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Abstract

We show how yield shocks (deviations from a time trend), which are likely attributable to
random weather fluctuations, can facilitate estimation of both demand and supply elasticities
of agricultural commodities. We identify demand using current-period shocks that give rise
to exogenous shifts in supply. We identify supply using past yield shocks, which affect
expected price through inventory accretion or depletion.

We use our estimated elasticities to evaluate the impact of ethanol subsidies and mandates
on food commodity prices, quantities, and food consumers’ surplus. The current U.S. ethanol
mandate requires that about 5 percent of world caloric production from corn, wheat, rice,
and soybeans be used for ethanol generation (assuming no recycling of the corn used in
biofuels as feed stock). As a result, world food prices are predicted to increase by roughly
30 percent and global consumer surplus from food consumption is predicted to decrease by
155 billion dollars annually. If a third of the biofuel calories are recycled as feed stock for
livestock, the predicted price increase scales back to 20 percent. The agricultural growing
area is expected to increase, potentially offsetting the CO2 benefits from biofuels through
increased land use change.
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Between the summers of 2006 and 2008, corn prices more than tripled from roughly $2.50

per bushel to nearly $8.00 per bushel. Prices for rice, soybeans, and wheat rose by similar or

greater amounts. High prices for staple grains can cause hunger, malnutrition, and riots in

developing nations. It has also been shown that weather induced income shocks increase civil

conflict in Africa (Miguel et al. 2004, Burke et al. 2009). Since many countries in Africa are

net importers of food, an increase in food prices is equivalent to a decrease in real income.

It is therefore important to have empirical evidence of the elasticities of food commodity

supply and demand, because these indicate how policies that shift supply or demand, like

ethanol subsidies, affect world food prices.

Land used for crop production competes with other land uses like forests. Deforestation,

on the other hand, results in significant CO2 emissions. This has brought about an active

debate about the potential benefits of using biofuels to reduce CO2 emissions. For example,

the Washington Post reported on February 4, 2010 that ”The Environmental Protection

Agency said new data showed that, even after taking into account increased fertilizer and

land use, corn-based ethanol can yield significant climate benefits by displacing conventional

gasoline or diesel fuel.” On the other hand, the newspaper article cites Tim Searchinger as

”The numbers are inconsistent with the great bulk of analyses by others, which consistently

find that emissions from indirect land-use change for crops grown on productive land cancel

out the bulk or all of the greenhouse gas reductions, but I will have to study the results.”

A crucial point of disagreement in the literature is how much the biofuel standard increases

food prices and in turn the growing area. The latter will result in additional CO2 emissions,

as land use change (mainly deforestation) accounts for about 20 percent of worldwide CO2

emissions (IPCC 2007).

A related application of commodity demand and supply involves so-called ”leakage” from

carbon offsets programs that pay farmers to either forestall deforestation or reforest land

that would otherwise be dedicated to crop production. Offset programs shift supply inward,

but this causes commodity prices to rise, and thus an offsetting increase in the quantity

of cropland supplied elsewhere. The net offset can therefore be much less than the offset

purchased in a particular location. The amount of leakage depends on the size of the supply

elasticity relative to the demand elasticity.

In this article we exploit yield shocks – deviations from country and crop-specific yield

trends that appear to stem from random weather shocks – to estimate world supply and

demand for the sum of edible calories derived from corn, soybeans, wheat, and rice. These
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four crops comprise about 75 percent of the caloric content of food production worldwide.1

We aggregate all four major commodities crops based on their caloric content.

Agricultural commodity markets are often cited as the archetypal example of competi-

tive markets, having many price-taking producers and buyers and well-developed spot and

futures markets. The empirical challenge is to separate supply and demand curves in the

market’s formation of prices and quantities. Correct identification requires instruments that

shift price ways that are plausibly unrelated to unobservables shifts in each curve. Since

Wright’s (1928) introduction of instrumental-variable estimation, weather has been consid-

ered a natural instrument for supply shifts, which can be used to facilitate unbiased demand

estimation. The idea is that weather shifts supply in a way that is unrelated to demand shifts.

Surprisingly, the literature in agricultural economics that uses weather-based instruments for

supply shocks to identify demand curves is extremely thin.

Futures prices in a standard supply equation are also endogenous, even if they are traded

prior to potential delivery. Futures prices reflect the intersection of anticipated supply and

anticipated demand. However, the existing literature on supply response, following the

seminal work by Nerlove, assumes futures prices are exogenous to supply. A recent example

from the United States illustrates how this assumption is questionable. In the spring of

2004 soybean rust (a fungus) was first detected in the United States. Although soybean rust

is manageable, fungicides used to control it are expensive, its arrival in the United States

(the world’s largest soybean producer) disrupted commodity markets. In the next growing

season, fear of the pest caused some farmers to switch from planting soybeans to planting

corn. These supply shifts were anticipated in advance, causing prices for soybeans to rise

and prices for corn to fall–movements along the demand curves for these key crops. In other

words, the planted area did not decrease because prices went up, but prices went up because

there was an unobserved error component (soybeans rust) that lowered area planted and

expected harvest. In subsequent years the perceived threat of this new pest abated, causing

additional supply fluctuations as relative prices returned to normal. A naive econometrician

regressing quantity supplied on futures prices would find a supply elasticity that is biased

towards zero due to the soybean rust phenomenon because the potential pest threat (part

of the error term) was correlated with the expected future price. While this is just one

example, it should be clear that any number of anticipated supply shifts that either are not

observable or not measurable to the econometrician, causing downward bias in estimated

1Cassman (1999) attributes two-thirds of world calories to corn, wheat, and rice. Adding soybean calories
brings the share to 75 percent.
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supply response.

Our first contribution is to show how weather-induced yield shocks can be used to identify

the supply curve as well as the demand curve. The basic idea is that past weather shocks

affect inventories and thus expected futures prices via storage. Competitive farmers will see

this price signal and expand supply. Since weather shocks are exogenous, and widely varying

over time and geography, past weather shocks result in anticipated price shifts that facilitate

identification of supply. We find these estimates to be robust and statistically significant.

While the majority of previous studies do not worry about the endogeneity of prices, Nerlove

(1958) was the first to use lagged prices or futures prices, yet he found an inelastic supply.

However, futures prices are still endogenous. We replicate the analysis of Nerlove (1958) using

our data and also find an inelastic supply, suggesting that our significant supply elasticity is

not driven by the aggregation of crops or a new data set, but likely due to a more refined

instrument. Askari and Cummings (1977) provide a survey of supply estimates using the

Nerlove model for various crops and regions and report a wide range of estimates.

We then use the demand and supply model of world commodity calories to examine the

effect of biofuel mandates on food prices. The exceptionally large and unanticipated rise

in prices between 2006 and 2008 has been attributed to ethanol as well as several other

factors. It is important for policy makers to know the extend to which the price increase is

attributable to the ethanol policy to accurately assess the impacts of the policy. We find that

the current ethanol mandate, which is diverting roughly 5 percent of world caloric production

of maize, rice, soybeans, and wheat for ethanol generation, is predicted to increase food prices

by 30 percent and significantly increase world production area. This baseline estimate does

not incorporate any recycling of the corn used to produce biofuels as feedstock, which will

reduce the predicted price increase proportionally. For example, if one third of the calories

used to produce biofuel are contained in the waste product that is fed to animals, the price

increase would be 20 percent.

Factors besides ethanol policies likely contributed to the threefold price increase. First,

rising oil prices accelerated the demand for biofuels as an alternative fuel source. Second,

there was a sharp increase in the demand for basic calories from emerging economies like

China. This demand growth has accelerated through demand for meat and other animal-

based foods, which are highly income elastic. While population doubled in China between

1961 and 2006, meat consumption grew 33-fold (FAO), and comprised a little less than

a third of the world’s meat consumption in 2006. Meat requires between 5-10 times the

agricultural area to obtain the same amount of calories as a vegetarian diet as corn and
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soybeans are used as feedstock. A third reason for the threefold price increase is a decrease

in supply due to detrimental weather, such as the prolonged drought in Australia. Fourth,

the United States is the largest exporter of agricultural commodities and many commodity

markets are denominated in US dollars. The devaluation of the dollar therefore increased

the price for commodities in dollars. Fifth, some have argued that the commodity price

boom, much like earlier housing and stock market booms, were due to a speculative bubble.

However, recorded inventories of all major commodities declined throughout most the boom,

and it is difficult to reconcile a bubble with an absence of inventory growth. Finally, prices,

particularly those for rice, were likely influenced by temporary export bans in Vietnam and

India, as well as speculation led by Thailand about a possible formation of rice exporters’

cartel. Since the Fall of 2008, prices have fallen precipitously, at least partly due to a large

inward shift in demand stemming from the global economic slowdown.

1 A Simple Model of Supply and Demand

Consider a basic model of supply and demand for food commodity calories derived from

maize, wheat, rice, and soybeans. These four commodities are responsible for 75 percent of

the calories produced. To make production quantities comparable we transform the amount

produced into calories. The number of people that could be fed on a 2000 calories per

day diet are shown in the top panel of Figure 1. Since these four crops are substitutes in

production and/or demand, the per-calorie prices are similar and tend to vary synchronously

over time. Note that with storage opportunities, supply or demand substitutions possible

in the long run can be reflected in short-run price fluctuations. Aggregating crops on a

caloric basis facilitates a simple yet broad-scale analysis of the supply and demand of staple

food commodities. While rice and wheat are primarily used as a direct food source, corn

and soybeans are used mainly as feed stock. In sensitivity check below (Table 5 ) we test

whether the yield shock from corn and soybeans has a different influence on aggregate price

than rice and wheat shocks, but find no evidence for this, suggesting that our assumption of

a pooled model for all four commodities is valid.

1.1 Theoretical Motivation

Storage is a characteristic feature of the markets for maize, wheat, rice, and soybeans. All

four commodities can be stored to smooth out production shocks. As a result, equilibrium

does not require a price where supply in the current period equals demand in the current
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period, but a price where the amount consumed ct equals food supply at the beginning of

the period zt minus what is placed in storage (denoted xt), i.e.,

ct = zt − xt (1)

There is an extensive literature on competitive storage and the resulting price path.

Scheinkman and Schechtman (1983) and Bobenrieth H. et al. (2002) set up a model in which

profit-maximizing agricultural producers have to make two decisions. The first is how much

to store into the next period xt. Storage has convex cost φ(xt). The amount not stored

zt −xt is consumed and gives consumers utility u(zt −xt). The second decision is how much

“effort” λt to put into new production, which is subject to a multiplicative i.i.d. random

weather shock ωt+1 that is unknown at the time of planting. One possible interpretation of

λt is that it specifies the number of acres a farmer plants. Production in the coming harvest

season is st+1 = λtωt+1, where ωt+1 is the distribution of yields due to random weather

shocks. The production cost g(λt) are assumed to be convex, as land of heterogenous quality

is consecutively more expensive to farm.

The Bellman equation for the social maximization problem becomes

v(zt) = max
xtλt

{u(zt − xt) − φ(xt) − g(λt) + δE [v(zt+1)]} subject to

zt+1 = xt + λtωt+1

xt ≥ 0, zt − xt ≥ 0, λt ≥ 0

Competitive producers will achieve the socially optimal outcome by balancing the cost of

storing agricultural goods and exercising effort against payoffs in the next period. Storage

can be profitable if the weather shock ωt+1 is detrimental and the reduced food supply

zt+1 = xt + λtωt+1 results in an increase in the price. If ωt+1 is allowed to have a mass point

at zero, i.e., a non-zero probability that the entire harvest is wiped out and limc→0 u′(c) = ∞,

the long-run distribution has a finite price and positive storage amount with probability one,

yet the mean of the price distribution is infinite (Bobenrieth H. et al. 2002). While low

inventory levels (and high prices) will almost surely result in a price drop, the expected price

is still increasing. The rational is that if another bad shock would hit, the already strained

market would result in a very large price jump. While this outcome is unlikely, the resulting

payoff is so large that it still justifies holding stock. Hence, a sequence of bad weather shocks

will drive down inventor levels and increase prices. We observe this behavior empirically:

price spikes are exceptionally steep if inventory levels remain low for several periods.
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Similarly, when storage levels are low and the expected price is the next period is high,

farmer increase the amount planted λt. Marginal land with higher production cost will enter

production as the payoffs are high enough to cover expenses. Scheinkman and Schechtman

(1983) show that in a competitive equilibrium

(i) consumption ct = zt − xt is strictly increasing in zt

(ii) storage xt is weakly increasing in zt

(iii) effort λt is weakly decreasing in zt

We will utilize these three points in our empirical implementation below. The fact that bad

weather shocks ωt+1 in a given period reduce food production and therefore available food

supply zt+1 has often been used to empirically estimate demand elasticities. However, the

above model suggests that a weather shock not only impacts demand in the current period,

but also production in the next period via expected price. We are not aware of any paper

who has used this result to empirically estimate a supply elasticity using past weather shocks

as an instrument for the expected price.

1.2 Empirical Implementation

Our empirical model becomes

Supply: log(st) = αs + βslog (E[pt|t−1]) + γsωt + f(t) + ut (2)

Demand: log(zt − xt) = αd + βdlog(pt) + g(t) + vt (3)

Quantities supplied and demanded are denoted by st and zt−xt, respectively; pt is price; the

parameters βs and βd are supply and demand elasticites; ωt is the random weather-induced

yield shock; αs and αd are intercepts; and f(t) and g(t) capture time trends in supply and

demand, stemming from technological change, population, and income growth. Finally, ut

and vt are other unobserved factors that shift supply and demand.

The supply equation includes last period’s futures price. Farmers make planting decisions

before a year’s weather shock or other supply or demand shocks are realized. The supply

in the next period therefore depends on expected prices. We use futures prices one year

in advance to measure farmer’s expectations. More specifically, we use future prices for

corn in December of period t − 1 for a December delivery in period t. For soybeans we use
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futures prices in November, and for wheat we use futures prices in September. Each month

constitutes the end of the growing season in the Northern hemisphere.

Prices pt are the key endogenous variables on the right-hand side of both supply and

demand. The crux of the identification problem is to identify supply and demand elasticities

given that unobserved shifts in supply and demand (ut and vt) influence prices via the

equilibrium identity. Without correcting for the endogeneity of prices, the supply elasticity

would be biased negatively, since unobserved positive supply shifts (ut) would tend to reduce

price all else the same, creating a negative correlation between ut and price. A naive demand

elasticity (without correcting for the endogeneity of prices) would tend to be biased positively,

since unobserved positive demand shifts (vt) would tend to increase price all else the same,

creating a positive correlation between vt and price. If unobserved supply and demand

shifters ut and vt are correlated, biases could go in either direction.

We utilize either concurrent or lagged yield shocks to identify demand and supply. Our

baseline proxy for weather-induced yield shocks are deviations from country-specific trends

in yield (tons per hectare) for each crop. Country-and-crop-specific deviations are then con-

verted to calories and aggregated to obtain a world supply shock. Our premise is that these

deviations from yield trends are exogenous as they largely due to random weather. One po-

tential concern is that yields themselves might be a function of prices. For example, higher

prices could induce farmers to choose higher sowing densities, thereby increasing average

yields. On the other hand, higher prices might induce farmers to expand their production

to marginal, less productive, land, thereby lowering average yields. It is hence unclear a

priori which way the bias would go. We believe that endogenous yield responses are not

important in our paper for several reasons: First, farm and county-level data show consider-

able variability in deviations from a yield trend but have almost no autocorrelation (Roberts

and Key 2002, Roberts et al. 2006), while prices have a very high degree of autocorrelation.

If yields endogenously respond to prices, than yields should show autocorrelation as well.

Second, if yields were responsive to price levels, we should observe that yield shocks are cor-

related between various countries in a given year as all countries face the same world price.

In Figure 4 below, we show scatter plots of yield deviations for the two biggest producers

of our four commodities. These plots show no systematic correlation: two of the four even

have negative correlation coefficients. While this is not to say there is no endogenous yield

response, we believe it to be small compared to variation induced by weather shocks. Finally,

in a sensitivity check we directly instrument for yield shocks with weather variables below.

The challenge behind such an analysis is to obtain world-wide fine-scaled weather data sets
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that result in a strong first stage.

1.3 Identification of Demand

Demand for our four basic commodities comes from various sources. These commodities are

a primary source of food, especially rice and wheat. Corn and soybeans are also used as feed

for livestock and dairy operations, among many other uses. Finally, there is an emerging

market for ethanol, which uses a rapidly growing share of corn production in the United

States.

Identifying the demand elasticity βd requires an instrument that shifts supply in a way

that is plausibly unrelated to unobserved shifts in demand. Technically, the instrument is

a component unrelated to vt. For short-run demand, weather-induced yield shocks are a

natural choice for three reasons. First, they are clearly exogenous as weather affects farmers,

but farmers cannot affect weather. Second, they are almost random and unpredictable at

planting time except for some cycles like El Nino, which are difficult to forecast. There is no

evidence that farmers grow systematically different crops in the United States, the largest

producer of calories, in anticipation of El Nino trends. Third, weather is likely to have little

or no influence on demand itself, except via its influence on price. The last point stems

from the fact that there are well-established international markets with a significant share

of production traded internationally.2 Demand is derived from world markets comprised of

firms and individuals that often reside far from the locations experiencing specific weather

and production outcomes.

Wright (1928) was first to use weather as an instrument for demand identification when

he introduced the instrumental variables technique. A key difference from Wright is that

we simultaneously consider the four key commodities that are substitutes in supply and

demand. It is important to consider these crops simultaneously to ensure that weather

effects on crops that are substitutes in production do not confound own-price elasticities

with cross-price elasticities. We aggregate the caloric value of all four crops. Future research

might simultaneously estimate equations for all crops, including cross-price elasticities, but

identification could be more challenging given the limited number of observations.

It may be tempting to use deviations from the trend in world production as a proxy for

aggregate weather shocks. Such an approach can be misleading because it still confounds

2Weather shocks would be a problematic instrument with local production as the weather event (i.e.,
extreme heat) could not only decrease supply but directly impact humans, e.g., via sickness, and therefore
influence demand.
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supply and demand responses to price, such as adjustments in growing area. Production

shocks depend on changes in (i) average yields (output per acre) and (ii) growing area. While

the former, weather-induced yield shocks, are arguably exogenous, the latter, expansion

in the production areas, are known before harvest is realized and hence interlinked with

expected prices. We provide empirical evidence of this below. We hence derive shocks solely

from component (i), i.e., country and crop specific yield shocks. As discussed below, they

have a much stronger (negative) association with price than aggregate production shocks.

In a second step we use weather data from around the world to link yearly country-specific

yields to weather outcomes including time trends to capture technological innovations. Once

the link between weather outcomes and yields is established, yield shocks are constructed by

multiplying the estimated weather coefficients with weather shocks, which we define to be

deviations from average weather outcomes. The advantage of using weather-instrumented

yield shocks instead of yield deviations from trends is that the latter might be endogenous,

i.e., yields might predicably differ from the long-run trend if prices change.

1.4 Identification of Supply

A novelty of our approach is that we also use yield shocks to identify the supply elasticity βs

in addition to the demand elasticity. This is feasible as past weather shocks impact storage

levels and thereby expected price. Negative yield-shocks reduce supply and inventories while

increasing the price, thereby exogenously increasing the incentives for new production. These

past weather shocks are unlikely to be associated with current supply shifters, such as pest

infestations or technological change as weather shocks between years show no autocorrelation.

Unlike transitory yield shocks, commodity price shocks are well known to have a large

degree of persistence that stem from storage (Deaton and Laroque 1992, Deaton and Laroque

1996, Williams and Wright 1991). Within the aggregate supply and demand framework

above, past weather shocks affect future price by changing future inventories via storage xt.

Using past yield shocks as an instrument for current expected prices would seem to be a useful

extension of the standard approach following Nerlove (1958), which estimates supply response

using futures prices, lagged prices, or time-series forecasted prices as a proxy for expected

prices at planting time. Previous studies which emphasized that prices are endogenous used

futures prices or lagged prices. However, the potential concern with using uninstrumented

lagged prices is that there might be supply shifters ut that are correlated with expected price.

Recall the example of soybean rust in the introduction. Changes in production come from

two sources: (i) changes in output per acre, and (ii) changes in the planting area. While

9



most of the variation of the former is due to exogenous weather effects, the latter is often

known in advance. Rational market participants will incorporate area expansions in the

expected price, thereby making the expected price endogenous to future supply shifts. As

pointed out in the discussion of how to identify demand, area expansions and contractions

are predictable and directly influence price. Our extension in the spirit of previous research

is to further purge the expected prices from such predictable area expansions and utilize

price variation that is due to exogenous yield shocks.

Our own approach of using past yield deviations from a trend as an instrument for

expected price is not without its own potential pitfalls: Are prices anticipating yield changes

in the next period? However, as mentioned above, the fact that both farm-level data as well

as aggregated data show little or no autocorrelation in yields suggests that in practice such

problems are likely small, especially when compared to the large variation that is induced

by weather shocks. Moreover, yields of the largest producers show no correlation although

they are subject to the same price shocks. In summary: supply response to price appears

to occur largely via acreage changes, not yield changes. Moreover, small locally-persistent

yield shocks are likely dominated by aggregate transitory variation in weather.

2 Data

World production and storage data are publicly available from the Food and Agriculture

Organization (FAO) of the United Nations (http://faostat.fao.org/) for the years 1961-2007.

The data include production, area harvested, yields (ratio of total production divided by

area harvested), and stock variation (change in inventories) for each of the four key crops.

The last variable is only available until 2003. In our model estimates below, we stop all

series in 2003 for consistency because quantity demanded (which depends on changes in

storage) is not available after 2003 and because it precedes the recent boom and bust in

commodity prices. Variables are converted into edible calories using conversion factors by

Williamson and Williamson (1942), which specify the caloric input per output quantity of

various crops. Consumption (quantity demanded) is calculated as production minus the net

change in inventories.

Data on quantities are displayed in Figure 1. The top panel displays the number of

billion people that could be fed on a 2000 calories per day basis and how much each of

the four commodities contributed to total caloric production. Maize has the biggest share

while soybeans has the smallest share. Wheat and rice are in the middle and have roughly
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equal shares. One noteworthy fact is that the overall year-to-year fluctuations (top line) are

predominantly due to fluctuations in maize. As will be discussed below, more than half of

all corn was traditionally produced in the United States within a confined area (corn belt)

that is susceptible to the same weather shocks.3 Other crops are less concentrated and hence

local weather shocks average out when production is summed over the world. One country

might have a good year while another has a bad year.

The bottom panel of Figure 1 shows production and consumption quantities. Two fea-

tures are noteworthy: First, production and consumption have been trending up steadily,

almost linearly. They both appear trend stationary. Second, fluctuations around the trend in

production are small in proportion to the trend. Consumption fluctuations are even smaller

due to smoothing from storage accumulation and depletion. The FAO series on stock vari-

ation, necessary for derivation of consumption, ends in 2003 and hence so does our demand

estimate.

Yield shocks in our baseline model were calculated by taking jackknifed residuals from

fitting separate yield trends for each crop in each country.4 Trends and shocks were estimated

for any country with an average of 1 percent or more of world production for each of our

four crops. The average share of world production between 1961-2007 is shown in Table 1.

Remaining rest-of-world yields were pooled and treated as a single country for each crop.

Yield shocks were derived from both linear and quadratic trends and showed small and

statistically insignificant autocorrelation. Figure 2 displays fitted quadratic yield trends to

all countries, while the fitted jackknifed residuals are shown in Figure 3. Figure 4 shows

scatter plots of yield deviations of the two largest producers of each crop. The lack of

significant correlation suggests that yields do not endogenously respond to price, which

would induce correlation between countries as everybody faces the same world price, or at

least that the endogenous yield response is swamped by the much larger variation induced

by weather shocks.

We derive caloric shocks for each country and crop using the product of: (1) country-and-

crop-specific yield shocks; (2) hectares harvested; and (3) the ratio of calories per production

unit. The world caloric shock is simply the sum of all country-specific shocks of all crops,

which is then scaled relative to the world trend in total caloric production. Aggregating

country and crop specific yield shocks purges production variation stemming from endoge-

nous land expansion or contraction. As emphasized in the modeling section, land expansions

3Today, the US still accounts for roughly 40 percent of world corn production.
4OLS residuals give biased estimates of the errors. Jackknifed residuals, derived by excluding the current

observation when determining the current residual, give unbiased estimates of the error.
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are often correlated with components of the error (e.g., a pest outbreak) and incorporated

in next period’s expected price, while yield shocks should be primarily due to exogenous

weather shocks.5

As mentioned above, there is concern that yields might endogenously respond to price

changes. In a sensitivity check we therefore construct yield shocks that can be explained

through observed weather fluctuations. We fit regressions of log yields on various weather

measures as well as a quadratic time trend. Yield shocks are derived as predicted changes

in yields that are attributable to deviations in the weather variables from historic averages.

For example, if the average temperature in a country is 15◦C, the yield shock attributable

to a year with an average temperature of 16.5◦C is 1.5 times the coefficient on average

temperature. For the United States we use the fine-scale weather data set of Schlenker

and Roberts (2009) with a piecewise linear function in temperature (degree days) and a

quadratic in total precipitation for maize and soybeans. We model rice and wheat using a

quadratic in average temperature as there is less agreement on the optimal bounds in the

agronomic literature as well as a quadratic in total precipitation during the growing season.

For all other countries in the world we use a quadratic in average temperature as well as

total precipitation for each of the four crops in a panel setting, i.e., we include all countries

that produce at least one percent of a crop as well as the rest of the world in one equation

and include country fixed effects. Weather data from the Climate Research Unit (CRU) at

the University of East Anglica gives monthly temperature and precipitation readings on a

0.5 degree grid for the entire world for the years 1901-2002 (Mitchell and Jones 2005).6 The

growing season for each country was obtained from Sacks et al. (2010).7 Weather outcomes

in a country are the area-weighted average of all grids that fall in a country, where the

crop-specific area weights from Monfreda et al. (2008) are displayed in Figure 7.8

We obtain two price series. Our baseline model uses futures prices from the Chicago Board

of Trade with a delivery month of December for maize, November for soybeans, and Septem-

ber for wheat.9 We construct the price pt as the average futures price during the month when

5We divide world yield shocks and inventories by the trend in production, estimated using a quadratic
trend in our baseline. The estimated trend is close to being linear and a sensitivity check with a linear trends
shows similar results.

6http://www.cru.uea.ac.uk/∼timm/grid/CRU TS 2 1.html (accessed November 2008)
7The authors provide planting and harvest dates on a 5 minute grid.

http://www.sage.wisc.edu/download/sacks/crop calendar.html (accessed January 2010). We include
the entire months between planting and harvest. For example, if average planting is on April 8th and
harvest on September 12th, we use weather data from April through September.

8The authors provide the fraction of each 5 minute grid cell that is used for various crops.
http://www.geog.mcgill.ca/landuse/pub/Data/175crops2000/NetCDF/ (accessed November 2008).

9We use futures price for “No.2 yellow” for corn, “No.1 yellow” for soybeans, and “No.2 soft shell” for
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the delivery occurred, i.e., in December of the delivery year for corn. The expected price

E[pt|t−1] is the average futures price in the delivery month one year prior to delivery.10 All

prices are deflated by the Consumer Price Index. Prices for each commodity are converted

to their caloric equivalent, with the world calorie price taken as world-production-weighted

averages of the four commodities. Unfortunately, the futures price series for rice does not

extend before 1985 and we hence use the production-weighted price of the three commodities.

A second price series with longer temporal coverage are those received by U.S. farmers

in the month of December of each year, publicly available from the U.S. Department of

Agricultural. The top panel of Figure 5 displays real price (annual cost of a 2000 calories

per day diet in 2007 dollars). There has been a general downward trend of food prices.

Prices per calorie move together for all four commodities, most notably maize, wheat and

soybeans. This is not surprising, given that those three are close substitutes in production

and consumption. For example, maize and soybeans (and to some degree wheat) are used as

feed for livestock. If one were cheaper per calorie than the others, profit-maximizing farmers

should switch to the cheaper input. Price fluctuations are proportionately much larger than

quantity fluctuations in Figure 1. This suggests that both demand and supply are inelastic.

The bottom of panel of Figure 5 displays our two price series in black as well as production

shocks (deviation from the quadratic production trend in percent) in grey. The solid black

line shows the production-weighted average December price of all four commodities. The

black dashed line shows the production-weighted average futures price at delivery for maize,

soybeans, and wheat. Leaving out rice, for which we do not have a futures series dating back

to 1961 gives comparable results. The figure demonstrates the first stage of our IV strategy:

prices fluctuate negatively in comparison to yield-shocks. The lack of autocorrelation in

the yield shocks suggest that these yield shocks are due to weather and not technological

advances, which would result in deviations from the trend that are less transient.

Table 2 reports descriptive summary statistics on caloric prices, production, consump-

tion, our constructed world aggregate yield shocks, and yield shocks interacting with inverse

inventories.

wheat.
10In some cases the time series of a contract does not extend 12 months back and we hence take the

average price in months closest to 12 months prior.
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3 U.S. Ethanol Subsidies and Mandates

Ethanol has a long history as a car fuel. Ford’s Model-T was designed to run both on

ethanol and petroleum, or arbitrary mixes of the two. Declining petroleum prices led to a

slow phase out of ethanol as a fuel. Recent concerns about anthropogenic CO2 emissions have

renewed interest in ethanol as a fuel substitute, even though the net effect is highly debated

(Searchinger et al. 2008). Ethanol is currently being mixed with traditional petroleum in

ratios up to 10 percent. Most cars can run on such fuel mixes. Modern flex-fuel cars are

designed to run on fuel that is up to 85 percent ethanol.

One might wonder why U.S. ethanol subsidies and mandates can have a measurable

effect of world food prices? The answer is simply the size of the U.S. market share. Figure 6

shows the U.S. share of world caloric production over time. Yearly observation are shown

as crosses, and a locally weighted regression (bandwidth of 10 years) is added in grey. The

yearly ratio fluctuates somewhat due to weather-induced yield shocks, but the average share

stays rather constant around 23 percent. There is a slight uptick during the boom years (late

1970s) before the U.S. share falls again after the 1980-1982 recession that heavily impacted

the agricultural sector as well. Farmland prices fell roughly one third between the 1982 and

1987 Census.

Given the dominant share of world caloric production, any policy that impacts US pro-

duction might lead to repercussions on world markets. Ethanol production has risen rapidly

over the last couple of years as shown in Figure 9.11 Ethanol subsidies and biofuel mandates

require that a certain amount of fuel is derived from ethanol. The 2005 U.S. energy bill

mandated that 7.5 billion gallons of ethanol be used by 2012. The 2007 energy bill increased

the mandate to 36 billion by 2022. Moreover, under the 2009 U.S. Renewable Fuels Stan-

dard, refiners and fuel blenders are required to blend roughly 11 billion gallons of ethanol

into gasoline. Currently, most of the ethanol is produced from corn, and 11 billion gallons

of ethanol would require roughly 4.23 billion bushels of corn (assuming an average of 2.6

gallons of ethanol per bushel of corn). This translates into roughly one third of U.S. maize

production in 2007 (13 billion bushels), or about 5 percent of world caloric production in

2007. The remains of corn that is used in ethanol production can still be used as feed stock

for livestock, which is often labeled distiller’s grain. While estimates vary, up to one third

of the caloric input is said to be recoverable, but the nutritional content is debated. We

therefore present two estimates: our baseline model uses a five percent increase in world

11http://www.ethanolrfa.org/industry/statistics/
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caloric production (assuming that nothing is recycled) as well as a scenario where we assume

that one third of the calories is recycled as feed stock.

While 5 percent of world caloric production would be required for 11 billion gallons of

ethanol, the average daily U.S. motor gasoline consumption is 0.39 billion barrels per day.12

The supply of approximately 8 percent of U.S. gasoline consumption requires roughly 5

percent of world caloric production.

4 Empirical Results

Given the large trends in overall production due to population growth and technological

change in Figure 1, all shocks are normalized around the upward production trend. Predicted

production is obtained by regressing aggregate caloric production on a time trend of the

same order used to derive jackknifed residuals. The default is a quadratic time trend, but

we present sensitivity checks for a model with a linear trend below.

Our first-stage instrument ωt is the relative yield shock (caloric yield shock divided by

predicted production), which is interacted with the inverse relative inventory level (inventory

level divided by predicted production) in all cases unless otherwise noted. Prices are well

known to be more volatile when inventories are low as compared to when they are high. This

follows from storage theory and can be observed empirically. Prominent examples include

the recent price spike and the one in the 1970s, both of which occurred in an environment

with unusually low inventories. Interacting aggregate yield shocks with aggregate inventory

levels therefore increases the statistical power of the instrument. If yield shocks are linearly

independent of other supply or demand shifters, then multiplying yield shocks with inventory

levels is also linearly independent of those shifters. In the first stage we regress the natural

log of price against current and lagged yield shocks ωt up to lag K, plus a polynomial time

12Energy Information Administration: http://www.eia.doe.gov/basics/quickoil.html
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trend up to order I.13 The first-stage regression model for the demand and supply price are:

log(pt) = πd0 +

K−1∑

k=0

µdkωt−k +

I∑

i=1

ρdit
i + ǫdt

log (E[pt|t−1]) = πs0 +
K∑

k=0

µskωt−k +
I∑

i=1

ρsit
i + ǫst

In the second stage we estimate the structural equations (2) and (3), substituting the

predicted values of price from the first stage in place of actual prices. For the supply equa-

tion (2) we regress the natural log of production quantity against the predicted futures price
̂log (E[pt|t−1]), a polynomial time trend up to order I as a proxy for f(t) and the supply

shifter in the current period ωt. Stage-one variables excluded from the stage-two supply

equation are lagged yields shocks ωt,t=t−K−1,...,t−1 which act as instruments. The stage-two

regression model of supply is:

log(st) = αs + βs
̂log (E[pt|t−1]) + λs0ωt +

I∑

i=1

τsit
i

︸ ︷︷ ︸

f(t)

+ut

For the demand equation (3) we regress the natural log of quantity consumed (st − xt, the

quantity produced minus the net-change in storage) on predicted price, a polynomial time

trend up to order I as a proxy for g(t). The stage-one variable excluded from the stage-

two demand equation are the supply shocks ωt,t=t−K,...,t. The stage-two regression model of

demand is:

log(st − xt) = αd + βd
̂log(Pt) +

I∑

i=1

τdit
i

︸ ︷︷ ︸

g(t)

+vt

Regression results of the two-stage least squares as well as three-stage least squares results

are summarized in Table 3. Columns differ by the number of lagged shocks as well as the

number of polynomials used in the time trend. The first stage regression reveals highly

significant instruments ωt for both the current price pt in the demand equation and the

expected price log (E[pt|t−1]) in the supply equation as shown in Table 4. One particularity

13The first stage of expected price used in the supply equation includes the shock ωt as it is included as
a supplier shifter in the second stage. Since the expected price is traded in period t − 1, K lags runs from
t − 1 to t − K − 1.
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is that the first stage instrumenting the expected price in the supply equation includes the

shock ωt which happens in the next period. The coefficient is significant, suggesting that the

market already has production signals from the Southern hemisphere or expectations about

yield shocks.

Elasticity estimates in Table 3 are reasonably stable across models in Table 3, varying

between 0.08 and 0.13 for supply and -0.05 and -0.08 for demand. The top panel summarizes

the demand and supply elasticity, as well as the predicted price increase from a ethanol

mandate that puts 5 percent of current world caloric production into biofuels. The second

panel displays the regression results. Adding additional lagged weather shocks in the last

two columns changes the results by very little. The results differ more if we move from a

second-order time polynomial (first two columns) to a third order time polynomial (last four

columns).

We most prefer estimates in the first two columns because the additional lagged yield

shocks are statistically insignificant in the last two columns. Moreover, small-sample bias is

known to be smallest in two stage least squares when there are fewer instruments (Nelson

and Startz 1990). Unsurprisingly, the trend estimates show that demand has grown more

slowly than supply, which accords with the general downward trend in prices and the increase

in storage over time.

The supply and demand elasticities imply that the U.S. ethanol mandates (which requires

5 percent of world caloric production to be diverted for ethanol) will increase prices by 0.05
βs−βd

.

Since the predicted ratio includes the inverse of the predicted parameters, it will be convex

and the expected value will be greater than the ratio evaluated at the expected values. We

therefore take 1 million random draws from the joint distribution of the demand and supply

elasticity. The mean impact as well as the 95% confidence interval are given in rows 5 and 6

of Table 3. The mean impact is fairly stable between various specification at stays around 30

percent. However, it should also be noted that the distribution is right skewed and the 95%

confidence interval extends further to the right than to the left of the mean impact. The

mean price increase implies a decrease in consumer surplus from food consumption equal to

155 billion dollars annually.14 As noted above, the baseline scenario assumes that the waste

products from ethanol reduction are not fed to animals. Since studies differ in what fraction

can be recycled, we report estimates assuming zero recycling, which can easily be scaled by

the assumed recycling ratio as the ultimate price increase is linear in this recycling ratio. For

14The expected supply (along the trend line) is the equivalent of feeding 7.06 billion people for a year on
2000 calories per day, prices in 2007 were 74.12 dollars per person per year, and the 30 percent price increase
will reduce consumption by 1.5 percent.
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example, in case one third of the calories could be recovered as feed stock, the price increase

would scale to 20%. There will also be a partially offsetting increase in producer surplus.

On top of that, some authors have argued that the ethanol mandate increases fuel supply,

thereby lowering fuel cost, which in turn benefits consumers (Rajagopal et al. 2007). The

full welfare analysis therefore also requires assumption on the elasticity of supply of fuels

that are beyond the scope of this paper. It is worth noting that the policy is a larger shift

from consumer surplus to producer surplus.

Table 5 conducts a sensitivity analysis which includes separate yield shocks for corn

and soybeans (index by subscript MS) and rice and wheat (indexed by subscript RW). The

rational is that the latter are primarily used as food, while the former are also used as feed

stock. One might hence wonder whether yield shocks from all four commodities can be pooled

together. On the margin, calory demand should equate the price per calory produced or it

would be better to substitute to another crop. While there are of course regional preferences

for various food sources (rice is predominant in Southeast Asia while Europeans rely much

more on wheat), all we need for the prices to move together in equilibrium is that some

demanders (feed lots, food processing plants) are willing to substitute various crops on the

margin. We find no evidence that shocks are different for the two sets of commodities as all

Wald tests (reported in the last three columns of each panel) are not significantly different.

Since we have a limited number of observations (43 years), we pool all shocks to limited then

number of variables in our analysis.

Table 6 presents various sensitivity checks. Panel A reports the baseline results from

Table 3. Panel B uses a linear time trend to obtain jackknifed residuals as well a linear trend

in production. The results are insensitive whether we use a linear time trend or a quadratic

time trend in the baseline results. The predicted price increase remains robust around 30

percent.

Panel C derives caloric shocks as the product of the jackknifed yield residuals and the

predicted (as opposed to actual) harvested area along a quadratic time trend. The effect on

the estimated results is very minor though as we are dealing with a second order effect, i.e.,

the product of changes in yield times changes in areas.

Panel D rescales the caloric conversions factors so that the average price between 1961

and 2003 is the same for all commodities. If various goods are substitutes in production,

relative conversion factors are given by the price ratios. This allows us to back out the

implicit conversation factors set by the market instead of using the ones by Williamson and

Williamson (1942). The results change again very little supporting our hypothesis that it is
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feasible to aggregate all four crops based on caloric conversion factors.

Panel E uses a sensitivity check where the caloric shock ωt is not normalized by the

inventory levels. The results seem to become a bit more sensitive to the order of the time

polynomial, which is picking up that there was a time period in the 1970s when inventory

levels were low and prices spiked.

Panel F focuses on the planting dates in the Northern hemisphere: As before, expected fu-

tures prices for wheat with a September delivery are are averaged in the previous September.

However, we no longer use soybeans and maize price a year in advance (i.e., in November and

December of the previous, respectively), but the average price in March of the delivery year,

the month when planting decisions are made in most of the Northern hemisphere. These

March prices can incorporate information about the harvest in the Southern hemisphere that

farmers in the North can incorporate at the time of planting. Again, the results are robust

to this change.

Finally, Table 7 presents results when we use yield residuals that are attributable to

observed weather shocks in Panel B. Generally, the significance levels decrease a lot in both

the first stage and the second stage. Since the instruments are weak, the results should

be considered cautiously. Generally, demand is inelastic, while supply elasticities fluctuate

around our baseline estimates, although the confidence intervals are wide as well. Given the

added noise in our instrument, the three-stage procedure gives much more concise estimates

that two-stage least squares, which are comparable to our baseline estimates if we include one

lag of the shock. While the results are in line with our baseline estimates for the parsimonious

models using one lag and 3SLS, the results are certainly not as robust as in our baseline case

to other modifications. The increase in confidence intervals is due to the fact that we have

weather measures of limited accuracy outside the United States. The correlation coefficient

between yearly caloric shocks using (i) jackknifed residuals and using (ii) shocks attributable

to observed weather shocks is 0.71 in the United States. Since the United States accounts

for such a disproportional share of world caloric production, the correlation is still 0.51 if we

aggregate shocks over all countries. This is further demonstrated in Figure 8 where we plot

yield residuals as deviations from a time trend on the x-axis and yield residuals using weather

instruments on the y-axis for the biggest producers. The top left panel shows the United

States where the scatter plots aligns reasonably well with the 45-degree line. However, the

bottom row shows that our model linking yields to weather is fairly bad for China and

Thailand, which both heavily rely on rice.

The main motivation to use weather-induced caloric shocks was to rule out that yields
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are endogenous to price and hence our caloric shock, which is derived as deviations from a

quadratic time trend, might also be endogenous. Figure 8 provides further evidence that this

unlikely. We color-coded the scatter plot by the futures prices (traded the year before the

yield was realized). If yields are endogenous, we should observe distinct color patterns. For

example, if yields respond positively to higher prices as farmers increase sowing densities, our

caloric shocks derived as deviations from a time trend should be more positive when prices

are high. This would imply that observations with a large x-values should be predominantly

shown in red colors, while negative x-values should be shown in blue colors. We find no such

distinct color pattern.

Our new estimates are contrasted to other approaches in Table 8. The first two columns

report elasticity estimates from seemingly unrelated regressions (SUR) without a first stage.

That is, these models use raw endogenous price, not predicted price. They do account

for observed supply shifters and the correlation of innovations ut and vt. We include this

regression mainly to illustrate likely endogeneity bias in comparison to 2SLS estimates in

Table 3. The SUR regression gives extremely inelastic estimates of supply and demand, 0.016

for supply and -0.017 for demand. While the demand elasticity is statistically significant at

the 10% level, the standard errors are small and (if assumptions are accepted, which is

dubious) rule out elasticities less than -0.034 with 97.5 percent confidence. The supply is

statistically insignificant, and again rule out elasticities greater than 0.34 with 97.5 percent

confidence. The predicted price increase of an ethanol mandate (diverting 5 percent of world

production) would be 150 percent if we use the point estimates of the elasticities.

Columns 3 to 6 of Table 8 follow the approach of Nerlove (1958) and include futures prices

which are not instrumented. The estimated supply elasticity becomes lower and insignificant,

which is in accordance with the previous literature on supply responses. The predicted price

increase of an ethanol mandate (diverting 5 percent of world production) would be around

60 percent if we use the point estimates of the elasticities. Our concern with this approach

is that expected price incorporates anticipated area responses and is hence endogenous.

All models in Table 8 give smaller supply elasticities and hence the ethanol policy would

lead to larger price increases and lower area expansions. Our model gives a lower predicted

reduction in consumer surplus than previous approaches, yet the predicted impact is still

sizable. The flip-side of a more elastic supply is that the dampened price increase comes

at a potentially other significant effect: A predicted expansion in the agricultural area.

Searchinger et al. (2008) and others have emphasized that this land conversion will lead to
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further CO2 emissions. Currently, land conversion already accounts for 20% of global CO2

emissions.

Panel A of Table 9 examines this further by regressing the log of total world growing area

(for maize, rice, soybeans, and wheat) on the combined lagged production shock ωt−1 of all

four commodities in the first two columns. The coefficient is negative and significant at the

one percent level, i.e., the planting area moves in the opposite direction of the shocks: A bad

yield shock leads to an expansion of the area and vice versa. Rational market participants

will incorporate this area-response, as well as all other known information about planting

areas, in their expectation of future prices, making the price endogenous. Our approach

therefore only uses production shocks that are due to unpredictable yield shocks as an

instrument and purges the analysis of possible area responses. We regress the log of total

area on instrumented caloric prices in columns (3) through (6), suggesting an area elasticity

of roughly 0.06-0.07. While this number is smaller than our supply elasticity estimates, it

should be noted that if the more productive countries are the responsive ones, a less than

one-to-one response between output and supply is expected. For example, if countries which

have twice the average yield increase the area by 6%, total supply will increase by more than

6%. Panels B through F replicate the analysis for individual countries and demonstrate that

there are different sensitivities to world caloric shocks and world prices: Major producers

and exporters like the United States and Brazil show an even larger elasticity, while more

self-sufficient countries like India show smaller elasticities. Our land elasticity for Brazil is

comparable to Barr et al. (2010), but larger for the US.15 Our estimated elasticities imply

that total caloric production would increase by roughly 3.5 percent, or 180 trillion calories.

Using an elasticity of 0.06 from Table 9 on the predicted 30 percent price change, total

acreage is predicted to increase by 2 percent, or 30 million acres. In 2007, total planting

area for the four commodities were 1.5 billion acres.

Table 10 shows the range of calories per hectare that can currently be obtained. Using

the highest coefficient for maize in the United States, the predicted area increase is 19

million acres. For comparison, the total corn area in the United States is approximately 80

million acres. If the area expansion were to occur in less productive parts of the world, the

land conversion would be even greater. For example, Brazil would require an area that is

almost three times as large to derive the same amount of calories from maize.16 As shown

15As pointed out above, not instrumenting the price can bias the results towards zero as outlined in the
soybean rust example in the introduction.

16It should be noted that we are using average calories per acre, yet the correct measure would be the
amount of calories obtained on the marginal land. These numbers should hence been seen as a first proxy.
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in Table 9, exporting countries like the Unites States and Brazil have been more responsive

to fluctuations in world price.

5 Conclusions

We have two basic goals with this analysis. The first is to demonstrate how yield shocks

(deviations from a trend), which are likely attributable to random weather fluctuations, can

facilitate estimation of both supply and demand of agricultural commodities. The second

objective is to estimate elasticities for caloric energy from the world’s most predominant

food commodities.

Our model is simple. By aggregating crops and countries, we obscure the likely impor-

tance of many important factors, especially the imperfect substitutability of crops, trans-

portation costs, tariffs, trade restrictions, and agricultural subsidies. But what the model

lacks in complexity, it gains in transparency. We see these estimates as a complement to

larger and more sophisticated models, wherein local supply and demand responses are either

assumed or estimated individually, and transportation and trade restrictions are carefully

accounted for. Our estimates provide a useful reality check for whether micro complexities

add up to patterns that are observable in the aggregate data.

With this perspective in mind, we consider price and quantity predictions stemming

from the rapid and largely policy-induced expansion of ethanol demand. This policy has

diverted (or will soon divert) approximately 5 percent of world caloric production into ethanol

production. Since commodities are storable and the current ethanol production trend was

largely anticipated since the Energy Policy Act of 2005, it is reasonable to expect that futures

prices would have quickly incorporated the shift in demand, even though it has taken several

years for ethanol production growth to be realized. Using our preferred estimated supply

and demand elasticities, a shift of this magnitude would cause an estimated increase in price

equal to 30 percent if none of the corn used for biofuel production can be recycled. If the

remains of corn used in biofuels is recycled as feed stock, the price increase would be scaled

back accordingly. For example, if one third of the calories can be recovered as feed stock, the

price increase would be lowered to 20 percent. Our estimate is smaller than what we obtain

using a SUR model that does allow for the endogeneity of prices, or a model that does not

instrument futures prices. This prediction is slightly larger than the USDA projected price

increase made for corn in 2007, and would suggest that the ethanol subsidy had some role

in the threefold price increase, but by no means can account for all of it.
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It is surprising that research in agricultural economics has not made greater use of

weather-based instruments. One possible reason is the difficulty in linking weather vari-

ables to agricultural outcomes, like crop yields. We have circumvented this difficulty by

summing local yield deviations from trend. In theory such deviations might be part of the

supply response function and therefore endogenous; in practice, however, this appears to

be a small issue. Nevertheless, use of weather variables instead of yield shocks may be a

promising direction for future research. To make such an approach viable will require rich

weather data and a parsimonious model linking weather to yield. Yield shocks attributable

to fine scaled weather shocks in the United States shows a correlation coefficient of 0.71

with jackknifed yield residuals suggesting that there is limited endogenous yield response in

the United States. However, the lack of fine-scaled weather data outside the United States

makes it more difficult to obtain precise yield shocks in other areas. While our results using

weather-induced yield shocks are comparable to the ones we obtain in our baseline model

for a parsimonious model using one lagged shock and three stage least squares, the results

are not very robust.
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Figure 1: Production and Consumption of Calories from Maize, Wheat, Rice, and Soybeans
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Notes: Top panel displays world production of calories from maize, wheat, rice, and soybeans for 1961-

2007. The y-axis are the number of people who could be fed on a 2000 calories/day diet. Bottom level

displays production as well as consumption of the same four commodities. A locally weighted regression line

(bandwidth of 10 year) is added.
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Figure 2: Scatter Plots of Annual Yields (Countries with more than 1 Percent of World
Production)
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Notes: Scatter plots of yields in each country against time. A quadratic time trend is added as a solid line.

Figure shows all countries that produce on average more than 1 percent of world production. All other

countries are lumped together as “Rest of World”.
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Figure 3: Annual Jackknifed Yield Residuals (Countries with more than 1 Percent of World
Production)
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Notes: Scatter plots of jackknifed yield residuals, i.e., the residual is estimated by excluding the observation

in question. Figure shows all countries that produce on average more than 1 percent of world production.

All other countries are lumped together as “Rest of World”.
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Figure 4: Correlation of Residuals of Two Largest Producers
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Notes: Figure shows scatter plots of yield residuals (deviations from a quadratic trend) of the two largest

producers of each crop. The correlation coefficients are -0.24 for maize, 0.12 for wheat, 0.05 for rice, and

-0.18 for soybeans.
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Figure 5: Price and Caloric Shocks
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Notes: Top panel displays real annual cost of maize, wheat, rice, and soybeans in 2007 dollars for a 2000

calories per day diet using USDA’s December price series. Overall, prices show a downward trend, and the

recent spike in food prices in small in absolute terms. However, the spike is large in term of relative increase

(threefold increase).

The bottom panel displays log price on the left axis in black and caloric shocks (as percent deviation from

production trend) on the right axis in grey for the years 1961-2007. Production-weighted December prices

of maize, wheat, rice and soybeans are shown as solid black line, while production-weighted futures prices at

delivery (December for maize, November for soybeans, and September for wheat) are shown as dashed line.

Shocks are deviations from country-specific yield trends for the same four commodities.
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Figure 6: U.S. Share of World Production
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Notes: Graph displays the percent of world wide caloric production from maize, wheat, rice and soybeans

that is produced in the United State. Yearly observations are shown as crosses and a locally weighted

regression with a bandwidth of 10 years is added in grey.
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Figure 7: World Growing Area of Crops

Notes: Panels displays the fraction of each grid cell that is used to grow a crop. A fraction greater than one indicates double cropping.
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Figure 8: Contrasting Caloric Shocks: Deviations from Trend versus Weather Induced Resid-
uals
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Notes: Figure shows scatter plots of caloric chocks for four countries. The x-axis shows caloric shocks using

yield deviations from a quadratic time trend. The y-axis uses yield shocks that are obtained from regressing

yields on weather measures. The scatter plots are color coded by the futures price (traded in the previous

year).

33



Figure 9: U.S. Ethanol Production Capacity Over Time and as Share of World Capacity
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Table 1: Countries with Share of World Production Greater than 1 Percent

Country Share Country Share

Wheat Maize
USSR 21.23 United States of America 42.00
China 14.05 China 15.66
United States of America 12.07 Brazil 5.21
India 8.53 USSR 3.52
Russian Federation 6.86 Mexico 3.01
France 5.33 Yugoslav SFR 2.47
Canada 4.81 Argentina 2.35
Turkey 3.48 France 2.32
Australia 3.13 Romania 2.15
Germany 2.89 South Africa 2.01
Ukraine 2.69 India 1.91
Pakistan 2.49 Italy 1.54
Argentina 2.23 Hungary 1.41
Italy 2.06 Indonesia 1.26
United Kingdom 2.01 Canada 1.15
Kazakhstan 1.87 Rest of World 14.07
Iran, Islamic Republic of 1.54
Poland 1.38
Yugoslav SFR 1.29
Romania 1.27
Spain 1.16
Czechoslovakia 1.05
Rest of World 12.12

Rice Soybeans
China 34.44 United States of America 56.73
India 20.64 Brazil 14.43
Indonesia 7.50 China 13.05
Bangladesh 5.48 Argentina 6.62
Thailand 4.27 India 1.63
Vietnam 3.97 Canada 1.04
Japan 3.67 Rest of World 6.49
Myanmar 3.12
Brazil 2.08
Philippines 1.87
Korea, Republic of 1.59
United States of America 1.44
Pakistan 1.07
Rest of World 8.86

Notes: Table reports all countries with an average yearly share of world production (1961-
2007) above one percent for each crop. All other countries are lumped together as ”Rest of
World”.
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Table 2: Descriptive Statistics

Variable Unit Mean Std. Dev. Min Max

Year 1982 12.56 1961 2003
Caloric Production billion people 4.32 1.34 2.08 6.35
Caloric Storage million people 15.9 118 -317 210
Caloric Stock million people 982 339 445 1564
Caloric Shock - Dev. from Linear Trend million people 2.97 104 -226 175
Caloric Shock - Dev. from Quadratic Trend million people 4.67 107 -240 159
Caloric Shock - Weather Inst. Linear Trend million people -0.00 0 -0 0
Caloric Shock - Weather Inst. Quadratic Trend million people 0.00 0 -0 0
Caloric Price - Futures at Delivery US$2007 per year 89.43 42.96 35.25 215.44
Caloric Price - Futures one Year Before US$2007 per year 87.98 37.24 38.62 189.60
Caloric Price - Dec. USDA Prices US$2007 per year 117.29 60.95 36.85 305.76
Log Caloric Supply Log billion people 1.412 0.337 0.734 1.849
Log Caloric Demand Log billion people 4.060 1.261 1.495 5.775
Log Caloric Price - Futures at Delivery Log US$2007 per year 4.385 0.474 3.563 5.373
Log Caloric Price - Futures one Year Before Log US$2007 per year 4.388 0.430 3.654 5.245
Log Caloric Price - Dec. USDA Prices Log US$2007 per year 4.628 0.540 3.607 5.723

Notes: Descriptive Statistics of the 43 annual observations used in the demand/supply equation. Quantities are in the number of
people that could be fed on a 2000 calories a day diet. Prices are the annual cost of a daily diet of 2000 calories in US$2007.
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Table 3: Demand and Supply Elasticities of Calories using Jackknifed Yield Residuals

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Demand

Price pt -5.05e-02∗∗∗ -5.54e-02∗∗∗ -6.41e-02∗∗ -7.97e-02∗∗∗ -6.68e-02∗∗∗ -6.34e-02∗∗∗

(1.90e-02) (1.67e-02) (2.43e-02) (2.15e-02) (2.41e-02) (2.26e-02)
Time Trend 4.26e-02∗∗∗ 4.26e-02∗∗∗ 4.56e-02∗∗∗ 4.77e-02∗∗∗ 4.69e-02∗∗∗ 4.77e-02∗∗∗

(8.32e-04) (8.57e-04) (2.50e-03) (2.81e-03) (3.03e-03) (3.44e-03)
Time Trend2 -4.18e-04∗∗∗ -4.23e-04∗∗∗ -6.12e-04∗∗∗ -7.34e-04∗∗∗ -6.74e-04∗∗∗ -7.07e-04∗∗∗

(2.34e-05) (2.28e-05) (1.53e-04) (1.63e-04) (1.77e-04) (1.93e-04)
Time Trend3 2.93e-06 4.56e-06∗ 3.78e-06 4.23e-06

(2.26e-06) (2.37e-06) (2.57e-06) (2.74e-06)

Supply

E[pt|t−1] 1.17e-01∗∗∗ 1.34e-01∗∗∗ 8.26e-02∗∗∗ 9.51e-02∗∗∗ 9.57e-02∗∗∗ 9.79e-02∗∗∗

(2.86e-02) (2.41e-02) (2.17e-02) (1.89e-02) (2.08e-02) (1.89e-02)
Shock ωt 2.46e-01∗∗∗ 2.62e-01∗∗∗ 2.61e-01∗∗∗ 2.72e-01∗∗∗ 2.71e-01∗∗∗ 2.73e-01∗∗∗

(3.37e-02) (2.94e-02) (2.65e-02) (2.38e-02) (2.56e-02) (2.35e-02)
Time Trend 4.46e-02∗∗∗ 4.46e-02∗∗∗ 5.41e-02∗∗∗ 5.40e-02∗∗∗ 5.27e-02∗∗∗ 5.26e-02∗∗∗

(9.34e-04) (8.74e-04) (2.04e-03) (1.89e-03) (2.32e-03) (2.14e-03)
Time Trend2 -3.54e-04∗∗∗ -3.44e-04∗∗∗ -9.23e-04∗∗∗ -9.11e-04∗∗∗ -8.48e-04∗∗∗ -8.43e-04∗∗∗

(2.66e-05) (2.40e-05) (1.12e-04) (1.04e-04) (1.26e-04) (1.16e-04)
Time Trend3 8.45e-06∗∗∗ 8.37e-06∗∗∗ 7.52e-06∗∗∗ 7.46e-06∗∗∗

(1.68e-06) (1.55e-06) (1.81e-06) (1.68e-06)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Top panel displays the demand and supply elasticity as well as the predicted price increase from an ethanol
mandate that requires 5 percent of world production calories to be diverted for biofuel use (assuming none of the corn
used for biofuel production is recycled as feed stock, otherwise the predicted price increase would scale accordingly).
The bottom panel displays the second stage regressions in more detail. The first stage results are given in Table 4.
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Table 4: First-Stage Results for Demand and Supply Equation

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand: First-Stage Instrumenting Price pt

Shock ωt -1.19e+00∗∗∗ -1.16e+00∗∗∗ -1.12e+00∗∗∗ -9.92e-01∗∗∗ -1.04e+00∗∗∗ -1.07e+00∗∗∗

(2.62e-01) (2.47e-01) (2.93e-01) (2.65e-01) (2.97e-01) (2.57e-01)
Shock ωt−1 -3.99e-01 -3.30e-01

(2.95e-01) (2.02e-01)
Time Trend -8.43e-03 -6.49e-03 4.64e-03 2.03e-02 7.05e-04 2.32e-02

(9.73e-03) (1.01e-02) (2.64e-02) (2.84e-02) (3.22e-02) (3.28e-02)
Time Trend2 -5.49e-04∗∗ -5.88e-04∗∗∗ -1.32e-03 -2.10e-03 -1.08e-03 -2.12e-03

(2.24e-04) (2.28e-04) (1.47e-03) (1.53e-03) (1.72e-03) (1.71e-03)
Time Trend3 1.22e-05 2.32e-05 8.68e-06 2.26e-05

(2.27e-05) (2.33e-05) (2.60e-05) (2.54e-05)

Supply: First-Stage Instrumenting Expected Price E[pt|t−1]
Shock ωt−1 -8.60e-01∗∗∗ -7.52e-01∗∗∗ -9.18e-01∗∗∗ -8.17e-01∗∗∗ -8.33e-01∗∗∗ -8.45e-01∗∗∗

(2.14e-01) (1.91e-01) (2.26e-01) (1.98e-01) (2.20e-01) (1.96e-01)
Shock ωt−2 -3.53e-01 -3.41e-01∗

(2.21e-01) (1.89e-01)
Shock ωt -6.10e-01∗∗∗ -6.35e-01∗∗∗ -6.82e-01∗∗∗ -6.75e-01∗∗∗ -6.39e-01∗∗∗ -6.45e-01∗∗∗

(2.10e-01) (1.97e-01) (2.27e-01) (2.09e-01) (2.20e-01) (1.99e-01)
Time Trend -1.04e-02 -9.64e-03 -3.01e-02 -2.54e-02 -2.14e-02 -2.17e-02

(8.15e-03) (7.64e-03) (2.46e-02) (2.26e-02) (2.77e-02) (2.51e-02)
Time Trend2 -4.39e-04∗∗ -4.57e-04∗∗∗ 6.72e-04 4.25e-04 2.55e-04 2.76e-04

(1.85e-04) (1.73e-04) (1.32e-03) (1.21e-03) (1.43e-03) (1.30e-03)
Time Trend3 -1.69e-05 -1.34e-05 -1.07e-05 -1.11e-05

(1.99e-05) (1.83e-05) (2.10e-05) (1.91e-05)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Table displays the first stage regressions for the results in Table 3.
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Table 5: First-Stage Results separating Maize/Soybeans and Rice/Wheat Shocks

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Demand: First-Stage Instrumenting Price pt

Shock ωt,MS -1.14e+00∗∗ -1.18e+00∗∗∗ -1.18e+00∗∗ -1.01e+00∗∗∗ -1.04e+00∗∗ -1.09e+00∗∗∗

(4.71e-01) (4.03e-01) (4.79e-01) (3.87e-01) (4.83e-01) (3.74e-01)
Shock ωt,RW -1.22e+00∗∗∗ -1.21e+00∗∗∗ -1.08e+00∗∗ -1.15e+00∗∗∗ -9.78e-01∗∗ -1.18e+00∗∗∗

(3.51e-01) (3.10e-01) (4.41e-01) (3.59e-01) (4.58e-01) (3.54e-01)
Shock ωt−1,MS 1.95e-01 -5.16e-02

(4.90e-01) (3.38e-01)
Shock ωt−1,RW -9.29e-01∗∗ -6.74e-01∗∗

(4.35e-01) (3.34e-01)
Time Trend -8.75e-03 -6.82e-03 6.87e-03 1.25e-02 -2.52e-02 -3.95e-03

(1.02e-02) (1.03e-02) (3.11e-02) (3.17e-02) (4.25e-02) (3.96e-02)
Time Trend2 -5.41e-04∗∗ -5.79e-04∗∗ -1.44e-03 -1.69e-03 1.98e-04 -7.55e-04

(2.37e-04) (2.34e-04) (1.71e-03) (1.69e-03) (2.23e-03) (2.04e-03)
Time Trend3 1.38e-05 1.72e-05 -8.88e-06 3.61e-06

(2.60e-05) (2.54e-05) (3.26e-05) (2.97e-05)
F-stat 0.0146 0.0195 1.3904
χ2-stat 0.0039 0.0627 1.5022
p-value 0.9040 0.9505 0.8892 0.8023 0.2557 0.4719

Supply: First-Stage Instrumenting Expected Price E[pt|t−1]
Shock ωt−1,MS -6.88e-01∗ -6.25e-01∗∗ -4.91e-01 -5.43e-01∗ -5.03e-01 -5.43e-01∗

(3.67e-01) (3.15e-01) (3.66e-01) (3.03e-01) (3.64e-01) (3.11e-01)
Shock ωt−1,RW -8.56e-01∗∗∗ -7.00e-01∗∗∗ -1.15e+00∗∗∗ -9.46e-01∗∗∗ -1.01e+00∗∗∗ -9.97e-01∗∗∗

(3.00e-01) (2.59e-01) (3.25e-01) (2.76e-01) (3.37e-01) (2.88e-01)
Shock ωt−2,MS 7.62e-03 7.44e-02

(3.61e-01) (2.88e-01)
Shock ωt−2,RW -5.75e-01∗ -6.07e-01∗∗

(3.28e-01) (2.64e-01)
Shock ωt,MS -2.63e-01 -2.64e-01 -9.26e-02 -9.33e-02 -1.28e-01 -1.38e-01

(3.64e-01) (3.32e-01) (3.61e-01) (3.20e-01) (3.50e-01) (3.01e-01)
Shock ωt,RW -8.22e-01∗∗∗ -8.89e-01∗∗∗ -1.20e+00∗∗∗ -1.23e+00∗∗∗ -1.03e+00∗∗∗ -1.06e+00∗∗∗

(2.94e-01) (2.66e-01) (3.42e-01) (3.03e-01) (3.45e-01) (2.96e-01)
Time Trend -1.31e-02 -1.22e-02 -7.37e-02∗∗ -6.49e-02∗∗ -7.10e-02∗ -7.35e-02∗∗

(8.75e-03) (7.94e-03) (3.18e-02) (2.78e-02) (3.77e-02) (3.22e-02)
Time Trend2 -3.73e-04∗ -3.95e-04∗∗ 2.90e-03∗ 2.45e-03∗ 2.72e-03 2.85e-03∗

(2.00e-04) (1.81e-04) (1.66e-03) (1.46e-03) (1.90e-03) (1.63e-03)
Time Trend3 -4.82e-05∗ -4.21e-05∗∗ -4.48e-05 -4.66e-05∗∗

(2.43e-05) (2.14e-05) (2.72e-05) (2.33e-05)
F-stat 0.1179 1.5607 0.8349
χ2-stat 0.0326 0.8421 2.9795
p-value 0.7323 0.8568 0.2158 0.3588 0.4385 0.2254
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Table displays first stage regressions results when we separate caloric shocks from maize and soybeans
(subscript MS) and rice and wheat (subscript RW). Table includes Wald tests in the last three rows of each panel
to check whether coefficients for maize and soybeans are different from coefficients for rice and wheat in the first
four rows of each panel. None of the p-values is below 0.1, suggesting that pooling the four crops is adequate.
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Table 6: Sensitivity Checks: Elasticities Estimated using Jackknifed Yield Residuals

Model

2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Panel A: Baseline

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Panel B: Caloric Shock Derived using Linear Time Trend

Demand Elasticity -0.0492∗∗ -0.0544∗∗∗ -0.0590∗∗ -0.0715∗∗∗ -0.0616∗∗ -0.0575∗∗∗

(s.e.) (0.0192) (0.0169) (0.0234) (0.0211) (0.0234) (0.0220)
Supply Elasticity 0.1058∗∗∗ 0.1206∗∗∗ 0.0868∗∗∗ 0.1010∗∗∗ 0.1008∗∗∗ 0.1038∗∗∗

(s.e.) (0.0261) (0.0219) (0.0230) (0.0194) (0.0229) (0.0206)
Price Increase 33.91 29.20 36.43 29.70 32.24 32.21

95% Conf. Int. (22.88,54.59) (22.32,39.68) (23.80,61.39) (22.33,41.26) (22.07,50.88) (22.67,48.94)

Panel C: Caloric Shock Derived using Quadratic Area Trend

Demand Elasticity -0.0489∗∗ -0.0528∗∗∗ -0.0614∗∗ -0.0740∗∗∗ -0.0639∗∗∗ -0.0595∗∗∗

(s.e.) (0.0185) (0.0165) (0.0233) (0.0211) (0.0233) (0.0216)
Supply Elasticity 0.1171∗∗∗ 0.1318∗∗∗ 0.0856∗∗∗ 0.0970∗∗∗ 0.0988∗∗∗ 0.1013∗∗∗

(s.e.) (0.0274) (0.0230) (0.0206) (0.0178) (0.0199) (0.0180)
Price Increase 31.51 27.66 35.85 29.95 31.96 32.15

95% Conf. Int. (21.66,49.45) (21.23,37.39) (24.04,58.22) (22.59,41.46) (22.44,48.72) (23.15,47.34)

Panel D: Rescaled Caloric Conversion Factors to Equalize Average Prices

Demand Elasticity -0.0629∗∗∗ -0.0578∗∗∗ -0.0803∗∗∗ -0.0794∗∗∗ -0.0662∗∗∗ -0.0655∗∗∗

(s.e.) (0.0184) (0.0151) (0.0237) (0.0167) (0.0200) (0.0199)
Supply Elasticity 0.1247∗∗∗ 0.1347∗∗∗ 0.0716∗∗∗ 0.0783∗∗∗ 0.0808∗∗∗ 0.0801∗∗∗

(s.e.) (0.0362) (0.0289) (0.0165) (0.0142) (0.0154) (0.0139)
Price Increase 28.15 26.64 34.27 32.18 35.13 35.38

95% Conf. Int. (18.71,46.27) (19.92,37.27) (23.97,52.50) (25.63,41.52) (25.44,51.32) (25.87,51.01)

Panel E: Caloric Shock not Divided by Inventory

Demand Elasticity -0.0439∗∗ -0.0464∗∗∗ -0.0555∗∗ -0.0654∗∗∗ -0.0564∗∗ -0.0535∗∗

(s.e.) (0.0180) (0.0158) (0.0225) (0.0198) (0.0218) (0.0205)
Supply Elasticity 0.1219∗∗∗ 0.1376∗∗∗ 0.0870∗∗∗ 0.1001∗∗∗ 0.0991∗∗∗ 0.1031∗∗∗

(s.e.) (0.0285) (0.0230) (0.0208) (0.0172) (0.0193) (0.0169)
Price Increase 31.61 27.70 37.01 30.87 33.43 32.89

95% Conf. Int. (21.55,50.13) (21.46,36.99) (24.67,60.68) (23.65,41.84) (23.51,50.83) (24.11,47.24)

Panel F: Futures Price for Maize and Soybeans Traded in March

Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0642∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1234∗∗∗ 0.1455∗∗∗ 0.0858∗∗∗ 0.1009∗∗∗ 0.0981∗∗∗ 0.1001∗∗∗

(s.e.) (0.0323) (0.0268) (0.0232) (0.0199) (0.0218) (0.0197)
Price Increase 30.34 25.45 35.38 28.36 31.68 31.60

95% Conf. Int. (20.20,49.76) (19.40,34.71) (23.18,59.42) (21.35,39.31) (21.87,49.45) (22.33,47.74)
Observations 42 42 42 42 41 41
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Sensitivity checks of results from Table 3 to various modeling assumptions. Panel A displays the baseline
results from Table 3 for comparison.
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Table 7: Sensitivity Checks: Elasticities Estimated using Yield Shocks Attributable to Observed Weather Shocks

Model
2SLS 3SLS 2SLS 3SLS 2SLS 3SLS

Panel A: Baseline
Demand Elasticity -0.0505∗∗∗ -0.0554∗∗∗ -0.0641∗∗ -0.0797∗∗∗ -0.0668∗∗∗ -0.0634∗∗∗

(s.e.) (0.0190) (0.0167) (0.0243) (0.0215) (0.0241) (0.0226)
Supply Elasticity 0.1165∗∗∗ 0.1337∗∗∗ 0.0826∗∗∗ 0.0951∗∗∗ 0.0957∗∗∗ 0.0979∗∗∗

(s.e.) (0.0286) (0.0241) (0.0217) (0.0189) (0.0208) (0.0189)
Price Increase 31.41 27.01 36.10 29.31 32.14 32.16

95% Conf. Int. (21.32,50.14) (20.69,36.62) (23.75,60.31) (22.01,40.80) (22.23,50.00) (22.79,48.40)

Panel B: Production Shock Derived using Observed Weather
Demand Elasticity -0.0315 -0.0591 -0.0324 -0.0682 -0.0404 -0.0569

(s.e.) (0.1144) (0.0494) (0.1197) (0.0539) (0.0621) (0.0347)
Supply Elasticity -1.8247 0.1532∗∗∗ 1.6023 0.1555∗∗∗ -0.2373 -0.4045

(s.e.) (48.0201) (0.0388) (32.5143) (0.0461) (0.4016) (0.3542)
Price Increase 0.02 26.98 -0.02 25.39 3.00 -4.77

95% Conf. Int. (-1.65,1.66) (14.88,55.91) (-2.43,2.47) (13.75,58.30) (-177.35,170.22) (-146.83,131.75)
Observations 41 41 41 41 40 40
Time Trend I 2 2 3 3 3 3
Shock Lags K 1 1 1 1 2 2

Notes: Sensitivity checks of results from Table 3 to modeling yield shocks using observed weather outcomes. Caloric
shocks in panel B are derived as follows: For the United States we fit a model that uses degree days and a quadratic
in total precipitation following Schlenker and Roberts (2009), while rice and wheat are modeled using a quadratic in
average temperature and total precipitation during the growing season. We estimate a quadratic in average tempera-
ture and total precipitation for a panel of all other countries that produces more than 1 percent of a particular crop.
All other countries are lumped together as ”Rest of World”, where the weather variables are the area-weighted average
of all countries. All regressions include a quadratic time trend.
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Table 8: Replication of Other Approaches: Demand and Supply of Calories

SUR - Price Not Instrumented Demand Instrumented / Supply Not Instrumented
(1) (2) (3) (4) (5) (6)

Demand Elasticity -0.0173∗ -0.0187∗ -0.0489∗∗∗ -0.0489∗∗∗ -0.0489∗∗∗ -0.0655∗∗∗

(s.e.) (0.0094) (0.0098) (0.0180) (0.0180) (0.0180) (0.0243)
Supply Elasticity 0.0159 0.0136 0.0226 0.0245 0.0238 0.0226

(s.e.) (0.0182) (0.0162) (0.0239) (0.0251) (0.0274) (0.0239)
Price Increase 197.31 191.37 146.21 124.40 75.41 80.69

95% Conf. Int. (-694.47,1147.67) (-646.87,1145.45) (36.94,299.62) (35.79,294.97) (34.00,343.52) (31.62,209.22)
Time Trend I 2 3 2 2 2 3
Shocks Lags K n.A. n.A. 1 1 1 2
Supply Lags n.A. n.A. 0 1 2 0

Notes: The first two columns do not instrument price (which is arguably endogenous) and simply use the observed price in
a year in both the supply and demand equation. The last four columns follow the approach of Nerlove (1958) and do not
instrument futures prices in the supply equation. Following the literature, lagged supply quantities are included in some
regressions.

42



Table 9: Acreage Changes in Response to Past Caloric Shocks and Instrumented Price

(1) (2) (3) (4) (5) (6)

Panel A: World Growing Area
Shock ωt−1 -0.0599∗∗∗ -0.0620∗∗∗

(0.0147) (0.0186)
E[pt|t−1] 0.0725∗∗∗ 0.0634∗∗∗ 0.0756∗∗∗ 0.0750∗∗∗

(0.0146) (0.0148) (0.0130) (0.0140)

Panel B: Growing Area of United States
Shock ωt−1 -0.2642∗∗∗ -0.2512∗∗∗

(0.0654) (0.0826)
E[pt|t−1] 0.3200∗∗∗ 0.2569∗∗∗ 0.3350∗∗∗ 0.2967∗∗∗

(0.0562) (0.0566) (0.0504) (0.0527)

Panel C: Growing Area of Brazil
Shock ωt−1 -0.3111∗∗∗ -0.2304∗∗

(0.0731) (0.0897)
E[pt|t−1] 0.3768∗∗∗ 0.2356∗∗ 0.3681∗∗∗ 0.2233∗∗

(0.1096) (0.0947) (0.0986) (0.0877)

Panel D: Growing Area of China
Shock ωt−1 -0.0256 -0.0424

(0.0272) (0.0340)
E[pt|t−1] 0.0311 0.0434 0.0371 0.0713∗∗

(0.0299) (0.0311) (0.0265) (0.0277)

Panel E: Growing Area of India
Shock ωt−1 -0.0124 -0.0049

(0.0262) (0.0331)
E[pt|t−1] 0.0150 0.0050 0.0259 0.0065

(0.0296) (0.0315) (0.0266) (0.0287)

Panel F: Growing Area of Thailand
Shock ωt−1 -0.1078∗ -0.1636∗∗

(0.0553) (0.0682)
E[pt|t−1] 0.1306∗ 0.1673∗∗ 0.0979∗ 0.1020

(0.0672) (0.0730) (0.0591) (0.0640)

Observation 42 42 42 42 41 41
Time Trend I 2 3 2 3 2 3
Shock Lags K n.a. n.a. 1 1 2 2

Notes: First two columns show regression results of log total world growing area (for maize, wheat,
rice, and soybeans) on lagged weather shocks using various time trends as controls. The last four
columns regress log total area on instrumented lagged prices. Columns (3) and (4) use up to one
lag of the weather shock as the instrument, while columns (5) and (6) use up to two lags.
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Table 10: Calories per Acre in 2007

Country Maize Wheat Rice Soybeans

Argentina 16.96 5.82 8.59
Australia 3.61
Bangladesh 8.16
Brazil 8.91 8.10 8.83
Canada 20.01 5.37 8.39
China 13.29 9.89 13.6 6.09
France 22.11 15.60
Germany 16.93
Hungary 14.14
India 5.16 6.24 6.82 3.44
Indonesia 8.74 9.64
Iran 5.04
Italy 22.93 7.58
Japan 13.33
Kazakhstan 2.72
Korea 13.22
Mexico 7.30
Myanmar 7.77
Pakistan 5.64 6.26
Philippines 7.44
Poland 7.92
Rest of World 6.27 6.22 6.42 5.78
Romania 7.13 4.98
Russian Federation 4.60
South Africa 7.43
Spain 6.31
Thailand 6.01
Turkey 4.71
Ukraine 5.63
United Kingdom 17.92
United States of America 23.04 6.00 16.21 9.12
Vietnam 10.74

Notes: Table gives the number of million calories per hectare using the pre-
dicted yield (along the trend) in 2007.
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