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Abstract

Since long investors typically pay higher prices for liquid securities, common intu-
ition suggests that they are solely responsible for any liquidity premium. We argue that
short-sellers may also pay a liquidity premium if their borrowing costs are higher than
what they expect to recoup from future price declines. Market clearing implies that not
every long investor can lend out her entire position to collect these higher borrowing
rates. Therefore, both long investors and short-sellers can simultaneously contribute
to the liquidity premium. We characterize this decomposition of the premium in terms
of cash prices, borrowing fees, and the fraction of the outstanding security sold short.
We use this decomposition to show that, from November 1995 through July 2009,
short-sellers accounted for an average of 50% of the liquidity premium for on-the-run
Treasuries.
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1 Introduction

Liquid securities that are in positive net supply typically trade at higher prices than their less
liquid counterparts. Since there must be more long investors than short-sellers, traditional
models of liquidity argue that these premiums are borne entirely by long investors who
value securities they can easily sell in the future (see Amihud and Mendelson (1986)). Our
paper makes a simple point: both long investors and short-sellers can simultaneously pay a
premium for positions in a liquid security.

The Treasury market is an ideal setting for our empirical analysis as it provides us with
very similar securities that differ primarily in how liquid they are. The most recently issued,
on-the-run securities are extremely liquid. For instance, Barclay et al. (2006) report that
daily trading volume in the 2-, 5-, and 10-year on-the-run Treasuries rivals that of all U.S.
stocks combined. However, when new securities are issued and the existing bonds move
off-the-run, this trading volume drops by 90%. Moreover, as evidenced by the events of the
recent crisis, liquidity in the financing markets for these securities plays a critical role in the
proper functioning of financial markets as a whole.1

It is well-documented that recently issued (on-the-run) Treasuries typically trade at
higher prices than less liquid, seasoned (off-the-run) issues with similar coupons and ma-
turities (see Amihud and Mendelson (1991) and Warga (1992)). Consistent with this earlier
work, we estimate that the liquidity premium for on-the-run 10-year Treasuries relative to
their off-the-run counterparts was $195 per $100, 000 ($171M per year) over our sample pe-
riod from November 1995 through July 2009. However, to our knowledge, we are the first
paper to document that, on average, short-sellers paid about 50% of this premium. Our re-
sults provide empirical evidence that liquid securities command a premium not just because
they can be easily sold by long investors, but also because they can be easily borrowed and
repurchased by short-sellers.

To illustrate our main point, suppose the Treasury issues one hundred, 10-year notes
for $100, 000 each and otherwise equivalent, but less liquid, notes each cost $99, 805. Fur-
thermore, suppose that these prices are expected to converge next period, so the liquidity
premium is $100, 000− $99, 805 = $195 per note. Controlling for interest rate risk, the ex-
pected cost of short-selling the liquid security for the period is the cost of borrowing it, less
the $195 cash premium that a seller expects to recoup when the prices converge. Therefore,
as Duffie (1996) and others have argued, a short-seller should be willing to pay at least $195
to borrow the liquid Treasury. A short-seller may be willing to pay more if she values a
position in the liquid security. For example, if she pays $293 to borrow the liquid Treasury
then she expects her cost of short-selling to be $293− $195 = $98.

In aggregate there must be more long positions than short positions, so not every security
held long can be loaned to a short-seller. Therefore the net cost to long investors depends
not only on the price premium and the lending fee, but also on the fraction of their position
they expect to lend out. In our example, suppose there are one hundred total short positions

1See Fleming et al. (2010) for analysis of these events and the Federal Reserve’s efforts to increase liquidity
in the financing, or repo, markets using the Term Securities Lending Facility.
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in the liquid Treasury, so that a total of two hundred notes must be held in long positions.
Although each long may lend a different amount, half of the aggregate long positions must
be loaned to short-sellers. For each outstanding liquid note, long investors as a whole pay
the $195 price premium twice, but recoup $293 by lending it once to short-sellers. Thus,
their net cost is 2×$195−$293 = $97. In equilibrium, the $195 liquidity premium is shared
almost equally, with short-sellers paying $98 and longs paying $97.

Note that the mere existence of a higher price or higher borrowing cost for a liquid
security does not reveal whether longs or shorts are ultimately responsible for the liquidity
premium. For instance, it would be misleading to conclude that the short-sellers do not pay
for liquidity based on the observation that long investors pay $195 more for the liquid security
in the cash market. In the previous example, if long investors collect $390 for each security
that they lend, then the liquidity premium is ultimately borne by short-sellers. Conversely,
a positive borrowing fee in the financing market does not imply that short-sellers absorb any
of the liquidity premium. If the borrowing fee is $195 then short-selling is costless and longs
are responsible for the entire premium. The cash and financing premiums must be analyzed
together with the volume of short-selling. We use this approach to provide the first empirical
estimates of the portion of the liquidity premium for on-the-run Treasuries that is paid for
by longs and shorts.

Duffie (1996) was the first paper to demonstrate a relationship between the price premium
for on-the-run Treasuries in the cash market and the premium to borrow them in the financ-
ing, or repurchase (repo), market. As the previous example illustrates, if long investors pay
a higher price for the more liquid Treasuries, then short-sellers should also pay a higher bor-
rowing fee since they expect to recoup the price premium when they close out their position.
Conversely, if short-sellers pay a premium to borrow on-the-run Treasuries, then the cash
price should be higher since long investors can expect to benefit from lending their securi-
ties to short-sellers. Jordan and Jordan (1997), Krishnamurthy (2002), and Goldreich et al.
(2005), among others, provide empirical support for the relationship that higher prices and
higher borrowing fees go hand in hand. The subsequent empirical literature has tried to
disentangle whether the observed premiums in the cash and repo markets are driven by
demand from long investors or demand from short-sellers. Krishnamurthy (2002) finds that
the price premium in the cash market fluctuates with empirical proxies for investors’ demand
to own liquid securities. On the other hand, Graveline and McBrady (2008) find that the
cost of borrowing on-the-run Treasuries fluctuates with proxies for short-selling demand from
financial intermediaries who wish to hedge their interest rate exposure.

Our empirical analysis provides a novel approach to this question. We calculate the
historical liquidity costs of trading on-the-run Treasuries (relative to their duration-matched
off-the-run counterparts) for short-sellers who borrow and sell these bonds and for long
investors who buy and lend (finance) a portion of these bonds in the repo market. With this
integrated analysis of the cash and repo markets, we find that the average liquidity costs to
long investors and short-sellers are roughly equal. That is, on average, the longs and shorts
each account for approximately half of the observed on-the-run liquidity premium.

We also document substantial variation in the expected net cost of shorting on-the-
run Treasuries. Using predictive regressions, we show that the expected cost of shorting is
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positively related to primary dealer transactions in Treasuries with similar maturities, which
suggests that investors are willing to pay more for short positions when they anticipate having
to trade more frequently. We also find a positive relation between the cost of shorting and
the CP - TBill spread, which suggests that the expected cost of shorting is higher during
financial crises.

Our empirical analysis is most closely related to Krishnamurthy (2002). Although he does
not focus on the cost of short-selling, his empirical analysis implies that from June 1995 to
November 1999, short-sellers of the on-the-run 30-year Treasury bond did not pay a liquidity
premium relative to the next most recently issued, or first off-the-run, 30-year Treasury bond.
We find that short-sellers account for roughly half of the observed liquidity premium for on-
the-run 10-year Treasury notes (relative to the second off-the-run). Our results differ for a
number of reasons. Since the Treasury did not issue 30-year bonds between August 2001 and
February 2006, we instead focus attention on the 10-year note and use a data series from
November 1995 to July 2009 that is three times as long. We also calculate the liquidity cost
relative to the second most recently issued, or second off-the-run, Treasury because the first
off-the-run is still frequently used for short-selling and is often still expensive to borrow in
the financing, or repo, market. Finally, as Duffie (1996) and Krishnamurthy (2002) argue
and as our earlier example illustrates, if long investors are responsible for the entire liquidity
premium then the cash and repo market premiums should be equal on average and should
tend to rise and fall together. We statistically reject this hypothesis in our longer sample.

Barclay et al. (2006) show that, on a typical day, 150% of the outstanding on-the-run
10-year Treasuries are borrowed and this amount declines significantly once there are two
newer issues with the same initial maturity. Previous papers acknowledge that on-the-run
Treasuries are appealing securities for short-sellers because they can be easily borrowed and
sold when initiating a short position and, perhaps more importantly, they can be easily
purchased when closing one out. However, while short-sellers may prefer liquid securities,
earlier theoretical models (e.g., Duffie (1996) and Krishnamurthy (2002)) generally imply
that they do not pay a premium for positions in these securities. Our empirical results are
consistent with recent search-based models that focus on the over-the-counter nature of the
financing market and allow for liquidity premiums to be shared by both longs and shorts
(e.g., Duffie et al. (2002) and Vayanos and Weill (2008)).

We develop a simple theoretical framework to formally describe how longs and shorts
can simultaneously pay for the liquidity premium and to highlight the key assumptions of
earlier models that lead to their specific predictions. In order to describe the equilibrium,
a model must identify the premiums in the cash and repo markets, as well as the fraction
of long positions that are loaned to short-sellers. As Duffie (1996) and Krishnamurthy
(2002) have emphasized, the market clearing conditions in the cash and financing markets
are not sufficient to pin down these three variables in equilibrium. We then characterize the
additional conditions that can be used to pin down an equilibrium, and argue that generically,
these lead to equilibria in which both longs and shorts pay for the liquidity premium. We also
highlight the specific assumptions in earlier papers that are used to complete the equilibrium.
For instance, Duffie (1996) and Krishnamurthy (2002) assume that while some long investors
face lending constraints, others are unconstrained and can always lend their entire long
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position to short-sellers. This assumption implies that in equilibrium, short-sellers do not
pay a liquidity premium, since otherwise the unconstrained long investors would profit from
the opposite side of the trade. In Vayanos and Weill (2008), longs and shorts search for each
other and bargain over the gains to trade when they meet. The search costs determine the
equilibrium fraction of long positions that are loaned to short-sellers. Moreover if short-
sellers value the liquid security and do not have all of the bargaining power, they pay a
borrowing fee that is larger than the expected cash premium, and hence pay for part of the
liquidity premium.

The remainder of this paper is organized as follows. In the next section, we describe
the empirical framework, market mechanics, and data. In Section 3, we present the main
empirical results of the paper. Section 3.1 presents the summary statistics for the trading
strategies which we use to estimate the liquidity costs of shorting. Section 3.2 provides our
estimates for the total liquidity premium and the fraction of the premium paid by the short
sellers. Section 3.3 presents a discussion of the time variation in the cost of shorting. In
Section 4 we present a basic theoretical model that formalizes our empirical framework and
describes how cash and repo premiums for on-the-run Treasuries can arise in equilibrium and
how the total liquidity premium is shared by longs and shorts. Finally, Section 5 concludes.

2 Market Mechanics and Data Description

2.1 Empirical Framework

In this section, we present a general framework to pin down ideas for the empirical analysis
in the rest of the paper. For each issued on-the-run Treasury, denote the fraction (possibly
greater than one) that is borrowed and sold short by δ so that the aggregate long position
is 1 + δ. Let C be the cash premium paid by long investors in the form of a higher cash
price relative to an otherwise equivalent and less liquid off-the-run Treasury. Similarly,
denote the financing premium paid by short-sellers in the form of higher borrowing costs by
R. The average liquidity premium paid by long investors in the cash market is (1 + δ)C.
However, they expect to earn a premium R on the fraction δ that they lend out, and so
the net liquidity premium paid by longs is (1 + δ)C − δR = C + δ (C − R). Similarly, the
shorts pay the financing premium R on the fraction δ that they borrow but expect to receive
the cash premium C when they sell it. Thus, the net liquidity premium paid by shorts is
δ (R − C). Note that for each unit of the on-the-run, the total liquidity premium paid by
long investors and short-sellers is C + δ (C − R) + δ (R− C) = C, which is the amount that
is initially collected by the Treasury when it issues the on-the-run security. The theoretical
models in Duffie (1996) and Krishnamurthy (2002) require that R = C so that the entire
liquidity premium is paid for by long investors and none of it is recouped from short-sellers.
In Section 4 we present a basic theoretical model that formalizes this empirical framework
and illustrates how C, R, and δ can be determined in equilibrium.

Our empirical analysis provides estimates of R and C and we find that there is a liquidity
premium for short-selling on-the-run Treasuries (i.e., R−C > 0). We then use estimates for
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Figure 1: An Overnight Repurchase Agreement
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the fraction δ that is sold short to estimate what fraction of the total liquidity premium is
paid for by short-sellers (i.e., what the value of δR−C

C
is). Finally, we we plot and examine

the time-series variation in the cost of short-selling.

2.2 Market Mechanics and Trading Strategies

Before proceeding, we provide a brief review of the financing, or repurchase, market for
Treasuries. A more extensive discussion can be found in Duffie (1996) and Fisher (2002). A
repurchase agreement, or repo, is a contract for borrowing and lending fixed income securities.
At inception, the owner sells the security and simultaneously agrees to repurchase it at a
later date for an agreed upon price. The owner of the security essentially borrows money
at its repo interest rate and pledges the security as collateral. The counter-party who lends
money and receives the security as collateral is said to have entered into a reverse repo.
The repo rate for the transaction is the difference between the sale price and the repurchase
price expressed as an interest rate. Figure 1 illustrates the details of a repo and reverse repo
agreements.

Repo agreements are typically considered safe investments because the investor receives
a marketable security as collateral. For this reason, repo agreements are often the cheapest
source of financing for long positions. Most Treasuries serve equally well as collateral in
reverse repos and therefore they have the same repo rate which is referred to as the general
collateral (or GC) rate. Reverse repos are also used by short-sellers who need to borrow
securities that they have sold short. When there is a lot of demand to borrow a specific
Treasury for short-selling, the repo rate for that Treasury may fall below the general collateral
rate in order to equilibrate supply and demand. A security whose repo rate is below the
general collateral rate is said to be “on special.” It is more costly to borrow a Treasury that
is “on special” because you receive a lower interest rate on the money that you lend against
it. Conversely, the owner of a Treasury that is “on special” can benefit by using the security
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as collateral to borrow money at below-market interest rates.

We cannot directly observe the cash premium C that is paid by long investors since
equivalent Treasury securities with the same maturity and coupon payments that differ only
in liquidity do not trade simultaneously. Instead, as an empirical estimate of this cash
premium we compare the ex-post cash return for an on-the-run Treasury relative to the
return for the second most recently issued, or second off-the-run, Treasury with same initial
time to maturity. We adjust our position in the second off-the-run to account for the fact
that these two securities have different duration, or price sensitivity to changes in interest
rates. That is, we compare the return from time t − ∆t to t of investing $1 in the on-the-
run with the return from investing $

(
DURon

t−∆t/DURoff2
t−∆t

)
in the second off-the-run, where

DURon
t−∆t and DURoff2

t−∆t are the duration of the on-the-run and second off-the-run securities
respectively. The ex-post difference in these returns, expressed as a rate of return, is given
by

Con,t =

[

DURon
t−∆t

DURoff2
t−∆t

(
P off2
t

P off2
t−∆t

− 1

)

−

(
P on
t

P on
t−∆t

− 1

)]

/∆t, (1)

where P on
t /P on

t−∆t and P off2
t /P off2

t−∆t are the returns (including coupons and accrued interest) to
the on-the-run and second off-the-run respectively. Con,t can be viewed as the rate of return,
ignoring financing costs, from selling $1 of the on-the-run and buying $

(
DURon

t−∆t/DURoff2
t−∆t

)

of the off-the-run. The on- and second off-the-run Treasuries have similar future payoffs, but
the on-the-run is typically priced higher. Therefore, we expect that Con,t will be positive on
average.

Similarly, we estimate the financing premium R as the difference in financing costs for
this strategy, accounting for the difference in the duration of the two bonds,

Ron,t =
DURon

t−∆t

DURoff2
t−∆t

rgct − ront , (2)

where ront is the repo rate for the on-the-run and we have assumed that the second off-the-
run is loaned at the general collateral repo rate rgct . On-the-run Treasuries are frequently on
special in the repo market and the durations are usually close so we expect that Ron,t will be
positive on average. When we combine the cash and financing premium, the total liquidity
premium for shorting the on-the-run is given by

Ron,t − Con,t =

(
P on
t

P on
t−∆t

− 1

)

/∆t− ront −
DURon

t−∆t

DURoff2
t−∆t

[(
P off2
t

P off2
t−∆t

− 1

)

/∆t− rgct

]

, (3)

Equation (3) can be viewed as the cost (or negative profit) of borrowing and short-selling $1

of the on-the-run and hedging the interest rate exposure with a long position in $
(

DURon

t−∆t

DURoff2

t−∆t

)

of the second off-the-run financed at the general collateral repo rate.

Note that the repo rates in equation (3), apply from time t to t + ∆t, while the cash
returns are calculated from time t−∆t to t. This difference is due to the fact that the cash
market for Treasuries is typically next-day settlement, while the repo market is same-day
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Figure 2: Trading Time-line
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settlement. Figure 2 shows a time-line that corresponds to the above trading strategy and
accounts for the settlement differences between the cash and repo markets.

We construct the weekly counterparts to equations (1) and (2) by initiating the above
trading strategy each Wednesday and financing the daily profits or losses at the Federal
Funds rate. Our empirical estimates of the cash and financing premiums, Con and Ron, are
computed as the average of these weekly counterparts.

Krishnamurthy (2002) estimates the profits on a similar trade which short-sells the on-
the-run 30-year Treasury bond and hedges the interest rate exposure with the first off-the-run
(the next most recently issued) 30-year bond. We use the 5- and 10-year Treasury notes for
our empirical analysis because the Treasury stopped issuing 30-year bonds between August
2001 and February 2006, which is a large part of our sample. Also, we measure the cash and
financing premiums relative to the second off-the-run rather than the more recently issued
first off-the-run. Barclay et al. (2006) show that Treasuries still remain very liquid while they
are the first off-the-run. Therefore, using the first off-the-run could lead us to underestimate
the liquidity premium for the on-the-run Treasuries. Perhaps more importantly, the first
off-the-run frequently trades on special in the repo market and, although all short-sellers
must borrow a security at its repo rate, not all long positions can be financed at a special
repo rate.2 Since we do not have data on the daily volume of short-sales, we cannot compute
the fraction of aggregate long positions that can be financed (lent) at a repo special and the
fraction that must be financed at general collateral. The second off-the-runs do not often
trade on special in the repo markets so it is more accurate to assume that the entire position

2Treasury securities are in positive net supply and the cash and financing markets have finite clearing
capacity. In practical terms, this means that there are always more long positions than short positions. If
we assume that all Treasuries serve equally well as investment collateral then only short-sellers will pay a
financing premium and therefore not every Treasury can be financed at a special repo rate. Of course, some
longs may be able to finance their entire position at a special repo rate. However, this will not be the case
for the average long investor. In the context of our empirical framework, there are a finite number of short
positions so that δ < ∞. Therefore, a maximum fraction δ/ (1 + δ) < 1 of the average long position can be
financed at a special repo rate and the remainder can only be financed at the general collateral rate.
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is financed at the general collateral repo rate.

Our empirical analysis uses the trading strategy above which we denote by “On Less
Off2.” As robustness checks, we also calculate the cash and financing premiums for the
following alternate strategies:

• On Less Off1: The cost of borrowing and short-selling the on-the-run and hedging the
interest rate exposure with the first off-the-run which is financed at its repo rate. As
mentioned above, this strategy may not be implementable in practice because the first
off-the-run often has a special repo rate but not every long position can be financed at
this rate.

• Off1 Less Off2: The cost of borrowing and short-selling the first off-the-run and hedging
the interest rate exposure with the second off-the-run which is financed at the general
collateral repo rate. We define Coff1,t, Roff1,t and Roff1,t−Coff1,t analogously to equations
(1), (2) and (3) respectively, by replacing the on-the-run Treasury with the first off-
the-run.

2.3 Data Description

Our sample spans over 13 years from November 1995 through July 2009. We use closing
prices on 5- and 10-year Treasury notes from Bloomberg which takes the midpoint of the bid
and ask quotes from a sample of dealers. Bloomberg provides clean prices which we augment
with accrued interest and coupon payments in order to calculate returns. We use overnight
repo rates for on-the-run and first off-the-run Treasuries from ICAP GovPX. GovPX also
provides overnight general collateral rates for repurchase transactions in which any Treasury
security can be provided as collateral. GovPX provides repo rates for a range of times each
morning. We use the earliest quote for each security each day. The empirical results are
quantitatively similar if we use the trade-weighted repo rates.

3 Discussion of the Results

3.1 Summary statistics of trading strategies

Tables 1 and 2 in Appendix A present summary statistics for the 5- and 10-year maturity
trading strategies respectively. The mean yield-to-maturity of the on-the-run 10-year is
about 1 basis point lower than that of the second off-the-run. On average, the repo rate
for the on-the-run 10-year is about 110 basis points lower than the general collateral repo
rate. The weekly cost of shorting the on-the-run, as measured by the return on the “On
Less Off2” strategy, is over 30 basis points (annualized return). For comparison, the cost of
short-selling the on-the-run relative to the first off-the-run is 7 basis points. Recall that the
“On Less Off1” strategy is not always implementable since it involves lending one’s entire
long position in the first off-the-run at a special repo rate.
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Table 2 suggests that these results also extend to the 5-year maturity. The average yield-
to-maturity of the on-the-run 5-year is about 2 bps higher than the second off-the-run and
the average repo rate is about 75 basis points lower than the general collateral repo rate,
but note that these are not adjusted for differing duration. The cost of short-selling the
on-the-run and hedging with the second off-the-run (the “On Less Off2” strategy) is 27 basis
points (annualized return), which is lower than the same strategy for the 10-year.

3.2 The liquidity cost of short selling

Using the empirical framework that we developed in Section 2.1, Table 3 provides estimates of
the total annual liquidity premium for on-the-run 5- and 10-year Treasuries and the fraction
of this amount that is paid by short-sellers. In order to estimate the fraction of these liquidity
premiums that is paid for by short-sellers, we need to estimate the fraction δ of each security
that is borrowed and sold short. A working paper version of Barclay et al. (2006) provides a
plot of daily repo volume for on-the-run and first off-the-run Treasuries. From that plot, we
estimate that roughly 150% of the outstanding on-the-run 10-year notes are lent into repo
agreements, as are around 100% of the outstanding on-the-run 5-year notes. When the notes
become the first off-the-run, the fraction lent into repo agreements for both maturities are
roughly 75%. In Table 3, we calculate the fraction of the total liquidity that is paid for by
short sellers as

short fraction = δon ×
Ron − Con

Con + Coff1

+ δoff1 ×
Roff1 − Coff1

Con + Coff1

,

where δon and δoff1 are the fraction of each on-the-run and first off-the-run that are loaned,
Con and Coff1 are the cash market returns as computed in equation (1) for the on-the-run
and first off-the-run (both relative to the second off-the-run), and Ron and Roff1 are the
corresponding repo market costs as calculated in equation (2).

We estimate that the cash premium for on-the-run 10-year Treasuries relative to the
second off-the-run is 94 bps, and the cash premium for the first off-the-run relative to the
second off-the-run is 29 bps. The average issue size for 10-year Treasuries over our sample
is $13.9 billion, and each issue is initially the on-the-run and then the first off-the-run. This
implies that on average, there is $13.9 billion of Treasuries that earn a liquidity premium
(relative to the second off-the-run) at any point in time. Therefore, we estimate that the
average annual total liquidity premium for 10-year Treasuries is

$13.9B×
{[
(1 + 0.0094/52)52 − 1

]
+
[
(1 + 0.0029/52)52 − 1

]}
≈ $171M. (4)

Over our sample period there are an average of 6.3 auctions per year in the 10-year note,
so our estimate translates to a liquidity premium of $195 per $100,000 of the 10-year note,
where

{[
(1 + 0.0094/52)52 − 1

]
+
[
(1 + 0.0029/52)52 − 1

]}
× $100, 000/6.3 ≈ $195. (5)

Similarly, the cash premium for the on-the-run 5-year is 76 bps and is 38 bps for the first
off-the-run. The average issue size for 5-year Treasuries over our sample is $17.4 billion so
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we estimate that the average annual total liquidity premium 5-year Treasuries is

$17.4B ×
{[
(1 + 0.0076/52)52 − 1

]
+
[
(1 + 0.0038/52)52 − 1

]}
≈ $200M. (6)

There are an average of 9.16 auctions per year, so the estimated liquidity premium is $125
per $100,000 5-year note.

We find that for the 10-year maturity, short-sellers pay an average of around 55% of
liquidity premium, while for the 5-year maturity, they pay around 28%. Given the average
annual liquidity premium, these percentages amount to about $94 million per year for the
10-year and $56 million for the 5-year. Since we do not directly observe repo volume, Table
3 also contains estimates with higher and lower values for the fraction δ that are borrowed
and sold short. We find that even with conservative estimates of δ, short-sellers pay nearly
30% of the liquidity premium in the 10-year note and over 20% of the premium in the 5-year
note.

One must keep in mind that these are estimates of the average cost to being long across
all investors. However, while each short-seller must borrow the security in the repo market,
there is likely significant variation across investors in the fraction of long positions in on-the-
run securities that are loaned (financed) in the repo market. On one extreme, buy-and-hold
investors, like foreign central banks and insurance firms, often forgo the specials they can
earn by lending out the bonds and so recover almost none of the cash liquidity premium
they pay for being long in the on-the-run Treasuries. At the other extreme, highly active
institutions like hedge funds and dealers are likely to lend out most, if not all, of their long
positions on repo and hence fully recover the premium they pay for being in the on-the-run.

We do not observe individual positions in either the cash or repo market, so unfortunately
there is little more we can say about the composition of long investors who ultimately pay
for the liquidity premiums that we observe. However, the Federal Reserve Bank of New
York does collect data on the aggregate positions of the primary dealers in U.S. government
securities with maturities ranging from 3 to 6 years and from 6 to 11 years (although it does
not provide information on the positions of individual banks in individual securities). Figure
3 plots this data. One might expect primary dealers to be active in the repo market and
lend out most of their long positions. Dealers may indeed be willing to lend out their long
positions, but the Federal Reserve data indicates that, in aggregate, they are almost always
net short Treasuries (the Russian default crisis of 1998 and after the sub-prime crisis in 2009
are the only exceptions in our sample). Thus, rather than lending long positions in the repo
market, they are in aggregate borrowing and paying repo specials.

3.3 The time variation in the cost of shorting

If long investors bear the entire liquidity premium, then the cash and repo premiums should
be equal and the return to the REPO less CASH strategy should be zero on average. In
Section 3.2 we showed that the average return on this strategy is positive in our sample. As an
additional statistical test, we regress the cash component of the trade on the repo component.
If long investors pay for the entire liquidity premium, then the regression coefficient should
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be 1. Table 4 provides the results of this regression (both with and without a constant).
For both the on-the-run 5- and 10-year maturities, the regression coefficients are positive,
0.67 and 0.49 respectively, but for both maturities we can reject the null hypothesis that the
regression coefficients are 1 at the 5% level.

Having established that short-selling is costly on average, in this section we investigate
whether the time-series variation is predictable. We focus on the per unit cost because the
total aggregate volume of short sales is not observable. Our empirical analysis here is guided
by two types of demand for the liquid security by short-sellers. First, market participants
with frequent trading needs often prefer the agility afforded by liquid securities. For example,
a dealer or intermediary may purchase a bond from their customer and expect to hold it in
inventory for a short period until they can sell it. While the bond is in their inventory, the
intermediary often short-sells an on-the-run Treasury with a similar maturity to hedge their
temporary interest rate exposure. We label this type of demand as “transactional liquidity”
and expect that its effects are more maturity-specific. Second, during times of financial
crisis or higher aggregate uncertainty, agents often exhibit a “flight to liquidity” preference
because they are uncertain about when they will need to close out their positions and what
the market conditions will be at that time. We expect this “flight to liquidity” demand to
have a similar effect on liquid Treasuries across all maturities.

As a proxy for maturity-specific “transactional liquidity” we use weekly data from the
Federal Reserve Bank of New York on primary dealer transactions in U.S. Government
securities. For the 5-year on-the-run Treasuries we use transactions in government securities
with maturities ranging from 3 to 6 years and for the 10-year on-the-run Treasuries we use
maturities ranging from 6 to 11 years. To measure “flight to liquidity” demand we follow
Krishnamurthy (2002) and use the yield spread between 3 month Commercial paper and
Treasury Bills (CP - TBill spread). We also focus special attention on the three main crises
to affect fixed income markets during our sample period: the Asian crisis of 1998, the Russian
default crisis in 1999, and the recent sub-prime crisis starting in 2007.

Figure 4 plots the returns on the REPO less CASH strategies for the 5- and 10-year
maturities during our sample period, the 3-month CP - TBill spread, and the weekly primary
dealer transactions in the 5- and 10-year bonds during this period. The three main crisis
periods are indicated by red dotted lines. Since the primary dealer transaction data is only
available from the beginning of 1997, we restrict the sample to this shorter period for the
following analysis. While there is a lot of noise in the REPO less CASH return series at
the weekly frequencies, the monthly returns series reveals systematic time series variation
in the cost of shorting. Visually, the cost of shorting appears higher around periods of
crises (delineated with vertical red dashed lines in the plots), which are also associated with
higher CP - TBill spreads. However, there is substantial variation in the cost of shorting
when there are no financial crises, which suggests that the demand for these securities is not
driven solely by a ”flight to quality” effect. Also, note that there is substantial time series
variation in primary dealer transactions, and that the transactions at the two maturities are
highly correlated (with a correlation of 72% for the full sample).

While the time-series plots are suggestive, we use predictive regressions to formally test
whether the expected variation in the cost of shorting can be explained by our proxies for
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liquidity demand and report the results in Table 5. We regress the monthly return from
the REPO less CASH strategy on (lagged) primary dealer transactions and the CP - TBill
spread. We report the results from estimation for the full sample (including the sub-prime
crisis and the period following it) and using the sample pre-2007, and for both the 5- and
10-year maturities.

Consistent with our interpretations, maturity specific dealer transactions and CP - TBill
spread have incremental explanatory power and are positively related to the cost of shorting.
Moreover, only maturity specific transactions are relevant — dealer transactions in the other
maturity are not significantly related to the return on REPO less CASH and tend to decrease
the adjusted R2 when included in the regression. Finally, even though the adjusted R2’s are
lower in the full sample (which includes the recent sub-prime crisis and hence is more noisy),
CP - TBill spread and maturity specific transactions are still positively related to the REPO
less CASH return for both maturities.

As a robustness check to the predictive regressions in Table 5, we report results from
contemporaneous regressions with the same variables in Table 6. We regress the return on
the REPO less CASH strategy on contemporaneous surprises in the CP - TBill spread and
dealer transactions, where surprises are based on an AR(1) specification for each variable.
By regressing the returns on contemporaneous surprises, we hope to reduce the effect of
the noise in REPO less CASH. We find that the adjusted R2’s in the contemporaneous
regressions are higher than the predictive regressions for many specifications. Moreover,
maturity specific dealer transactions are still positively related, and often more statistically
significant, even after controlling for transactions in the other maturity. We also find that
the CP - TBill spread loses some of its statistical significance and has a negative coefficient
for some specifications. One potential explanation for this drop in significance is that the
level of CP - TBill spread is a noisy proxy for crisis episodes. In this case, changes (or
surprises) in the CP - TBill spread need not explain variation in the cost of shorting.

To further explore how the cost of short selling is related to the CP - TBill spread,
Table 7 introduces an indicator variable for whether the current period is in one of the
crises during these periods. We date the Asian crisis of 1997 as occurring from July 1997
through December 1997, the Russian default crisis as occurring from August 1998 through
January 1999, and the sub-prime crisis as occurring from August 2007 through January 2009.
Introducing the indicator variable for the crises has additional explanatory power for all the
specifications. Moreover, the coefficient on CP - TBill spread decreases in magnitude and
statistical significance, which suggests that part of the positive relation between REPO less
CASH and CP - TBill is driven by the fact that the CP - TBill spread is large during crises
when “flight to liquidity” demand for the on-the-run security is high.

4 Theory

In this section we present a basic model that describes more formally how a liquidity premium
can arise in equilibrium due to a demand for liquid securities that is driven by hedging
motives, and is shared by long investors and short-sellers. Vayanos and Weill (2008) provide
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a much more detailed and complete search-based model of the cash and financing markets
for on-the-run Treasuries. Our goal here is to provide a simple model that clearly illustrates
how the liquidity premium is shared by long investors and short-sellers.

Suppose there is a risky asset with a payoff V in the next period, where

E [V ] = mV and var [V ] = σ2
V . (7)

There are two types of investors indexed by i = {L, S} with equal population weights, and
an investor of type i has an initial wealth of W0 and mean-variance preferences over next
period’s wealth. Finally, denote the quantity of the asset outstanding by Q.

We consider three cases to illustrate how a premium may arise in the cash and borrow-
ing markets in the presence of liquidity demands. Case 0, which serves as the benchmark,
considers the economy when there is no demand for liquidity and hence no premium. Case 1
characterizes the economy in which investors face endowment shocks which lead to a liquidity
demand for the risky asset. However, in this case, we do not allow for a premium in the repo
market in order to isolate the effect of liquidity demand on the cash premium. Finally, Case
2 considers the economy in which investors have a demand for liquidity and there can be a
repo premium. This situation allows us to study how the cash and repo premiums depend on
each other and on the preference parameters of the investors. The equilibrium price in Case n
is denoted by Pn and the equilibrium quantity held by an investor of type i is denoted by xi,n.

Case 0: No Liquidity shocks (benchmark case). To begin, consider the case when
there is no liquidity, or hedging, demand for the asset. Investor i’s optimal portfolio problem
is given by

xi,0 = argmax
xi

E [Wi]−
1
2τi

var [Wi] , where Wi = xi (V − P ) +W0, (8)

where τi is a measure of investor i’s risk tolerance. The first order condition implies that the
optimal portfolio allocation is given by

xi,0 =
τi
σ2

V

(mV − P0) . (9)

The cash market clearing condition is given by

xL,0 + xS,0 = Q, (10)

which implies that the cash price of the risky asset is given by

P0 = mV −
σ2

V

τS+τL
Q. (11)

The discount in price from the expected value mV of the asset reflects the risk-premium
associated with the uncertainty in the payoff. Since there are no hedging demands, there
is no demand for shorting the asset. The equilibrium portfolio allocations depend on the
risk-tolerance of each group of investors, and are given by

xL,0 =
τL

τS+τL
Q and xS,0 =

τS
τS+τL

Q. (12)
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Case 1: Liquidity shocks without differential pricing. Now suppose that investor L
receives an endowment shock ρLV in the next period and investor S receives an endowment
shock ρSV , where ρL < 0 < ρS. Investors can use positions in the risky security to hedge
these endowment shocks. However, the repo premium R is constrained to be zero so that
the security can be sold short without a borrowing cost. This case illustrates the effect of a
demand for liquidity on the price of the asset. Investor i’s optimal portfolio problem is now
given by

xi,1 = argmax
xi

E [Wi]−
1
2τi

var [Wi] , where Wi = xi (V − P ) + ρiV +W0. (13)

The first order condition for this optimization problem implies that the optimal portfolio
allocation is given by

xi,1 =
τi
σ2

V

(mV − P1)− ρi. (14)

The cash market clearing condition is given by

xL,1 + xS,1 = Q, (15)

which implies that the cash price of the risky asset is given by

P1 = mV −
σ2

V

τS+τL
(Q+ ρL + ρS) = P0 −

σ2

V

τS+τL
(ρL + ρS)

︸ ︷︷ ︸

liquidity premium

(16)

and the equilibrium portfolio allocations are given by

xL,1 = xL,0 +
τLρS − τSρL

τL + τS
and xS,1 = xS,0 −

τLρS − τSρL
τL + τS

. (17)

Comparing equation ((16)) to equation ((11)) we can see that the cash premium relative to
the base case (i.e., P1 − P0) as a result of the liquidity demand can be positive or negative
depending on whether the aggregate liquidity shock (i.e., ρL + ρS) is negative or positive,
respectively. If the aggregate liquidity demand is positive (i.e., ρL + ρS < 0), then the cash
premium is positive since investors are more willing to hold the asset in equilibrium. On the
other hand, if the aggregate liquidity demand is negative (i.e., ρL + ρS > 0), then the cash
premium is negative. However, the equilibrium portfolio allocation in this case relative to
the base case is not ambiguous — the long investors hold more of the asset in equilibrium,
while the short investors hold less.

Case 2: Liquidity shocks with differential pricing. Now suppose that investors have
the same endowment shocks as in Case 1, but that an investor must pay a premium R to
borrow a security and create a short position, and a long investor can lend a fraction δ of
his position. Investor i’s optimal portfolio problem is now given by

xi,2 = argmax
xi

E [Wi]−
1
2τi

var [Wi] , where Wi = xi (V − P + δiR) + ρiV +W0. (18)

We consider the region of parameter space where investor S short-sells the security (i.e.
δS = 1 and δL = δ). The first order conditions for the optimization problem imply that

xL,2 =
τL
σ2

V

(mV − P2 + δR)− ρL, and xS,2 =
τS
σ2

V

(mV − P2 +R)− ρS . (19a)
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The cash market clearing condition is given by

xL,2 + xS,2 = Q, (20)

and the financing market clearing condition is given by

δxL,2 + xS,2 = 0. (21)

If the repo premium is not constrained to be zero then there is no longer a unique
equilibrium. Instead, we can only characterize the equilibrium relationships between prices
(P2 and R) and any pair of long and short positions, xL and xS, that clear the cash and repo
markets by

P2 = P1 +

[
xL,2

Q

σ2
V

τL
(xL,1 − xL,2)−

xS,2

Q

σ2
V

τS
(xS,2 − xS,1)

]

(22a)

R =
xL,2

Q

[
σ2
V

τL
(xL,1 − xL,2) +

σ2
V

τS
(xS,2 − xS,1)

]

. (22b)

Therefore the liquidity premium in the cash price, C = P2 − P0, is given by

C = −
σ2
V

τL + τS
(ρL + ρS)

︸ ︷︷ ︸

liquidity component

+

[
xL,2

Q

σ2
V

τL
(xL,1 − xL,2)−

xS,2

Q

σ2
V

τS
(xS,2 − xS,1)

]

︸ ︷︷ ︸

differential pricing component

, (23)

which is the sum of the standard liquidity component from Case 1 (i.e., P1 − P0) and an
additional premium that arises from the repo market and differential pricing between longs
and shorts.

The intuition for equation (22) is as follows. At the Case 1 equilibrium quantities, xL,1

and xS,1, the liquidity premium paid by the long must be exactly the opposite of the liquidity
premium paid by the short. Now consider a perturbation, xL = xL,1−∆x and xS = xS,1+∆x,
with smaller long and short positions. For these positions to be an equilibrium allocation,
prices must adjust so that markets clear. The inverted demand functions at these quantities,
based on the first order conditions in (19), determine how prices adjust and are given by:

P2 − δR = mV −
σ2
V

τL
(xL + ρL) = mV −

σ2
V

τL
(xL,1 + ρL)

︸ ︷︷ ︸

P1

+
σ2
V

τL
∆x, (24a)

R− P2 = −mV +
σ2
V

τS
(xS + ρS) = −

(

mV −
σ2
V

τS
(xS,1 + ρS)

)

︸ ︷︷ ︸

P1

+
σ2
V

τS
∆x. (24b)

That is, the long is willing to pay
σ2

V

τL
∆x more to lower their long position by ∆x and the

short is willing to receive
σ2

V

τS
∆x less to lower their short position by ∆x. If the repo premium,

R, is constrained to be zero, there is no price, P2, that clears the market (i.e., satisfies 24).
However, once we allow for a non-zero repo premium, this allocation is a viable equilibrium.
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Both the long and short agree on a higher cash price if the short pays a positive repo premium
to borrow each asset, but the long only collects the repo premium on a fraction δ = −xS/xL

of the long position that is lent.

In this case, the amounts the long and short investors are willing to pay to change their
positions by ∆x are given by:

(P2 − P1)−
xS

xL
R =

σ2

V

τL
∆x and R− (P2 − P1) =

σ2

V

τS
∆x, (25)

respectively. With market clearing, the cash premium is then given by the weighted average
of premiums paid by the longs and the shorts:

P2−P1 =
xL

Q

(

(P2 − P1)−
xS

xL
R
)

︸ ︷︷ ︸

premium from longs

−xS

Q
(R− (P2 − P1))
︸ ︷︷ ︸

premium from shorts

= xL

Q

σ2

V

τL
(xL,1− xL)−

xS

Q

σ2

V

τS
(xS − xS,1).

The equilibrium can also be motivated using the first order conditions in equation (19).
When the liquidity premium is higher for both the long and short, they each choose to hedge
a smaller portion of their endowment shock.

If we consider the parameter space in which the S investors are short in equilibrium, i.e.
xS,1 < 0, then the differential pricing component is positive if xL < xL,1 and xS > xS,1. In
fact, the maximum possible cash price (and hence the maximum liquidity premium) is

P2 = mV −
σ2

V

τS+τL

[

Q+ ρL + ρS − (τLρS−τSρL)
2

4QτLτS

]

> P1, (26)

and it is attained at

x∗

L = τL
τS+τL

Q+ 1
2
τLρS−τSρL

τL+τS
=

xL,0+xL,1

2
, and x∗

S = τS
τS+τL

Q− 1
2
τLρS−τSρL

τL+τS
=

xS,0+xS,1

2
.

The equilibrium can also be characterized in terms of the cash premium, the repo pre-
mium and the fraction δ of the asset lent out in equilibrium. The cash and market clearing
conditions imply that xL,2 = Q

1−δ
and xS,2 = − δ

1−δ
Q, which implies the following cash and

repo premiums:

C =
δ · τL + τS
τL + τS

R , (27a)

R =
σ2
V

1− δ

[(
ρS
τS

−
ρL
τL

)

−
Q

1− δ

(
δ

τS
+

1

τL

)]

(27b)

Equation (27a) highlights the fact that the cash premium, C, is less than the repo premium,
R, when long investors cannot lend out their entire position (i.e., δ < 1), and as a result,
both long and short investors simultaneously pay for the liquidity premium.

We model the cash liquidity premium as the difference in the price of the risky asset
when it can and cannot be used to hedge endowment shocks, but one could instead model
the liquidity premium as the difference in prices of two securities with identical payoffs that
differ in their transactions costs or search frictions. The relevant features of the model are:
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(i) some investors have a preference for a long position in the liquid security, while others
prefer a short position, (ii) the liquid security is in positive net supply, and so equation (20)
must hold and the aggregate long position must be larger than the aggregate short position
by the quantity of the security outstanding, and (iii) a short position in the security must
be borrowed (i.e., the financing market clearing condition in equation (21) holds).

The equilibrium described by (22) or (27) is pinned down only for a specific choice
of δ. Put differently, for an arbitrary δ, the above equations characterize the equilibrium
relationship between C and R. As Duffie (1996) and Krishnamurthy (2002) point out, this
result is true in general — the market clearing conditions in the cash and repo markets
are not sufficient to pin down three values in equilibrium, but instead only characterize the
equilibrium relationship between the cash and repo premiums. The equilibrium fraction δ of
the long positions lent pins down the cash and repo premiums, and may either be specified
exogenously (e.g., as a fixed restriction on how much long investors can lend) or determined
endogenously as a function of investor preferences and trading technology.

Risk-Neutral Shorts or Longs. One possible approach to determine the cash and
repo premiums in equilibrium would be through assumptions on investor preferences. For
instance, if we assume that the short-sellers investors are risk-neutral (i.e., τS = ∞), then
the equilibrium cash premium is given by

C = R. (28)

Hence, the net cost to the short-seller is zero, even though there is a non-zero repo premium.
Therefore the cost of the liquidity premium is borne completely by the long investor. Simi-
larly, if we assume that the long investors are risk-neutral (i.e. τL = ∞), then the equilibrium
cash premium is given by

C = δR, (29)

which implies that the net cost to the long investor is zero and the liquidity premium is
completely borne by the short investor.

Duffie (1996) and Krishnamurthy (2002) make a hybrid assumption. They assume that
while some long investors face lending constraints, others are risk-neutral and can always
lend their entire long position to short-sellers. This implies that short-sellers do not pay
a liquidity premium in equilibrium, since otherwise the unconstrained long investors would
profit from the opposite side of the trade. In our setup, this is equivalent to the assumption
that the short-sellers are risk-neutral or do not value liquidity and, as a result, the longs pay
for the entire liquidity premium.

Search Frictions. In search-based models of over-the-counter markets (e.g., Vayanos and Weill
(2008)), search frictions, investor preferences, and bargaining power jointly determine the
equilibrium prices and quantities. The presence of search frictions imposes a bound on how
much of his holdings each long investor can lend and thus effectively caps the equilibrium
quantity i.e. δ ≤ δ̄. If such a condition is binding, the first order conditions in (19) need
not hold and the net cost of being long (or short) may be lower than those given in (24). In
particular, the following inequalities may be strict:

P2 − δ̄R ≤ P1 +
σ2

V

τL
(xL,1 − xL,2) and R− P2 ≤ −P1 +

σ2

V

τS
(xS,2 − xS,1) (30)
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The premiums can be lower (i.e. they no longer have to satisfy the equality) because
longs and shorts may demand larger positions at lower premiums but the search technology
restricts them from doing so. Investor preferences and bargaining power then determine the
size of the liquidity premium and what fraction of this premium each side pays in equilibrium.
Long investors and short-sellers both share the liquidity premium if they are risk-averse and
do not have full bargaining power. For example, longs would happily pay any fraction βL ≤ 1
of the maximum amount they’re willing to pay, and likewise, shorts would happily pay any
fraction βS ≤ 1 of their maximum amount. Intuitively, one can think of 1− βL as the long’s
bargaining power and 1− βS as the short’s bargaining power. The equilibrium cash price is
given by

P2 = P1 + βL
xL,2

Q

σ2

V

τL
(xL,1 − xL,2) + βS

xS,2

Q

σ2

V

τS
(xS,2 − xS,1) (31)

Endogenizing the fraction of securities lent. The fraction δ of their positions that
long investors lend out can be endogenized in a number of ways. One possible approach
would be to restrict how easily investors can trade the security. For example, suppose that
along a investor incurs a per unit cost c (δ) for the fraction of shares he lends out. Then, the
investor’s wealth is given by

WL = xL (V − P + δR) + ρLV +W0 − c (δ) δxL, (32)

and the first order conditions for the optimal portfolio problem imply that

xL = τL
σ2

V

(mV − P + δ(R− c(δ))− ρL and δ =
R− c(δ)

c′(δ)
(33)

The cash and repo market clearing conditions imply that the equilibrium is given by the
following:

C = δτL(R−c(δ))+τSR

τL+τS
, and R =

σ2

V

1−δ

[(
ρS
τS

− ρL
τL

)

− Q

1−δ

(
δ
τS

+ 1
τL

)]

− δ
1−δ

c (δ) . (34)

This implies that the equilibrium fraction δ lent out depends not only on the per unit cost
function c (δ), but also on the preference parameters and endowment shocks in the model.

Another approach to endogenize the fraction of shares lent out is to endow the long
investor with market power in the lending market. The long investor accounts for the price
impact of how much he lends out and the repo rate he can charge. In our setup, this would
imply that a long investor’s wealth is given by

WL = xL (V − P + δLR (δL)) + ρLV +W0, (35)

and the first order conditions for the optimal portfolio problem imply that

xL = τL
σ2

V

(mV − P2 + δLR(δL)) and δL = − R(δL)
R′(δL)

(36)

As before, the equilibrium conditions are given by (27), which implies that the fraction lent
is

δ = ρSτS−ρLτL−τSQ

ρSτS−ρLτL+Q(τS+2τL)
. (37)

The equilibrium in this case captures the notion that, in aggregate, the larger the fraction of
their positions long investors lend out, the lower the borrowing cost to short-sellers. Given
the preference parameters and endowment shocks, the equilibrium fraction δ lent maximizes
the total borrowing fees long investors can collect from short-sellers.
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5 Conclusions

In this paper we provide the first empirical evidence that short-sellers pay a portion of the
liquidity premium for on-the-run Treasuries. Over our sample period from November 1995
through July 2009, we estimate that the liquidity premium for 10-year on-the-run notes was
$195 per $100,000 issued and short-sellers accounted for about 50% of this amount. We
show that short-sellers also accounted for a significant portion of the liquidity premium for
on-the-run 5-year notes. Moreover, our results are robust to different methods for calculating
the liquidity premium.

Our empirical results provide empirical support for more recent theoretical work such as
Vayanos and Weill (2008) which argues that short-sellers also pay a portion of the liquidity
premium because they value the ease with which on-the-run Treasuries can be purchased or
re-borrowed in the future when closing out or rolling over a short position. Furthermore,
we document that the cost of short-selling Treasuries exhibits substantial time-series varia-
tion, and is affected by both asset-specific “transactional liquidity” demand and aggregate
“episodic liquidity” demand during times of financial crises.
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Duffie, D., Gârleanu, N., and Pedersen, L. H., 2002, Securities lending, shorting, and pricing,
Journal of Financial Economics, 66(2-3), pp. 307–339.

Fisher, M., 2002, Special repo rates: An introduction, Federal Reserve Bank of Atlanta

Economic Review, 87(2), pp. 27–43.

Fleming, M., Hrung, W., and Keane, F., 2010, Repo Market Effects of the Term Securities
Lending Facility, The American Economic Review, 100(2), pp. 591–596.

Goldreich, D., Hankea, B., and Nath, P., 2005, The price of future liquidity: Time-varying
liquidity in the u.s. treasury market, Review of Finance, 9(1), pp. 1–32.

Graveline, J. J. and McBrady, M. R., 2008, Who makes on-the-run treasuries special? Work-
ing Paper.

Jordan, B. D. and Jordan, S. D., 1997, Special repo rates: An empirical analysis, Journal of
Finance, 52(5), pp. 2051–2072.

Krishnamurthy, A., 2002, The bond/old-bond spread, Journal of Financial Economics, 66(2-
3), pp. 463–506.

Vayanos, D. and Weill, P.-O., 2008, A search-based theory of the on-the-run phenomenon,
Journal of Finance, 63(3), pp. 1361–1398.

Warga, A., 1992, Bond returns, liquidity, and missing data, Journal of Financial and Quan-

titative Analysis, 27(4), pp. 605–617.

21



A Tables and Figures

Table 1: Summary Statistics for Costs of Short-Selling 10-year Treasuries
This table reports the mean, standard deviation, autocorrelation and number of observations for

the cost per dollar of shorting more liquid Treasuries for various trading strategies, expressed as

an annualized weekly returns. The three strategies considered are (i) shorting the on-the-run

Treasury and hedging with a duration adjusted long position in the second off-the-run Treasury,

(ii) shorting the on-the-run Treasury and hedging with a duration adjusted long position in

the first off-the-run Treasury, and (iii) shorting the first off-the-run Treasury and hedging

with a duration adjusted long position in the second off-the-run Treasury. The total cost of

short-selling the more liquid Treasury in these strategies is given by R − C, and the cash

and repo components of this cost are given by C and R respectively. The yield to maturity

(YTM) and repo interest rates (REPO) for the on-the-run, first off-the-run, and second off-the-

run Treasuries are also reported. The full sample is from November 1995 through July 2009,

and summary statistics for the subsamples pre August 2007 and post August 2007 are also reported.

Full Sample Pre Aug 2007 Post Aug 2007

Mean StDev AC Mean StDev Mean StDev

R− C on vs second off-the-run 0.0033 0.0504 0.043 0.0038 0.0466 0.0003 0.0681

R− C on vs first off-the-run 0.0007 0.0488 0.111 0.0002 0.0386 0.0035 0.0848

R− C first vs second off-the-run 0.0024 0.0436 0.031 0.0036 0.0366 -0.0036 0.0699

C on vs second off-the-run 0.0094 0.0496 0.030 0.0099 0.0456 0.0061 0.0682

R on vs second off-the-run 0.0127 0.0107 0.753 0.0138 0.0110 0.0064 0.0064

C first vs second off-the-run 0.0029 0.0426 0.003 0.0025 0.0353 0.0049 0.0699

R first vs second off-the-run 0.0053 0.0074 0.794 0.0061 0.0077 0.0013 0.0022

YTM on on-the-run 0.0492 0.0100 0.990 0.0514 0.0088 0.0364 0.0062

YTM on first off-the-run 0.0494 0.0102 0.990 0.0516 0.0090 0.0363 0.0063

YTM on second off-the-run 0.0493 0.0104 0.990 0.0516 0.0092 0.0361 0.0064

Repo rate on on-the-run 0.0260 0.0192 0.857 0.0284 0.0186 0.0128 0.0170

Repo rate on first off-the-run 0.0312 0.0199 0.938 0.0339 0.0194 0.0172 0.0165

Repo rate on General Collateral 0.0370 0.0195 0.985 0.0403 0.0180 0.0182 0.0171
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Table 2: Summary Statistics for Costs of Short-Selling 5-year Treasuries
This table reports the mean, standard deviation, autocorrelation and number of observations for

the cost per dollar of shorting more liquid Treasuries for various trading strategies, expressed as

an annualized weekly returns. The three strategies considered are (i) shorting the on-the-run

Treasury and hedging with a duration adjusted long position in the second off-the-run Treasury,

(ii) shorting the on-the-run Treasury and hedging with a duration adjusted long position in

the first off-the-run Treasury, and (iii) shorting the first off-the-run Treasury and hedging

with a duration adjusted long position in the second off-the-run Treasury. The total cost of

short-selling the more liquid Treasury in these strategies is given by R − C, and the cash

and repo components of this cost are given by C and R respectively. The yield to maturity

(YTM) and repo interest rates (REPO) for the on-the-run, first off-the-run, and second off-the-

run Treasuries are also reported. The full sample is from November 1995 through July 2009,

and summary statistics for the subsamples pre August 2007 and post August 2007 are also reported.

Full Sample Pre Aug 2007 Post Aug 2007

Mean StDev AC Mean StDev Mean StDev

R− C on vs second off-the-run 0.0027 0.0368 -0.126 0.0016 0.0357 0.0091 0.0421

R− C on vs first off-the-run 0.0015 0.0272 -0.045 0.0002 0.0264 0.0082 0.0302

R− C first vs second off-the-run 0.0007 0.0246 -0.136 0.0007 0.0234 0.0010 0.0301

C on vs second off-the-run 0.0076 0.0370 -0.093 0.0095 0.0357 -0.0026 0.0426

R on vs second off-the-run 0.0104 0.0095 0.709 0.0111 0.0097 0.0064 0.0068

C first vs second off-the-run 0.0038 0.0243 -0.140 0.0041 0.0230 0.0022 0.0302

R first vs second off-the-run 0.0045 0.0044 0.600 0.0047 0.0042 0.0032 0.0052

YTM on on-the-run 0.0450 0.0132 0.992 0.0479 0.0116 0.0283 0.0083

YTM on first off-the-run 0.0450 0.0134 0.992 0.0480 0.0118 0.0282 0.0085

YTM on second off-the-run 0.0448 0.0136 0.992 0.0477 0.0121 0.0280 0.0086

Repo rate on on-the-run 0.0295 0.0205 0.878 0.0325 0.0198 0.0126 0.0163

Repo rate on first off-the-run 0.0329 0.0202 0.963 0.0362 0.0191 0.0155 0.0163

Repo rate on General Collateral 0.0370 0.0195 0.985 0.0403 0.0180 0.0182 0.0171
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Table 3: Liquidity Costs of Short Selling
This table reports the our estimates for the liquidity costs per dollar of shorting (i.e. R − C),
fraction of the total liquidity costs paid by the short sellers (i.e. δR−C

C
) and the estimated dollar

costs per year for shorting, for various levels of δ. The sample is from November 1995 through
July 2009.

Maturity: 10 year on-the-run first off-the-run

Estimate for R− C 33 b.p. 24 b.p.

Estimate for C 94 b.p. 29 b.p.

Average Issuance $13.9B

Annual Liquidity Costs $171M

Frac of on-the-run shorted δon 0.75 1.5 1.75

Frac of off-the-run shorted δoff 0.5 0.75 1

Frac of cost to short sellers 30% 55% 66%

Annual dollar cost to short sellers $51M $94M $114M

Maturity: 5 year on-the-run first off-the-run

Estimate for R− C 27 b.p. 7 b.p.

Estimate for C 76 b.p. 38 b.p.

Avg. Annual Issuance $17.4B

Annual Liquidity Costs $199M

Frac of on-the-run shorted δon 0.75 1 1.5

Frac of off-the-run shorted δoff 0.5 0.75 1

Frac of cost to short sellers 21% 28% 42%

Annual dollar cost to short sellers $41M $56M $83M
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Table 4: Regression of CASH on REPO
This table reports the results from the regression

Ct = a+ bRt + εt (38)

where C is the return on the cash component and R is the return on the repo component
of the cost of shorting (i.e., R − C) the on-the-run Treasury and hedging with a duration
adjusted long position in the second off-the-run Treasury. The sample is from November 1995
through July 2009. The standard errors and t-statistics in the round brackets are based on OLS
standard errors and the standard errors and t-statistics in the square brackets are based on Newey
West standard errors with 5 lags. The t-statistic is calculated based on the null hypothesis of b = 1.

Maturity: 10 years (714 observations)

Intercept R t-stat (b = 1) Adj. R2

0.4949 2.65%

(0.1346) (-3.752)

[0.1454] [-3.475]

0.0074 0.1547 3.55%

(0.0031) (0.2168) (-3.899)

[0.0030] [0.2190] [-3.860]

Maturity: 5 years (707 observations)

Intercept R t-stat (b = 1) Adj. R2

0.6682 6.16%

(0.1316) (-2.5215)

[0.1152] [-2.8789]

0.0016 0.5855 6.24%

(0.0020) (0.1930) (-2.1481)

[0.0021] [0.1855] [-2.2339]
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Table 5: Predicted Liquidity Cost of Shorting Selling
This table reports the results from predictive regressions

Rt+1 − Ct+1 = a+ b (CP-TB)t + cTrt (10y) + dTrt (5y) + εt+1 (39)

where R−C is the cost of shorting the on-the-run Treasury and hedging with a duration adjusted

long position in the second off-the-run Treasury, (CP - TB)t is the lagged 3-month CP - T Bill

spread, and Trt (10y) and Trt (5y) are the weekly Primary dealer transactions in Treasury bonds

with maturities comparable to the 10 year and 5 year Treasuries, respectively. The coefficient on

each regressor is standardized by the standard deviation of the regressor. Observations are monthly

and the sample ranges from January 1997 through July 2009. The table reports the adjusted R2’s

for each regression, and OLS standard errors (in round brackets) and Newey West standard errors

with 5 lags (in square brackets) for each coefficient.

Maturity: 10 years

Pre Aug 2007 (127 obs) Full Sample (152 obs)

Intercpt CP-TB Tr (10y) Tr (5y) AdjR2 Intercpt CP-TB Tr (10y) Tr (5y) AdjR2

-0.0099 0.0042** 2.57% -0.0015 0.0017 0%

(0.0065) (0.0018) (0.0076) (0.0021)

[0.0080] [0.0021] [0.0086] [0.0023]

-0.0171** 0.0032* 0.0050** 3.64% -0.0068 0.0046 0.0016 1.87%

(0.0067) (0.0020) (0.0017) (0.0072) (0.0034) (0.0022)

[0.0080] [0.0019] [0.0020] [0.0079] [0.0038] [0.0024]

-0.0196* 0.0030 0.0038 0.0016 3.09% -0.0032 0.0053 0.0039* -0.0032 1.77%

(0.0089) (0.0020) (0.0022) (0.0028) (0.0090) (0.0038) (0.0023) (0.0034)

[0.0105] [0.0018] [0.0026] [0.0032] [0.0105] [0.0042] [0.0020] [0.0036]

Maturity: 5 years

Pre Aug 2007 (127 obs) Full Sample (151 obs)

Intercpt CP-TB Tr (10y) Tr (5y) AdjR2 Intercpt CP-TB Tr (10y) Tr (5y) AdjR2

-0.0088 0.0024 1.41% -0.0034 0.0014 0%

(0.0069) (0.0016) (0.0060) (0.0015)

[0.0076] [0.0018] [0.0060] [0.0015]

-0.0134* 0.0028* 0.0025 3.72% -0.0036 0.0006 0.0013 0%

(0.0079) (0.0016) (0.0016) (0.0060) 0.0017 (0.0015)

[0.0073] [0.0013] [0.0016] [0.0061] 0.0019 [0.0015]

-0.0132* 0.0028* -0.0003 0.0027 2.95% -0.0036 0.0006 0.00003 0.0013 0%

(0.0078) (0.0016) (0.0022) (0.0026) (0.0060) 0.0018 0.0020 (0.0024)

[0.0069] [0.0013] [0.0023] [0.0028] [0.0060] 0.0020 0.0021 [0.0025]
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Table 6: Robustness - Contemporaneous Regressions on Surprises
This table reports the results from predictive regressions

Rt+1 − Ct+1 = a+ b∆(CP-TB)t+1 + c∆Trt+1 (10y) + d∆Trt+1 (5y) + εt+1 (40)

where R−C is the cost of shorting the on-the-run Treasury and hedging with a duration adjusted

long position in the second off-the-run Treasury, ∆ (CP - TB)t is the surprise in 3-month CP - T Bill

spread, and ∆Trt (10y) and ∆Trt (5y) are the surprise in the weekly Primary dealer transactions in

Treasury bonds with maturities comparable to the 10 year and 5 year Treasuries, respectively. The

surprises are calculated relative to an AR(1) model for each regressor. Observations are monthly

and the sample ranges from January 1997 through July 2009. The coefficient on each regressor

is standardized by the standard deviation of the regressor. The table reports the adjusted R2’s

for each regression, and OLS standard errors (in round brackets) and Newey West standard errors

with 5 lags (in square brackets) for each coefficient.

Maturity: 10 years

Pre Aug 2007 (127 obs) Full Sample (152 obs)

Intercpt ∆ (CP-TB) ∆Tr (10y) ∆Tr (5y) AdjR2 Intercpt ∆ (CP-TB) ∆Tr (10y) ∆Tr (5y) AdjR2

0.0034* 0.0058** 5.46% 0.0036 0.0042** 1.71%

(0.0020) (0.0018) (0.0022) (0.0021)

[0.0022] [0.0019] [0.0024] [0.0021]

0.0037* 0.0025 0.0060** 5.90% 0.0036 0.0010 0.0042** 1.18%

(0.0020) (0.0020) (0.0018) (0.0022) (0.0024) (0.0021)

[0.0021] [0.0018] [0.0019] [0.0024] [0.0023] [0.0021]

0.0037* 0.0025 0.0052** 0.0011 5.26% 0.0036 0.0012 0.0065** -0.0032 1.19%

(0.0020) (0.0020) (0.0019) (0.0024) (0.0022) (0.0023) (0.0020) (0.0028)

[0.0021] [0.0017] [0.0019] [0.0025] [0.0024] [0.0022] [0.0017] [0.0029]

Maturity: 5 years

Pre Aug 2007 (127 obs) Full Sample (151 obs)

Intercpt ∆ (CP-TB) ∆Tr (10y) ∆Tr (5y) AdjR2 Intercpt ∆ (CP-TB) ∆Tr (10y) ∆Tr (5y) AdjR2

0.0014 0.0023 1.17% 0.0020 0.0013 0%

(0.0014) (0.0014) (0.0014) (0.0014)

[0.0016] [0.0015] [0.0014] [0.0013]

0.0014 0.0001 0.0023 0.4% 0.0020 -0.0032* 0.0015 2.59%

(0.0014) (0.0013) (0.0014) (0.0014) (0.0016) (0.0014)

[0.0016] [0.0011] [0.0015] [0.0015] [0.0018] [0.0013]

0.0014 0.00001 -0.0009 0.0029 0% 0.0020 -0.0032* -0.0004 0.0018 1.96%

(0.0014) (0.0013) (0.0018) (0.0022) (0.0014) (0.0016) (0.0019) (0.0020)

[0.0016] [0.0010] [0.0019] [0.0023] [0.0015] [0.0018] [0.0017] [0.0021]

27



Table 7: Robustness 2 - Crisis
This table reports the results from predictive regressions

Rt+1 − Ct+1 = a+ b (CP-TB)t + cTrt + dI (Crisis)t + εt+1 (41)

where R−C is the cost of shorting the on-the-run Treasury and hedging with a duration adjusted

long position in the second off-the-run Treasury, (CP - TB)t is the lagged 3-month CP - T Bill

spread, Trt (10y) is the weekly Primary dealer transactions in Treasury bonds with comparable

maturities, I (Crisis)t is an indicator variable for whether the current period is in a period of

financial crisis. The three crises in the sample are: the Asian crisis in 1998 (July 1997 through

December 1997), the Russian default crisis (August 1998 through January 1999) and the recent sub-

prime crisis (August 2007 through January 2009). The coefficient on each regressor is standardized

by the standard deviation of the regressor. Observations are monthly and the sample ranges from

January 1997 through July 2009. The table reports the adjusted R2’s for each regression, and

OLS standard errors (in round brackets) and Newey West standard errors with 5 lags (in square

brackets) for each coefficient.

Maturity: 10 years

Pre Aug 2007 (127 obs) Full Sample (152 obs)

Intercpt CP-TB Tr I (Crisis) AdjR2 Intercpt CP-TB Tr I (Crisis) AdjR2

-0.0171** 0.0032* 0.0050** 3.64% -0.0068 0.0046 0.0016 1.87%

(0.0067) (0.0020) (0.0017) (0.0072) (0.0034) (0.0022)

[0.0080] [0.0019] [0.0020] [0.0079] [0.0038] [0.0024]

-0.0179 0.0018 0.0055 0.0043 5.92% -0.0057 0.0022 0.0016 0.0037 2.36%

(0.0066) (0.0021) (0.0017) (0.0026) (0.0070) (0.0037) (0.0021) (0.0029)

[0.0081] [0.0019] [0.0019] [0.0021] [0.0078] [0.0040] [0.0023] [0.0030]

Maturity: 5 years

Pre Aug 2007 (127 obs) Full Sample (151 obs)

Intercpt CP-TB Tr I (Crisis) AdjR2 Intercpt CP-TB Tr I (Crisis) AdjR2

-0.0134* 0.0028* 0.0025 3.72% -0.0036 0.0006 0.0013 0%

(0.0079) (0.0016) (0.0016) (0.0060) (0.0017) (0.0015)

[0.0073] [0.0013] [0.0016] [0.0061] [0.0019] [0.0015]

-0.0135 0.0022 0.0026 0.0018 4.04% -0.0021 -0.0015 0.0011 0.0034 1.22%

(0.0078) (0.0017) (0.0016) (0.0015) (0.0062) (0.0023) (0.0015) (0.0022)

[0.0072] [0.0016] [0.0016] [0.0017] [0.0066] [0.0030] [0.0016] [0.0024]
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Figure 3: Primary Dealer Positions
This figure plots the aggregate primary dealer positions (in Billions of Dollars) in 5 year and 10
year Treasury bonds over our sample.
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Figure 4: REPO less CASH, CP-TBill spread and Primary Dealer positions
This figure plots the cost of shorting 5-year and 10-year on-the-run Treasury securities (REPO less
CASH) at the weekly (thin blue) and monthly (thick black) frequencies, the spread between 3 month
commercial paper and Treasury bills (i.e., CP - T Bill Spread), and primary dealer transactions in
the 5-year and 10-year Treasuries.
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