Discussion of Guerrieri, Hartley and Hurst

Morris A. Davis

EFG Meetings

February 2010

Morris A. Davis Discussion of Guerrieri et. al.

ヘロン 人間 とくほどう ほどう

Э

Quick Summary

This is an ambitious paper.

Model:

The authors develop a nontrivial model with two types of agents (rich/poor) and an externality that predicts:

- a. When economy-wide interest rates fall
- b. Then house prices in relatively inexpensive areas of an MSA appreciate faster than in relatively expensive areas.
- Data:

Data on house prices from a variety of sources appear consistent with model predictions.

A Discussion of the Data and Model

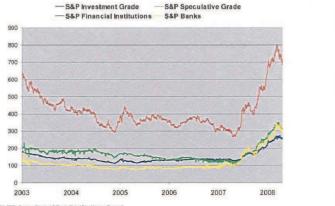
In the Model:

- In their explanation of changes to relative prices within MSAs, the authors abstract from changes to
 - a. Risk (Piazzesi et. al. 2007)
 - b. Credit constraints (Ortalo-Magne and Rady 2006)
- Changes to relative prices occur because relative rents change. (All rents are discounted using identical rates).
- We know that credit conditions changed and suspect that the premium to risk changed.

ヘロン 人間 とくほどう ほどう

Credit Conditions

Source: Gerardi, Lehnert, Sherlund, Willen (2008)


Massachusetts Originations, 2000 - 2007

	Combined LTV		Subprime
Year	Median	$\% \geq 0.90$	purchase %
2000	0.824	31.67	2.43
2001	0.850	34.42	2.89
2002	0.820	32.32	3.88
2003	0.850	34.47	6.86
2004	0.866	35.68	9.99
2005	0.899	39.40	14.81
2006	0.900	41.65	12.96
2007	0.900	41.62	3.95

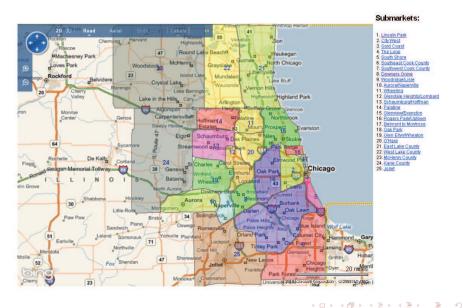
Spreads on Debt

Credit Risk Reprices

S&P Composite Spreads

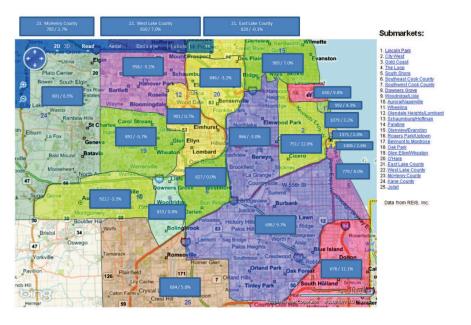
Data as of April 24, 2008. Source : Standard & Poor's Global Fixed Income Research

65 Permission to reprint or distribute any content from this presentation requires the written approval of Standard & Poor's


Morris A. Davis Discussion of Guerrieri et. al.

STANDARD & POOR'S

- When I first read the paper, I thought it was risky to propose a model that attributes observed changes in relative prices within MSAs to changes in relative rents.
- The authors do not have data on rents.
- Perhaps risk premia and/or credit conditions played a role.


・ロト ・回ト ・ヨト ・ヨト

Chicago Submarkets Data from REIS, Inc.

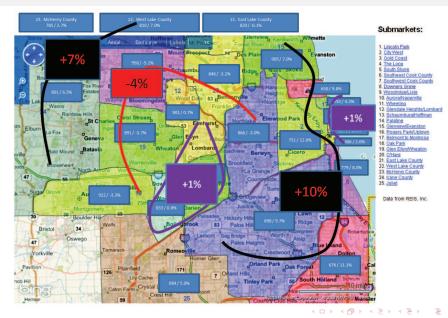
Morris A. Davis

Discussion of Guerrieri et. al.

Morris A. Davis

Discussion of Guerrieri et. al.

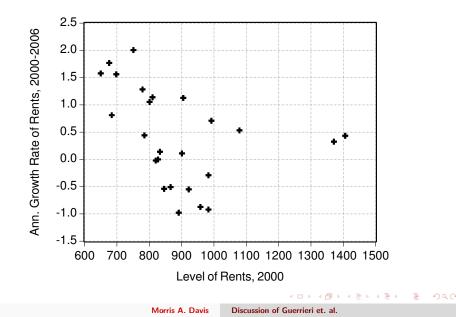
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●


The within-Chicago rent data show some interesting variation.

Some of the results the authors document in the case of prices appear to hold (qualitatively) in the case of rents.

- Rents for the closest-in suburbs increased at the fastest rate (2000-2006).
- Rental growth is negatively correlated with initial rental level.

・ロト ・ 同ト ・ ヨト ・ ヨト


Chicago Submarkets Data from REIS, Inc.

Morris A. Davis

Discussion of Guerrieri et. al.

Chicago Submarket Data from REIS, Inc.

Rent Regressions: Chicago Submarket Data

Regress Annualized Growth Rate of Rents, 2000-2006 on Level of Rents (2000).

	All Data	Rent < \$1200
Avg. Growth, 2000-2006	0.41%	0.42%
Avg. Level, 2000	\$889	\$845
Coefficient	-0.0018	- 0.0051
Robust SE	0.00094	0.0016
t-stat	-1.88	- 3.29
N	25	23
R-squared	0.14	0.39

Regression of total pct. change in rent on log level of rent: estimate is -0.27 (0.07). The authors estimate -0.33 (0.05).

So, something very interesting is in the data.

But is this the model we want to explain the data?

Study closely two features of the model:

- Quasi-linear preferences.
- Fixed housing density.

・ロト ・回ト ・ヨト ・ヨト

Model Discussion

Suppose agents in location i have preferences of

 $c_i + \phi H_i h_i^{\alpha}$

Agents take H_i as given. The rental price must satisfy:

$$\alpha \phi H_i h_i^{\alpha - 1} = R_i$$

Implying $h_i = \left(\frac{R_i}{\alpha \phi H_i}\right)^{\frac{1}{\alpha - 1}}$

Quasi-linear preferences: Housing demand is independent of income.

The authors vary ϕ by type so demand is a function of income.

소리는 소문은 소문을 가지면 다.

Model Discussion

From before

$$R_i h_i = \alpha \phi H_i h_i^{\alpha}$$

$$c_i = y_i - \alpha \phi H_i h_i^{\alpha}$$

Utility in any location *i* is therefore

$$U_i = y_i + \left(\frac{1-\alpha}{\alpha}\right) R_i h_i$$

- y_i , U_i are identical for all *i* in a given MSA.
- Within-MSA rental *expenditures* are constant for each type.
- Within-MSA variation only due to variation in type.

イロト 不得す 不良す 不良す

But, as the authors note (p. 3)


Any model of housing price dynamics designed to explain cross-city house price dynamics should also be able to explain within city house price dynamics.

If utility is equated across MSAs *i* and *j*, (holding type fixed)

$$y_i + \left(\frac{1-\alpha}{\alpha}\right) R_i h_i = y_j + \left(\frac{1-\alpha}{\alpha}\right) R_j h_j$$

For a given type: In MSAs where wages are high, rental expenditures are low!

MSA-Level Data, 2000 Census

Model Discussion: Supply Restrictions

- Housing supply restrictions play a key role in the paper
- If R_i > r̂C, location i will be fully developed. (meaning n_ih_i = 1 in that location).
- Since $n_i h_i$ is always = 1, a shock to housing demand can only lead to a horizontal expansion of neighborhood boundaries.
- Leads to "Gentrification" and/or "Expansion"
- The locations where type switches (poor to rich) or newly developed locations (nothing to poor) have the fastest relative growth rates in rents.

(ロ)(同)(日)(日)(日)(日)

Model Discussion: Supply Restrictions

Consider preferences: $c_i + \phi H_i h_i^{\alpha}$ with $\phi^p < \phi^r$. In a segregated equilibrium, poor consume no housing.

• Denote boundary of rich neighborhood as I. $H_I = \gamma$.

$$\hat{r}C = R_I = \alpha\phi\gamma h_I^{\alpha-1}$$

• Consider some other neighborhood $i' = I - \gamma$. $H_{i'} = 2\gamma$.

$$R_{i'} = \alpha \phi 2\gamma h_{i'}^{\alpha-1}$$

- Indifference: $R_I h_I = R_{i'} h_{i'}$. This implies $h_{i'} = (1/2)^{1/\alpha} h_I$.
- *r̂* or *C* fall: *h_I* and *h_{i'}* increase.
 With fixed housing density, city must expand.