU) case.

The set of bids constituting a full-information Nash equilibrium in the NU model, where each bidder

finds it unprofitable to deviate from her assigned slot, are those that satisfy

αj

(
vkj

− skj+1
bkj+1

skj

)
≥ αl

(
vkj

− skl+1
bkl+1

skj

)
, l > j

αj

(
vkj

− skj+1
bkj+1

skj

)
≥ αl

(
vkj

− skl
bkl

skj

)
, l < j.

It will sometimes be more convenient to express these inequalities in terms of score-weighted values, as

follows:

min
l<j

skl
bkl

αj − skj+1
bkj+1

αl

αl − αj
≥ skj

vkj
≥ max

l>j

skj+1
bkj+1

αj − skl+1
bkl+1

αl

αj − αl
.

An equilibrium always exists, but it is typically not unique, and equilibria may not be monotone: bidders

with higher score-weighted values may not be ranked higher.

[7] and [17] define a refinement of the set of equilibria, which [7] call “envy-free”: no bidder wants to

exchange positions and bids with another bidder. The set of envy-free equilibria is characterized by a

tighter set of inequalities:

skj
vkj

≥ skj+1
bkj+1

αj − skj+2
bkj+2

αj+1

αj − αj+1
≥ skj+1

vkj+1
. (3.1)

The term in between the two inequalities is interpreted as the incremental costs divided by the incremental

clicks from changing position, or the “incremental cost per click” ICCj,j+1:

ICCj,j+1 =
skj+1

bkj+1
αj − skj+2

bkj+2
αj+1

αj − αj+1
.

Envy-free equilibria are monotone, in that bidders are ranked by their score-weighted valuations, and

have the property that local deviations are the most attractive–the equilibria can be characterized by

incentive constraints that ensure that a bidder does not want to exchange positions and bids with either

the next-highest or the next-lowest bidder.

[7] consider a narrower class of envy-free equilibria in the same information environment as [17], the one

with the lowest revenue for the auctioneer and the one that coincides with Vickrey payoffs as well as the

equilibrium of a related ascending auction game. They require

skj
vkj

≥ ICCj,j+1 = skj+1
vkj+1

. (3.2)

[7] show that despite the fact that payoffs coincide with Vickrey payoffs, bidding strategies are not

truthful: bidders shade their bids, trading off higher price per click in a higher position against the

incremental clicks they obtain from the higher position.
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3.3 Equilibrium Behavior with Score and Entry Uncertainty (SEU)

In reality, advertiser bids apply to many unique queries by users. Each time a query is entered by a user,

the set of applicable bids is identified, scores are computed, and the auction is conducted as described

above. In practice, both the set of applicable bids and the scores vary from query to query. This section

describes this uncertainty in more detail and analyzes its impact on bidding behavior.

3.3.1 Uncertainty in Scores and Entry in the Real-World Environment

The ad platform produces scores at the advertisement-query level using a statistical algorithm. A key

component of quality scores is the click-through rate that the platform predicts the advertisement will

attain. In practice, the distribution of consumers associated with a given search query and/or their

preferences for given advertisers (or for advertisements relative to algorithmic links) can change over

time, and so the statistical algorithms are continually updated with new data. In addition, the statistical

algorithms can use characteristics of the user query as inputs, including features such as the time of day

or the location of the user, and this will lead to different scores for different users. Google has stated

publicly that it uses individual search history to customize results to individual users; to the extent

that Google continues to use the GSP, ranking ads differently for different users can be accomplished by

customizing the quality scores for individual users.

We assume that the score of a particular bidder i for a user query is a random variable, denoted si, which

is equal to

si = siεi,

where εi is a shock to the score induced by random variation in the algorithm’s estimates.

Now consider uncertainty in bidder entry. There are many sources of variation in the set of advertisements

that are considered for the auction for a particular query. First, some bidders specify budgets (limits

on total spending at the level of the account, campaign, or keyword), which the ad platforms respect

in part by spreading out the advertiser’s participation in auctions over time, withholding participation

in a fraction of auctions. Bidders may “pause” and “reactivate” their campaigns in order to manage

their own advertising expenditures, as well. (We do not formally model such constraints and objectives

in this paper.) Second, many bidders experiment with multiple advertisements and with different ad

text. These advertisements will have distinct click-through rates, and so will appear to other bidders

as distinct competitors. For new advertisements, it takes some time for the system to learn the click-

through rates; and the ad platform’s statistical algorithm may “experiment” with new ads in order to

learn. Third, some bidders may target their advertisements at certain demographic categories, and they

may enter different bids for those categories (platforms make certain demographic categories available for
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customized bidding, such as gender, time of day, day of week, and user location).

For these and other reasons, it is typical for the configuration of ads to vary on the same search phrase;

this variation is substantial for all three major search ad platforms in the U.S., as can be readily verified

by repeating the same query from different computers or over time.

The role of the score and entry uncertainty can be illustrated by Figure 1. The x-axis gives the (expected)

click-through rate a bidder receives (the “click share”), relative to the click-through rate it would attain in

the top position (that is, the average of αj over the positions the bidder experiences). The step function

in the figure shows the relationship between the incremental cost per click and expected number of clicks

for a single user query, with a commonly observed configuration of advertisements and associated bids,

and assuming that each advertisement is assigned a score equal to its average score from the week. As

the bidder in question’s score-weighted bid increases and crosses the score-weighted bid of each opponent,

the bidder moves to a higher position, receiving a higher average CTR. Given a value of α ∈ [αj+1, αj ],

the associated incremental cost per click is ICCj,j+1.

The smooth curve shows how uncertainty affects the incremental cost per click. The curve is constructed

by varying the bid of a given advertisement. For each value of the bid, we calculate the expectation

of the share of possible clicks the advertisement receives, where the expectation is taken over possible

realizations of quality scores, using the distribution of these scores we estimate below. Corresponding to

each expected click share, we calculate the marginal cost of increasing the click share and plot that on

the y-axis (details of the computation are provided below). The marginal cost curve increases smoothly

rather than in discrete steps because the same advertisement with the same bid would appear in different

positions for different user queries, and changing the bid slightly affects outcomes on a small but non-zero

share of user queries.

This smoothness reflects the general variability of the environment faced by the advertisers. For the

search phrases we consider, the most commonly observed advertisements have a standard deviation of

their position number ranging from about one third of a position, to about 2 positions.

3.3.2 Formalizing the Score and Entry Uncertainty (SEU) Model

Start with the NU model, and consider the following modifications. Bids are fixed for a large set of user

queries on the same search phrase, but the game is still a simultaneous-move game: bidders simultaneously

select their bids, and then they are held fixed for a pre-specified period of time. Let C̃i be a random

subset of advertisers excluding advertiser i, with typical realization Ci, and consider shocks to scores as

defined in the last subsection.

We use the solution concept of ex post Nash equilibrium. In the environment with uncertainty, we need
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Figure 1: Marginal/Incremental Cost Per Click in NU and SEU case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

0.75

1

1.2

Expected clicks (q)

ICC (NU)

MC (SEU)

Value (SEU)

Bid

to specify bidder beliefs. Since our environment has private values (bidders would not learn anything

about their own values from observing the others’ information) and we model the game as static, an ex

post Nash equilibrium merely requires that each bidder correctly anticipates the mapping from his own

bids to expected quantities and prices, taking as given opponent bids. Note that the major search engines

provide this feedback to bidders through advertiser tools (that is, bidders can enter a hypothetical bid

on a keyword and receive estimates of clicks and cost).

Despite these weak information requirements, for simplicity of exposition, we endow the bidders with

information about the primitive distributions of uncertainty in the environment. That is, we assume that

advertisers correctly anticipate the share of user queries where each configuration of opposing bidders

Ci will appear; the mean of each opponent’s score-weighted bid, bisi; and the distribution of shocks to

scores, Fε(·).

Define Φj
ik to be an indicator for the event that bidder i is in slot j and bidder k is in slot j + 1, and let

Ci
j,k be a subset of Ci with cardinality j that contains k, representing the set of bidders above bidder i

and as well as k. Let b, s, ε be vectors of bids, mean scores, and shocks to scores, respectively Then:

Φj
ik

(
b, s, ε;Ci

)
=
∑

Ci
j,k

∏

m∈Ci
j,k

\{k}

1 {bmsmεm > bisiεi}
∏

m∈Ci\Ci
j

1 {bmsmεm < bkskεk}1 {bisiεi > bkskεk} .

We can then write the expected number of clicks a bidder will receive as a function of her bid bi as follows:

Qi(bi; b−i, s) = EC̃i,ε


 ∑

j=1,..,J

∑

k∈C̃i

Pr(Φj
ik

(
b, s, ε; C̃i

)
= 1) · αj · γi


 .
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The expected total expenditure of the advertiser for the clicks received with bid bi can be written

TEi(bi; b−i, s) = EC̃i,ε


 ∑

j=1,..,J

∑

k∈C̃i

Pr(Φj
ik

(
b, s, ε; C̃i

)
= 1) · αj · γi ·

skεkbk
siεi


 .

Then, the bidder’s problem is to choose bi to maximize

EUi(bi; b−i, s) ≡ vi ·Qi(bi; b−i, s)− TEi(bi; b−i, s). (3.3)

We assume that the distributions of the scores have bounded supports. In general, this can lead to a

scenario where expected clicks, expenditures and thus profits are constant in bids over certain ranges,

since there can be a range of bids that maintain the same average position. A pure strategy ex post

equilibrium in this model may or may not exist; in the case where scores have a wide support, bidders

will typically have a unique best response, and equilibrium existence is determined according to whether a

solution exists to a system of nonlinear equations (the first-order conditions). In addition, the equilibrium

may or may not be unique. The next section analyzes these issues.

3.4 Existence, Uniqueness, and Computation of Equilibrium in the SEU Model

In this section, we derive a particularly convenient representation of the conditions that characterize

equilibria in the SEU model, and then we show that standard results from the theory of ordinary differ-

ential equations can be used to provide necessary and sufficient conditions for existence and uniqueness

of equilibrium. We start by making the following assumption, which we maintain throughout the paper.

ASSUMPTION 1. Assume that shocks to the scores are i.i.d. across bidders with distribution Fε(·),
which does not have mass points and has an absolutely continuous density fε(·) with a compact support

on [ε, ε] . fε(·) is twice continuously differentiable and strictly positive on [ε, ε].

Many of the results in the paper carry over if this assumption is relaxed, but they simplify the analysis

substantially.

To begin, we present a simple but powerful identity:

d

d τ
EUi (τb, s)|τ=1 = −TEi (b, s) , (3.4)

that is, a proportional increase in all bids decreases bidder i’s utility at the rate TEi (b, s), the amount

bidder i is spending. The intuition is that ranks and prices depend on the ratios of bids, so a proportional

change in all bids simply increases costs proportionally. We formally establish the identity below in the

proof of the next lemma.

The system of first-order conditions that are necessary for equilibrium is given by

vi
∂

∂bi
Qi (b, si) =

∂

∂bi
TEi (b, si) for all i. (3.5)
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Our next result works by combining (3.4) with the first-order conditions, to conclude that a proportional

increase in opponent bids only decreases utility at the rate TEi (b, s) ; this follows because when bidder i

is optimizing, a small change in her own bid has negligible impact.

LEMMA 1 Let EU (b, s) be the vector function of the expected utilities for bidders, let TE (b, s) be the

vector of total expenditure functions, and assume that ∂
∂b′ EU (b, s) and TE are continuous in b.

Suppose that Qi (v, si) > 0. Then a vector of bids b satisfies the first order necessary conditions for

equilibrium (3.5) if and only if

d

d τ
EUi (bi, τb−i, s)|τ=1 = −TEi (b, s) for all i. (3.6)

Proof: Denote the vector of mean scores of bidders s. Denote the probability of bidders i and k

from configuration Ci ∪ {i} being in positions j and j + 1 by Gj
ik

(
b, s, Ci

)
. Then Gj

ik

(
b, s, Ci

)
=

∫
Φj

ik

(
b, s, ε;Ci

)
dFε (ε), recalling that Φj

ik is an indicator for the event that bidder i is in slot j and

bidder k is in slot j + 1. The total quantity of clicks for bidder i can be computed as

Qi (bi, b−i; si) =
∑

Ci

∑

k∈Ci

J∑

j=1

αjγiG
j
ik

(
b, s, Ci

)
.

The total expenditure can be computed as

TEi (bi, b−i; si) = bi
∑

Ci

∑

k∈Ci

j∑

j=1

αjγi

∫
skbkεk
sibiεi

Φj
ik

(
b, s, ε;Ci

)
dFε (ε) .

Note that TEi (bi, b−i; si) /bi is homogeneous of degree zero in b.

The functionGj
ik

(
b, s, Ci

)
is homogeneous of degree zero in b as well. As a result,

K∑
k′=1

bk′
∂

∂bk′

Gj
ik

(
b, s, Ci

)
=

0. Then, the following identity holds

∂

∂b′
EU (b, s) b = −TE (b, s) , (3.7)

which can in turn be rewritten as, for each i,

d

d τ
EUi (bi, τb−i, s)|τ=1 + bi

∂

∂bi
EUi (bi, b−i, s) = −TEi (b, s) .

Thus, (3.6) is equivalent to ∂
∂bi

EUi (bi, b−i, s) = 0 whenever bi > 0.

Q.E.D.

Let EU (b, s) be the vector of bidder expected utilities, and let D (b, s) the matrix of partial derivatives

D (b, s) =
∂

∂b′
EU (b, s) .
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Let D0 (b, s) be the matrix obtained by replacing the diagonal elements of D (b, s) with zeros. Then, the

Lemma’s main condition can be rewritten in matrix notation as

D0 (b, s) b = −TE (b, s) .

Lemma 1 transforms the system of first-order conditions into an equivalent form. We can then define a

mapping β(τ) which, under some regularity conditions imposed on the payoff function, will exist in some

neighborhood of τ = 1:

τ
d

dτ
EUi (βi(τ), τ β−i(τ), s) = −TEi (βi(τ), τ β−i(τ), s) , (3.8)

for all bidders i. If the vector of expected utilities maintains regularity for all τ it will be possible to

consider τ ∈ [0, 1]. The next theorem establishes the conditions under which the mapping β(τ) exists

locally around τ = 1 and globally for τ ∈ [0, 1]. To state the theorem, let V = [0, v1] × · · · × [0, vI ] be

the support of potential bids when bidders bid less than their values, as will be optimal in this game.

THEOREM 1. Consider a position auction in the SEU environment with a reserve price r > 0. Let

EU (b, s) be the vector function of the expected utilities for bidders, and let TE (b, s) be the vector of total

expenditure functions, and assume that D0 and TE are continuous in b. Suppose that Qi (v, si) > 0,

and that each EUi is quasi-concave in bi on V and for each b its gradient contains at least one non-zero

element. Then:

(i) An equilibrium exists if and only if for some δ > 0 the system of equations (3.8) has a solution on

τ ∈ [1− δ, 1].

(ii) The conditions from part (i) are satisfied for all δ ∈ [0, 1], and so an equilibrium exists, if D0 (b, s) is

locally Lipschitz and non-singular for b ∈ V except a finite number of points.

(iii) There is a unique equilibrium if and only if for some δ > 0 the system of equations (3.8) has a unique

solution on τ ∈ [1− δ, 1].

(iv) The conditions from part (iii) are satisfied for all δ ∈ [0, 1], so that there is a unique equilibrium, if

each element of ∂
∂b′EU (b, s) is Lipschitz in b and non-singular for b ∈ V .

The full proof of this theorem is provided in the Appendix. Quasi-concavity is assumed to ensure that

solutions to the first-order condition are always global maxima; it is not otherwise necessary.

Theorem 1 makes use of a high-level assumption that the matrix D0 is non-singular. In the following

lemma we provide more primitive conditions outlining empirically relevant cases where this assumption

is satisfied.

LEMMA 2 Suppose that the bidders are arranged according to their mean score weighted values sibi ≥
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si+1bi+1 for i = 1, . . . , I − 1. D0 is non-singular on V if for each bidder her utility is strictly locally

monotone in the bid of either bidder above or below her in the ranking or both.

We can prove this lemma, for instance, in case where ∂EUi

∂bi−1
6= 0 for i = 2, . . . , I and ∂EU1

∂b2
6= 0.

The diagonal elements of the matrix D0 (b, s) are zero. Therefore, we can compute the determinant

det (D0 (b, s)) = −∂EU1

∂b2

∏
i>2

∂EUi

∂bi−1
6= 0, i.e. the matrix D0(·) is non singular.

Equation (3.8) plays the central role in determining the equilibrium bid profile. Now we show that it can

be used as a practical device to compute the equilibrium bids. Suppose that functions TEi and EUi are

known for all bidders. Then, initializing β(0) = 0, we treat the system of equations (3.8) as a system

of ordinary differential equations for β(τ). We can use standard methods for numerical integration of

ODE if the closed-form solution is not available. Then the vector β(1) will correspond to the vector of

equilibrium bids.

This suggests a computational approach, which can be described as follows. Suppose that one needs to

solve a system of non-linear equations

H(b) = 0,

where H : R
N 7→ R

N and b ∈ R
N . This system may be hard to solve directly because of significant

non-linearities. However, suppose that there exists a function F (b, τ) such that F : R
N × [0, 1] 7→ R

N

with the following properties. If τ = 0, then the system

F(b, 0) = 0

has an easy-to-find solution, and if τ = 1 then

F(b, 1) = H(b) = 0.

Denote the solution of the system F(b, 0) = 0 by b0. If F is smooth and has a non-singular Jacobi

matrix, then the solution of the system

F(b, τ) = 0

will be a smooth function of τ . As a result, we can take the derivative of this equation with respect to τ

to obtain
∂F

∂b′
ḃ+

∂F

∂τ
= 0,

where ḃ =
(
db1
dτ , . . . , dbN

dτ

)′
. This expression can be finally re-written in the form

ḃ = −
(
∂F

∂b′

)−1
∂F

∂τ
. (3.9)
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Equation (3.9) can be used to solve for β(τ). β(0) = b0 is assumed to be known, and β(1) corresponds to

the solution of the system of equations of interest. Systems of ordinary differential equations are usually

easier to solve than non-linear equations.

The computational approach we propose is to define F using (3.8). If the payoff function is twice

continuously differentiable and the equilibrium existence conditions are satisfied, then F has the desired

properties. Details of the application of this method to our problem are in Appendix F.

3.5 Bidder Incentives in the SEU Model

It is easier to understand the bidder’s incentives in terms of general economic principles if we introduce

a change of variables. When bidding, the advertiser implicitly selects an expected quantity of clicks, and

a total cost for those clicks. Fix b−i, s and suppress them in the notation, and define

Q−1
i (qi) = inf{bi : Qi(bi) ≥ qi},

and define

TCi(qi) = TEi(Q
−1
i (qi)).

ACi(qi) = TEi(Q
−1
i (qi))/qi.

Then, the bidder’s objective can be rewritten as

max
qi

qi(vi −ACi(qi)).

This is isomorphic to the objective function faced by an oligopsonist in an imperfectly competitive market.

As usual, the solution will be to set marginal cost equal to marginal value, when the average cost curve

is differentiable in the relevant range (assume it is for the moment).

vi = qiAC
′
i(qi) +ACi(qi) ≡ MCi(qi). (3.10)

The bidder trades off selecting a higher expected CTR (qi) and receiving the average per-click profit

vi − ACi(qi) on more units, against the increase in the average cost per click that will be felt on all

existing clicks. The optimality conditions can be rewritten in the standard way:

vi −ACi(qi)

ACi(qi)
=

d lnACi(qi)

d ln(qi)
.

The bidder’s profit as a percentage of cost depends on the elasticity of the average cost per click curve.

To see how this works in practice, consider the following figure, which illustrates the average cost curve

ACi(qi), marginal cost curve MCi(qi), and the required bid curve Q−1
i (qi) for a given search phrase.

We select a particular bidder, call it i. Given the actual bid of the advertiser, bi, we calculate qi =
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Qi(bi; b−i, s). We then calculate MCi(qi). If the bidder selects qi optimally, then vi = MCi(qi), as

illustrated in the figure. Thus, under the assumption of equilibrium bidding, we infer that the bidder’s

valuation must have been MCi(qi). We then calculate the bidder’s implied profits, illustrated in the

figure with the shaded area.

Figure 2: Average cost, marginal cost, inverse click curve and value for a bidder on keyword # 1
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Figure 3: Average cost, marginal cost, inverse click curve and value for a bidder on keyword # 2
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This approach to inferring a bidder’s valuation from her bid and the average cost curve she faces is the

main approach we use in our empirical work.

The case where the average cost curve is not differentiable is considered below.
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Figure 4: Average cost, marginal cost, inverse click curve and value for a bidder on keyword # 3
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4 Identification of Valuations under Alternative Models

In this section, we consider identification and inference in the following environment. We assume that

position-specific click-through rates αj are known; identification of these is discussed in the appendix.

For the SEU model, we consider observing a large number of queries for a given set of potential bidders,

and consider the question of whether the valuations of the bidders can be identified. For each query, we

assume that we observe bids, the set of entrants, and the scores. For the NU model, it is more subtle

to define the problem, given the disconnect between the model and the real-world bidding environment.

The model treats each query as separate, and so in principle, we could imagine that a bidder’s valuation

changes query to query. In that case, we consider identification of the valuation for each query.

4.1 The No Uncertainty Model

Recall the condition for envy-free Nash equilibrium in the NU model, that score weighted value for bidder

j is bounded by incremental cost per clicks ICCj−1,j and ICCj,j+1. This implies that observed scores,

bids and αj ’s are consistent with envy-free Nash equilibrium bidding for some valuations, if and only if

ICCj,j+1 =
skj+1

bkj+1
αj − skj+2

bkj+2
αj+1

αj − αj+1
is nonincreasing in j. (4.11)

This is a testable restriction of the envy-free criteria, although it should be noted that there can be

Nash equilibria that are not envy-free and where bidders are not ranked in order of the score-weighted

valuations, where (4.11) still holds, so the test does not definitively distinguish envy-free Nash equilibrium

from ex post Nash equilibrium.

Following [17], we can illustrate the requirements of the envy-free equilibrium with a figure. Recall Figure
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1. The envy-free equilibrium refinement requires that a bidder j selects the position (that is, a feasible

click share αj) that yields the highest value of sjvjαj− sjTCj(αj). This is equivalent to requiring that

the score-weighted value is bounded by ICCj,j−1 and ICCj,j+1.

The requirement that ICCj,j+1 is nonincreasing in j corresponds to the total expenditure curve being

convex. If (4.11) holds, then we can solve for valuations that satisfy (3.2): we can find score-weighted

valuations for each bidder that lie between the steps of the ICC curve. In general, if the inequalities in

(3.2) are strict, there will be a set of valuations for the bidder in each position.

Thus, (3.2) determines bounds on the bidder’s valuation, as follows:

skj
vkj

∈ [ICCj,j+1, ICCj−1,j ] .

For the lowest position, vkJ
= bkJ

, and for the highest position,

sk1
vk1

∈
[
sk2

bk2
α1 − sk3

bk3
α2

α1 − α2
,∞
)
.

The EOS equilibrium selection requires skj
vkj

= ICCj−1,j .

4.2 The Score and Entry Uncertainty Model

For the case where Qi(bi) and TEi(bi) are strictly increasing and differentiable, we can recover the

valuation of each bid using the necessary condition for optimality

vi = MCi(Qi(bi)), (4.12)

given that all of the distributions required to calculate MCi(qi) are assumed to be observable. Note that

the local optimality condition is necessary but not sufficient for bi to be a best response bid for a bidder

with value vi; a testable restriction of the model is that the bid is globally optimal for the valuation

that satisfies local optimality. One requirement for global optimality is that the objective function is

locally concave at the chosen bid: MC ′
i(Qi(bi)) ≥ 0. A sufficient (but not necessary) condition for global

optimality is that MCi is increasing everywhere, since this implies that the bidder’s objective function

(given opponent bids) is globally concave, and we can conclude that indeed, bi is an optimal bid for a

bidder with value vi. If MCi is nonmonotone, then global optimality of the bid should be verified directly.

Now consider the case where TEi(bi) is not differentiable everywhere. This occurs when score uncertainty

has limited support, and when there is not too much uncertainty about entry. This analysis parallels

the “kinked demand curve” theory from intermediate microeconomics. Note that Qi(bi) is nondecreasing

and continuous from the left, so it must be differentiable almost everywhere. If Qi(·) is constant on

[b′i, b
′′
i ) and then increasing at b′′i , then Q−1

i (qi) = b′i for qi ∈ [Qi(b
′
i), Qi(b

′′
i )), while Q−1

i (Qi(b
′′
i )) = b′′i .

This implies in turn that TCi(·) is non-differentiable at Qi(b
′′
i ), and that MCi(·) jumps up at that point.
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Thus, if we observe any bi on [b′i, b
′′
i ), the assumption that this bid is a best response implies only that

vi ∈ [MCi(Qi(b
′
i)),MCi(Qi(b

′′
i ))]. (4.13)

Summarizing:

THEOREM 2. Consider the SEU model, where bids are fixed over a large number of queries. Suppose

that we observe the bids of I bidders (b1, .., bI), the joint distribution of their scores s and entrants in

each query. Then:

(i) Bounds on the valuation for bidder i are given by (4.13), where b′i = Q−1
i (Qi(bi); b−i, s), and b′′i =

sup{b′′′i : Qi(b
′′′
i ; b−i, s) = Qi(bi; b−i, s)}.

(ii) A necessary and sufficient condition for the observed bids to be consistent with ex post equilibrium is

that for some (v1, ..., vI) within the bounds from (i), the observed bids (b1, .., bI) are globally optimal for

a bidder solving (3.3). A sufficient condition is that MCi(·) is nondecreasing for each i.

The proof follows directly from the discussion above and the fact that the functions Qi and MCi are

uniquely defined from the observed bids and the distribution of scores and entrants.

Equilibria in the SEU environment are not necessarily envy-free, and further, they are not necessarily

monotone in the sense that bidders with higher score-weighted valuations place higher score-weighted

bids. However, if there are many bidders and substantial uncertainty, each bidder’s objective function

will be similar once bids and valuations are adjusted for scores, and monotonicity will follow.

4.3 Comparing Inferences From Alternative Models

A natural question concerns how the inferences from the NU and SEU models compare, given the same

auction environment. In this subsection, we show that if the NU model gives bounds on valuations that

are consistent across queries (that is, the intersection of the bounds are non-empty), then those bounds

will be contained in the bounds from the SEU model. However, in practice, we find that consistency

typically fails–the bounds implied by the NU model for one query do not intersect with the bounds from

another.

THEOREM 3. Consider a dataset with repeated observations of search queries, where bids are constant

throughout the sample. Consider two alternative models for inference, the NU model and the SEU model.

Assume that the NU model produces bounds on valuations that are consistent for a given bidder across the

different observations of search queries in the dataset where the advertiser’s bid is entered, and consider

the intersection of these bounds for each advertiser. This intersection is contained in the bounds on

valuations obtained using the SEU model.
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Proof: Fix a vector of bids and the distributions of scores and entrants. Let ui(v
NU
i , b′i; b−i, si, ε, C) be the

bidder’s utility for a particular user query, and for this proof include explicitly the bidders valuation as

an argument of EUi. Let v
NU be a vector of valuations that is consistent with b being a Nash equilibrium

bidding profile in the NU model for all possible realizations of scores and participants. Suppose that vNU

is not in the bounds for valuations in the SEU model. Then,

EUi(v
NU
i , bi; b−i, s) = Eε,C [max

b′
i

ui(v
NU
i , b′i; b−i, si, ε, C)]

≥ max
b′
i

Eε,C [ui(v
NU
i , b′i; b−i, si, ε, C)]

> EUi(v
NU
i , bi; b−i, s).

This is a contradiction. Thus, we conclude that vNU
i is in the bounds for valuations in the SEU model.

4.3.1 The Impact of Vanishing Uncertainty on Bidding and Identification

To gain some further intuition for how a model with uncertainty differs from the NU model, consider

some limiting cases that are close to the NU model, where a small amount of uncertainty is added that

serves as a refinement to the set NU equilibria. (In the application, uncertainty is not small, so this

exercise is intended to build intuition only.) First, consider what we call the random entry refinement.

Suppose that there is no score uncertainty, but that with probability φ, a new advertiser enters with a

random bid, and the distribution of the advertiser’s score-weighted bid has full support over the relevant

region. This is a realistic model of a new entrant or a new advertiser: the initial scores assigned by the

system will not stay constant, and an advertiser may appear with a number of different score-weighted

bids, each with low probability.

Now consider taking the limit as φ approaches zero. Then, taking into account that the entry of the

random bidder affects marginal incentives only when it ties with the bidders score-weighted bid, it will

be optimal for each advertiser to submit a bid that is an ex post equilibrium in the NU model, and in

addition, where the bidder is indifferent between her current position when paying exactly her bid, or

taking the next-lower position and paying the bid of the next-lowest bidder. Formally, the equilibrium

conditions are

skj
vkj

≥ skj+1
bkj+1

αj+1 − skj+2
bkj+2

αj+2

αj+1 − αj+2
= skj+1

vkj+1
,

except for the lowest-ranked bidder who bids her valuation. This contrasts with the [7] refinement, that

satisfies

skj
vkj

≥ skj+1
bkj+1

αj − skj+2
bkj+2

αj+1

αj − αj+1
= skj+1

vkj+1
.

The random entry strategies are envy-free if and only if αj/αj−1 ≤ αj+1/αj for all 1 < j < J and

the equilibrium is monotone. However, in general the random entry equilibrium may not exist in pure
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strategies. Intuitively, the auction has a “first-price” flavor: with some probability, each bidder pays her

bid. Then, two bidders with similar score-weighted valuations will also place similar score-weighted bids;

but when an opponent’s bid is too close, a bidder’s best response may be to drop down a position and

take a lower price. This in turn might induce the opponent to change her bid, leading to cycling.

It is somewhat more subtle to consider the effects of small amounts of score uncertainty. We provide

some intuition for a special case. Assume that v1s1 > v2s2 > v3s3, and suppose there are two slots.

Assume that s̃2 is the stochastic score for bidder 2, and that the scores of the other bidders are fixed at

their means. Let f1/s̃2 be the PDF of 1/s̃2. The local indifference condition defining the optimal bid b2

(given the bids b1, b3) is

α2(v2 − b2)f1/s̃2

(
b3s3
b2

)
+

[
α1(v2 − b2)− α2

(
v2 −

b3s3b2
b1s1

)]
f1/s̃2

(
b1s1
b2

)
= 0 (4.14)

Suppose for a moment that f1/s̃2

(
b3s3
b2

)
= 0, so bidder 2 is not at risk for dropping a position. If

γ∗
2 = b1γ1

b2
is the critical value of the quality score that makes bidder 2 tie for the top position, the

indifference condition reduces to

α1(v2 − b2) = α2

(
v2 −

b3γ3
γ∗
2

)
,

which is the EOS condition in the contingency where bidder 2 is tied with bidder 1. In contrast, if

f1/s̃2

(
b1s1
b2

)
= 0 (no chance of moving up a position), the bidder is always better off by increasing her

bid until b2 = v2, for standard reasons: the bid only matters if it causes the bidder to go from losing to

winning. So, a small amount of quality score uncertainty puts upward pressure on bids if a bid is far

from moving up to the next position, and we should generally expect to see the lowest position bidder

place bids in a region where the bidder has some chance of moving up.

We can also consider a refinement where the bidders face uncertainty, but the probability of a change in

score or configuration is very small. Figure 5 below shows an effect of the small noise on the marginal

and total cost. We use the actual bid and score data from a top configuration in a particular market.

In this picture we assume that the score has a distribution with a mass point in the mean score. The

sample for computation is generated by picking the score equal to the mean with probability 1 − ε and

equal to a random draw from the empirical distribution of scores with probability ε.

5 Estimation of Bidder Valuations

In this section we demonstrate how the expected payoff of a bidder in a position auction can be recovered

from the data. The structure of the data for position auctions makes the estimation procedure different

from the standard empirical analyses of auctions. In the setup of online position auctions the same set



22

Figure 5: Marginal cost, and recovered values for bidder in a monotone configuration
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Figure 6: Marginal cost and total cost curves for bidder in a frequent configuration
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of bids will be used in a set of auctions. In our historical data sample most bidders keep their bids

unchanged during the considered time period.

In our data sample a portion of advertisers have multiple simultaneous ads. Bidders submit a separate

bid for each ad. Our analysis will be facilitated by the fact that the search engine has a policy of not

showing two ads by the same advertiser on the same page. We will use a simplifying assumption that

bidders maximize an expected profit from bidding for each ad separately. We will assume that bidders

have a separate valuation for each ad and the goal of our numerical procedure will be to recover valuations

of the bidders corresponding to each ad.5

5Our empirical analysis shows that valuations for the ads of the same bidder are very close which can suggest that our

empirical analysis is meaningful
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Previously we assumed that de-meaned scores have the same distribution across advertisers. We use an

additional subscript t to indicate individual user queries with bidder configurations. We assume that

configurations Ct of the bidders who were considered for user query t are observed. We assume that

the number of advertisers I is fixed and denote Ni =
∑

t 1 {i ∈ Ct} the number of queries for which

advertiser i was considered. Our further inference is based on the assumption that Ni → ∞ for all

bidders i = 1, . . . , I. We denote the total number of user queries in the dataset by T .

We impose the following assumption regarding the joint distribution of shocks to the scores and configu-

rations.

ASSUMPTION 2. The shocks to the scores are independent from the configurations: εit ⊥ Ct for

i = 1, . . . , I. Configurations of advertisers are i.i.d. across queries and the shocks to the scores are i.i.d.

across queries and advertisers with expectation E [log εit] = 0.

Assumption 2 is used in the identification and estimation of the uncertainty in the score distribution.

To analyze the uncertainty of the scores we use their empirical distribution. In our model for bidder

i the score in query t is determined as sit = siεit. We note that from Assumption 2 it follows that

E [log sit] = log si. Using this observation, we estimate the mean score from the observed realizations of

scores for bidder i for impressions t as ŝi = exp
(

1
Ni

∑
t 1{i ∈ Ct} log si,t

)
. Then by Assumption 2 and the

Slutsky theorem it follows that 1
T Ni

p−→ P (i ∈ Ct). Similarly, we find that 1
T

∑
t 1{i ∈ Ct} log si,t

p−→
P (i ∈ Ct) log si. Then the consistency of the mean score estimator follows from the continuous mapping

theorem.

Then we form the sample of estimated shocks to the scores using ε̂it = sit
ŝi
. As an estimator for the

distribution of the shocks to the scores we use the empirical distribution

F̂ε(ε) =
1

I

I∑

i=1

1

Ni

∑

t

1{i ∈ Ct}1 {ε̂it ≤ ε} .

Using Assumption 2 and stochastic equicontinuity of the empirical distribution function, the estimator

can be expressed by

1

T

∑

t

1{i ∈ Ct}1
{
siεit

ŝi
≤ ε

}
=

1

T

∑

t

1{i ∈ Ct}1 {εit − ε ≤ 0}

+fε(0)
si − ŝi

s2i

1

T

∑

t

1{i ∈ Ct}εit + op(1) = E [1{εit ≤ ε}]P (i ∈ Ct) + op(1).

Combining this with our previous result we find that F̂ε(ε) is a consistent estimator for the distribution

of the shocks to the scores Fε(·).

In the case where the expected payoff function has a unique maximum for each value of the bidder we can

use a simpler approach to evaluation of the bidder’s first-order condition. We associated this case with
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the case of a substantial overlap of the click-weighted bids. We found that in this case we can characterize

the first-order condition of the bidder as

vi
∂Qi (bi, b−i, s)

∂bi
− ∂TEi (bi, b−i, s)

∂bi
= 0.

As a result, the value can be computed as a function of the own and rival bid as the marginal expected

cost per click.

Each of the functions needed to recover the value can be estimated from the data. We use empirical

distribution of the scores to approximate the uncertainty in the scores and use the observed bidder

configurations to approximate the uncertainty in bidder configurations. To compute the approximation

we make independent sampling from the empirical sample of observed configurations and estimated shocks

to the scores
{
Ci

t , ε̂kt
}
t,k=1,...,I

excluding the bidder of interest i from the sample (recall that we denoted

by Ci the configuration excluding bidder i). Following the literature on bootstrap we index the draws

from this empirical sample by t∗ and denote the simulated sample size T ∗. A single draw t∗ will include

the configuration Ci
t∗ and the shocks to the scores for all bidders ε̂1t∗ , . . . , ε̂It∗ . For consistent inference

we require that Ni

T∗
→ 0 for all i = 1, . . . , I. Then for each such draw we compute the rank of the bidder

of interest i as

ranki
(
Ci

t∗
)
= rank{biŝiε̂it∗ ; bkŝkε̂kt∗ , ∀k ∈ Ci

t∗}.

We also compute the price paid by bidder i as

Pricei
(
Ci

t∗
)
=

bkŝkε̂kt∗

ŝiε̂it∗
, such that rankk

(
Ci

t∗
)
= ranki

(
Ci

t∗
)
+ 1.

Then we estimate the total expenditure function as

T̂Ei (bi, b−i, s) =
1

T ∗

T∗∑

t∗=1

α̂ranki(Ci
t∗)

Pricei
(
Ci

t∗
)
,

and the expected quantity of clicks as

Q̂i (bi, b−i, s) =
1

T ∗

T∗∑

t∗=1

α̂ranki(Ci
t∗)

.

At the next step we estimate the derivatives. To do that we use a higher-order numerical derivative

formula. For a step-size τN , depending on the sample size, we compute the implied value as

v̂i =
−T̂Ei (bi − 2τN , b−i, s) + 8T̂Ei (bi − τN , b−i, s)− 8T̂Ei (bi + τN , b−i, s) + T̂Ei (bi + 2τN , b−i, s)

−Q̂i (bi − 2τN , b−i, s) + 8Q̂i (bi − τN , b−i, s)− 8Q̂i (bi + τN , b−i, s) + Q̂i (bi + 2τN , b−i, s)
.

The choice of τN such that
√
Ni τN → ∞,

√
Ni τ

3
N → 0 and τN → 0 for all i = 1, . . . , I assures that the

empirical numerical derivative above converges to the slope of the population marginal cost function. We

use this formula to recover the implied valuations. The following result is based on the derivation in [11]

and its proof is given in the Appendix.
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THEOREM 4. Under the sufficient conditions of Theorem 1 and Assumption 2, the derivative of the

total expenditure function with respect to the bid vector satisfies the Lindeberg condition and has a finite

variance in the limit, while the derivative of the total quantity of clicks with respect to the bid vector is

non-vanishing in the limit our estimator of valuations is asymptotically normal:

√
Ni τN (v̂i − vi)

d−→ N

(
0,

324Ω

(Q′
i (bi, b−i, s))

2

)
,

where

Ω = Var

(
ui (vi, bi + τN ; b−i, si, εit, Ct)− ui (vi, bi − τN ; b−i, si, εit, Ct)√

τN

)

This shows that with the increasing number of impressions, the estimates of advertiser’s valuations will

be asymptotically normal and their asymptotic variance will be determined by the variance of the profit

per click for the advertiser of interest.

Our analysis extends to the case where the objective function of the bidder can have a set of optimal

points. An empirical approach to this case is discussed in Appendix C.

6 Data

For estimation we use a sample of data of auctions for three high-value search phrases (within the top

several thousand search phrases on the advertising platform). The data is historical, for a three-month

period sometime between 2006 and 2008, and it has been preserved for research purposes. The specific

time period and the specific search phrases are kept confidential to avoid revealing any proprietary

information, and all bids are normalized to a single scale in order to avoid revealing information about

the specific revenue of the search phrases. We analyze each search phrase entirely separately, and we

compare the results.

We begin with describing the main dataset. There are more than 500,000 searches per week between

the three search phrases. We focus on impressions from the first page of advertising results. In the page

showing the results of the consumer’s search query up to 8 ads are displayed: some in the space above

the algorithmic search results and some to the side. In our empirical analysis we control for the position

of the advertisement. For consistency of the bidding data with our static analytic framework, we use

the data only from one week week at a time. However, we compare results across weeks for various

specification tests and to validate our general approach.

The following variables are observed for each user query (individual auction): the advertiser account

associated with each advertisement; the specific advertisement (characterized by ad text, a bid and a

landing page where a user is redirected after clicking on the ad); the positions in which the advertisements
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were displayed on the screen; the per-click bids and system-assigned scores for the advertisements on the

individual query; the per-click prices charged for each advertisement; and the clicks received by each of

the advertisements.

A complication that we did not emphasize in the theoretical section is that each advertiser can have

multiple active advertisements (with distinct bids) on a given search phrase, while the advertising platform

only allows one advertisement per bidder to appear. The different advertisements receive different scores

by the system, and thus even if advertiser bids are the same across advertisements, the rotation among

different advertisements will create fluctuations in outcomes for opposing bidders. Thus, the variation in

advertisements is an important source of uncertainty. They also create complications for thinking about

bidder optimization. Why does a bidder have multiple active advertisements, and do the motivations

conflict with our assumptions about optimal bidding? In practice, bidders tend to test out variations

on advertisements to see whether different ad texts perform better and/or are scored better by the

advertising platform. In addition, the ad platform’s initial scores may be higher than the long-run scores

for idiosyncratic reasons related to the scoring algorithms, in which case there is an incentive to continually

create new advertisements (and if the converse holds, they will stick to existing advertisements).

We chose to handle the multiple advertisements by first treating them separately, and assuming that the

advertiser takes the existence of multiple advertisements as exogenous. Since two advertisements by the

same advertiser cannot appear in the same auction, it is possible to treat the advertiser’s objective function

as additively separable. We estimate separately the valuations for the different advertisements. We find

that valuations and profits are very close for different advertisements by the same bidder. In particular

we find that the median (across advertisers) standard deviation of recovered valuations corresponding

to the ads of the same advertiser is 14 times smaller than the standard deviation of valuations across

advertisers. The median standard deviation of the per-advertisement profit per click (we will refer to

this quantity from now on as profit PC ) across advertisements of the same advertiser is 5 times smaller

than the overall standard deviation. It is also possible that bidders change their bids during the course

of the week, but this is surprisingly uncommon in our dataset. Indeed, the bids corresponding to the

same advertisement are very stable even in the cross-week data. The maximum standard deviation of

bids corresponding to a particular advertisement is less than a half of the standard deviation of bids in

the entire set of data (the median standard deviation for the bids of the same advertiser is approximately

14 times smaller).

7 Estimates from Alternative Models

We use several alternative models for estimation: NU-Nash, NU-Envy-Free, NU-EOS, and SEU.
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As a baseline case we use the SEU model. We recover valuations from this model using the empirical

analog of the bidder’s first-order condition.6 The exact procedure for estimation of the first-order con-

dition has been described in the previous section. We observe that the SEU model yields very tight

bounds or point estimates for almost all advertisers. As a result, we will focus on the lower bound of

SEU valuations, and refer to them as if they are unique. We already illustrated in Figures 2, 3, and 4 the

estimated total cost curves, marginal cost curves, and implied valuations for an individual bidder for a

given search phrase. The figures illustrate how valuations are inferred from bids: the vertical line shows

the expected CTR the bidder attains with the bid she places in the data, and the place where that line

intersects the marginal cost curve defines the implied valuation for this bidder on this search phrase.

We find empirically that estimated marginal cost curves are strictly increasing for each of the observed

advertisements on each of the three search phrases, which implies that the implied valuations and bids

comprise an ex post Nash equilibrium in the SEU model. We formally test this by considering a grid of

bids (with 600 grid points). In each point we run the test testing that the marginal cost for a sample of

score realizations is equal to zero. This test rejected the null at 5% level for all grid points and phrases (we

constructed the grid such that the maximum bid corresponds to the maximum achievable clickthrough

rate).

Using our empirical algorithm we recover valuations for all advertisements featured in the auctions in the

selected week of data for a selected keyword. We will show our results by normalizing recovered valuations

and profits per click using the mean of the bid for the search phrase # 1 as a numeraire. We use the same

normalizing factor for the values and profits per click recovered for all three considered search phrases. In

Table 47 we display basic statistics for log valuations for three analyzed search phrases. We notice that

the search phrase #2 is the highest value phrase out of phrases that we analyze. However, the range of

valuations remains comparable across the search phrases. Assuming that the valuations corresponding

to different advertisements are stable within the period of analysis, we can compute the standard errors

for the recovered values using the asymptotic formula. It turns out that the recovered valuations have

very tight standard errors due to large number of auctions in the sample.

We also recover valuations under alternative information assumptions. In the no uncertainty cases and

their refinements, we treat each auction as separate, envisioning that bids and valuations might change

from auction to auction. We then empirically characterize whether bounds on valuations are consistent

across auctions, and how implied valuations change over time. In particular, for each auction we recover

6The estimates were obtained under the assumption that displayed ads coincide with the ads that were considered for

a particular query. This assumption will lead to some under-estimation of competition for the bottom positions and over-

estimation of the values of the bottom bidders. We are in the process of accounting for this bias by considering additional

data on advertiser participation.
7The tables with results for this and subsequent sections are displayed in Appendix G
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the bounds on valuations using the constructed ICCj,j+1 curves for positions. We notice that in a large

fraction of cases the ICC curve fails to be monotone auction-by-auction. [17] suggested computing an

approximate weighted solution. We consider a weighted ICC as

ICCd
j,j+1 =

skj+1
bkj+1

αjdj − skj+2
bkj+2

αj+1dj+1

αj − αj+1
,

where weights minimize
J∑

j=1

(1− dj)
2
such that a weighted ICC is monotone. In the empirical study we

perform this procedure for all considered search phrases. We recover the values of the advertisers from

the re-weighted ICC curve as

skj
vkj

∈
[
ICCd∗

j,j+1, ICCd∗

j−1,j

]
,

where weights d∗ solve the minimization problem above. We abuse notation and omit the index of user

query t that should subscript the weights and the score. The selected weights are tailored to each specific

auction and vary auction by auction. In principle, similarly to [17] we find a large number of violations

from monotonicity, all of them were corrected by the weighting. We find that the bounds on valuations

fluctuate substantially in the NU models. The fluctuations occur from query to query, oscillating back

and forth between bounds for commonly observed sets of entrants and scores, so that it is difficult to

imagine rationalizing the fluctuations on the basis changing valuations (and bids do not change at that

frequency, and often don’t change at all). The median standard deviation of the recovered value for a

single bid across queries ranges from approximately 11% to 23% for the lower bound and approximately

from 18% to 30% for the upper bound corresponding to the NU-EOS model for three considered search

phrases. Moreover, the number of auctions that violate the value monotonicity auction-by-auction is quite

high. For the considered search phrases it exceeds 25% with most violations occurring in the middle and

the lowest positions. Across all of the advertisements that have auctions for which the monotonicity of

the implied score-weighted values is not violated, we could not find examples of the intersection of the

bounds for the same bidder. However, restriction of the dataset to a very limited period of time allows

us to find up to 5% of cases (out of those not violating monotonicity) where the bounds intersect for

the shortest considered period of time, which is equivalent to approximately 2 hours of search query

logs. In this case the number of observations per advertisement ranges from 1 to 285 in our sample. For

consistency of our analysis we choose the following approach. The set of recovered values corresponds to

the bounds constructed from the incremental cost curve. We refer to the lower bound in this discussion

as the NU-Envy-Free bound and we refer to the upper bound as the NU-EOS bound. For each bidder

we can collect a set of values corresponding to different impressions. We choose to use the average over

different values of the bounds for each bidder as estimates of valuations from the full-information model.

The weights aimed at making the ICC curves monotone vary from auction to auction, depending on

how far a particular configuration is from the configurations with the monotone ICC. On Figures 8-10
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we report the histograms for the mean absolute deviations for the weights from 1: w = 1
J

J∑
j=1

|1 − d∗j |

across the auctions. The observed deviations remain large across all keywords.8 As it was mentioned

before, we chose to use the average bid for the key phrase #1 as a numeraire. In Table 5 we report the

means across bidders for the values recovered under different information assumptions. As a confirmation

of results in Table 4, we can see that the key phrase #2 has the highest value. We can also see that

this tendency maintains under different information assumptions. However, we can see that the values

computed from the lower bound in the NU-EF framework tend to under-estimate the values recovered

in the SEU framework while the values computed from the NU-EOS framework over-estimate the SEU

values.

Co-location of estimated values can be represented graphically. For values we use logarithmic scale for

convenience of presentation. Figures 11-13 display the implied valuations for alternative models (or their

bounds) for all advertisements observable in the selected subset of data for 3 search phrases, against the

implied valuations from the SEU model, in logarithmic scale, for each of the three search phrases. In

constructing the figures, we drop all auctions where bidding was inconsistent with an envy-free Nash

equilibrium (that is, where the incremental costs are not increasing with higher positions); this occurs

in percentages of queries ranging from 47% to 71% across search phrases. In general, it turns out that

NU-Envy Free underestimates the values for most of the advertisements. On the other hand the NU-EOS

underestimates the values for keyword #1 but overestimates them for keyword #2. We notice that across

key phrases from 79% to 95% of SEU values are within the bounds provided by the NU framework. To

understand why, recall first from Theorem 3 that if the NU models has an interval of valuations that is

in the bounds on valuations across all queries, then those valuations will also be within the bounds for

the SEU model. However, there is no such interval in our data for any advertiser, thus it is an empirical

question as to how the NU model bounds will relate to the SEU valuations.

Combining the recovered values with the data, we can compute the implied ex-post profits per click across

the bidders by averaging the per-impression profit per click across different impressions. We noticed that

in the NU framework, the value obtained under the NU-EF assumption under-estimates the valuation

and the value obtained under the NU-EOS assumption over-estimates the valuation. This relationship

between the recovered values translates into a similar relationship between expected profits per click of

the bidders. Figures 14-16 are scatter plots for the profits per click under the NU assumption against the

profit per click that is computed under the SEU assumption for 3 considered search phrases.

Profits per click can be aggregated at the level of the advertisement and at the level of query, to assess

the overall implied total bidder profit per click in each of the models. We begin with the analysis of the

8The figures for this and subsequent section can be found in Appendix H
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profit per click per advertisement. Table 6 illustrates mean, 25th, 50th, and 75th percentiles of per-query

profit per click relative to the average cost per click for each of the different models. In this table, we

use the values for the Envy-Free refinement that are computed from the weighted ICC curves such that

the weighted ICC curves become monotone. We compute each entry by weighting both the profit per

click and the score per click by the score and the position-specific clickthorugh rate. As a result, for the

query-level aggregation we compute:

Avg.(value− CPC)

Avg.(CPC)
=

J∑
j=1

αj skj

(
vkj

− CPCkj ,t

)

∑
t

J∑
j=1

αj skj
CPCkj ,t

To compute the profit per click in the NU-Envy free case we used the formula for the bounds which we

described above. The upper bound will coincide with the NU-EOS case. In Table 6 we normalized the

profits per click to the maximum per impression profit per click for the SEU case.

Across all search phrases the advertiser’s profit per click per advertisement under the SEU assumption

lies within the profit per click bounds provided by the NU framework. One can see that this relationship

also maintains quantile-by quantile in most cases. We should note that NU framework is capable of

producing negative profits per click. In fact, we attribute values to the bidders equal to the average

between the recovered values in the NU framework. This implies that for some impressions this mean

value can actually be below the price per click, especially if the true profit per click is small. We can next

consider the properties of the profit per click per query shown in Table 7. We can see that qualitatively

the results remain similar to the properties of profits per click computed at the advertisement level.

However, we can notice that on the query level profits per click tend to have much larger inter-quartile

ranges.

We can make an interesting observation that in the SEU framework the recovered per impression profits

per click are very similar to the profits per click recovered on the advertisement level. The profits per

click recovered from the bounds in the NU framework tend to be larger in the case of the NU-EOS bound

and smaller in the case of the NU-EF concept.

8 Counterfactual experiments

8.1 Alternative Models and the Role of Uncertainty

We begin by looking at how the alternative models do in terms of predicting behavior out of sample.

We proceed by taking implied valuations from each model using one week of data (taking the valuations

corresponding to the mean values for the NU models), and then predicting revenue on an auction-by-

auction basis in the next week of data using the same model to generate counterfactual predictions. To
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make the predictions across the models we drop all of the auctions that do not satisfy the monotonicity

of the incremental cost curve. For the advertisements which do not appear in the first week of data,

we hold the counterfactual bids equal to the observed bids. Figure 17 illustrates the results, where the

x-axis is the expected revenue given the actual bids and prices in the auction, while the y-axis shows the

predictions (or bounds on predictions) for the SEU model. Note that the SEU model provides a very

good fit for the data. One reason for that is that the sample of advertisers and their bids do not change

substantially from week to week. As a result, our model predicts very similar bids for the same advertisers

in the second week of data. The analysis of NU-Envy-Free case is based on computing the bids based on

the lower bound for valuations from the Envy-Free case fore all the advertisers who are present in both

weeks. For the advertisers that are new in week 2 we fix the bids equal to their actual bids. Computation

of the revenue is based on computing the bids from the lower bound for the equilibrium bid. We assume

that the upper and the lower bounds on the bids of the new bidder in the NU case coincide and equal to

their actual bids.

We recompute the equilibrium using the system of equations formed by bidder’s first-order conditions. For

the new bidders in the predictions and in the counterfactual exercises we fix the bids at the actual levels.

Be begin with the system of equations for all the bidders who change their behavior in the counterfactual

situation as

v̂i
∂Q∗

i (bi, b−i, s)

∂bi
− ∂TE∗

i (bi, b−i, s)

∂bi
= 0.

In this system of equations we use estimated valuations v̂i while the quantity of clicks and the total

expenditure function are recomputed for the new environment to include new bidders assuming that

their scores are generated from the same distribution of scores. Consider the case where the number of

bidders changes and new bidders arrive. Suppose that S is the set of additional bidders and the new

total number of bidders is I ′ = I +#S; we add the new bidders to all previously observed configurations

in the sample. Then the total expenditure and the quantity of clicks as functions of bids are computed

using the simulated sample analogs in the same ways as for estimation by forming a simulated sample of

size T ∗ and averaging over the simulated draws

TE∗
i (bi, b−i, s) =

1

T ∗

T∗∑

t∗=1

α̂ranki(Ci
t∗

∪S)Pricei
(
Ci

t∗ ∪ S
)
,

and

Q∗
i (bi, b−i, s) =

1

T ∗

T∗∑

t∗=1

α̂ranki(Ci
t∗

∪S).

We also use a higher-order derivative formula to approximate the ratio on the right-hand side of the

system of equations.

v̂i =
−TE∗

i (bi−2τN ,b−i,s)+8TE∗

i (bi−τN ,b−i,s)−8TE∗

i (bi+τN ,b−i,s)+TE∗

i (bi+2τN ,b−i,s)
−Q∗

i
(bi−2τN ,b−i,s)+8Q∗

i
(bi−τN ,b−i,s)−8Q∗

i
(bi+τN ,b−i,s)+Q∗

i
(bi+2τN ,b−i,s)

.
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Note that the population analogs of the functions on the right-hand side are represented by smooth and

continuous functions of the bid profile. The marginal cost is monotone increasing in the own and rival

bids. Moreover, the sum of effects of rival bids on the marginal cost is smaller than the own effect. We

use the homotopy method described in Appendix F to compute the counterfactual bid vector.

We perform the same computation for the upper bound corresponding to the NU-EOS case. Figures 18

and 19 demonstrate the scatterplot of predicted versus actual revenue for such auctions. Note that NU-

Nash and NU-Envy-Free produce bounds on valuations when drawing inferences, and then each valuation

profile generates a range of equilibria, expanding again the range of possible outcomes in the prediction.

On Figure 17 we show the result of inferring revenues in week 2 from valuations recovered in week 1

in the SEU model. On Figure 18 we show the results of using the values from the NU-Envy-Free lower

bound and using NU-EF lower bound to infer bids. On Figure 19 we show the results of using the values

from the NU-EOS model and using NU-EOS model. On Figure 19 we show the results of using the values

from the SEU model and using NU-EOS model to infer bids. We do the same exercise for all recovered

values and two models in the NU context.

The revenue predicted by the NU-Envy-Free model tends to understate the actual revenue. On the other

hand, the revenue predicted by the NU-EOS model under-estimates the revenue. In most cases, however,

the revenue in the SEU case remains within the bounds. There are two reasons for this effect. First,

by adjusting the cost curves forcing their monotonicity, we make the structure of the recovered values

comparable across the models. As a result we can expect that in a large proportion of the observed auction

the best-response correspondences in the SEU case will be a subset of the best-response correspondences

in the NU case. Second, new entry into the auctions and our assumption of the degeneracy of the bounds

for the best-responses of the new entrants tightens the bounds and makes them closer to the actual bids.

The results turn out to be even more robust for the predictions for the average cost per click for the

bidders. We summarize our results in Table 8. It shows the parameters of the distribution of the standard

deviations of the predicted revenues from the actual revenue in week 2 normalized by the mean actual

revenues.

8.2 Auction Design: Comparing Vickrey Auctions and the Generalized Second Price Auc-

tion

In a model without uncertainty, EOS and Varian have shown that the EOS equilibrium implements the

same allocation and the same prices as a Vickrey auction. Thus, the choice of auction design does not

matter. However, once the real-world uncertainty is incorporated, this equivalence breaks down. If the

auctioneer held a separate Vickrey auction for each user query, it would be optimal for each advertiser

to bid its value, even if the same bid was to be applied across many different user queries. If we take the
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quality scores calculated for each impression as the best estimate of the efficient scores (that is, efficiency

requires ads to be ranked according to the product of value and quality score), then the ads will always

be ranked efficiently, query by query, in the Vickrey auction, even as quality scores change over time.

In contrast, in the generalized second-price auction used in practice, if bids apply to many queries (as in

the SEU model) and scores and entry vary across queries, then different bidders will have different gaps

between their bids and values. This implies that the ads will not be ranked efficiently in many cases.

Therefore, the generalized second price auction is strictly less efficient than the Vickrey auction, so long

as there is sufficient uncertainty in the environment.

Table 9 shows the results of a counterfactual comparison of the two mechanisms. We used the values

estimated in the SEU model, and computed counterfactual equilibria in each auction format: Vickrey

and generalized second price auction. To simplify the comparisons we ignored reserve prices, which were

rarely binding in any case. Note that the Vickrey auction gives the same results as if the NU-EOS model

is used, since in a world where bidders change their bids to play the NU-EOS equilibrium in each query,

the allocation and prices are the same as Vickrey prices. The SEU model equilibrium gives the outcome

of the generalized second price auction under uncertainty.

We see that the Vickrey auction always gives higher efficiency, which is necessarily the case, and the

efficiency differences are small but not insignificant. For our first two search phrases, the efficiency

difference is about half of one percent, while it is about 4% for search phrase 3.

The revenue comparison between the mechanisms is theoretically ambiguous, so it is an empirical question

as to which one performs better. We see that for search phrases 1 and 2, the revenue differences are larger

in magnitude than the efficiency differences, in the same direction: the Vickrey auction is more efficient,

and raises 6-8% more revenue. The revenue gains appear throughout the distribution of queries.

In contrast, for search phrase 3, the Vickrey auction raises 1.2% less revenue, despite being 4% more

efficient. The Vickrey auction does raise higher revenue for the median query (ranked by revenue), but

in the lower and higher quantiles, the generalized second price auction is superior.

Thus, we see a benefit of using the structural model to obtain estimates of values and the distribution of

quality scores in the environment: we can do counterfactual experiments to compare auction designs in a

scenario where theory is ambiguous about the revenue comparison. Our estimates show that the efficiency

gains from a Vickrey auction are small for some search phrases, but more substantial for others, and that

the revenue comparison will likely vary from search phrase to search phrase. Thus, further research is

required to assess the best choice for the platform as a whole from a revenue perspective, while from an

efficiency perspective, Vickrey auctions offer the potential for modest improvements.
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The source of the inefficiency of the generalized second price auction is the asymmetric gaps between

values and bids for different bidders. In the next section, we explore those gaps and the sources of the

asymmetries in more detail.

8.3 Competition, Elasticities and Profits PC

In this section, we examine the properties and implications of the estimated elasticities. First, we observe

that there is substantial variation across bidders and across search phrases in the elasticity of the average

cost curve. Tables 10-12 provide summary statistics on the elasticity faced by all the advertisements

related to three analyzed search phrases grouping bidders together by the average ranking the advertise-

ments received. The table also shows the gaps between value and bid, and between bid and payment,

each normalized by the bid, for bidders in each category (recall that Value-CPC
CPC will be equal to the inverse

of the elasticity). Tables 10-12 also show that the average elasticity of cost across advertisers remains

similar across positions. The gap between bid and payment is large and implies that the bids substantially

exceed the payment. On the other hand, the bid tends to be close to 2/3 of the value for all positions.

Analysis of the results for the second and the third search phrases demonstrates that the elasticity of the

average cost-per-click tends to increase towards the lower positions. One possible reason for that is that

higher positions are occupied by large advertisers with high bids and the competition occurs on the lower

position level.

We study the structure of the competition in the market for the first search phrase using two counterfactual

experiments. In the first experiment we study the role of the assigned scores in the competitiveness of

the bidders. We consider the bidder who is most frequently placed in top 1 position. Then we increase

the scores for all other bidders by 20% and study the impact of that increase on the marginal cost of the

bidder. We first analyze the impact of such change by keeping the bids of all the competing bidders fix

and allowing on the considered top bidder to re-adjust her bid.

In the second experiment, we increase the number of rival bidders by 20% considering the same set

of auctions and the same top bidder. The bids for the new bidders are generated randomly from the

empirical distribution of bids of bidders in the bottom positions and the scores are generated from the

score distribution.

The results of the experiments are demonstrated in Tables 13-15. The top line of the table contains

the factual observed mark-ups for the bidders and the two bottom lines correspond to the experiments.

One can see that in both experiments the profit per click of the considered top bidder has substantially

decreased as compared to the baseline. On the other hand the average profits per click and markups

remained similar. We can illustrate this table using the marginal cost curve for the bidder. The following
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figure 7 illustrates the induced changes to the marginal cost curves for one of the top bidder for the first

search phrase. We can see this change results in a shift of the total cost per click and the marginal cost

Figure 7: Changes in the marginal cost due to increased number of rivals
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up. The change is not sufficient for the bidder to move to a lower position. However, the optimal bid can

change by a substantial amount and so is the profit per click of the bidder.

9 Conclusion

In this paper we develop and estimate a new model of advertiser behavior under uncertainty in the

sponsored search advertising auctions. Unlike the existing models which assume that bids are customized

for a single user query we utilize the fact that queries arrive more quickly than advertisers can change

their bids, and advertisers cannot perfectly predict quality scores. In contrast to existing models that

ignore uncertainty, which produce multiplicity of equilibria, we provide sufficient conditions for existence

and uniqueness of equilibria. In addition, we propose a homotopy-based method for computing equilibria

given advertiser valuations and the distribution of uncertainty. We develop an econometric methodology

for estimating our structural model. Using our model we can recover the bidder valuations, which we

show is consistent and asymptotically normal, and we provide Monte Carlo analysis to assess the small

sample properties of the estimator. Finally, we apply the model to historical data for several keywords.

Our model yields lower implied valuations and bidder profits than approaches that ignore uncertainty.

Bidders have substantial strategic incentives to reduce their expressed demand in order to reduce the unit

prices they pay in the auctions, and these incentives are asymmetric across bidders, leading to inefficient

allocation.
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Appendix

A Proof of Theorem 1

Throughout the proof, we abuse notation by writing ∂
∂bj

EU i

(
βi(τ), τβ−i(τ),s

)
for ∂

∂bj
EU i

(
bi, τb−i,s

)∣∣∣
b=β(τ)

. We

start with proving parts (i) and (iii). First, we prove the sufficiency of these conditions. Suppose that for some

δ > 0 with τ ∈ [1− δ, 1], there exists a (unique) solution β(τ) to the equation

τ
d

dτ
EUi (βi(τ), τβ−i(τ), s) = TEi (βi(τ), τβ−i(τ), s) , for all i. (A.15)

If δ = 1, we define at the origin
∂

∂bj
EUi (0, 0, s) = lim

ε↓0

∂

∂bj
EUi (ε, 0, s) . (A.16)

Lemma 1 establishes that (A.15) holds at τ = 1 if and only if the bidders’ first-order conditions hold. The results

of Lemma 1 apply to the case where the auction has a positive reserve price.When the reserve price is equal to

r, then both the expected utility and the total expenditure become functions of r. Homogeneity of the utility

function will also be preserved when we consider the vector of bids accompanied by r. As a result, equation (3.7)

will take the form
∂

∂b′
EU (b, s, r) b+

∂

∂r
EU (b, s, r) r = −TE (b, s, r) . (A.17)

As a result, we can re-write our key equation as

d

d τ
EUi (bi, τb−i, s)|τ=1 = −TEi (b, s)− r

∂

∂r
EUi (b, s, r) . (A.18)

Our results for τ in the neighborhood of τ = 1 will apply with total expenditure function corrected by the influence

of the reserve price. In the further analysis we can simply use the modified total expenditure function

T̃Ei (bi, τb−i, s) = TEi (b, s) + r
∂

∂r
EUi (b, s, r) . (A.19)

In the case where the vector of the payoff functions has a non-singular Jacobi matrix globally in the support

of bids, we can also extend the results for τ ∈ [0, 1] to the case with the reserve price. In this case, the initial

condition for τ = 0 will solve

T̃Ei(βi(0), 0, s) = 0.
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Note that for all bidders i = 1, . . . , N this is a non-linear equation with a scalar argument bi(0), which can be

solved numerically. This will allow us to construct a starting value for the system of differential equations. The

solution β(τ) exists at τ = 1 by assumption. Due to quasi-concavity of the objective function, it will correspond

to the maximum of the payoff function. This means that there will exist an equilibrium in the considered auction

b∗ corresponding to β(1). This proves the sufficiency.

Second, we prove the necessity. Suppose that there exists an equilibrium vector of bids b∗. Then it solves the

system of the first-order conditions
∂EUi (b

∗
i , b

∗
−i, s)

∂bi
= 0.

Define the mapping β(τ) such that
∂EUi (βi(τ), τβ−i(τ), s)

∂bi
= 0, (A.20)

which coincides with the system of the first-order conditions at τ = 1 meaning that β(1) = b∗. We prove the

existence of such mapping by the following manipulations. Due to the smoothness of the objective function, if

the mapping exists, it is continuous. From homogeneity of Qi(·) function and TEi(·)/bi (established in the proof

of Lemma 1), it follows that
∑

j

bj
∂

∂bj
EUi (bi, b−i, s) = −T̃Ei (bi, b−i, s) , (A.21)

for any b in the support of these functions (with the derivative of the payoff function continuously extended to

the origin by (A.16)). Function T̃Ei(·) is defined in (A.19).

In particular, the support of bids includes all vectors (bi, τb−i) for some δ > 0 and τ ∈ [1 − δ, 1]. Given that

(A.21) is a direct consequence of homogeneity, it will be satisfied for any τ and any b in the support of bids

bi
∂

∂bi
EUi (bi, τb−i, s) +

∑

j 6=i

τbj
∂

∂bj
EUi (bi, τb−i, s) = −T̃Ei (bi, τb−i, s) . (A.22)

This equation will also be valid for β(τ) defined by (A.20) (if it exists). Substituting b = β(τ) into (A.22), we

conclude that
∑

j 6=i

τbj(τ)
∂

∂bj
EUi (βi(τ), τβ−i(τ), s) = −T̃Ei (βi(τ), τβ−i(τ), s)

is equivalent to the definition of β(τ) by (A.20). This can be re-written as

τ
d

dτ
EUi (βi(τ), τβ−i(τ), s) = −T̃Ei (βi(τ), τβ−i(τ), s) , for all i.

This equation has solution β(1) = b∗ by our assumption and equation (A.20). By our assumption, the Jacobi

matrix for the vector of payoffs is non-singular at τ = 1 while each T̃Ei(·) is continuous. By [5] this means

that the differential equation (A.15) has a continuous solution in some neighborhood of τ = 1. This proves the

necessity of the statement.

As a result, we proved that existence and uniqueness of the equilibrium bid vector is equivalent to the existence

and uniqueness of the solution to the differential equation (A.15). This proves (i) and (iii) in Theorem 1.

Now we proceed with proving (ii) and (iv) and establish the result for the global existence of the solution to (A.15)

under stronger conditions for the payoff functions. Assume that D0(b, s) is locally Lipschitz and non-singular.
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From equation (3.8) for each τ we will be able to find bid vectors β(τ) which solve the system (A.20), which will

transform to the system of equilibrium first-order conditions for τ = 1. We can now verify that the vector of bids

β(0) = 0 solves the system of differential equation (3.8) corresponding to τ = 0. This will allow us to characterize

the equilibrium as a solution to differential equation (3.8) with the initial value β(0) = 0. Bidder i’s cost will be

equal to zero if all other bidders bid zero. Therefore, for all bi in the support of bids TEi (bi, 0, s) = 0. As a result,

β(0) = 0 will solve equation (3.8) for τ = 0. From our previous result, it follows that β(1) is the equilibrium

vector of bids. Equation (3.8) states that for the mapping β(τ) that is defined by the first-order conditions for

all bidders and all τ ∈ [0, 1] satisfies

τ
d

dτ
EUi (βi(τ), τ β−i(τ), s) = −T̃Ei (βi(τ), τ β−i(τ), s) .

Given that β(τ) is a function of τ , we can apply the chain rule and express the total derivative of the payoff

function in terms of the derivative of β(τ) with respect to τ :

∑

j

(τ + (1− τ)1j=i)
∂

∂bj
EUi (bi, τ b−i, s) β̇j =

TEi (bi, τ b−i, s)

τ
−

∑

j 6=i

∂

∂bj
EUi (bi, τ b−i, s) bj , (A.23)

where β̇j stands for
dβ̇j(τ)

dτ
. This equation is equivalent to equation (3.8) with the added initial condition β(0) = 0.

Equation (A.23) determines the derivative of function β(τ) with respect to τ . It will define a continuous function

β(τ) if the left-hand-side expression is continuous and non-singular. We will show that we can make a change of

variables under which continuity and non-singularity of the left-hand side is clear.

In fact, note that the matrix of coefficients for β̇(τ) can potentially become singular in the vicinity of τ = 0. We

assure that it is not the case by proving that the solution of (A.23) can be represented as a product of the vector

function x(τ) that solves a non-singular system of differential equations and a matrix M(τ) that is not degenerate.

Define function x(τ) and matrix M(τ) such that β(τ) = M(τ)x(τ), where matrix M(τ) is non-degenerate for

each τ ∈ [0, 1], and as a function of τ M(·) satisfies

∂

∂b′
EU (M x, s) Ṁ = −1− τ

τ
diag

{
∂

∂bi
EUi (M x, s)

}
M(τ). (A.24)

Here Ṁ = d
dτ

M(τ) is the matrix of derivatives of elements of M(τ) with respect to τ . If such a matrix indeed

exists, then we can use the transformation β(τ) = M(τ)x(τ), and re-write the equation for β̇ as a vector condition

for ẋ:
∂

∂b′
EU (M(τ)x(τ), s)M(τ)ẋ =

TE (M(τ)x(τ), s)

τ

+

[
diag

(
∂

∂b′
EU (M(τ)x(τ), s)

)
− ∂

∂b′
EU (M(τ)x(τ), s)

]
M(τ)x(τ).

Note that this transforms the original problem to the system of differential equations for x(τ) that is free from

singularities in the vicinity of τ = 0 by the assumption of the theorem. Moreover, the right-hand side of this system

is Lipschitz-continuous. Therefore, by the standard existence theorem for the systems of nonlinear differential

equations in [16], the function x(τ) solving the above equation exists and is unique.

To finish the proof we use the following lemma to assure the existence of a non-singular matrix M(·).
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LEMMA 1. Suppose that matrix M(τ) has elements depending on τ and matrices Z(M, τ) and Y (M, τ) are

known. Moreover, Z(M, τ) is non-singular for all M and τ ∈ [0, 1] and both Y (M, τ) and Z(M, τ) are Lipschitz-

continuous in M and τ . Then the system of equations

Z (M, τ) Ṁ = Y (M, τ) M

with the boundary condition M(1) = In×n (identity matrix) has a unique non-singular solution.

The proof of this lemma can be found in [5] and [16].

In equation (A.24) ∂
∂b′

EU (M x, s) is Lipschitz. Therefore, both the right and the left-hand sides are Lipschitz and

non-singular. As a result of Lemma 1 we conclude that considered transformation β(τ) = M(τ)x(τ) is unique.

This is system of ordinary differential equations without singularities (the vector of payoff functions has a non-

singular Jacobi matrix and the considered change of variables is defined by a non-singular matrix M(τ)). Now

once we have this representation we proceed in the following steps. First, note that in the considered equation

we define the vector of bids as a function of parameters τ . This means that we can represent the given system of

differential equations as a system of differential equations for the vector of bids in the form:

A ẋ = c,

where matrix A corresponds to the matrix −D0(M(τ)x(τ), s). Both A and c are functions of x and τ . The set of

bids satisfying the first-order condition will correspond to the solution of this equation x(τ) when τ = 1.

Second, given that the set of equilibrium bids is associated with the solution of the given system, we can analyze

the equilibrium by analyzing this solution. Given that matrix A = D0(M(τ)x(τ), s) is non-singular and the

right-hand side c is continuous by the assumption of the Theorem, this system has a unique solution x(τ).

Third, if c is smooth and bounded, and the matrix of derivatives of the payoffs is strictly monotone, then the

representation β(τ) = M(τ)x(τ) will hold for all points in the support of the vector of bids. As a result, we can

apply Lemma 1 which establishes the sufficient condition for the uniqueness of the solution and proves the results

(ii) and (iv) in Theorem 1.

B Proof of Theorem 4

To analyze the properties of the estimate for valuation we use the fact that the empirical profit function converges

in probability to the population expected payoff function uniformly in valuation and the bid. Moreover, by our

assumption regarding the distribution of the score, the score has a continuous density with a finite support.

This implies that the numerical derivative will converge to the true derivative for the population analog of the

considered functions. In particular, using Taylor’s expansion and assuming that considered functions are twice
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differentiable with a Lipschitz-continuous residual of the second-order Taylor’s expansion we can write:

−TEi(bi−2τN ,b−i,s)+8TEi(bi−τN ,b−i,s)−8TEi(bi+τN ,b−i,s)+TEi(bi+2τN ,b−i,s)
−Qi(bi−2τT ,b−i,s)+8Qi(bi−τN ,b−i,s)−8Qi(bi+τN ,b−i,s)+Qi(bi+2τN ,b−i,s)

=
TE′

i(bi,b−i,s)+L1τ
3
T

Q′

i(bi,b−i,s)+L2τ
3
N

=
TE′

i(bi,b−i,s)
Q′

i(bi,b−i,s)
+ L1τ

3
N + L2τ

3
N + o

(
τ3
N

)
,

where L1 and L2 are Lipschitz constants. Next we consider the difference:

v̂i − vi =
−T̂Ei(bi−2τN ,b−i,s)+8T̂Ei(bi−τN ,b−i,s)−8T̂Ei(bi+τN ,b−i,s)+T̂Ei(bi+2τN ,b−i,s)

−Q̂i(bi−2τN ,b−i,s)+8Q̂i(bi−τN ,b−i,s)−8Q̂i(bi+τN ,b−i,s)+Q̂i(bi+2τN ,b−i,s)
− TE′

i(bi,b−i,s)
Q′

i(bi,b−i,s)

= D1 +D2 +D3 + op(
1√
T τT

).

Here we use the following decomposition:

D1 =
18

Q′
i (bi, b−i, s)

[
T̂Ei (bi, b−i, s)− TEi (bi, b−i, s)

]
,

D2 = −18TE′
i (bi, b−i, s)

(Q′
i (bi, b−i, s))

2

[
Q̂i (bi, b−i, s)−Qi (bi, b−i, s)

]
,

and

D3 =
−TEi(bi−2τN ,b−i,s)+8TEi(bi−τN ,b−i,s)−8TEi(bi+τN ,b−i,s)+TEi(bi−2τN ,b−i,s)

−Qi(bi−2τT ,b−i,s)+8Qi(bi−τN ,b−i,s)−8Qi(bi+τN ,b−i,s)+Qi(bi−2τN ,b−i,s)
− TE′

i(bi,b−i,s)
Q′

i(bi,b−i,s)
.

We omitted all the terms of the smaller order than op((TτT )
−1/2) using the assumption regarding the rate of the

numerical differentiation. Finally, using the structure of total expenditure and expected quantity of clicks, we can

write:

√
TτT (v̂i − vi) = −18

√
T
T∗

1

Q′

i(bi,b−i,s)
1√
T∗

∑
t∗

ui(vi,bi+τT ; b−i, si,ε̂it∗ ,Ct∗)−ui(vi,bi−τT ; b−i, si,ε̂it∗ ,Ct∗)√
τT

,

Then if Ω = Var

(
ui(vi,bi+τT ; b−i, si,ε̂it,Ct)−ui(vi,bi−τT ; b−i, si,ε̂it,Ct)√

τT

)
, it follows that the and i.i.d. Assumption 2,

bootstrap is valid by [13] and
√
TτT (v̂i − vi)

d−→ N

(
0,

324Ω

(Q′
i (bi, b−i, s))

2

)

C Estimation of valuations in case of set-valued best response correspondences

Even though we can consistently estimate the payoff of the bidder for each valuation and the score, there is no

guarantee that for each bid there will be a single valuation which makes this bid consistent with the first-order

condition. General results for set inference in the auction settings have been developed for instance in [9], while

general results for identification in the auction settings are given in [3]. This result will display most likely in the

situation where score-weighted bids have limited overlap, i.e. for a fixed set of bids we can find positions such that

some bidders will never have their ads displayed in these positions. In this case local bid changes may not affect

the payoff as they will not affect the relative ranking of the bidders. If bk sk ε < bi siε, then the score-weighted

bid of bidder k will always be below the bid of bidder i. Similarly, if bk skε > bisiε then the bid of bidder k will

always be ranked higher than the bid of bidder i. In the extreme case where for each pair of bidders j and k we

have

(bk skε− bj sjε) (bj sjε− bk skε) > 0
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(i.e. the ranked bids never overlap), then the model substantially simplifies. Assume that the bids are ordered by

their ranks using the mean scores: bjsj > bj−1sj−1. Also assume that π = 0 so that all bidders are always present

in the auction. A selected bidder will be placed in position k and pay bkskE
[
s−1

]
if bk

skε
siε

< b < bk−1
sk−1ε

siε
. If

the bid is bk
skε
siε

< b < bk
skε
siε

or bk
skε
siε

< b < bk
skε
siε

, then the probability of being placed in position k is

∫
Fε

(
bs

bksk

)
fε

(
s

si

)
ds,

and the expected payment is

∫ ∫
1
{
bk s

′ < b s
} bk s

′

s
fε

(
s′

sk

)
fε

(
s

si

)
ds ds′.

Similarly if bk−1
sk−1ε

siε
< b < bk−1

sk−1ε

siε
or bk−1

sk−1ε

siε
< b < bk−1

sk−1ε

siε
, then the probability of being placed in

position k is ∫ (
1− Fε

(
bs

bk−1sk−1

))
fε

(
s

si

)
ds,

and the expected payment is

∫ ∫
1
{
bk−1 s

′ > b s
} bk sk

s
fε

(
s′

sk−1

)
fε

(
s

si

)
ds ds′.

Then the objective function of the bidder i will be not strictly monotone. It will have “flat spots” where there is

no bid overlap and it will be smooth where score-weighted bids overlap. We can explicitly compute the marginal

utility from bidding b as

∂

∂b
Eε,C

[
ui

(
vi, bi = b, b−i; εit, C

i
t

)]
=





0, if bk
skε
siε

< b < bk−1
sk−1ε

siε
,

αk

∫ (
vis
bk

− b
)
fε

(
s
si

)
fε

(
bs

bksk

)

−αk+1

∫ (
vis
bk

− bk+1sk+1

s

)
fε

(
s
si

)
fε

(
bs

bksk

)
ds,

if bk
skε
si

< b < bk
skε
si

.

In the limited overlap case the numerical algorithm for computation of the best responses will contain 3 steps.

• Step 1 Compute ∂
∂b
E
[
ui

(
vi, bi = b, b−i, εit, C

i
t

)]
at each of 4 (N − 1) points bk

sk(×/÷)ε
si(×/÷)ε

• Step 2 If for some k there are 2 points out of 4 bk
sk(×/÷)ε
si(×/÷)ε

where the marginal utility has different signs,

solve the non-linear equation

αk

∫ (
vis

bk
− b

)
fε (s− si) fε

(
bs

bksk

)
− αk+1

∫ (
vis

bk
− bk+1sk+1

s

)
fε

(
s

si

)
fε

(
bs

bksk

)
ds = 0.

Obtain solution b∗.

• Step 3 Compare αk

(
vi − skbkE

[
s−1
it

])
for all k and E

[
ui

(
vi, bi = b∗, b−i, εit, C

i
t

)]
where the latter were

computed. If the maximum value is αk

(
vi − skbkE

[
s−1
it

])
, then the best response is set valued with

b ∈
[
bk

skε
siε

, bk−1
sk−1ε

siε

]
. Otherwise, the best response is unique and equal to b∗.

To recover valuations in case of limited overlap of the score-ranked bids, we fix the set of observed bids. We also

fix the grid which contains the support of valuations. Then for each bidder and each value on the grid we solve
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for the set of best responses. Given the produced set of best responses we pick the set of valuations for which the

set of best responses contains the actually observed best response. Technically this implies that we recover the

set:

Si =

{
(b, v)

∣∣∣∣ b ∈ BRi (v, b−i) , v ∈ V
}
.

The estimated valuation is the cut of this set such that

(
v̂i, bi

)
∈ Si,

where bi is observed in the data.

The structure of our empirical procedure allows us to formulate the following result.

THEOREM 5. Under Assumption 2 the estimation procedure following the outlined steps 1-3 is numerically

equivalent to the statistics inversion procedure in [6]. As a result, the estimates of identified set of valuations will

be described by Theorem 2.1 in [6].

To provide the argument, we consider the following scheme.

1. Consider the sample of all observed bidder configurations over queries t {Ct}Tt=1 where T is the total

number of queries. Uniformly over these sets draw a set Ct∗ . Select a particular bidder i Construct a set

Ci
t∗ = Ct∗ \ {i}. In total we construct T ∗ subsamples of collections of sets of configurations.

2. For a fixed position j make K∗ random subsamples {Ci
t∗,k,j−1}K(T )

k=1 of j − 1 bidders out of set Ct∗ . The

number of subsamples K∗ needs to grow such that K∗/
√
T → ∞. For configuration Ct∗ compute the payoff

of bidder i from being placed in position j

ui,j
t∗,k(bi, vi) = αj

K∗∑

k=1

∫ ∫ (
vi Fs

(
s′

sk

)

×
∏

m∈Ci
t∗,k,j−1




1− Fs

(
sb

smbm

)

Fs

(
sb

smbm

)


 ∏

n∈Ci
t∗

Fs

(
sb

snbn

)

−
∑

k∈Ci
t∗

\Ci
t∗,k,j−1

bks
′

s
1
{
bk s

′ < b s
} Fs

(
s
si

)

Fs

(
s′bk
sib

)

×
∏

m∈Ci
t∗,k,j−1




1− Fs

(
sb

smbm

)

Fs

(
s′bk

smbm

)


 ∏

n∈Ci
t∗

Fs

(
s′bk
snbn

))
d log Fs

(
s

si

)
d log Fs

(
s′

sk

)
.

If we use T ∗ draws of configurations of bidders in the first stage, and K∗ draws in the second stage, we

need to compute the approximated payoff by rescaling as

ÊU i (bi = b; b−i, s) =

J∑

j=1

1

T ∗

T∗∑

t=1

(
#Ci

t∗

j

)

K∗

K∗∑

k=1

ui,j
t∗,k(bi, vi).
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This procedure allows us to evaluate the payoff function of a single bidder using T ∗ ×K∗ total draws. Note that

we can “recycle” the draws of sets of configurations to compute the payoff functions for different bidders. We

then can compute the numerical derivative

∂

∂b
ÊU i (bi = b; b−i, s) =

J∑

j=1

1

T ∗

T∗∑

t=1

(
#Ci

t∗

j

)

K∗

K∗∑

k=1

ui,j
t∗,k (b+ τ, vi)− ui,j

t∗,k (b− τ, vi)

2τ
.

Given the assumption that bidders set their bids optimally, we ca write the condition

∂

∂b
ÊU i

(
bi = bi, b−i

)
=

J∑

j=1

1

T ∗

∑

t∗

(
#Ci

t∗

j

)

K∗

K∗∑

k=1

ui,j
t∗,k

(
bi + τ, vi

)
− ui,j

t∗,k

(
bi − τ, vi

)

2τ
= op (1) ,

at the observed bid. Then we can recover the set of values that correspond to the observable bid. To do so we

form the grid over v and minimize




J∑

j=1

1

T ∗

∑

t∗

(
#Ci

t∗

j

)

K∗

K∗∑

k=1

ui,j
t∗,k

(
bi + τ, vi

)
− ui,j

t∗,k

(
bi − τ, vi

)

2τ




2

,

with respect to v. The set of minimizers will deliver the identified set of valuations F̂v,T,J . This procedure allows

estimation similar to that offered in [6]. The confidence sets can be recovered using the tools developed in [12].

D Algorithm and description of Monte-Carlo Simulations

In the Monte-Carlo simulations we analyze the stability of our estimation procedure with respect to the sampling

noise in the data as well as the width of the support of valuations. The first set of Monte-Carlo simulations was

designed to analyze the robustness of the suggested computational procedure to the sampling noise in the observed

configurations of advertisers. The setup of the Monte-Carlo simulation was the following. We considered the case

where there are 5 advertisers competing for 2 slots. The click-through rates of these slots were fixed at levels 1 and

0.5. The valuations have support on [0, 1] and the scores for all advertisers are uniformly distributed on [0, .1]. We

consider the cases where the reserve price was equal to 0.1, 0.2 and 0.3. We use the same probability of a binding

budget constraint for all bidders. This probability was selected at the levels 0, 0.01, and 0.05. We used 2000

Monte-Carlo replications. Each iteration was organized in the following way. First, we sample valuations for each

bidder from U [0, 1]. Second, for the set of valuations we computed the equilibrium of the model. In case of the

uniform distribution of the scores, the problem of computing the equilibrium is equivalent to solving a system of

polynomial equations (of order 4 for 5 players) with linear constraints. Then for each bidder we generated uniform

random variables and removed the bidders for whom the uniform draw was below the probability of a binding

budget constraint. Then we fixed the bids and generated each set of Monte-Carlo draws using the algorithm

• Using uniform draws, remove bidders with binding budget constraint

• Record equilibrium bids for remaining bidders

• Generate scores for the bidders from the uniform distribution

• Allocate bidders to slots and compute the prices
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Table 1: Results of Monte-Carlo Analysis (no binding budget constraints)

Profits Valuations

Player# 1 2 3 4 5 1 2 3 4 5

Sample size =500

.654 .622 .788 .501 .714 .220 .124 .150 .221 .250

Sample size =1000

.311 .355 .330 .341 .318 .110 .098 .101 .118 .106

Sample size =2000

.122 .110 .114 .164 .142 .055 .068 .060 .071 .062

Table 2: Results of Monte-Carlo Analysis (probability of reaching the budget constraint 1%)

Profits Valuations

Player# 1 2 3 4 5 1 2 3 4 5

Sample size =500

1.034 .1.507 1.142 .980 1.450 .320 .215 .345 .318 .343

Sample size =1000

.890 1.079 1.120 .760 1.235 .250 .201 .305 .285 .299

Sample size =2000

.530 .511 .595 .544 .645 .176 .129 .201 .148 .187

We used three setups where each Monte-Carlo sample had 500, 1000 and 2000 individual draws. For each sample

we computed the payoff function, and computed the valuations of the participating bidders by inverting the

first-order condition. In the table below we report our results. We report standard deviations of the difference

between exact and estimated profits for players from 1 to 5 and the standard deviations for recovered valuations

for players from 1 to 5. The following table reports the estimates for the case where the probability of players

dropping out due to budget constraints is zero.

This table shows a significant decline in the standard errors of estimation when the Monte-Carlo sample size

increases. This supports the formal argument of consistency of our estimation procedure.

E Recovering distributions of scores and clickthrough rates from the data

Now we will provide a more formal argument for identification of the CTR. First, we consider identification of

the distribution of noise in the click-through rates, and subsequently, the distribution of estimated click-through

rates. The distribution of the estimated advertiser-specific rate is denoted Fγ,i(· | z) and the distribution of

the estimated slot-specific click-through rate is denoted Fα,j(· | z). The distribution of bidder valuations is also a

common knowledge among bidders. The following proposition establishes the fact that we can recover distributions
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Table 3: Results of Monte-Carlo Analysis (probability of reaching the budget constraint 5%)

Profits Valuations

Player# 1 2 3 4 5 1 2 3 4 5

Sample size =500

2.003 3.790 3.202 2.254 2.990 .269 .235 .130 .021 .189

Sample size =1000

1.840 1.089 2.044 2.011 2.940 .336 .218 .238 .299 .201

Sample size =2000

1.188 1.112 2.230 1.970 1.450 .096 .128 .130 .199 .160

of the bidder-specific and the slot-specific CTR from observable frequencies of clicks Gij(·) for bidder i in slot j.

THEOREM 6. Assume that the distribution of the estimated slot-specific CTR is degenerate at α in slot 1

(where α is a known constant), and the distribution of the noise in the advertiser-specific CTR Fγ(·) is the same

across advertisers. Moreover, assume that the noise in the estimated slot-specific CTR εαj is independent from the

noise in the estimated advertiser-specific CTR εγi for all advertisers and all slots. Then both the distribution of

advertiser-specific CTR and the distribution of slot-specific CTR Fα,j (·) for all slots j are identified.

Proof:

Given that Gc,i,j(x) = E [1 {Cij < x}], then for slot 1

Gc,i,1(x) = E [1 {αΓi < x}] = Fγ

(x

α

)
,

meaning that the distribution of Γi is identified. Denote the distribution of log Cij by Gl
c,i,j(·) and the distribution

of log Aj and log Γi by F l
α,i and F l

γ correspondingly. Then the density of the logarithm of the CTR is expressed

through the density of slot-specific CTR and advertiser-specific CTR by the convolution formula

glc,i,j (x) =

log γ∫

log γ

f l
γ (γ) f

l
α,j (x− γ) dγ.

Then the characteristic function for the distribution of Aj can be expressed using deconvolution

χl
α,j(t) =

χl
c,i,j(t)

χl
γ (t)

.

The characteristic function is computed as

χl
γ (t) =

+∞∫

−∞

eitxf l
γ(x) dx,

where i =
√
−1. Then we can recover the distribution of slot-specific CTR for slot j using the inverse Fourier

transformation

Fα,j (x) =

log x∫

−∞

dz

+∞∫

−∞

e−itzχl
α,j(t) dt.
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As a result, for each slot j = 1, . . . , J starting from the second one we can find the distribution of its slot-specific

conversion rate.

Q.E.D.

F Computing equilibria via numerical continuation

For τ ∈ [0, 1] the system (3.8) can be re-written as

∑

j 6=i

∂EUi (βi(τ), τ β−i(τ), s)

∂bj
τ bj (τ) = −TEi (βi(τ), τ β−i(τ), s) , i = 1, . . . , N. (F.25)

If the payoff function is twice continuously differentiable and the equilibrium existence conditions are satisfied,

then β(τ) is a smooth function of τ . As a result, we can further differentiate both sides of this expression with

respect to τ . For the left-hand side we can obtain

∑
j,k 6=i

∂2EUi(βi(τ), τ β−i(τ),s)
∂bj ∂bk

[
τ2 bj ḃk + τbj bk

]
+

∂2EUi(βi(τ), τ β−i(τ),s)
∂bj ∂bi

τ bj ḃi

+
∑
j 6=i

∂EUi(βi(τ), τ β−i(τ),s)
∂bj

[
τ ḃj + bj

]
,

(F.26)

where ḃ = db
dτ

. Then using the notation δkj for the Kronecker symbol, we can re-write the expression of interest

as
∑

k

ai
k ḃk = ci, (F.27)

and

ai
k =

[
τ2 (1− δik) + τδik

] ∑
j 6=i

∂2EUi(βi(τ), τ β−i(τ),s)
∂bj ∂bk

bjbk + τ (1− δik) vi
∂Qi(βi(τ), τ β−i(τ),s)

∂bk
bk

+δik
∂TEi(βi(τ), τ β−i(τ),s)

∂bi
bi

and

ci = −
∑

k τ (1− δik)
∑
j 6=i

∂2EUi(βi(τ), τ β−i(τ),s)
∂bj ∂bk

bjbk + (1− δik) vi
∂Qi(βi(τ), τ β−i(τ),s)

∂bk
bk

We make an inverse transformation and express the system of equations of interest in the form

A (b, τ) ḃ = c (b, τ) ,

where the elements of matrix A (b, τ) can be computed as Aik (b, τ) = ai
k. We know that the original system

of non-linear equations has the solution β(0) = 0 corresponding to the point τ = 0. We solve the problem by

constructing a grid over τ ∈ [0, 1] and choosing the tolerance level ∆ accordingly to the step of the grid. The set

of grid point is {τN}Tt=1 where ∆ = max
t=2,...,T

‖τN − τt−1‖. The solution at each grid point τN will be a vector of

bids bt. Then we can use the modified Euler integration scheme to compute the solution on the extended interval.

We can note that the system of differential equation has a singularity of order one at the origin. We use a simple

regularization scheme which allows us to avoid the singularity at a cost of an additional approximation error of

order ∆α, where α is the power such that lim
δ→+0

δ−α ∂2EUi(bi,b−i)
∂bi∂bj

∣∣
‖b‖=δ

< ∞ for all i. Note that this condition is

satisfied if the Hessian matrix of the payoff function is non-degenerate at the origin. We initialize the system at

b0 = ∆/4 and make a preliminary inverse Euler step by solving

b1/2 = b0 +A
(
b1/2,∆/2

)−1
c
(
b1/2,∆/2

)
∆/2 (F.28)
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with respect to b1/2. Such an inverse step enhances the stability of the algorithm and it will be the most time-

consuming part. Then the algorithm proceeds from step t to step t + 1 in the steps of 1/2. Suppose that bt is

the solution at step t. Then we make a preliminary Euler step

bt+1/2 = bt +
∆

2
A (bt, τN )−1 c (bt, τN ) . (F.29)

Then using this preliminary solution we make the final step

bt+1 = bt +∆A

(
bt+1/2, τN +

1

2
∆

)−1

c

(
bt+1/2, τN +

1

2
∆

)
.

Note that the values that are updated only influence the evaluated derivative, while the final step size is still equal

to ∆. We can use standard numerical derivative approximation to compute the elements of A (b, τ) and c (b, τ).

For the first derivative we use the third-order formula such that

∂EUi(b,τ,s)
∂bj

=
EUi(bj−2δ,b−j ,τ,s)−8EUi(bj−δ,b−j ,τ,s)+8EUi(bj+δ,b−j ,τ,s)−EUi(bj+2δ,b−j ,τ,s)

12δ
+ o

(
δ5
)
,

where δ is the step size in the domain of bids. For the second cross-derivatives we can use the “diamond” formula

∂2EUi(b,τ)
∂bj∂bk

= 1
12δ2

[
EUi (bj − 2δ, b−j , τ, s)− EUi (bk − 2δ, b−k, τ, s)

−8EUi (bj − δ, b−j , τ, s) + 8EUi (bk − δ, b−k, τ, s)

+8EUi (bj + δ, b−j , τ, s)− 8EUi (bk + δ, b−k, τ, s)

−EUi (bj + 2δ, b−j , τ, s) + EUi (bk + 2δ, b−k, τ, s)

]
+ o

(
δ4
)
,

Then the order of approximation error on the right-hand side is o(δ4). For stability of the computational algorithm

it is necessary that δ4 = o (∆). This can be achieved even if one chooses δ = ∆ (up to scale of the grid). This

condition becomes essential if in the sample the function EUi is not smooth. In that case the minimal step size

δ is determined by the granularity of the support of the payoff function. The step size for τ should be chosen

appropriately and cannot be too small to avoid the accumulation of numerical error.

Initialization of the system simplifies when the auction has a reserve price. When the reserve price is equal to

r, then both the expected utility and the total expenditure become functions of r. Homogeneity of the utility

function will also be preserved when we consider the vector of bids accompanied by r. As a result, the system of

of equilibrium equations will take the form

∂

∂b′ EU (b, s, r)b+
∂

∂r
EU (b, s, r) r = −TE (b, s, r) . (F.30)

As a result, we can re-write our main result as

d

d τ
EUi (bi, τb−i, s)|τ=1 = −TEi (b, s)− r

∂

∂r
EUi (b, s, r) . (F.31)

Our results for τ in the neighborhood of τ = 1 will apply with total expenditure function corrected by the influence

of the reserve price. In the case where the vector of the payoff functions has a non-singular Jacobi matrix globally

in the support of bids, we can also extend the results for τ ∈ [0, 1] to the case with the reserve price. In this case,

the initial condition for τ = 0 will solve

−TEi(bi(0), 0, s)− r
∂

∂r
EUi (bi(0), 0, s, r) = 0.
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Note that for all bidders i = 1, . . . , N this is a non-linear equation with a scalar argument bi(0), which can be

solved numerically. This will allow us to construct a starting value for the system of differential equations. Note

that in this case equilibrium computations simplify because there is no need in the “inverse” Euler step which

we used to stabilize the system of differential equations at the origin. The algorithm will start from the standard

preliminary Euler step 1
2
∆.

G Tables

Table 4: Log-values recovered from the computational algorithm

Search phrase Mean 25% 50% 75%

#1 -.7527981 -1.287738 3 -.7610942 -.1050781

#2 1.892349 1.271759 2.10132 2.575151

#3 -.6609135 -1.309133 -.8079711 -.1149696

We report the quantiles of the logarithm of valuations recovered from solving the first-order condition for each bidder in the SEU environment across

bidders. The values are normalized by the highest observed bid for search phrase #1

Table 5: Means of valuations for different models across search phrases

Model; Search phrase #1 #2 #3

NU-Envy Free .4783782 3.223342 .4147022

NU-EOS 1.184797 5.95363 .9659285

SEU 1.093177 5.1296 .8188958

We report the means of logarithms of recovered valuations across search phrases and bidders. The valuations in the SEU environment are obtained by

solving the bidder’s first-order condition. The valuations in the NU environment are obtained by computing the weights for the ICC curves that make

configurations monotone. The values are normalized by the highest observed bid for search phrase #1.
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Table 6: Recovered normalized profit per click Avg.(value−CPC)
Avg.(CPC) (aggregation at the advertisement level)

Model Mean 25% 50% 75%

Search phrase #1

SEU 1.995002 .381061 1.030544 2.040322

NU-EOS 2.294112 .4381046 1.225826 2.641843

NU-Envy Free LB 1.1638212 .0402093 .2037002 .5073325

Search phrase #2

SEU 2.1402 .6332364 1.759544 3.485528

NU-EOS 3.113286 .774698 2.4309701 3.576068

NU-Envy Free LB .1532421 .0377244 .0919325 .2888345

Search phrase #3

SEU 2.152566 .8692392 1.239167 1.843645

NU-EOS 2.371822 .7725573 1.777851 2.723807

NU-Envy Free LB .4713152 .1273392 .3558505 .6382902

Reported profits per click are averaged at the bidder (advertisement) level. We use the values obtained from our computational algorithms. The

valuations in the SEU environment are obtained by solving the bidder’s first-order condition. The valuations in the NU environment are obtained by

computing the weights for the ICC curves that make configurations monotone.

Table 7: Recovered weighted profits per click Avg.(value−CPC)
Avg.(CPC) (aggregation at the impression level)

Model Mean 25% 50% 75%

Search phrase #1

SEU 1.226478 .956925 1.160303 1.388966

NU-EOS 2.264668 1.320135 1.659808 2.114972

NU-Envy-Free LB .3648388 .249972 .3322766 .4268979

Search phrase #2

SEU .603822 .2271468 .561978 .963982

NU-EOS .8147091 .398568 .6503538 .9690881

NU-Envy-Free LB .1015507 .0802903 .0233549 .0355081

Search phrase #3

SEU 2.132596 .8826663 1.09802 1.784544

NU-EOS 2.186924 1.791808 2.08713 2.386247

NU-Envy-Free LB .365921 .2546077 .359719 .4714175

Reported profits per click are averaged at the impression level. We use the values obtained from our computational algorithms. The valuations in the

SEU environment are obtained by solving the bidder’s first-order condition. The valuations in the NU environment are obtained by computing the

weights for the ICC curves that make configurations monotone.
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Table 8: Mean deviations of the predicted revenues from the true revenues (normalized by actual mean

revenues)

Model (values) Mean 25% 50% 75%

Search phrase #1

SEU (SEU) 2.4893939 .0240292 .9483932 2.5784334

NU-EOS (SEU) 3.2292928 .2583932 1.3392231 3.721294

NU-Envy Free LB (SEU) 2.5782184 .0473928 .9132732 3.443231

NU-EOS (NU-EOS) 5.615954 .4347139 1.755482 5.611716

NU-Envy Free LB (NU-EF) 1.858746 -.095282 .4155265 1.860668

Search phrase #2

SEU (SEU) 3.247832 .2398351 .7783552 2.278349

NU-EOS (SEU) 11.58404 .2632192 1.237076 5.828762

NU-Envy Free LB (SEU) 3.655106 -.0301596 .646016 2.025008

NU-EOS (NU-EOS) 12.08087 1.309723 3.406704 7.418589

NU-Envy Free LB (NU-EF) 2.774772 -.1279501 .4839024 1.679651

Search phrase #3

SEU (SEU) 3.078249 .0142574 .7893584 2.139244

NU-EOS (SEU) 4.037667 .2345959 1.276185 2.180654

NU-Envy Free LB (SEU) 3.90874 .2132468 .7608118 1.858421

NU-EOS (NU-EOS) 6.833638 .287898 .8622311 2.685828

NU-Envy Free LB (NU-EF) 2.650613 -.0532067 .4336354 1.226672

To compute the numbers in this table we use the values obtained from solving bidder’s first-order condition in the SEU environment. Then we compute

equilibrium bids corresponding to SEU and NU environment. Reported numbers reflect mean-squared deviation of the revenue per impression predicted

using equilibrium concepts in the NU and SEU environments and actual revenues. All numbers are normalized by the mean actual revenue per impression

for each search phrase.
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Table 9: Predicted counterfactual revenues and welfare for the SEU generalized second price auction

model versus the NU-EOS (equivalent to query-by-query Vickrey auctions) model, using SEU values and

actual bidder configurations for both models

Model (values) Mean 25% 50% 75%

Search phrase #1

Revenue SEU (SEU) .1423501 .0155821 .1319029 .2973121

Revenue NU-EOS (SEU) .1540002 .0159291 .1322911 .3399102

Welfare SEU (SEU) .4593142 .2892011 .4410259 .601212

Welfare NU-EOS (SEU) .4619217 .2912914 .4452871 .6293282

Search phrase #2

Revenue SEU (SEU) 1.216925 .3027593 1.212913 1.967921

Revenue NU-EOS (SEU) 1.285954 .4549824 1.297483 1.957212

Welfare SEU (SEU) 3.658921 2.127683 3.987584 4.729252

Welfare NU-EOS (SEU) 3.678215 2.173752 4.023745 4.752598

Search phrase #3

Revenue SEU (SEU) .1718925 .0001793 .1572834 .4982731

Revenue NU-EOS (SEU) .1691242 .0001395 .1783529 .494372

Welfare SEU (SEU) .2835921 .09231292 .2274856 .7672827

Welfare NU-EOS (SEU) .2942763 .1024853 .2472872 .7874526

To compute the numbers in this table we use the values obtained from solving bidder’s first-order condition in the SEU environment. Then we compute

equilibrium bids corresponding to SEU and NU environment. Reported numbers correspond to mean per impression revenues and welfare for considered

search phrases. All numbers are normalized by the mean actual revenue per impression for each search phrase.

Table 10: Characteristics of competition for search phrase #1

Mean Mean Elasticity

Avg. ranking Value-Bid
CPC

Bid-CPC
CPC

Mean 25% 50% 75%

[1, 1.5) 1.265633 .2015842 1.506112 .762117 1.472858 2.250106

[1.5, 2.5) 1.224156 .3067305 1.598213 1.272535 1.565803 2.477033

[2.5, 4) 1.426913 .238303 1.568633 .987747 1.589449 2.371734

[4, 5.5) 1.38519 .3506651 1.632358 .992719 1.696646 2.063183

[5.5, 8) 1.874973 .2203497 2.023551 .941602 1.717833 2.348808

We report mean elasticities of the MC curve corresponding to bidders whose average position is in the displayed bracket. We also report mean per

impression markup and revenue and their quantiles.
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Table 11: Characteristics of competition for search phrase #2

Mean Mean Elasticity

Avg. ranking Value-Bid
CPC

Bid-CPC
CPC

Mean 25% 50% 75%

[1, 1.5) 1.88835 .8059352 2.64721 1.90698 2.430392 4.32612

[1.5, 2.5) 1.5066034 .344606 2.054345 1.710727 1.954463 2.235109

[2.5, 4) 1.076497 .2314135 1.191285 1.066815 1.665737 2.182481

[4, 5.5) 1.201434 .3027201 1.539007 1.16887 1.505857 1.941993

[5.5, 8) 1.154609 .2267382 1.263357 1.328631 1.391573 2.128564

We report mean elasticities of the MC curve corresponding to bidders whose average position is in the displayed bracket. We also report mean per

impression markup and revenue and their quantiles.

Table 12: Characteristics of competition for search phrase #3

Mean Mean Elasticity

Avg. ranking Value-Bid
CPC

Bid-CPC
CPC

Mean 25% 50% 75%

[1, 1.5) 1.1103034 .1155944 1.2570988 .9980923 1.2198768 1.999362

[1.5, 2.5) 1.3237916 .4541549 1.561206 1.559298 1.559298 1.566089

[2.5, 4) 1.5599176 .2661763 1.934037 1.739429 1.769591 2.047367

[4, 5.5) 1.3842787 .1636832 1.675953 1.531604 2.031604 2.156488

[5.5, 8) 1.8510012 .217807 2.022899 1.2036649 2.0376654 3.104773

We report mean elasticities of the MC curve corresponding to bidders whose average position is in the displayed bracket. We also report mean per

impression markup and revenue and their quantiles.

Table 13: Counterfactual behavior of top bidder for search phrase #1

Top bidder All bidders Ad platform

Bid
Avg.Position ProfitPC

Bid
Avg.Position

Profit PC
SocialWelfare

Revenue
% Soc. welf. receivedby ad platform

Fact

6.235762 1 .3129024 4.872921 3.782131 .1243753 .5472249 .1492331 .2727089

Increased competition: top bidder changes bid, welfare of new bidders included

5.990234 1.673962 .3002127 4.976542 4.410475 .0943098 .5512012 .1504498 .2728435

To compute the numbers in this table we use the values obtained by solving first-order conditions for bidders in the SEU environment. Then we compute

the bids by solving for a new equilibrium with the bids of new entrants fixed.
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Table 14: Counterfactual behavior of top bidder for search phrase #2

Top bidder All bidders Ad platform

Bid
Avg.Position ProfitPC

Bid
Avg.Position

Profit PC
SocialWelfare

Revenue
% Soc. welf. receivedby ad platform

Fact

52.343965 1 2.374845 35.637842 3.266937 1.129363 4.817875 1.324213 .2748551

Increased competition: top bidder changes bid, welfare of new bidders included

49.987542 1.578332 2.350315 36.967433 3.848345 1.053244 5.137943 1.443214 .2808932

To compute the numbers in this table we use the values obtained by solving first-order conditions for bidders in the SEU environment. Then we compute

the bids by solving for a new equilibrium with the bids of new entrants fixed.

Table 15: Counterfactual behavior of top bidder for search phrase #3

Top bidder All bidders Ad platform

Bid
Avg.Position ProfitPC

Bid
Avg.Position

Profit PC
SocialWelfare

Revenue
% Soc. welf. receivedby ad platform

Fact

3.754932 1 .1129721 2.287534 3.043752 .0624725 .1786313 .0588345 .3293612

Increased competition: top bidder changes bid, welfare of new bidders included

3.564321 1.594967 .1123745 2.457386 3.407652 .05502137 .1817662 .0596821 .3283457

To compute the numbers in this table we use the values obtained by solving first-order conditions for bidders in the SEU environment. Then we compute

the bids by solving for a new equilibrium with the bids of new entrants fixed.
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H Graphs

Figure 8: Mean absolute deviation of ICC weights from 1 for search phrase #1
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Figure 9: Mean absolute deviation of ICC weights from 1 for search phrase #2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

Mean deviation of weights



56

Figure 10: Mean absolute deviation of ICC weights from 1 for search phrase #3
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Figure 11: Valuations in NU-models plotted against the values in SEU for keyword #1
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Figure 12: Valuations in NU-models plotted against the values in SEU for keyword #2
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Figure 13: Valuations in NU-models plotted against the values in SEU for keyword #3
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Figure 14: Logarithm of profit per click in NU-models plotted against the profits per click in SEU for

search phrase #1

−2
0

−1
5

−1
0

−5
0

Lo
g−

su
rp

lu
s:

 N
U

−6 −4 −2 0 2
Log−surplus: SEU

NU−EF LB NU−EOS
45−degree line

Figure 15: Logarithm of profit per click in NU-models plotted against the profits per click in SEU for

search phrase #2
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Figure 16: Logarithm of profit per click in NU-models plotted against the profits per click in SEU for

search phrase #3
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Figure 17: Logarithm of predicted revenues in SEU for keyword #1
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Figure 18: Logarithm of predicted revenues in NU for keyword #1
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Figure 19: Logarithm of predicted revenues in NU for keyword #1
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