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1. Introduction 

Farm and food policies affect crop acres, asset management, intensive and extensive 

margin decisions, and risk management choices in agricultural production. For example, 

in 1991, less than 25% of cropland (82 million acres) was covered by a Federally subsi-

dized crop insurance contract, with $11.2 billion in total liability, $740 million in insur-

ance premiums, premium subsidies of 25% ($190 million) of gross farm premiums, and 

total indemnity payments of $955 million. Relative to premiums paid by farmers ($550 

million), for each $1.00 in premiums paid by the typical insured farmer, $1.75 in indem-

nity payments were received.  

Even with this relatively profitable insurance program, farmer participation rates re-

mained quite low. This outcome is likely due to the race to the bottom problem in a pool-

ing equilibrum (LaFrance, Shimshack, and Wu 2000, 2001, 2002, 2004). However, Con-

gress responded to the appearance of an incomplete insurance market with increased sub-

sidies and many new forms of insurance.  

The 1996 Federal Agricultural Improvement and Reform Act and the amendments to 

the 1938 Federal Crop Insurance Act that are commonly known as the Agricultural Risk 

Protection Act of 2000 mandated higher subsidy rates, the development and marketing of 

new insurance products for virtually every crop and livestock product produced in the 

U.S., and substantial subsidies for crop insurance marketing firms and large private rein-

surance companies. 

This change in farm policy greatly expanded the Federal crop insurance program. In 

2003, the Federal Crop Insurance Corporation (FCIC) provided insurance products for 
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more than 100 crops on 217 million acres (2/3 of all cropland). The total insurance liabil-

ity was $40.6 billion, with $3.4 billion in insurance premiums, subsidies of almost 60% 

of gross premiums ($2.0 billion), and total indemnity payments of $3.2 billion. The cur-

rent program includes subsidy payments to private companies marketing Federal crop 

insurance equal to 24.5% of gross premiums for administration and oversight (A&O), and 

to private reinsurance companies equal to 13.6% of gross premiums. Reinsurance com-

panies also have the right to sell up to 50% of their contracts back to the FCIC (that is, to 

the taxpayer) at cost. The FCIC’s Risk Management Agency’s (RMA) book of business 

shows that 20% of the insured farms account for nearly 80% of indemnity payments. This 

suggests substantial adverse selection, as well as moral hazard, since the majority of the 

Federally subsidized crop insurance products calculate premiums based on deviations 

from county-level yield trends. That is to say, FCIC insurance products are based on a 

pooling equilibrium established at the county level, and in some cases larger areas known 

as risk regions.  

The net effect is that for each $1.00 in premiums actually paid by farmers they re-

ceive an average of $2.40 in indemnity payments, insurance marketing firms receive 

$0.40 in A&O subsidies, and reinsurance companies make in the neighborhood of $0.45 

in profit due to the combined direct subsidies on premiums and their reinsurance rights 

with the FCIC, which allow them to cream, or high grade, the insurance pool. 

In 2004 the RMA issued an RFP to develop subsidized pasture and range insurance 

for 440 million acres of private, public, and Native American pasture and rangeland in 

the country. Many agricultural economists at land grant universities across the country 



 4 

actively consult with the RMA and private insurance companies to develop new and ex-

pand existing Federally subsidized crop insurance products.  

Although this is only one example of the ubiquitous nature of Federal intervention in 

U.S. agriculture, there is a large literature on the impacts of subsidized crop insurance on 

variable input use and the intensive margin (Nelson and Loehman 1987, Chambers 1989, 

and Quiggin 1992, Horowitz and Lichtenberg 1994, Smith and Goodwin 1996, and Bab-

cock and Hennessy 1996). The effects of subsidized crop insurance programs on the ex-

tensive margin also has been the subject of considerable analysis (Gardner and Kramer 

1986, Goodwin, Smith and Hammond 1999, Keeton, Skees and Long 1999, and Young, 

Schnepf, Skees, and Lin 1999, and LaFrance, Shimshack, and Wu 2000, 2001, 2002, 

2004), all of which conclude that subsidized crop insurance results in additional of mar-

ginal crop acres. Williams (1988), Turvey (1992), Wu (1999), and Soule, Nimon, and 

Mullarkey (2000) examine the impacts of subsidized crop insurance on choices of crop 

mixes and acreage decisions. Empirical results in this component of the literature suggest 

that economically marginal land also is environmentally marginal. These results all sug-

gest that subsidized crop insurance tends to increase environmental degradation. Even so, 

very little of the previous work in this area uses structural models, or takes into account 

the dynamic nature of agricultural decision making under risk. 

To better understand these and many other longstanding issues in U.S. agricultural 

policy, this paper develops a comprehensive structural econometric model of variable in-

put use, crop mix and acreage choices, investment and asset management decisions, and 

consumption, savings and wealth accumulation in a stochastic dynamic programming 
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model of farm-level decision making over time. This model develops and establishes 

clear and intuitively appealing relationships between dynamic life-cycle consumption 

theory, the theory of the competitive firm subject to risk, and modern finance theory. 

We present, discuss, and apply a new class of variable input demand systems in a 

multi-product production setting. All of the models in this class can be estimated with 

observable data, are exactly aggregable, are consistent with economic theory for any von 

Neumann-Morgenstern expected utility function, and can be used to nest and test exact 

aggregation, economic regularity, functional form, and flexibility. Implications of 

monotonicity, concavity in prices, and convexity in outputs and quasi-fixed inputs are 

developed for a specific subset of this class of models. We then apply this to 13 variable 

inputs in U.S. agriculture over the sample period 1960-1999.  

The results obtained from this empirical variable cost model are used to help develop 

a structural model of the dynamic decision problems faced by a generic agricultural pro-

ducer. In this life-cycle model of agricultural decisions under risk, farmers create income 

and wealth through savings, investment in risky financial assets, own-labor choices both 

on- and off-farm, and agricultural production and investment activities. This disciplines 

the economic theory of agricultural production over time and under risk, and helps to bet-

ter identify risk preferences and other model parameters. 

2. The Production Model and Two Results 

Four longstanding questions in economics, econometrics, and agricultural economics 

are the choice of functional form, the degree of flexibility, the conditions required for and 

regions of economic regularity, consistency with aggregation from micro- to macro-level 
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data, and how best to handle simultaneous equations bias, errors in variables, and latent 

variables in a structural econometric models. In this paper, we attempt to deal with all of 

these issues in a coherent framework for the analysis of a life-cycle model of agricultural 

production, investment, consumption, and savings decisions. 

Analysis of multi-product behavior of firms is common in economics (Färe and Pri-

mont 1995; Just, Zilberman, and Hochman 1988; Shumway 1983, Lopez 1983; Akridge 

and Hertel 1986). A large literature on functional structure and duality guides empirical 

formulations and testing based on concepts of non-jointness and separability (Lau 1972, 

1978; Blackorby, Primont and Russell 1977, 1978; Chambers 1984). Non-joint produc-

tion processes reduce to additivity in costs (Hall 1973; Kohli 1983). Separability in a par-

tition of inputs or outputs often results in separability in a similar partition of prices 

(Blackorby, Primont and Russell 1977; Lau 1978).  

The neoclassical model of conditional demands for variable inputs with joint produc-

tion, quasi-fixed inputs, and production and output price risk is 

 { }( , , ) arg min : ( , , ) 0 ,F= ≤x w y z w x x y zT  (1) 

where xn
+∈ ⊆x \X  is an nx–vector of variable inputs, xn

+∈ ⊆w \W  is an nx–vector of 

variable input prices, yn
+∈ ⊆y \Y  is an ny–vector of planned outputs, kn

+∈ ⊆z \Z  is an 

nz–vector of quasi-fixed inputs.1 :F × × → \X Y Z  is the joint production transforma-

                                                           
1 In this section, we use yn

+∈y \  to denote the ny–vector of planned/expected outputs to simplify notation. 
In later sections, we modify this notation to ,=Y a yi  where a is the ny–vector of acres planted to crops, y  
now is the ny–vector of expected yields, and i  is the Hadamard product. We also define z explicitly below. 
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tion function, which is the boundary of a closed and convex production possibilities set 

that is characterized by free disposal in inputs and outputs. Let the variable cost function 

be denoted by ( , , ) ( , , ).c ≡w y z w x w y zT  We assume throughout that the production proc-

ess is subject to supply shocks of the general form 

 [ ]( , , ), ( , , ) | , , .E= + =y y h y z ε h y z ε x y z 0  (2) 

In either a static or a dynamic setting, it is a simple matter to show that (1) is implied by 

(2) and the expected utility hypothesis for all von Newman-Morgenstern preferences 

(Pope and Chavas 1994; Ball, et al., 2010).  

Planned output is a vector of latent, unobservable variables in production with supply 

risk. Hence, to estimate the demand system in (1) directly, one must either identify and 

estimate the expectations formation process or address the errors in variables problem 

associated with using y in place of y  in the demand equations (Pope and Chavas 1994). 

One branch of the literature advocates specifying an ex ante cost function where planned 

output is replaced by cost, which is observable when the variable inputs are committed to 

the production process (Pope and Chavas 1994; Pope and Just 1998; Chambers and 

Quiggin 2000; Chavas 2008; Ball, et al. 2010; LaFrance and Pope 2010). In a joint pro-

duction process, this requires making assumptions such that the input demands are func-

tions of input prices, the levels of quasi-fixed inputs, and the variable cost of production, 

 ( , , ) ( , , ( , , )).c=x w y z x w z w y z�  (3) 

This approach makes particular sense in agriculture where outputs and output prices are 

observed ex post. The main result of LaFrance and Pope (2010) on this question is as fol-

lows (a proof of this result is presented in Appendix A of this paper). 
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Proposition 1: The following functional structures are equivalent: 

 ( , , ) ( , ( , , ), );c≡x w y z x w w y z z�  (4) 

 ( , , ) ( , , ( , ));c c θ≡w y z w z y z�  (5) 

 ( , , ) ( , , ( , )).F F θ≡x y z x z y z�  (6) 

In other words, outputs must be weakly separable from the variable input prices in the 

variable cost function. This, in turn, is equivalent to outputs being weakly separable from 

the variable inputs in the joint production transformation function. 

This is a tight result – separability is both necessary and sufficient for the variable in-

puts to be estimable in ex ante form. Hereafter, we will call any such demand model an 

ex ante joint production system. 

A second common issue in the empirical analysis of agricultural supply decisions is 

that some level of aggregation is virtually unavoidable. Micro-level data needed to study 

input use, acreage allocations, and asset management choices at the farm level does not 

exist. Aggregation from micro-level decision makers to macro-level data has been studied 

extensively in consumer theory.2 This has received less attention in production economics 

(Chambers and Pope 1991, 1994; Ball et, al., 2010; LaFrance and Pope 2008, 2010).  

Recently, LaFrance and Pope (2009) obtained the indirect preferences for all exactly 

                                                           
2 An important subset of the literature on this topic includes: Gorman (1953, 1961, 1981); Muellbauer 
(1975, 1976); Howe, Pollak and Wales (1979); Deaton and Muellbauer (1980); Jorgenson, Lau and Stoker 
(1980, 1982); Russell (1983, 1996); Jorgenson and Slesnick (1984, 1987); Lewbel (1987, 1988; 1989, 
1990, 1991, 2003); Jorgenson (1990); Diewert and Wales (1987, 1988); Blundell (1988);; van Daal and 
Merkies (1989); Jerison (1993); Russell and Farris (1993, 1998); and Banks, Blundell, and Lewbel (1997), 
LaFrance, Beatty, Pope and Agnew (2002), LaFrance (2004), LaFrance, Beatty and Pope (2006), and La-
France and Pope (2009). The focus in the literature has been interior solutions and smooth demand equa-
tions. We remain faithful to this approach throughout the present paper. 
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aggregable, full rank systems of consumer demand equations. Their result extends di-

rectly to production in the following way. Let {1,2,3,4}K ∈  and define the smooth real-

valued function, :ω × →\ \ \ , by 

 ( ) 2

0

, if 1, 2,  or 3 and ( ) 0,
( ( ), )

( ) ( , ) ,  if 3, 4,  and ( ) 0,

K K s

s s ds K s
η

θ λ
ω η θ

θ λ ω θ λ

′= = =⎧
⎪= ⎨

′⎡ ⎤+ + = ≠⎪ ⎣ ⎦⎩ ∫
ww  (7) 

subject to (0, )ω θ θ=  and 2(0, ) (0)sω θ λ θ∂ ∂ = + , where :η → \W  and :λ →\ \  are 

smooth, real-valued functions, and η  is 0° homogeneous. A class of full rank and exactly 

aggregable ex ante production systems can be characterized as follows.3 

Proposition 2: Let :π ++→ \W , ,π ∞∈C  be strictly positive valued, increasing, 

concave,  and 1° homogeneous; let : ,η +→ \W  ,η ∞∈C   be positive valued and 

0° homogeneous; let , { , , },a b a bα β γ δ ι, , : → = + ∈^ \W  , ,α β γ δ ∞, , ∈C   be 0° 

homogeneous and satisfy 1αδ βγ− ≡ , 1ι = − ; and let :f ++ →\ ^ , ,f ∞∈C  

and 0.f ′ ≠  Then the variable cost function for any full rank, exactly aggregable, 

ex ante joint production system is a special case of 

 ( , , ) ( ) ( ( ), ( , )) ( ) .
( ) ( ) ( ( ), ( , )) ( )

cf α ω η θ β
π γ ω η θ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

w y z w w y z w
w w w y z w

 (8) 

LaFrance and Pope (2009) present a complete proof of necessity in the case of con-

                                                           
3 This result is consistent with exact aggregation as defined by Gorman (1981). One part of our ongoing 
work is to extend this class to Lau’s (1982) definition of exact aggregation, generalizing the left-hand-side 
of (8) to ( )( , , ) ,f c πw y z z , wherein cost and quasi-fixed inputs vary across individual economic agents. 
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sumer choice theory. Their proof applies to the current problem with only minor changes 

in notation. Sufficiency is shown here by considering the structure of the input demands 

generated by (8). This is accomplished simply enough by differentiating with respect to w 

and applying Shephard’s lemma. To make the notation as compact as possible, let a bold 

subscript w denote a vector of partial derivatives with respect to the variable input prices 

and suppress the arguments of the functions { , , , , , }α β γ δ η π  to yield (after a large 

amount of straightforward but tedious algebra, which is presented in Appendix B): 

 [ ]

2 2

2
2 2

1( )

2( )

( ) .

c
f

f
f

f
f

π π αβ βα α λ β η
π

αδ δα γβ βγ αγλ βδ η

γδ δγ γ λ δ η

⎧
= + − + +⎨ ′⎩

− − + − + +
′

⎫
⎡ ⎤+ − + + ⎬⎣ ⎦ ′ ⎭

w
w w w

w w w w w

w w w

x

 (9) 

Thus, (8) generates input demands that have the finitely additive and multiplicatively 

separable structure of any full rank, exactly aggregable system (Gorman 1981; Lau 1982; 

Lewbel 1989). Note that there are potentially up to four linearly independent variable cost 

terms on the right with four associated linearly independent vectors of input price func-

tions. Hence, any system generated by (8) will have rank up to, but no greater than four, 

the highest possible rank (Lewbel 1987, 1990, 1991; LaFrance and Pope 2009).  

A third issue when estimating a system of variable input demand equations such as 

(9) is the fact that quasi-fixed inputs, planned outputs, variable input prices, and total 

variable cost all are jointly determined with the input demands. Consistent estimation un-

der these conditions is addressed in the empirical application below. 
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3. The Econometric Cost Model, Data, and Estimates 

Previous work at both state and national levels of aggregation with our data set strongly 

suggests that full rank 3 seriously over-parameterizes the structural model for this data. 

As a result, we restrict attention here to a rank two model. In this part of the paper, we 

analyze the conditional demands for 13 variable inputs in U.S. agriculture: pesticides and 

herbicides; fertilizer; fuel and natural gas; electricity; purchased feed; purchased seed; 

purchased livestock; machinery repairs; building repairs; custom machinery services; 

veterinary services; other materials; and labor. The specification of the variable cost func-

tion normalized by the farm wage rate is, 

 
10 1 20 2( , , , , )

2 1 ( , , , ),

t t t t t t t t t t

t t t t t t t

c A K A K

A K

α α

θ

= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ + + ×

w a Y w w

w Bw w a Y

α α

γ

� � �

� � �

T T

T T

 (10) 

where ,[ ]t t t tA K=z a T  tA  is farmland, tK  is the value of farm capital, 1 2[ ]
yt t t n ta a a=a " T  

is the ny–vector of acres planted to crops, 0 ,t t tA a= + aι T  with 0ta  denoting farmland that 

is not devoted to crop production, 1 1[ ]
y yt t t n t n ta y a y=Y " T  is the ny–vector of planned crop 

production, with each element defined as the product of acres planted to the crop times 

the expected yield per acre, and 1 1[ , , ]
x x xt t n t n t n tw w w w−=w� " T  is the ( 1)xn − –vector of 

variable input prices except the farm wage normalized by .
xn tw  

We treat the th
xn  input, labor, asymmetrically with respect to the other inputs both in 

the structural and stochastic parts of the econometric model. To conserve and simplify 

notation from this point forward, we drop the ~ over the first nx–1 input prices, absorb the 
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normalization by 
xnw  into the notation for variable cost and the nx–1 first input prices, 

and define 1.xN n= −  

We assume constant returns to scale, so that ( , , , )t t t tA Kθ a Y  is 1° homogeneous. De-

fine 1 10 1( ) ,t tα α= +w wα T  2 20 2( ) ,t tα α= +w wα T  and ( ) 2 1t t t tβ = + +w w Bw wγT T . The 

necessary and sufficient conditions for the variable cost function to be increasing and 

concave in the variable input prices throughout an open set containing the data points are 

as follows (see Appendix C for a complete derivation of the cost function and θ ): 

Monotonicity in w: 

1 2

1 2
1 2

( , , , , ) ( )
( )

( ) ( ) ( ) ;
2 1

t t t t t
t t t

t

t t t t t
t t t

t t t

c A K A K

c A KA K

θ
β

α α

∂
= + + +

∂

⎡ ⎤− −
= + + + ≥⎢ ⎥+ +⎣ ⎦

w a Y Bw
w w

w w Bw
w Bw w

0

α α γ

α α γ
γT T

 (11) 

Concavity in w: 

 

2

2

1 2

( , , , , ) ( )( )
( ) ( )

( , , , , ) ( ) ( )
2 1

( )( ) ,
( 2 1)

t t t t t

t t

t t t t t t t t t

t t t

t t

t t t

c A K

c A K A K

θ θ
β β

α α

∂
= − + +

∂ ∂

⎡ ⎤− −
= ×⎢ ⎥+ +⎣ ⎦

⎡ ⎤+ +
−⎢ ⎥+ +⎣ ⎦

w a Y B Bw Bw
ww w w

w a Y w w
w Bw w

Bw BwB
w Bw w

γ γ

γ

γ γ
γ

T

T

T T

T

T T

 (12) 

symmetric, negative semi-definite. Setting = +B LL γγT T , where L is a (lower or upper) 

triangular matrix with nonzero main diagonal elements implies 

 
1 1 1 1

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ +
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B L L LL0

0

γ γ γγ γ

γ γ γ

T T T T

T T T T
 (13) 
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is positive definite. It follows that ( )( )
( 2 1)t t t

⎡ ⎤+ +
−⎢ ⎥+ +⎣ ⎦

Bw BwB
w Bw w

γ γ
γ

T

T T
 is positive semri-definite 

and that  

 11 2 1 0 .
1 1

x
t n

t t t t t
−

+

⎡ ⎤ ⎡ ⎤
⎡ ⎤ = + + > ∀ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B w
w w Bw w w

γ
γ

γ
\T T T

T
 (14) 

Given this, the variable cost function is concave in w if and only if 

 0 1 2 2( , , , , ) ( ,t t t t t t t t t tc A K A Kα α⎡ ⎤ ⎡ ⎤< + + +⎣ ⎦ ⎣ ⎦w a Y w wα α� � �T T  (15) 

(LaFrance, Beatty, and Pope 2006). Hence, we impose = +B LL γγT T  during estimation 

and check the monotonicity conditions (11) at all data points once the model is estimated, 

and find that they are satisfied. We develop the specification for ( , , , )t t t tA Kθ a Y  in the 

section on life-cycle consumption and investment decisions and Appendix C. 

Applying Shephard’s Lemma to (10) and rearranging terms then gives the empirical 

variable input demand equations in normalized expenditures per dollar of capital as  

 1 2
1 2

( ) ( )( ) ( ) ( ) ,
2 1

t t t t t t t
t t t t

t t t t

A c K A K
K

α α⎡ ⎤⎛ ⎞− −
= + + + +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

w we W Bw u
w Bw w

α α γ
γT T

 (16) 

where [ ]t itw=W diag  is the diagonal matrix with ,i tw  as the ith main diagonal element and 

1, 1, 1, 1,[ ]
x xt t t n t n tw x w x− −=e " T  is the ( 1)xn − -vector of normalized expenditures per dollar 

of capital on all inputs except labor, and we follow standard practice in the empirical 

analysis of demand systems and add a vector of random errors to the right-hand-side to 

obtain the empirical model. We assume that the errors terms for the 12 equations esti-

mated follow to an unrestricted AR(1) process, 
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 1 , . . . ( , ), 1, , .t t t t i i d t T−= + =u Ru 0ε ε Σ "  (17) 

As noted above, we apply this model to annual aggregate data on 13 variable inputs in 

U.S. agriculture (pesticides and herbicides, fertilizer, fuel and natural gas, electricity, 

purchased feed, purchased seed, purchased livestock, machinery repairs, building repairs, 

custom machinery services, veterinary services, other materials, and farm labor). The 

sample period is 1960-1999. This data was compiled by the United States Department of 

Agriculture’s (USDA), Economic Research Service (ERS) and is described in detail in 

Ball, Halahan, and Nehring (2004). Farmland, equipment, buildings, and structures are 

treated as quasi-fixed inputs. Hereafter, this data set is called the Ball data. 

Due to the way that several variables are constructed in the Ball data, it is necessary 

to modify and augment this data for empirical implementation. First, we define the re-

placement cost of owner-operator labor by the farm wage rate. This implies that the re-

turn to owner-operator labor in the Ball data due to management skill is treated as a part 

of the residual claimant’s quasi-rent. Second, we use a direct measure of the value of 

capital obtained from the ERS rather than the measures constructed in the Ball data. 

Third, estimates of the price of farmland are taken from state-level surveys conducted by 

the National Agricultural Statistics Service (NASS), rather than the constructed measures 

in the Ball data. Finally, we adjust the measure of agricultural land. The Census of Agri-

culture has reported land in farms in four- to five-year intervals for 1954, 1959, 1964, 

1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, and 2002. These are the total farmland 

numbers used in the sample years that match the Census years. ERS reports the harvested 

acres for all major crops by state and year since 1947. This data is used to adjust the 
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farmland measures in the Ball data as follows. First, the difference between total farm-

land in the Ball data and harvested acres is calculated for each non-census year by state. 

Second, in each period between adjacent censuses, the average of this difference is calcu-

lated. This mean difference is treated as fixed in each of the three- or four-year intervals 

between census years and added to harvested acres to obtain the measure of farmland 

used in this study in those years of our sample period. We normalize costs, expenditures, 

and acres by capital rather than total land because we are more confident in the capital 

measure and Pope, LaFrance and Just (2007) have shown that deflating by a variable that 

is subject to measurement error leads to difficult econometric issues. 

Estimation is by nonlinear generalized method of moments (GMM), which assumes a 

parametric 12×12 AR(1) process for the time series component and White/Huber robust 

covariance matrix estimator that is consistent under heteroskedasticity of an unknown 

form. The instruments are variable cost per unit of capital, land per unit of capital, and 

variable input prices all lagged two periods, plus the following general economy vari-

ables lagged one period: real per capita disposable personal income; unemployment rate; 

the real rate of return on AAA corporate 30-year bonds; real manufacturing wage rate; 

real index of prices paid by manufacturers for materials and components; and real index 

of prices paid by manufacturers for fuel, energy and power. Per capita disposable per-

sonal income is deflated by the consumer price index for all items. The aggregate whole-

sale price variables are deflated by the implicit price deflator for gross domestic product. 

The real rate of return on corporate bonds is calculated as the nominal rate of return mi-

nus the midyear annual inflation rate. 
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Table 1 presents the estimated 12×12 AR(1) matrix. The Eigen values of the implied 

autocovariance structure are well within the stability region, with two real roots and five 

complex conjugate pairs: 

 

1

2

3,4

5,6

7,8

9,10

11,12

0.6772;
0.1294;
0.7594 0.2998 , modulus 0.8165;
0.4104 0.5273 , modulus 0.6682;
0.3056 0.3371 , modulus 0.4550;
–0.4222 0.0832 , modulus 0.4304;
–0.0863 0.2638 , modulus 0.2776.

λ
λ
λ ι
λ ι
λ ι

λ ι
λ ι

=
=
= ± =

= ± =

= ± =

= ± =

= ± =

 (18) 

A system of 12 linear first-order difference equations has the same dynamic structure as a 

single 12th-order linear difference equation. This implies that the time series properties of 

this model are quite complex. No evidence is found for any additional serial correlation 

in the data. 

The single equation and system-wide 1st - and 2nd-order Brownian bridge tests for 

specification error and parameter instability developed in LaFrance (2008) provide no 

evidence of misspecification or parameter instability. (Appendix D presents and discusses 

this set of within-sample residual test statistics.) 

Table 2 presents the parameter estimates for the structural part of the model. To ob-

tain a positive definite B matrix, the lower 4 main diagonal elements of the Choleski fac-

tor L were restricted to 0.01 and the off-diagonal elements in the last four columns were 

restricted at 0.0. In other words, the estimated symmetric but not curvature restricted B 

matrix has four negative Eigen values. As a consequence, the standard errors in table 2 

are conditional on these inequality restrictions. The estimated structural parameters re-
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ported in table 2 generate a variable cost function that is increasing and weakly concave 

in all variable input prices throughout the data set. We conclude that this is a coherent 

and reasonable model of the short-run cost of production in U.S. agriculture. 

4. Crop Acres, Capital, Savings and Investment, and Consumption in Agriculture 

Although the organizational form of farms can vary widely, a recent report by Hoppe and 

Banker (2006) finds that 98% of U.S. farms remained family farms as of 2003. In a fam-

ily farm, the entrepreneur controls the means of production and makes investment, con-

sumption, and production decisions. In this section, we develop and analyze a model of 

the intertemporal nature of these decisions. The starting point is a model similar in spirit 

to Hansen and Singleton’s (1983), but generalized to include consumption decisions and 

farm investments as well as financial investments and production decisions. The addi-

tional variable definitions required for this are as follows: 

 Wt = beginning-of-period total wealth, 

 bt = current holding of bonds with a risk free rate of return rt, 

 ft = current holding of a risky financial asset, 

 ,F tp = beginning-of-period market price of the financial asset, 

 , 1F tρ + = dividend plus capital gains rate on the financial asset, 

 ai,t = current allocation of land to the ith crop, i = 1,…,nY, 

 At = total quantity of farm land, 

 pL,t = beginning-of-period market price of land, 

 , 1 , 1 , ,( ) /L t L t L t L tp p pρ + += − = capital gain rate on land, 

 ,i ty = expected yield per acre for the ith crop, i = 1,…,nY, 
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 yi,t+1 = realized yield of the ith crop, 

 , 1iY tp + = end-of-period realized market price for the ith farm product, 

 qt = vector of quantities of consumption goods, 

 ,Q tp = vector of market prices for consumer goods, 

 mt = total consumption expenditures, 

 u(qt) = periodic utility from consumption. 

As with all discrete time models, timing can be represented in multiple ways. In the 

model used here, all financial returns and farm asset gains are assumed to be realized at 

the end of each time period (where depreciation is represented by a negative asset gain). 

Variable inputs are assumed to be committed to farm production activities at the begin-

ning of each decision period and the current period market prices for the variable inputs 

are known when these use decisions are made. Agricultural production per acre is real-

ized stochastically at the end of the period such that 

 , 1 , , 1(1 ), 1, ,i t i t i t Yy y i nε+ += + = … , (19) 

where εi,t+1 is a random output shock with E(εi,t+1) = 0. Consumption decisions are made 

at the beginning of the decision period and the current market prices of consumption 

good are known when these purchases are made. Utility is assumed to be strictly increas-

ing and concave in qt. The total beginning-of-period quantity of land is t tA a= ι T , withι  

denoting an nY–vector of ones. Homogeneous land is assumed with a scalar price, ,L tp . 

To simplify our derivations, we require an uncommon piece of matrix notation. The 

Hadamard/Schur product of two n×m matrices A and B is the matrix whose elements are 
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element-by-element products of the elements of A and B, , .ij ij ijc a b i j= ⇔ = ∀A B Ci  

This definition assists the derivation of the arbitrage conditions present in what follows. 

Revenue at t + 1 is the random price times production 

 1 , 1 , , , 1 , 1 1
1
( (1 )) ( ) ( ).

Y

i

n

t Y t i t i t i t Y t t t t
i

R p y a ε+ + + + +
=

= + ≡ +∑ p a y ι εi i T  (20) 

Wealth is allocated at the beginning of period t to investments, the variable cost of pro-

duction, and consumption, 

 , ( , , , ) .t t t L t t t t t t t t tW b f p A K c K m= + + + + +w a Y  (21) 

Although some costs occur at or near harvest (near t + 1), we include all costs in (16.26) 

at time t because they are incurred before revenues are received. Consumer utility maxi-

mization yields the indirect utility function conditioned on consumer good prices and 

consumption expenditure, 

 { }, ,( , ) max ( ) :
QnQ t t Q t t

R
m u mυ

+∈
≡ =

q
p q p qT . (22) 

Realized end of period wealth is 

 
1 , 1 , 1 ,

, 1 , 1 1

(1 ) (1 ) (1 )

(1 ) ( ) ( ),

t t t F t t L t L t t

K t t Y t t t t

W r b f p A

K

ρ ρ

ρ

+ + +

+ + +

= + + + + +

+ + + +p a y ι εi i T
 (23) 

where , 1K tρ +  is the proportional change in the value of capital held at the beginning of 

the production period. Thus, the decision maker’s wealth is increased by net returns on 

assets and farm revenue. The owner/operator decision maker’s intertemporal utility func-

tion is assumed to be 

 1
0

( ,..., ) (1 ) ( )
T

t
T T t

t
U uρ −

=
= +∑q q q . (24) 
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The producer is assumed to maximize von Neumann-Morgenstern expected utility of the 

discounted present value of the periodic utility flows from goods consumption.  

By Euler’s theorem, constant returns to scale implies linear homogeneity of the vari-

able cost function in capital, land, and output. For the variable cost function derived and 

estimated in this paper, this implies  

 

( , , , , ) ( , , , , )( , , , , )

( , , , , ) ( , , , , ) .

t t t t t t t t t t t t
t t t t t t t t

tt

t t t t t t t t t t t t
t t

t t

c A K c A Kc A K A
A

c A K c A KK
K

∂ ∂
≡ +

∂∂

∂ ∂
+ +

∂ ∂

w a Y w a Yw a Y a
a

w a Y w a Y Y
Y

T

T

 (25) 

The vector of expected crop outputs satisfies 

 ,t t t=Y y ai  (26) 

where ,j ty  is the expected yield per acre and ,j ta  is the number of acres planted for the jth 

crop. The variable cost function might depend on time due to technological change or 

other dynamic forces, and the subscript t indicates this possibility. To distinguish quasi-

fixed from variable inputs and to account for the possibility of hysteresis in agricultural 

investments, we allow for adjustment costs for total farmland and capital, 

 2 2
1 1 1 1( , ) ½ ( ) ½ ( ) ,Adj t t t t A t t K t tC A A K K A A K Kγ γ− − − −− − = − + −  (27) 

with , 0.A Kγ γ ≥  

This problem is solved by stochastic dynamic programming working backwards re-

cursively from the last period in the planning horizon to the first. In the last period, the 

optimal decision is to invest or produce nothing and consume all remaining wealth, i.e., 

T Tm W= . Denote the last period’s optimal value function by 1 1( , , )T T T Tv W A K− − . Then 
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1 1 ,( , , ) ( , )T T T T Q T Tv W A K Wυ− − = p  is the optimal utility for the terminal period. For all 

other time periods, stochastic dynamic programming yields the Bellman backward recur-

sion (Bellman and Dreyfus 1962). For an arbitrary t < T, the Lagrangean for the problem 

at time t is 

 

{

}
{

}

1
, 1 , 1

, 1 , 1 , 1 1

,

2 2
1 1

( , ) (1 ) (1 ) (1 )

(1 ) ( ) ( ), ,

( , , , , )

½ ( ) ½ ( ) ( ),

t Q t t t t t F t t

L t t K t t Y t t t t t t

t t t t t L t t t t t t t t t t

A t t K t t t t t

m r E V r b f

p A K A K

W m b f p A K c A K

A A K K A

υ ρ

ρ

λ

γ γ μ

−
+ +

+ + + +

− −

= + + + + +⎡⎣

+ + + + + ⎤⎦

+ − − − − − −

− − − − +

p

p y a

w a y a

a

ι ε

− ι

A

i i

i

T

T

 (28) 

where ( )tE i  is the conditional expectation at the beginning of period t given information 

available at that point in time, tλ  is the shadow price for the beginning-of-period wealth 

allocation constraint, and tμ  is the shadow price for the land allocation constraint. The 

first-order, necessary and sufficient Kuhn-Tucker conditions are the two constraints and 

the following: 

 0, 0, 0;t t t
t t t

t t t
m m

m m m
υ λ∂ ∂ ∂

= − ≤ ≥ =
∂ ∂ ∂
A A  (29) 

 1

1
0, , 0;t t t

t t t t
t t t

VE b b
b W b

λ+

+

∂ ∂ ∂⎛ ⎞= − ≤ ≥ =⎜ ⎟∂ ∂ ∂⎝ ⎠
A A  (30) 

 11
, 1

1
(1 ) (1 ) 0, 0, 0.t t t

t F t t t t
t t t

Vr E f f
f W f

ρ λ+−
+

+

∂ ∂ ∂⎡ ⎤= + + − ≤ ≥ =⎢ ⎥∂ ∂ ∂⎣ ⎦
A A  (31) 

 
( ) 1 1 1

, 1
1

, 1

1

( ) 0, 0, 0;

t t t
t L t

t t t

t t
t L t A t t t t t

t t

V Vr E p
A W A

cp A A A A
A A

λ γ μ

− + +
+

+

−

∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂⎡ ⎤− + + − + ≤ ≥ =⎢ ⎥∂ ∂⎣ ⎦

A

A
 (32) 
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1 11
, 1

1 1

1

(1 ) (1 )

1 ( ) 0, 0, 0;

t t t
t K t

t t t

t t
t K t t t t

t t

V Vr E
K W K

c K K K K
K K

ρ

λ γ

+ +−
+

+ +

−

∂ ∂ ∂⎡ ⎤= + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤− + + − ≤ ≥ =⎢ ⎥∂ ∂⎣ ⎦

A

A
 (33) 

( ) 1 1
, 1 1

1
1 ( ) ( ) 0,

, 0;

t t t t
t Y t t t t t t

t t t t

t
t t

t

V c cr E
W

λ μ− +
+ +

+

∂ ∂ ∂ ∂⎛ ⎞⎡ ⎤= + + − + − ≤⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂
≥ =

∂

p y y
a a Y

a a
a

0

ι ε ιA i i i

AT

 (34) 
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, 1 1(1 ) ( ) ,

, 0.

t t t
t Y t t t t t

t t

t
t t

t

V cr E
W

λ+−
+ +

∂ ∂ ∂⎡ ⎤= + + − ≤⎢ ⎥∂ ∂ ∂⎣ ⎦

∂
≥ =

∂
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y Y
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y

0

0
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 (35) 

We also have the following implications of the envelope theorem: 

 1
1

1
1

;

( );

( );

t
t

t

t
t A t t

t

t
t K t t

t

V
W

V A A
A

V K K
K

λ

λ γ

λ γ

−
−

−
−

∂
=

∂

∂
= −

∂

∂
= −

∂

 (36) 

where the variables { , , }t t tA Kλ  are all evaluated at their optimal choices. 

Combining the Kuhn-Tucker conditions with the results of the envelope theorem and 

assuming an interior solution for consumption, bonds, and risky financial assets, we ob-

tain the standard Euler equations for smoothing the marginal utility of consumption and 

wealth, 

 1 1
1

1 1
( ),t t t t

t t t t t
t t t t

V VE E E
m m W W
υ υ λ λ+ +

+
+ +

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (37) 

and the standard arbitrage condition for excess returns to risky financial assets, 
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 1
, 1

1
( ) 0t

t F t
t

VE r
W

ρ +
+

+

∂⎡ ⎤− =⎢ ⎥∂⎣ ⎦
 (38) 

The complementary slackness of the Kuhn-Tucker condition (35), implies that for each 

crop we have the supply condition under risk, 

 1
, 1 ,

1 ,
(1 ) 0, 1, , .

i

t t
t Y t i t y

t i t

V cE p r Y i n
W Y

+
+

+

∂ ∂⎡ ⎛ ⎞ ⎤− + = =⎜ ⎟⎢ ⎥∂ ∂⎣ ⎝ ⎠ ⎦
"  (39) 

For each crop produced in positive quantity, this reduces to the well-known result that the 

conditional covariance between the marginal utility of future wealth and the difference 

between the ex post realized market price the marginal cost of production must vanish. 

The multiplicative factor 1 r+  is multiplied by ex ante marginal cost so that these two 

economic values are measured at a common point in time – in the present case at the end 

of the production period. 

To obtain the arbitrage condition for the level of investment in agriculture, we com-

bine the linear homogeneity property of the variable cost function in ( , , , )t t t tA Ka Y  from 

equation (25) with complementary slackness in Kuhn-Tucker conditions (33)–(37),  

 0 ,t t t
t t t

t tt
A K

A K
∂ ∂ ∂

= + +
∂ ∂∂

a
a
A A A

T
 (40) 

which, after considerable rearranging and combining of terms, gives 
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( ) ]}

1 1 , , 1 , , 1 1

, 1 1

, 1 1
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(2 ) (1 )

(2 ) (1 ) 0,
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s A r A r A

ρ ρ π

γ
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+ + + + +

+ −

+ −

∂ ∂ − + − +

+ − + + +

+ − + + + =

 (41) 

where , ,( )K t t L t t ts K p A K= +  is capital’s share of the value of the investment in agricul-

ture in period t, , , ,( )L t L t t L t t ts p A p A K= +  is land’s share of the value of the investment 
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in agriculture in period t, , ,( )A t t L t t ts A p A K= +  is the ratio of the quantity of land to the 

value of the investment in agriculture at the beginning of the production period, and 

 1
1

,

(1 )t t
t

L t t t

R r c
p A K

π +
+

− +
=

+
 (42) 

is the ex post net return to crop production over the variable cost of production relative to 

the ex ante value of agricultural investment, so that it is measured as a rate of return to 

agricultural production. The first 3 terms inside of the square brackets of equation (41) 

represent the total sum of the excess returns to agriculture, including the rate of net return 

to crop production over variable costs. The last two terms in square brackets capture the 

effects of adjustment costs for farm capital and farmland. This has the standard one-

period ahead and one period behind 2nd–order difference structure common to quadratic 

adjustment cost models in dynamic optimization problems. 

To implement this system of Euler equations, we assume that the indirect utility func-

tion for consumption goods is a member of the certainty equivalent class, 

 
2

( , ) ½
( ) ( )

t t
Qt t

C Qt C Qt

m mmυ β
π π

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

p
p p

, (43) 

where 0 ( )C Qt tm tβ π≤ < ∀p  and ( )C Qtπ p  is the consumer price index (CPI) for all 

items. Then the marginal utility of money in each period is 

 [ ]1 ( )
( )
t C Qt

t
C Qt

mβ π
λ

π
−

=
p

p
. (44) 

This allows us to identify the effects of risk aversion separately from those of adjustment 

costs and hysteresis in agricultural investment decisions. We assume that the preferences 
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of agricultural producers are of the same class as all other individuals in the economy. 

This allows use of the observable variable per capita personal consumption expenditure, 

rather than the latent variable wealth, to model the empirical arbitrage equations. 

Empirical Arbitrage Equations and Data 

Let yn n≤  be the number of crops included in the empirical model. The specification 

that we choose for ,t i tc Y∂ ∂ is (see Appendix C for a complete derivation), 
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 (45) 

We use the estimated n( )tβ w  obtained from the ex ante variable input demand system, 

and 1, , 1[ ]
xt t n tw w −=w� " T  is the vector of variable input prices other than the farm wage.4 

The 3n +  empirical arbitrage/Euler equations therefore are 
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 (46) 

                                                           
4All prices, costs, and revenues, including the value of farm capital, are deflated by the consumer price 
index in this part of the empirical analysis. 
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The estimation method for this part of the modeling exercise again is NL3SLS/GMM 

with a parameteric AR(1) correction for autocorrelation and White/Huber heteroskedas-

ticity consistent estimated covariance matrix. We restrict the parameter matrix [ ]ijθ=Θ  

to be positive semi-definite by estimating it in Choleski factored form, ,= QQΘ T  where 

Q is a lower triangular matrix. 

Empirical Results 

We analyze acreage and supply decisions under risk for 10 crops with the greatest value 

in the U.S. in 2006: soybeans; corn; cotton; hay; potatoes; rice; sugar beets; sugarcane; 

tobacco; and wheat. Crop revenues includes the value of government payments that is 

been imputed in the Ball data, to at least partially capture the effects of farm-level price, 

income, and other subsidy and stabilization programs on the distribution of realized farm 

revenues. The 10 crops analyzed in this study account for 94–95% of total farm revenue 

from crop production and an even larger share of crop acreage. In addition to the 10 crop 

production decisions under risk, we estimate Euler equations for the excess return to in-

vesting in agriculture, personal consumption expenditures, and the rate of return to stocks 

as measured by the S& Poor 500 index. 

To ensure a consistent definition of real values in this component of the model, we 

deflate all nominal prices, revenues, costs, and other values by that year’s consumer price 

index for all items. We scale all aggregate economic data – e.g., the total value of agricul-

tural investment in U.S. agriculture – by the U.S. population to measure these variables 

all in per capita units. As noted above, real per capita personal consumption expenditures 

represents the Euler equation for the marginal utility of money over time. 
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Table 3 presents the unrestricted 13×13 AR(1) coefficient matrix. Similar to the vari-

able cost function model, Eigen values of the implied autocovariance structure are well 

within the stability region, with five real roots and four complex conjugate pairs: 

 

1

2

3

4

5

6,7

8,9

10.11

12,13

0.8960;
– 0.5510;

0.2829;
0.1800;

– 0.0471;
0.2966 0.6058 , modulus 0.6745;
0.5789 0.0674 , modulus 0.5828;

–0.0048 0.5157 , modulus 0.5157;
–0.4497 0.1827 , modulus 0.4854.

λ
λ
λ
λ
λ
λ ι
λ ι
λ ι
λ ι

=
=
=
=
=
= ± =
= ± =
= ± =
= ± =

 

Also similar to the properties of the cost function estimates, there is no evidence of any 

additional serial correlation in the error terms, and all of the system-wide and single 

equation Brownian bridge tests fail to reject the null hypothesis of no model specification 

errors or parameter instability at all standard levels of significance.  

Table 4 presents the parameter estimates for the conditional mean components of the 

arbitrage model. To obtain a positive definite Θ  matrix, the lower 6 main diagonal ele-

ments of the Choleski factor Q were restricted to 0.01 and the off-diagonal elements in 

the last four columns were restricted at 0.0. In other words, the estimated symmetric but 

not curvature restricted Θ  matrix has four negative Eigen values. As a consequence, the 

standard errors in table 2 are conditional on these inequality restrictions. The estimated 

structural parameters reported in table 4 generate a system of 10 linear marginal cost 

functions that are increasing in planned output levels throughout the sample period. We 

conclude that this is a coherent and reasonable model of U.S. agricultural production. 
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The point estimate for the curvature parameter in the quadratic indirect utility func-

tion is –5ˆ 6.571 10β = × , with an estimated classical Gaussian asymptotic standard error of 

2.793×10–7 and an estimated White/Huber robust standard error of 5.914×10–7, both im-

plying a highly significant risk aversion parameter. On the other hand, the point estimates 

for the quadratic adjustment cost parameters are mixed. The point estimate for adjustment 

costs on farmland is 6ˆ 4.455 10 ,Aγ −= − ×  with an estimated classical Gaussian asymptotic 

standard error of 1.985×10–6 and an estimated White/Huber robust standard error of 

1.477×10–6. In both cases, this is statistically different from significant at the 5% signifi-

cance level, although economically, the sign is not what we would expect a priori. The 

point estimate for adjustment costs in farm capital is 11ˆ 4.012 10 ,Kγ −= ×  with an esti-

mated classical Gaussian asymptotic standard error of 2.738×10–11 and an estimated 

White/Huber robust standard error of 2.383×10–11. While this has the expected sign, the 

classical standard error implies this is not statistically different from zero at the 10% level 

of significance, while the robust standard error implies that it marginally is significant at 

the same level. We suspect that either this level of aggregation across agents cannot cap-

ture these effects or else there is at most only a small level of adjustment cost in the farm 

sector. On the other hand, if there is no adjustment cost mechanism in U.S. agriculture, 

and if the quadratic indirect utility model is correctly specificed, then the Euler equations 

estimated here are theoretically and empirically correct even with national aggregate data. 

Conclusions 

This paper has develop and analyzed a new structural model of variable input use, pro-
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duction, acreage allocations, capital investment, and consumption choices in the U.S. 

farm sector. The theoretical framework identifies and incorporates the restrictions that are 

necessary and sufficient to estimate variable input use using only observable data, and to 

aggregate from micro units of behavior to county-, state-, region-, or country-levels of 

data and analyses. We defined, specified and estimated a dynamic life-cycle model of 

decision making under risk. We disciplined the model and associated parameter estimates 

for risk aversion in agricultural production and investment decisions with the interactions 

that naturally occur among the available alternative investment and savings opportunities 

in the economy. Our current work is focused on applying this analysis to the state-level, 

which should to mitigate somewhat the issues related to  
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Table 1. First-Order Autocorrelation Parameters for the Variable Cost Model.  

 

  
Pesticide 

 
Fertilizer 

Fuel & 
Nat. Gas 

 
Electricity 

Purchased 
Feed 

Purchased 
Seed 

Purchased 
Livestock 

Machinery 
Repairs 

Building 
Repairs 

Hired 
Machinery 

Veterinary 
Services 

Other 
Materials 

 
Pesticide 

-.235 
(.323) 
[.230] 

.280 
(.184) 

[.139**]  

-.556 
(.303*) 
[.242**] 

-.199 
(.235) 
[.141] 

-.188 
(.126) 

[.070***] 

-.291 
(.394) 
[.281] 

-.029 
(.096) 
[.057] 

-.029 
(.283) 
[.223] 

-.341 
(.482) 
[.290] 

-.283 
(.320) 
[.206] 

.690 
(.464) 

[.254***] 

.040 
(.084) 
[.068] 

 
Fertilizer 

.333 
(.524) 
[.259] 

.699 
(.298**) 
[.161***] 

-.265 
(.491) 
[.256] 

-.664 
(.382*) 

[.191***] 

.062 
(.204) 
[.121] 

-2.01 
(.639***) 
[.459***] 

.154 
(.155) 
[.101] 

1.22 
(.459***) 
[.324***] 

-1.50 
(.782*) 

[.399***] 

.704 
(.519) 

[.273***] 

-.339 
(.753) 
[.412] 

.046 
(.136) 
[.075] 

Fuel & 
Nat. Gas 

.256 
(.229) 

[.072***] 

.193 
(.130) 

[.047***] 

.503 
(.215**) 
[.085***] 

-.263 
(.167) 

[.071***] 

-.040 
(.089) 
[.039] 

-1.11 
(.279***) 
[.132***] 

.034 
(.068) 
[.029] 

.577 
(.200***) 
[.107***] 

-.159 
(.342) 
[.117] 

.321 
(.227) 

[.093***] 

.131 
(.329) 
[.135] 

-.048 
(.060) 

[.025**] 
 

Electricity 
.066 

(.256) 
[.178] 

-.147 
(.146) 
[.087*] 

-.168 
(.240) 
[.155] 

.455 
(.187**) 
[.107***] 

-.052 
(.100) 
[.055] 

.049 
(.312) 
[.227] 

-.061 
(.076) 
[.046] 

.254 
(.224) 

[.088***] 

.120 
(.382) 
[.209] 

-.268 
(.254) 
[.141*] 

.067 
(.368) 
[.259] 

-.064 
(.067) 
[.035*] 

Purchased 
Feed 

-.463 
(.626) 
[.376] 

.252 
(.356) 
[.257] 

.199 
(.587) 
[.433] 

-.404 
(.456) 
[.253] 

.066 
(.244) 
[.181] 

-.018 
(.763) 
[.483] 

.308 
(.186*) 
[.157**] 

-.770 
(.548) 

[.351**] 

-.016 
(.934) 
[.625] 

.345 
(.620) 
[.282] 

.025 
(.900) 
[.625] 

.220 
(.163) 

[.098**] 

Purchased 
Seed 

-.120 
(.276) 
[.217] 

.185 
(.157) 
[.121] 

-.282 
(.258) 
[.234] 

-.303 
(.201) 
[.155*] 

-.043 
(.107) 
[.070] 

-.447 
(.336) 
[.236*] 

.012 
(.082) 
[.068] 

.607 
(.241**) 
[.245**] 

-.296 
(.411) 
[.328] 

-.185 
(.273) 
[.190] 

-.139 
(.396) 
[.273] 

-.019 
(.072) 
[.055] 

Purchased  
Livestock 

.0450 
(.649) 
[.399] 

-.244 
(.369) 
[.226] 

-.577 
(.608) 
[.391] 

-.332 
(.472) 
[.312] 

.073 
(.252) 
[.176] 

-.222 
(.790) 
[.600] 

.362 
(.192*) 
[.158**] 

.615 
(.568) 
[.402] 

-.769 
(.967) 
[.603] 

-.951 
(.643) 

[.328***] 

-.975 
(.932) 
[.562*] 

-.296 
(.169*) 
[.118**] 

Machinery 
Repairs 

.030 
(.245) 
[.162] 

.135 
(.140) 
[.090] 

-.359 
(.230) 
[.187*] 

-.008 
(.178) 
[.139] 

-.045 
(.095) 
[.059] 

-.616 
(.299**) 
[.246**] 

.064 
(.073) 
[.059] 

.657 
(.215***) 
[.127***] 

.0763 
(.366) 
[.206] 

-.003 
(.243) 
[.136] 

-.024 
(.352) 
[.195] 

-.048 
(.064) 
[.049] 

Building 
Repairs 

.084 
(.160) 
[.112] 

.064 
(.091) 
[.065] 

-.079 
(.150) 
[.144] 

-.007 
(.116) 
[.083] 

.011 
(.062) 
[.047] 

-.105 
(.195) 
[.132] 

.009 
(.047) 
[.041] 

.376 
(.140***) 
[.119***] 

-.071 
(.238) 
[.162] 

-.041 
(.158) 
[.094] 

-.337 
(.230) 
[.175*] 

-.021 
(.042) 
[.031] 

Hired 
Machinery 

.113 
(.253) 
[.252] 

-.097 
(.144) 
[.124] 

.011 
(.237) 
[.200] 

.032 
(.184) 
[.150] 

-.043 
(.098) 
[.083] 

-.119 
(.308) 
[.304] 

-.123 
(.075) 
[.079] 

.239 
(.221) 
[.197] 

-.060 
(.377) 
[.324] 

-.060 
(.250) 
[.219] 

-.209 
(.363) 
[.416] 

-.043 
(.066) 
[.047] 

Veterinary 
Services 

.041 
(.149) 
[.076] 

-.089 
(.085) 
[.059] 

-.006 
(.140) 
[.110] 

.135 
(.108) 

[.049***] 

.004 
(.058) 
[.035] 

.096 
(.181) 
[.122] 

.021 
(.044) 
[.020] 

-.129 
(.130) 
[.079] 

.329 
(.222) 

[.132**] 

-.356 
(.148**) 
[.084***] 

.602 
(.214***) 
[.152***] 

.023 
(.039) 
[.019] 

Other 
Materials 

-1.45 
(.997) 

[.622**] 

-.062 
(.567) 
[.355] 

-.085 
(.934) 
[.568] 

.272 
(.726) 
[.473] 

-.188 
(.388) 
[.272] 

2.46 
(1.21**) 
[1.09**] 

.178 
(.295) 
[.232] 

-2.37 
(.873***) 
[.881***] 

-.409 
(1.49) 
[1.01] 

.477 
(.987) 
[.633] 

.986 
(1.43) 
[.841] 

.211 
(.259) 
[.140] 

Numbers in parentheses (⋅) and in square brackets [⋅] are standard Gaussian and White heteroskedasticity consistent asymptotic standard errors, respectively. *, **, and *** indi-
cate significantly different from zero at the 10%, 5%, and 1% level, respectively, for the corresponding asymptotic standard error. 

 



Table 2. Estimates of α and B Parameters for the Variable Cost Function. 

 

 
Variable 

 
Pesticide 

 
Fertilizer 

Fuel & 
Nat. Gas 

 
Electric 

Purchased 
Feed 

Purchased 
Seed 

Purchased 
Livestock 

Machinery 
Repairs 

Building 
Repairs 

Hired Ma-
chinery 

Veterinary 
Services 

Other 
Materials 

 
Labor 

 
Land 

-55.21 
(74.23) 

-64.95 
(81.50) 

-21.99 
(29.73) 

-15.54 
(23.17) 

-67.00 
(101.7) 

-44.30 
(58.38) 

-51.87 
(77.94) 

-20.32 
(31.02) 

-9.286 
(11.61) 

-19.31 
(28.14) 

-8.374 
(12.76) 

-114.7 
(171.2) 

36.84 
(30.43) 

Capital 3.554 
(3.854) 

4.140 
(4.233) 

1.515 
(1.572) 

1.001 
(1.223) 

5.044 
(5.314) 

2.837 
(3.040) 

3.808 
(4.102) 

1.615 
(1.637) 

.6197 
(.6152) 

1.362 
(1.479) 

.5819 
(.6678) 

8.634 
(8.920) 

-1.564 
(1.596) 

 
Pesticide 

3.695*** 
(1.288) 

2.995* 
(1.824) 

.9374 
(.8018) 

.7107 
(.6566) 

5.042*** 
(1.800) 

2.558** 
(1.179) 

2.832 
(1.851) 

1.020 
(.7793) 

.3742 
(.3850) 

1.201* 
(.6345) 

.4549 
(.3043) 

7.442** 
(3.324) 

-1.390*** 
(.5430) 

 
Fertilizer 

2.995* 
(1.824) 

5.119*** 
(1.390) 

1.469** 
(.6455) 

1.388*** 
(.4419) 

4.709** 
(2.284) 

2.480* 
(1.364) 

3.806** 
(1.671) 

.5221 
(1.116) 

1.332*** 
(.2998) 

1.425** 
(.5894) 

.5213 
(.3355) 

6.914* 
(4.174) 

-1.501*** 
(.5742) 

Fuel & 
Nat. Gas 

.9374 
(.8018) 

1.469** 
(.6455) 

1.027*** 
(.2538) 

.3949* 
(.2106) 

1.303 
(1.068) 

.8504 
(.6167) 

1.764*** 
(.5496) 

.7740*** 
(.2860) 

.5493** 
(.2480) 

.7398*** 
(.2268) 

.0858 
(.1824) 

2.189 
(1.736) 

-.6180*** 
(.1851) 

 
Electric 

.7107 
(.6566) 

1.388*** 
(.4419) 

.3949* 
(.2106) 

1.372*** 
(.4332) 

1.559** 
(.6354) 

-.4480 
(1.038) 

1.129** 
(.5554) 

-.2855 
(.7581) 

.7367* 
(.3984) 

.0407 
(.4945) 

-.0248 
(.2198) 

1.322 
(1.547) 

-.4507** 
(.2276) 

Purchased 
Feed 

5.042*** 
(1.800) 

4.709** 
(2.284) 

1.303 
(1.068) 

1.559** 
(.6354) 

7.302*** 
(2.414) 

3.229* 
(1.736) 

4.087* 
(2.426) 

1.382 
(1.111) 

.4051 
(.4920) 

1.857** 
(.7602) 

.6293 
(.4126) 

9.850** 
(4.878) 

-2.067*** 
(.6721) 

Purchased 
Seed 

2.558** 
(1.179) 

2.480* 
(1.364) 

.8504 
(.6167) 

-.4480 
(1.038) 

3.229* 
(1.736) 

5.547*** 
(1.135) 

2.694** 
(1.305) 

1.608 
(1.032) 

-.2849 
(1.027) 

2.494*** 
(.8282) 

.9234*** 
(.2894) 

4.455 
(3.182) 

-1.408*** 
(.2930) 

Purchased 

Livestock 
2.832 

(1.851) 
3.806** 
(1.671) 

1.764*** 
(.5496) 

1.129** 
(.5554) 

4.087* 
(2.426) 

2.694** 
(1.305) 

4.303*** 
(1.638) 

1.161 
(.9572) 

.3629 
(.4089) 

1.424** 
(.5827) 

.6567** 
(.3026) 

7.340* 
(3.950) 

-1.585*** 
(.5396) 

Machinery 

Repairs 
1.020 

(.7793) 
.5221 

(1.116) 
.7740*** 
(.2860) 

-.2855 
(.7581) 

1.382 
(1.111) 

1.608 
(1.032) 

1.161 
(.9572) 

6.508* 
(3.475) 

-2.860 
(1.825) 

2.635*** 
(.8530) 

.2365 
(.3453) 

3.098** 
(1.528) 

-.8805*** 
(.2250) 

Building 

Repairs 
.3742 

(.3850) 
1.332*** 
(.2998) 

.5493** 
(.2480) 

.7367* 
(.3984) 

.4051 
(.4920) 

-.2849 
(1.027) 

.3629 
(.4089) 

-2.860 
(1.825) 

7.456** 
(3.378) 

-1.735* 
(1.032) 

-.6479 
(.4479) 

.4392 
(.9521) 

-.4085*** 
(.1467) 

Hired Ma-
chinery 

1.201* 
(.6345) 

1.425** 
(.5894) 

.7398*** 
(.2268) 

.0407 
(.4945) 

1.857** 
(.7602) 

2.494*** 
(.8282) 

1.424** 
(.5827) 

2.635*** 
(.8530) 

-1.735* 
(1.032) 

2.493** 
(1.055) 

.3542* 
(.2006) 

.8858 
(2.280) 

-.8651*** 
(.1362) 

Veterinary 

Services 
.4549 

(.3043) 
.5213 

(.3355) 
.0858 

(.1824) 
-.0248 
(.2198) 

.6293 
(.4126) 

.9234*** 
(.2894) 

.6567** 
(.3026) 

.2365 
(.3453) 

-.6479 
(.4479) 

.3542* 
(.2006) 

.2980*** 
(.1159) 

1.410** 
(.6818) 

-.2534** 
(.1150) 

Other Ma-
terials 

7.442** 
(3.324) 

6.914* 
(4.174) 

2.189 
(1.736) 

1.322 
(1.547) 

9.850** 
(4.878) 

4.455 
(3.182) 

7.340* 
(3.950) 

3.098** 
(1.528) 

.4392 
(.9521) 

.8858 
(2.280) 

1.410** 
(.6818) 

21.99*** 
(6.588) 

-2.845** 
(1.374) 

 
Labor 

-1.390*** 
(.5430) 

-1.501*** 
(.5742) 

-.6180*** 
(.1851) 

-.4507** 
(.2276) 

-2.067*** 
(.6721) 

-1.408*** 
(.2930) 

-1.585*** 
(.5396) 

-.8805*** 
(.2250) 

-.4085*** 
(.1467) 

-.8651*** 
(.1362) 

-.2534** 
(.1150) 

-2.845** 
(1.374) 

1.000 
(––––) 

 
White’s heteroskedasticity consistent asymptotic standard error is in parentheses below each point estimate. *,  **, and ***  indicate statistically different from zero at the 10%, 5%, and 1% significance level, 
respectively. 
 



Table 3. First-Order Autocorrelation Parameters for the Arbitrage/Euler Equations. 

 

  
Soybeans 

 
Corn 

 
Cotton 

 
Hay 

 
Potatoes 

 
Rice Sugar 

Beets 

 
Sugarcane 

 
Tobacco 

 
Wheat 

 
Agriculture Financial 

Asset 

 
Consumption 

 
Soybeans 

-.418 
(.334) 

[.202**]  

.696 
(.321**) 
[.203***]  

-.813 
(1.23) 
[.587]  

.027 
(.064) 
[.049]  

.162 
(.207) 
[.130]  

.065 
(.193) 
[.121]  

-.062 
(.094) 
[.057]  

.036 
(.115) 
[.065]  

-.670 
(1.00) 
[.536]  

.396 
(.382) 

[.190**]  

-1.25 
(5.83) 
 [3.30]  

-.037 
(1.54) 
[.940]  

-.078 
(2.46) 
[1.54]  

 
Corn 

.341 
(.264) 

[.140**] 

.277 
(.253) 

[.122**] 

1.46 
(.974) 

[.470***] 

-.025 
(.050) 
[.034] 

-.0044 
(.163) 
[.089] 

.074 
(.153) 
[.080] 

-.085 
(.074) 

[.033**] 

.045 
(.090) 
[.054] 

-.383 
(.795) 
[.298] 

.0085 
(.301) 
[.129] 

1.90 
(4.60) 
[2.45] 

-1.36 
(1.21) 

[.629**] 

-1.38 
(1.94) 
[.986] 

 
Cotton 

-.054 
(.066) 
[.055] 

.022 
(.063) 
[.051] 

-.261 
(.243) 
[.206] 

.014 
(.012) 
[.014] 

-.045 
(.040) 
[.027*] 

-.064 
(.038*) 
[.038] 

-.00012 
(.018) 
[.013] 

.013 
(.022) 
[.018] 

.070 
(.198) 
[.131] 

.011 
(.075) 
[.055] 

-.558 
(1.15) 
[1.10] 

.070 
(.304) 
[.210] 

.436 
(.486) 
[.361] 

 
Hay 

-1.71 
(1.48) 

[.788**] 

2.62 
(1.42*) 
[1.08**] 

-3.11 
(5.49) 
[2.54] 

.244 
(.285) 
[.177] 

.302 
(.920) 
[.459] 

-.824 
(.862) 
[.559] 

.167 
(.418) 
[.359] 

.103 
(.512) 
[.318] 

-1.40 
(4.48) 
[2.37] 

1.67 
(1.69) 
[.983*] 

27.6 
(25.9) 
[21.2] 

2.55 
(6.85) 
[3.57] 

-12.2 
(10.9) 
[7.16*] 

 
Potatoes 

-.081 
(.358) 
[.230] 

.146 
(.344) 
[.182] 

1.06 
(1.32) 
[.712] 

.159 
(.068**) 
[.041***] 

.238 
(.222) 
[.162] 

.033 
(.207) 
[.125] 

.036 
(.100) 
[.051] 

.139 
(.123) 
[.079*] 

-.904 
(1.08) 
[.484*] 

-.191 
(.409) 
[.233] 

1.61 
(6.26) 
[3.45] 

2.99 
(1.65*) 
[1.17**] 

.696 
(2.64) 
[.799] 

 
Rice 

.092 
(.474) 
[.295] 

-.428 
(.455) 
[.312] 

1.72 
(1.75) 
[1.02*] 

-.104 
(.091) 
[.054*] 

.230 
(.293) 
[.167] 

-.021 
(.274) 
[.186] 

-.148 
(.133) 
[.092] 

-.067 
(.163) 
[.083] 

-.188 
(1.42) 
[.800] 

.216 
(.541) 
[.326] 

-1.19 
(8.28) 
[6.26] 

.396 
 (2.18) 
[1.42] 

-2.34 
(3.49) 
[2.07] 

 
Sugar Beets 

-.044 
(1.00) 
[.707] 

-.693 
(.966) 
[.749] 

6.03 
(3.71) 
[3.63*] 

-.065 
(.193) 
[.156] 

-.793 
(.622) 
[.462*] 

.492 
(.583) 
[.529] 

.072 
(.282) 
[.277] 

.0049 
(.346) 
[.283] 

1.15 
(3.03) 
[2.44] 

-.172 
(1.14) 
[.976] 

13.9 
(17.5) 
[10.33] 

2.15 
(4.63) 
[4.02] 

-1.80 
(7.42) 
[7.27] 

 
Sugarcane 

-.404 
(.821) 
[.413] 

-.658 
(.788) 
[.518] 

4.33 
(3.03) 

[2.21**] 

-.083 
(.157) 
[.067] 

-1.17 
(.508**) 
[.342***] 

.367 
(.476) 
[.339] 

.413 
(.230*) 
[.191**] 

-.482 
(.282*) 
[.196**] 

.135 
(2.47) 
[1.69] 

.148 
(.938) 
[.562] 

-4.40 
(14.3) 
[7.58] 

-6.93 
(3.78*) 

[2.25***] 

-6.35 
(6.05) 
[4.90] 

 
Tobacco 

-.0075 
(.130) 
[.050] 

-.096 
(.124) 
[.045] 

.866 
(.480*) 

[.183***] 

-.0052 
(.024) 
[.0078] 

.018 
(.080) 
[.028] 

-.028 
(.075) 
[.024] 

.00048 
(.036) 
[.011] 

-.0051 
(.044) 
[.018] 

.103 
(.392) 
[.135] 

-.175 
(.148) 

[.047***] 

.240 
(2.27) 
[.912] 

.467 
(.600) 

[.175***] 

-.881 
(.960) 

[.311***] 
 

Wheat 
-.377 
(.342) 
[.200*] 

.095 
(.328) 
[.173] 

-1.59 
(1.26) 

[.682**] 

.020 
(.065) 
[.044] 

-.099 
(.212) 
[.095] 

.138 
(.198) 
[.095] 

-.090 
(.096) 
[.051*] 

.018 
(.118) 
[.068] 

.085 
(1.03) 
[.520] 

.572 
(.391) 

[.181***] 

-3.57 
(5.98) 
[2.00*] 

-.909 
(1.57) 
[.973] 

3.15 
(2.52) 

[1.22***] 
 

Agriculture 
-.0015 
(.012) 
[.0067] 

.0092 
(.012) 
[.0091] 

.047 
(.046) 
[.025*] 

-.0014 
(.0024) 
[.0014] 

.010 
(.0078) 

[.0044**] 

-.00046 
(.0073) 
[.0045] 

-.0035 
(.0035) 
[.0023] 

.0040 
(.0043) 
[.0030] 

.048 
(.038) 
[.026*] 

.018 
(.014) 

[.0089**] 

.505 
(.220**) 
[.151***] 

.032 
(.058) 
[.040] 

.0077 
(.093) 
[.040] 

Financial 
Asset 

-.036 
(.047) 
[.031] 

-.082 
(.045) 

[.036**] 

.114 
(.175) 
[.099] 

.0011 
(.0091) 
[.0057] 

.0021 
(.029) 
[.016] 

.048 
(.027) 
[.021] 

.0016 
(.013) 
[.012] 

-.0057 
(.016) 
[.011] 

-.235 
(.143) 
[.102] 

-.010 
(.054) 
[.039] 

.761 
(.831) 
[.787] 

.383 
(.219) 
[.143] 

-.191 
(.351) 
[.222] 

 
Consumption 

.016 
(.036) 
[.017] 

.027 
(.034) 
[.012] 

-.054 
(.133) 
[.048] 

.0017 
(.0069) 
[.0035] 

.015 
(.022) 
[.0067] 

-.010 
(.020) 
[.010] 

-.0012 
(.010) 
[.0038] 

.010 
(.012) 
[.0048] 

.022 
(.108) 
[.045] 

.017 
(.041) 
[.013] 

.119 
(.629) 
[.227] 

-.033 
(.166) 
[.081] 

.392 
(.265) 
[.134] 

Numbers in parentheses (⋅) and in square brackets [⋅] are standard Gaussian and White heteroskedasticity consistent asymptotic standard errors, respectively. *, **, and *** indicate significantly 
different from zero at the 10%, 5%, and 1% level, respectively, for the corresponding asymptotic standard error. 

 



Table 4. Estimates of the θ Parameters for the Arbitrage/Euler Equations. 

 

 
Variable 

 
Soybeans 

 

 
Corn 

 
Cotton 

 
Hay 

 
Potatoes 

 
Rice 

 
Sugar Beets 

 
Sugarcane 

 
Tobacco 

 
Wheat 

 
Constant 

0.448166*** 
(0.036632) 

0.216785*** 
(0.024595) 

0.082527*** 
(0.011218) 

3.612791*** 
(0.197076) 

0.4599*** 
(0.038374) 

1.048429*** 
(0.064534) 

2.33634*** 
(0.172455) 

1.584347*** 
(0.161094) 

0.145884*** 
(0.013593) 

0.409247*** 
(0.033842) 

 
Soybeans 

78.34646*** 
(10.91386) 

-21.4571*** 
(3.992182) 

-1.80305 
(4.006355) 

387.3322*** 
(88.54985) 

-32.5804* 
(17.18041) 

41.71316** 
(20.3605) 

-248.589*** 
(61.53115) 

-207.111*** 
(52.65531) 

3.799219 
(2.398324) 

-0.08132 
(7.195695) 

 
Corn 

-21.4571*** 
(3.992182) 

10.15897*** 
(2.021877) 

-2.01571 
(1.236323) 

-83.6499*** 
(31.09819) 

0.028554 
(4.755907) 

6.208851 
(6.176972) 

79.67549*** 
(17.03617) 

65.14134*** 
(17.90792) 

1.87953** 
(0.767446) 

-4.10214 
(3.139472) 

 
Cotton 

-1.80305 
(4.006355) 

-2.01571 
(1.236323) 

35.56266*** 
(10.44578) 

-15.4651 
(59.45403) 

115.6149*** 
(19.98758) 

-77.2543*** 
(29.06395) 

-215.395*** 
(70.0208) 

-369.447*** 
(65.29259) 

-3.23171* 
(1.670253) 

0.82913 
(2.366206) 

 
Hay 

387.3322*** 
(88.54985) 

-83.6499*** 
(31.09819) 

-15.4651 
(59.45403) 

3920.242*** 
(839.7853) 

13.57345 
(205.9008) 

-532.877** 
(265.5106) 

523.7243 
(593.9006) 

876.7413 
(765.733) 

-106.728*** 
(30.21382) 

101.2035* 
(55.11529) 

 
Potatoes 

-32.5804* 
(17.18041) 

0.028554 
(4.755907) 

115.6149*** 
(19.98758) 

13.57345 
(205.9008) 

406.3396*** 
(110.575) 

-353.176*** 
(80.82956) 

-427.114* 
(239.1877) 

-916.150*** 
(247.4911) 

-27.1575*** 
(7.104441) 

16.57514* 
(8.869283) 

 
Rice 

41.71316** 
(20.3605) 

6.208851 
(6.176972) 

-77.2543*** 
(29.06395) 

-532.877** 
(265.5106) 

-353.176*** 
(80.82956) 

577.8639*** 
(155.478) 

-421.694* 
(253.3207) 

-196.946 
(271.0725) 

77.80513*** 
(12.01163) 

-67.5467*** 
(11.23272) 

 
Sugar Beets 

-248.589*** 
(61.53115) 

79.67549*** 
(17.03617) 

-215.395*** 
(70.0208) 

523.7243 
(593.9006) 

-427.114* 
(239.1877) 

-421.694* 
(253.3207) 

3761.957*** 
(1065.617) 

4775.894*** 
(1221.091) 

-124.254*** 
(21.47398) 

112.5914*** 
(30.83312) 

 
Sugarcane 

-207.111*** 
(52.65531) 

65.14134*** 
(17.90792) 

-369.447*** 
(65.29259) 

876.7413 
(765.733) 

-916.150*** 
(247.4911) 

-196.946 
(271.0725) 

4775.894*** 
(1221.091) 

6539.396*** 
(1500.074) 

-132.38*** 
(16.05683) 

135.5798*** 
(31.36628) 

 
Tobacco 

3.799219 
(2.398324) 

1.87953** 
(0.767446) 

-3.23171* 
(1.670253) 

-106.728*** 
(30.21382) 

-27.1575*** 
(7.104441) 

77.80513*** 
(12.01163) 

-124.254*** 
(21.47398) 

-132.38*** 
(16.05683) 

12.70347*** 
(1.405087) 

-11.9499*** 
(2.30313) 

 
Wheat 

-0.08132 
(7.195695) 

-4.10214 
(3.139472) 

0.82913 
(2.366206) 

101.2035* 
(55.11529) 

16.57514* 
(8.869283) 

-67.5467*** 
(11.23272) 

112.5914*** 
(30.83312) 

135.5798*** 
(31.36628) 

-11.9499*** 
(2.30313) 

12.13339** 
(5.291329) 

 
White’s heteroskedasticity consistent asymptotic standard erroris in parentheses below each point estimate. *, **, and *** indicate statistically different from zero at the 10%, 5%, and 1% 
significance level, respectively. 
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Appendix A 

Let xn
++∈ ⊆x \X  be an nx–vector of variable inputs, let xn

++∈ ⊆w \W  be an nx–vector of 

variable input prices, let yn
++∈ ⊆y \Y  be an ny–vector of outputs, let zn

++∈ ⊆z \Z  be an 

nz–vector of quasi-fixed inputs, let :F × × → \X Y Z  be a transformation function that 

defines the boundary of a closed, convex production possibilities set with free disposal in 

inputs and outputs, let : ,× × →X W Y Z X  be an nx–vector of variable input demand 

functions, and let :C ++× × → \W Y Z  be a variable cost function, 

 { }( , , ) min : ( , , ) 0, ( , , ),c C F= ≡ ≤ ≥ ≡
x

w y z w x x y z x w X w y z0T T  (A.1) 

where the symbol T denotes vector and matrix transposition. The purpose of this appendix 

is to prove that short-run cost-minimizing variable input demands, ( , , )=x X w y z , can be 

written in the form ( , , )c=x X w z�  if and only if ( , , ( , )) ( , , ( , ))c C Fθ θ= ⇔w z y z x z y z .  

The neoclassical model of conditional demands for variable inputs with joint produc-

tion, quasi-fixed inputs, and production uncertainty is 

 { }( , , ) arg min : ( , , ) 0, ,F= ≤ ≥X w y z w x x y z x 0T  (A.2) 

where x  is an nx–vector of positive variable inputs with corresponding positive prices, 

w , y  is an ny–vector of planned outputs, z  is an nz–vector of quasi-fixed inputs, F  is 

the real valued transformation function that defines the boundary of a closed, convex 

production possibilities set with free disposal in the inputs and the outputs, X  maps vari-

able input prices, planned outputs, and quasi-fixed inputs into variable input demand 

functions, and ( , , ) ( , , ),C ≡w y z w X w y zT  is the positive-valued variable cost function. By 
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Shephard’s Lemma, we have 

 1( , , ) ( ) ( , , ) .
xnC C w C w= ∇ ≡ ∂ ∂ ∂ ∂wX w y z w, y, z " T  (A.3) 

X is homogeneous of degree zero in w by the derivative property of homogeneous 

functions. Integrating with respect to w to recover the variable cost function, we obtain  

 ( , , ) ( , , , ( , )),c C C= ≡w y z w y z y z� θ  (A.4) 

where : × → \θ Y Z  is the constant of integration. In the present case, this means that θ  

is constant with respect to w. In general, θ  is a function of y and z and its structure cannot 

be identified from the variable input demands because it captures that part of the joint 

production process relating to quasi-fixed inputs and outputs that is separable from the 

variable inputs. 

Under standard conditions, the variable cost function is strictly decreasing in z, 

strictly increasing in y, jointly convex in ( , ),y z  increasing, concave and homogeneous of 

degree one in w . We are free to choose the sign of θ  so that, with no loss of generality, 

0.C∂ ∂ >� θ  

Since C�  is strictly increasing in θ, a unique inverse exists such that ( , , , )c= w y zθ γ , 

where : +× × × →\ \γ W Y Z , is the inverse of C�  with respect to θ. ( , , , )cw y zγ  is 

called the quasi-indirect production transformation function, analogous to the quasi-

indirect utility function of consumer theory (Hausman 1981; Epstein 1982; LaFrance 

1985, 1986, 1990, 2004; and LaFrance and Hanemann 1989). For all interior and feasible 

( , )y z , the function γ  is strictly increasing in c, strictly decreasing and quasi-convex in w, 

and positively homogeneous of degree zero in (w, c). 

The following two identities are simple implications of the inverse function theorem: 

 ( , , , ( , , , ));c C c≡ w y z w y z� γ  (A.5) 

and ( , , , ( , , , )).C≡ w y z w y z�θ γ θ  (A.6) 
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This lets one write the conditional demands for the variable inputs as 

 ( , , , ).C c= ∇ ≡wx G w y z�  (A.7) 

Equation (A.7) gives the rationale for writing the factor demands as a function of c  as 

well as ( , , )w y z . Thus, given the above regularity conditions for F and C, one can always 

write the system of factor demands as functions of cost. 

Now define the quasi-production transformation function by 

 { }( , , ) min ( , , , ) .
≥

≡
w

x y z w y z w xυ γ
0

T  (A.8) 

The terminology quasi-production transformation function indicates that ( , , )x y zυ  only 

reveals part of the structure of the joint production process. It cannot, and does not, reveal 

( , ).y zθ  This is analogous to the situation where one only recovers part of a direct utility 

function when analyzing the market demands for a subset of consumption goods.  

The identity ( , ) ( , , , ( , , , ( , )))C≡y z w y z w y z y z�θ γ θ  implies 

 { }( , ) ( , , , ( , , , ( , ))) min ( , , , ) ( , , ),C
≥

≡ ≥ ≡
w

y z w y z w y z y z w y z w x x y z�θ γ θ γ υ
0

T  (A.9) 

for all interior and feasible ( , , ).x y z  This inequality follows from the fact that ( , )y zθ  is 

feasible but not necessarily optimal in the minimization problem. The part of ( , , )F x y z  

not contained in ( , , )x y zυ  is given by (Diewert 1975; Epstein 1975; Hausman 1981; and 

LaFrance and Hanemman 1989), 

 ( , , ) ( , , , ( , )).F F≡x y z x y z y z� θ  (A.10) 

The quasi-production transformation function is the unique solution, ( , , )= x y zθ υ , to the 

implicit function, ( , , , ) 0,F =x y z� θ  in other words, ( , , , ( , , )) 0.F ≡x y z x y z� υ  
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The function ( , , )x y zυ  in (9) conveys full information about the marginal rates of 

substitution between variable inputs but only partially so for outputs and quasi-fixed in-

puts. This is again analogous to the situation in consumption theory when one analyzes 

only a subset of the goods purchased and consumed. This can be shown by applying the 

implicit function theorem to ,F�  which gives 

 

( , , , ( , , ))( , , ) ,
( , , , ( , , ))

( , , , ( , , ))
( , , ) ,

( , , , ( , , ))

( , , , ( , , ))
( , , ) .

( , , , ( , , ))

F
F

F
F

F
F

∇
∇ = −

∇

∇
∇ = −

∇

∇
∇ = −

∇

x
x

y
y

z
z

x y z x y zx y z
x y z x y z

x y z x y z
x y z

x y z x y z

x y z x y z
x y z

x y z x y z

�
�

�
�

�
�

θ

θ

θ

υυ
υ

υ
υ

υ

υ
υ

υ

 (A.11) 

This demonstrates that υ conveys full information on marginal rates of substitution be-

tween variable inputs, 

   ( , , ) ( , , , ( , , )) ( , , ) , , 1, , ,
( , , ) ( , , , ( , , )) ( , , )

i i i
x

j j j

x F x F x i j n
x F x F x

∂ ∂ ∂ ∂ ∂ ∂
= = ∀ =

∂ ∂ ∂ ∂ ∂ ∂
x y z x y z x y z x y z
x y z x y z x y z x y z

�
"�

υ υ
υ υ

 (A.12) 

but only partial information on marginal rates of product transformation between outputs, 

   

( , , ) ( , , , ( , )) ( , , , ( , )) ( , )
( , , ) ( , , , ( , )) ( , , , ( , )) ( , )

( , , ) , , 1, , ,
( , , )

i i i

j j j

i
y

j

F y F y F y
F y F y F y

y i j n
y

∂ ∂ ∂ ∂ + ∂ ∂ ⋅ ∂ ∂
=

∂ ∂ ∂ ∂ + ∂ ∂ ⋅ ∂ ∂

∂ ∂
≠ ∀ =

∂ ∂

x y z x y z y z x y z y z y z
x y z x y z y z x y z y z y z

x y z
x y z

� �
� �

"

θ θ θ θ
θ θ θ θ

υ
υ

 (A.13) 

and marginal rates of substitution between quasi-fixed inputs, 

   

( , , ) ( , , , ( , )) ( , , , ( , )) ( , )
( , , ) ( , , , ( , )) ( , , , ( , )) ( , )

( , , ) , , 1, , .
( , , )

i i i

j j j

i
z

j

F z F z F z
F z F z F z

z i j n
z

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂
=

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂

∂ ∂
≠ ∀ =

∂ ∂

x y z x y z y z x y z y z y z
x y z x y z y z x y z y z y z

x y z
x y z

� �
� �

"

θ θ θ θ
θ θ θ θ

υ
υ

 (A.14) 
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This background leads directly to the following result. 

Proposition 1: The following functional structures are equivalent: 

 ( , , ) ( , , );c= ≡x X w y z X w z�  (A.15) 

 ( , , ) ( , , ( , ));c C C= ≡w y z w z y z� θ  (A.16) 

and 0 ( , , ) ( , , ( , )).F F= ≡x y z x z y z� θ  (A.17) 

Proof: (A.16) ⇒ (A.15). Differentiating (A.16) with respect to w, Shephard’s Lemma 

implies, 

 .C= ∇wx �  (A.18) 

C�  is strictly monotonic in and has a unique inverse with respect to θ, say ( , , )cθ γ= w z� . 

Substituting this into (A.18) obtains 

 ( , , ( , , )) ( , , ).C c cγ= ∇ ≡wx w z w z X w z� ��  (A.19) 

(A.17) ⇒ (A.15) ⇒ (A.16). If the representation of technology has the separable struc-

ture in (A.17), then 

 { }arg min : ( , , ( , )) 0, ( , , ( , )).F θ θ≤ ≥ ≡w x x z y z x X w z y z0� �T  (A.20) 

This implies that the variable cost function has the separable structure 

 ( , , ( , )) ( , , ( , )).Cθ θ≡w X w z y z w z y z��T  (A.21) 

(A.16) ⇒ (A.17). Given (A.16), the quasi-production transformation function satisfies 

 { }( , ) min ( , , ) .υ γ
≥

≡
w

x z w z w x
0

� � T  (A.22) 

This implies that 

 ( , ) ( , , ( , , ( , ))) ( , )Cθ γ θ υ≡ ≥y z x z x z y z x z� � , (A.23) 
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for all interior, feasible ( , , ) ∈ × ×x y z X Y Z , with the boundary of the closed and convex 

production possibilities set defined by equality on the far right. Since υ�  is independent of 

y, equations (A.11) and (A.13) imply 

 ( , , ) ( , ) , , 1, , .
( , , ) ( , )

i i
y

j j

F y y i j n
F y y

θ
θ

∂ ∂ ∂ ∂
= ∀ =

∂ ∂ ∂ ∂
x y z y z
x y z y z

"  (A.24) 

Hence, the marginal rates of transformation between outputs are independent of variable 

inputs,  

  ( , , ) ( , ) 0, , 1, , , 1, , ,
( , , ) ( , )

i i
y x

k j k j

F y y i j n k n
x F y x y

θ
θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = ∀ = ∀ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

x y z y z
x y z y z

" "  (A.25) 

Thus, y is separable from x in the joint production transformation function (Goldman and 

Uzawa 1964, Lemma 1), that is, ( , , ) ( , , ( , ))F F θ=x y z x z y z� .  
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Appendix B: Sufficiency Algebra for Proposition 2 

Define the function :ω + × →\ \ \  by 

 2
0

( , ) [ ( ) ( , ) ] ,
x

x y y s s y dsω λ ω= + +∫  (B.1) 

where : →\ \λ  is an arbitrary smooth function and w is subject to the pair of initial 

conditions, (0, )w y y=  and 2(0, ) ,w y x y∂ ∂ =  to ensure that the definition is unique and 

smooth. Given two arbitrary smooth functions : xn
++ +→\ \η  and : ,yz nnθ × →\ \ \  by 

Leibniz’ Rule of differentiation, we have 

 2( ( ), ( , )) ( )( ( )) ( ( ), ( , )) .ω η θ ηλ η ω η θ∂ ∂⎡ ⎤= +⎣ ⎦∂ ∂
w z y ww w z y

w w
 (B.2) 

Given a monotonic, smooth function : , 0,f f++ ′→ ≠\ ^  define the relationship be-

tween f and ω  by ( ) ( ) ,f αω β γω δ= + +  , , , : ,xn
++ →\ ^α β γ δ  and 1.− ≡αδ βγ  Let 

the cost function be : qx z nn nc ++ ++ ++ ++× × →\ \ \ \  and denote an arbitrary positive-valued, 

1° homogeneous, increasing, and concave deflator by : .xn
++ ++→\ \π  The projective 

transformation group representation of any exactly aggregable ex ante cost function is 

 ( , , ) ( ) ( ), ( , )) ( ) .
( ) ( ) ( ), ( , )) ( )

cf α ω η θ β
π γ ω η θ δ

⎛ ⎞ ( +
=⎜ ⎟ ( +⎝ ⎠

w z y w w z y w
w w w z y w

 (B.3) 

Hereafter, suppress all arguments of all functions and use bold italics subscripts to denote 

vector-valued partial derivatives. For example, rewrite (B.2) compactly as 

2( ) .ω λ ω η= +w w  

The inverse of (B.3) with respect to ω w is ( ) ( ).f fω δ β γ α= − − +  Combine this 

with the identification normalization 1− ≡αδ βγ  to obtain the following: 
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 1 ,f f f
f f f

δ β γδ βγ γδ αδγω δ γ δ
γ α γ α γ α

⎛ ⎞− − − +
+ = + = =⎜ ⎟− + − + − +⎝ ⎠

 (B.4) 

or equivalently, 1 ( ).fγ α γω δ− + = +   Multiply each side of this by the corresponding 

side of equation (B.3) to obtain 2( ) ( ) ( ) .f fγ α αω β γω δ− + = + +  These relationships 

are used in what follows to simplify expressions. 

Our task is to differentiate (B.3) with respect to w, combine terms, and rewrite the ex-

pression that results so that the elements of 2{1, , }f f  appear on the right. Differentiating 

gives 

 
2 2

2 2

( ) ( ( )
( (

( ( ) ] ( ( ) ].

c cf
w w

f f f

π α ω αω β αω β γ ω γω δ
π γ δπ γ δ

γ α α ω α λ ω η β γ α γ ω γ λ ω η δ

+ + + ) + +⎛ ⎞′ ⋅ − = −⎜ ⎟ + ) + )⎝ ⎠

= − + )[ + + + − − + ) [ + + +

w w w w w w w w

w w w w w w

 (B.5) 

The second line follows from 1 ( ) fγω δ γ α+ = − + , 2( ) ( ) ( ) ,f fαω β γω δ γ α+ + = − +  

and 2( ) .ω λ ω η= +w w  Group terms in ω  on the second line of  (B.5) to obtain 

 
[ ]2

2 2

( ( )

( ( ) ( .

c cf f f

f f f

π γ α β αλη δ γλη
π π

γ α α γ ω γ α η ω

⎛ ⎞′ ⋅ − = − + ) + − +⎜ ⎟
⎝ ⎠

+ − + ) − + − + )

w w
w w w w

w w w

 (B.6) 

Substituting ( ) ( )f fω δ β γ α= − − +  into the second line of (B.6) now leads to 

[ ]

[ ]

2

2
2

2

( ( )

( ( ) (

( ( ) ( )( ) ( ) .

c cf f f

f ff f f
f f

f f f f f

π
γ α β αλη δ γλη

π π

δ β δ βγ α α γ γ α η
γ α γ α

γ α β αλη δ γλη α γ δ β η δ β

⎛ ⎞′ ⋅ − = − + ) + − +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− −
+ − + ) − + − + )⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

= − + ) + − + + − − + −

w w
w w w w

w w w

w w w w w w w

 (B.7) 

Expanding the quadratic forms and grouping terms in f in the last line of (B.7) gives 
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[ ]
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2 2 2
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( 2 )
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f f

f f

f f
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π π
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⎝ ⎠
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+ − +

= + − + + + +
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−

w w
w w w w

w w w w
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w w w w w w w
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[ ]
2 2 2

2( )

( ) .
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αδ δα γβ βγ αγλ βδ η

γδ δγ γ λ δ η
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⎡ ⎤+ − + +⎣ ⎦
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w w w

 (B.8) 

Grouping terms in ηw  as well gives 

 

2
2

2 2

( ) ( )

( ) ( ) .

c cf f f

f f

π αβ βα αδ δα γβ βγ γδ δγ
π π

δ β λ γ α η
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⎝ ⎠

⎡ ⎤+ − + − +⎣ ⎦

w w
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w

 (B.9) 

Finally, solving for c =w x  gives 

 

[ ]

{

}

2 2

2
2 2

2

2 2
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2( )

( )

( ) ( )

( ) ( ) .
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c f f
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 (B.10) 
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Appendix C. Specifying the Cost Function 

The first 1xn −  variable input prices, w, and total variable cost, c, are normalized by the 

average wage rate for hired farm labor, .
xnw We consider the following transformation of 

normalized variable cost, which nests the PIGLOG and PIGL class of models, 

 ( ) ( 1) ,f c cκ κ κ= + −  ( ) ,f c cκ′ =  2( ) ( 1) ,f c cκκ −′′ = −  .κ +∈\  

This includes all of the real-valued Gorman functional forms, with ( )f c c=  when 1,κ =  

and lim ( ) 1 ln .f c c
κ →0

= +  Therefore, the highest rank that the variable input demands can 

achieve is three (Gorman 1981; Lewbel 1987; LaFrance and Pope 2009).  

Previous empirical work considered translated Box-Cox functions of input prices, 

( 1) , [0,1], 1, , 1,i xw i nλ λ λ λ+ − ∈ = −"  to nest models with that have log prices, power 

functions of prices, and are linear prices. In the national model 1λ =  is optimal on this 

interval and for our data set. Hence, we restrict attention here to normalized input prices. 

Our previous empirical results using this data at state- and national-levels of aggregation 

and various levels of aggregation across inputs, suggests quite strongly that rank three 

over-parameterizes this data set (Ball, et al., 2010). Hence, we focus here on rank two:  

 10 1 20 2

1 1

( ( , , , , )) ( , , ) ( ) ( , , , ),

( ) ( , , )( , , , ) ,
( )

( , , ) ( ) ( ) ,

( ) 2 1,

[ ] ,
y yt n n

f c A K A K A K

f c A Kc A K

A K A K

y a y a

α β θ

αθ
β

α α α

β

= +

−
⇔ =

= + + +

= + +

= =

w a Y w w a Y

ww
w

w w w

w w Bw w

Y y a

α α

γ

�

i "

T T

T T

T

 (C.1) 

where iy  is the expected (planned) yield for the ith crop, ia  is the acreage planted to this 
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crop, and the symbol i denotes the Hadamard/Schur product for matrices and vectors. 

This appendix identifies restrictions on the parameters in (C.1) that are necessary and suf-

ficient for economic regularity of the variable cost function. 

Monotonicity in w: 

 

1 2

1
1 2 2

( )

( ) ,

cc A K

fc A K

κ

κ

θ
β

α
β

−1

−

∂
= + + + ≥

∂

⎡ ⎤⎛ ⎞−
⇔ = + + + ≥⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Bw
w

x Bw

0

0

α α γ

α α γ�
 (C.2) 

where 1 1[ ]
xnx x −=x� " T  is the (nx–1)–vector of the first nx–1 input quantities, excluding 

labor. 

Concavity in w: 

 

2
2 1

3

2
1

2 2

( 1) ( )( )

1 ( )( ) ,

c c cc c

c fc
c

κ κ

κ

θ θκ
β β

κ α
β β

− −

−
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− + = − + +

∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞∂ − − + +⎛ ⎞⇔ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦

B Bw Bw
w w w w

Bw Bwxx B
w w

γ γ

γ γ� �

T

T T

T
T

T

 (C.3) 

The first matrix on the right-hand-side of the second line is rank and is negative semi-

definite if and only if 1.κ ≥  The matrix in square brackets on the far right of the second 

line will be positive semi-definite if = +B LL γγT T , where L is a triangular matrix with 

nonzero main diagonal elements. This makes the following nx×nx matrix positive definite: 

 
1 1 1 1

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ +
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B L L LL0

0

γ γ γγ γ

γ γ γ

T T T T

T T T T
, (C.4) 

since it give a Choleski factorization of the matrix on the left. It follows from this that 
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12 1 [ 1] 011
xn −

++
⎡ ⎤ ⎡ ⎤+ + = > ∀ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

B ww Bw w w w
γ

γ
γ

\T T T

T
, and ( )( )

2 1
⎡ ⎤+ +

−⎢ ⎥+ +⎣ ⎦

Bw BwB
w Bw w

γ γ
γ

T

T T
 is 

positive semi-definite, by the Cauchy-Schwartz inequality in nx–dimensional Euclidean 

space. Given this, the second term on the right-hand-side of the second line of equation 

(12) will be negative semi-definite if and only if .f α≤   

Constant returns to scale (CRS): 

 .A K
A K
θ θ θ θθ ∂ ∂ ∂ ∂

≡ + + +
∂ ∂ ∂ ∂

a Y
a YT T

 (C.5) 

We believe that we have a much more accurate measure of capital than we do of land. 

Hence, we normalize θ  by the value of capital rather than land in farms. 

Monotonicity in ( , , , ) :A K a Y  

 
10 1 20 20, 0,

, .
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 (C.6) 

Joint Convexity in ( , , , ) :A K a Y  
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 (C.7) 

The first matrix on the right is rank one and will be positive semi-definite if and only if 

1.κ ≤  Therefore, ( , , , , )c A Kw a Y  will be concave in w and jointly convex in ( , , , )A K a Y  
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more than locally if and only if 1.κ =  We estimated the rank two model using the Box-

Cox transformation on cost. The NL3SLS/GMM point estimate for κ is 1.124 with a clas-

sical (Gaussian) asymptotic standard error of .152 and a White/Huber heteroskedasticity 

consistent standard error of .111. We can not reject a null hypothesis of 1κ =  in either 

case at the 25% significance level. Hence, in this paper we restrict our attention to 1.κ =   

Given this restriction, the cost function will be jointly convex in ( , , , )A K a Y  if and 

only if the Hessian matrix for θ , 
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⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
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 (C.8) 

is positive semi-definite. Given these considerations, the specification for θ employed in 

the paper is 

 
2

5 6 7
1 2 3 4( , , , ) ½ ,t t t t t

t t t t t t t t
t

AA K A K
K

θθ θ θ + +⎛ ⎞= − − − + + ⎜ ⎟
⎝ ⎠

a a Y Ya Y a Y Θ Θθ θ
T T

T T  (C.9) 

where 1 2 5, , 0θ θ θ > , 3 4, ,> 0θ θ  and 6 7,Θ Θ  are symmetric and positive semidefinite. The 

implied constraints for monotonicity can be written as 
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These can be imposed iteratively in estimation, if necessary (LaFrance 1991). In this pa-

per, we checked for the monotonicity conditions at each data point given the parameter 

estimates obtained without imposing monotonicity.  

Also, given that 0,tK >  the implied curvature conditions are that the matrix 
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is positive semidefinite. This can be imposed during estimation with the Choleski factors, 

6 6 6= TL LΘ  and 7 7 7,= TL LΘ  with 6L  and 7L  lower triangular Choleski factors for 6Θ  and 

7 ,Θ  respectively, and the inequality 5 0.θ >  In this paper, only the matrix 7 7 7= L LΘ T  is 

estimated as part of the arbitrage conditions. 
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Appendix D. Specification Errors and Parameter Stability Tests 

Many diagnostic procedures for testing parameter stability and model specification errors 

have been developed. Few are designed for large systems of nonlinear simultaneous 

equations in small samples. These properties preclude using recursive-forecast residuals 

or Chow tests based on sequential sample splits to analyze specification errors or non-

constant parameters Brown, Durbin, and Evans 1975; Harvey 1990, 1993; Hendry 1995). 

It is desirable to test whether the data are consistent with the model specification and con-

stant parameters. LaFrance (2008) derived a set of specification and parameter stability 

diagnostics for this class of problems. These test statistics rely on the estimated in-sample 

residuals and have power against a range of alternatives, including non-constant parame-

ters and specification errors. The purpose of this section is to discuss briefly the main 

ideas that underpin this class of test statistics. 

If the model is stationary and the errors are innovations, then consistent estimates of 

the model parameters can be found in any number of ways. Given consistent parameter 

estimates, the estimated errors converge in probability (and therefore, in distribution) to 

the true errors, ˆ P
t t→ε ε . Therefore, for each 1, , 1,xi n= −"  by the central limit theorem 

for stationary Martingale differences, we have  

 
1

1 (0,1)
T D

it
ti

N
T

ε
σ =

→∑ , (D.1) 

where 2 2( )i itEσ ε=  is the variance of the residual for the ith demand equation. Moreover, 

for any given proportion of the sample, uniformly in [0,1],z ∈  
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[ ]

1

1 (0, )
zT D

it
ti

N z
T

ε
σ =

→∑ , (D.2) 

where [ ]zT  is the largest integer that does not exceed zT. The variance is z because we 

sum [zT] independent terms each with variance 1/T. Multiplying (D.1) by z and subtract-

ing from (D.2) then gives 

 ( )
[ ]

1

1 ( ) (1) ( )
zT D

it i
ti

W z zW B z
T

ε ε
σ =

− → − ≡∑ , (D.3) 

where W(z) is a standard Brownian motion on the unit interval, with ( ) ~ (0, )W z N z , and 

( )B z  is a standard Brownian bridge, or tied Brownian motion. For all z ∈ [0,1], B(z) has 

an asymptotic Gaussian distribution, with mean zero and standard deviation (1 )z z−  

(Bhattacharya and Waymire, 1990). For a given z – that is, to test for a break point in the 

model at a fixed and known date – an asymptotic 95% confidence interval for B(z) is 

1.96 (1 )z z± − . To check for an unknown break point, a statistic based on the supremum 

norm,  

 
[0,1]

sup ( )T T
z

Q B z
∈

=  (D.4) 

has an asymptotic 5% critical value of 1.36 (Ploberger and Krämer, 1992). 

We can use consistently estimated residuals and consistently estimated standard er-

rors to obtain sample analogues to these asymptotic Brownian bridges. This gives 
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1 ˆ ˆ( ) ( ) ( )
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iT it i
ti

B z B z
T

ε ε
σ =

≡ − →∑ , (D.5) 

also uniformly in [0,1]z ∈ , so long as the model specification is correct and the parame-
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ters are constant across time periods. This statistic is a single equation first-order specifi-

cation/parameter stability statistic since it is based on the first-order moment conditions, 

( ) 0 ,itE i tε = ∀ . A system-wide first-order specification/parameter stability statistic can 

be defined by 

 
[ ]

1 1

1 1 ˆ ˆ( ) ( ) ( )
qnzT D

T it
t ix

B z B z
T n

ξ ξ
= =

⎡ ⎤
≡ − →⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ , (D.6) 

where ½ˆ ˆ ˆt t
−=ξ Σ ε  is the tth estimated standardized error vector and 

1 1
ˆ ˆqT n

it xt i
n Tξ ξ

= =
≡ ∑ ∑ . 

Similar methods apply to second-order stationarity and parameter staibility. We focus 

on system-wide statistics. Let Σ  be factored into LLT , where L is lower triangular and 

nonsingular. Define the random vector tξ  by t t= Lε ξ . In addition to the assumptions 

above, add 4

,
sup ( )it

i t
E ε < ∞ . Estimate the within-period average sum of squared standard-

ized residuals by 

 11 1ˆ ˆ ˆˆ ˆˆt t t t tn nυ −= =ξ ξ ε Σ εT T , (D.7) 

where t̂ε  is the vector of consistently estimated residuals in period t and 1
ˆ ˆ ˆT

t tt T== ∑Σ ε ε T  

is the associated consistently estimated error covariance matrix. The mean of the true tυ  

is one for each t, and the martingale difference property of tε  is inherited by 1.tυ −  A 

consistent estimator of the asymptotic variance of tυ  is  

 2 2

1

1 ˆˆ ( 1)
T

t
tTυσ υ
=

= −∑ . (D.8) 
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A system wide second-order specification/parameter stability test statistic is obtained 

by calculating centered and standardized partial sums of ˆtυ ,  
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υ
σ →∞=

= ⋅ − ⎯⎯→∑ , (D.9) 

uniformly in [0,1]z ∈ , where the limiting distribution on the far right follows from the 

identity 1ˆ ˆ 1T
tt Tυ υ=≡ ≡∑ . 

 




