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PRELIMINARY AND INCOMPLETE 

 

Abstract 
This paper empirically shows that innovation in Information Technology (IT) has become 
increasingly dependent on and intertwined with innovation in software. This change in the 
nature of IT innovation has had differential effects on the performance of the United States and 
Japan, two of the largest producers of IT globally. We document this linkage between software’s 
contribution in IT innovation and the differential innovation performance of US and Japanese 
electronics, semiconductors, and hardware firms. We collect patent data from USPTO in the 
period 1980-2002 and use a citation function approach to formally show the trend of increasing 
software dependence of IT innovation. Then, using a broad unbalanced panel of the largest US 
and Japanese publicly listed IT firms in the period 1983-1999, we show that (a) Japanese IT 
innovation relies less on software advances than US IT innovation, (b) the innovation 
performance of Japanese IT firms is increasingly lagging behind that of their US counterparts, 
particularly on IT sectors that are more software intensive, and (c) that US IT firms are 
increasingly outperforming their Japanese counterparts, particularly in more software intensive 
sectors. The findings of this paper could provide a fresh explanation for the relative decline of 
the Japanese IT industry in the 1990s. 

Key Words: innovation, technological change, IT industry, software innovation, Japan 
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I. Introduction 
The surge of innovation in Information Technology (IT) is one of the great economic 

stories of the last two decades. This period also coincides with the unexpected resurgence of the 

United States IT sector, belying the gloomy predictions about the the US IT industry popular in 

the late 1980s and early 1990s (e.g. Cantwell, 1992; Arrison and Harris, 1992). 

In this paper, we argue that a shift in the nature of the innovation process in IT occurred . 

Starting in the late 1980s and accelerating in the 1990s, technological change in IT has taken on 

a trajectory that is increasingly software intensive. We show that non-software IT patents are 

significantly more likely to cite software patents, even after controlling for the increase in the 

pool of citable software patents. We also show that employment of software professionals has 

increased in IT industries.  While these shifts are broad-based, we also see substantial differences 

across IT sub-sectors in the degree to which they taken place.  We exploit these differences to 

sharpen our empirical analysis in the manner described below. 

If the innovation process in IT has indeed become more dependent on software 

competencies and skills, then firms better able to use software advances in their innovation 

process will benefit more than others. Indeed, we argue that the shift in software intensity of IT 

innovation has differentially benefited American firms over their Japanese counterparts.  Our 

results from a sizable unbalanced panel of the largest publicly traded IT firms in US and Japan 

for the period 1983-1999  show that US IT firms have started to outperform their Japanese 

counterparts, both as measured by productivity of their innovative activities, and as measured by 

their stock market performance.   

The timing and the concentration of this improvement in relative performance appears to 

be systematically related to the software intensity of IT innovation.  We show that the relative 

strength of American firms tend to emerge in the years after the rise in software intensity had 
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become well established.  Furthermore, the relative improvement of the U.S. firms is greatest in 

the IT sub-sectors in which the measured software intensity of innovation is the highest.  Finally, 

we present evidence suggesting that much of the measured difference in financial performance 

declines disappears when we separately control for the software intensity of IT innovation at the 

firm level.  

This paper is structured as follows. Section II provides evidence and documents the 

existence of a shift in the technological trajectory of IT, Section III empirically explores its 

implications for innovation performance of US and Japanese IT firms, while Section IV 

discusses the possible explanations for the trends we observe in our data. We conclude in Section 

V with a summary of the key results and an outline of the limitations of our study with avenues 

for future work.  

II. Changing Technology of Technological Change in IT 
 A survey of the computer and software engineering literature points to an evident 

increase in the role of software for successful innovation and product development in various 

parts of the IT industry.  The share of software costs in product design has increased steadily 

over time (Allan et al, 2002) and software engineers have become more important as high-level 

decision-makers at the system design level in telecommunications, semiconductors, hardware, 

and specialized industrial machinery (Graff, Lormans, and Toetenel, 2003). Graff, Lormans, and 

Toetenel (2003) further argue that software will increase in importance and complexity in a wide 

range of products, such as mobile telephones, DVD players, cars, airplanes, and medical 

systems.  Industry observers claim that software development and integration of software 

applications has become a key differentiating factor in the mobile phone and PDA industry 

(Express Computer, 2002).  A venture capital report by Burnham (2007) forcefully argues that 
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that the central value proposition in the computer business has shifted from hardware to systems 

and application software. 

 Similarly, De Micheli and Gupta (1997) assert that hardware design is increasingly 

similar to software design, so that even the design of hardware products requires extensive 

software expertise. Gore (1998) argues that even peripherals are marked by the increasing 

emphasis on the software component of the solution, bringing together hardware and software 

into an integrated environment.  In sum, there is broad agreement among engineering 

practitioners and technologists about the increasing role of software in various parts of IT. In the 

next section, we validate this assertion formally, using data on citation patterns of IT patents. 
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We use citations by non-software IT patents to software patents as a measure of the 

software intensity of IT innovation.  Patents have been used as a measure of innovation in 

mainstream economic research at least since the early 1960s (e.g., Griliches and Schmookler, 

1963). The possible uses of patent citations in economic research have been well documented 

(Griliches, 1990; Jaffe and Trajtenberg, 2002; Trajtenberg, Schiff and Melamed, 2006), and 

although problems in using citaitons to measure knowledge flows have been identified (Alcácer 

and Gittelman, 2006), they are still the richest and most readily available micro level measure of 

innovation. 

We cannot simply use time trends in software patenting by IT sector because  (a) patent 

counts are a very crude measure of innovation output through time, especially in the presence of 

changing patentability regimes, and (b) tracking patent counts does not tell us much about the 

connections between different types of IT innovation. The first problem is particularly severe in 
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our case because of large changes in the patentability regime for software patents in the time 

period of interest.  

The citation patterns we observe are an end result of the interplay of several 

determinants: the size of the citing knowledge pool expressed by the number of citing patents, 

the availability of citable knowledge expressed by the number of possible cited patents, and the 

rates of knowledge diffusion and obsolescence (Hall, Jaffe, and Trajtenberg, 2001). In order to 

get an unbiased view of knowledge flows, we need to purge citation patterns of the impact of 

these factors. 1 

The citation function has been pioneered in the work of Caballero and Jaffe (1993) and 

Jaffe and Trajtenberg (1996, 2002). Jaffe (1996) and Branstetter and Ogura (2005) successfully 

applied it to examining knowledge linkages between academic science and industrial innovation, 

Singh (2005) estimated citation functions to study collaborative networks as determinants of 

knowledge diffusion patterns, while Caballero and Jaffe (1993) used them to explore the rates of 

knowledge diffusion and obsolescence.  

We model the probability that a particular patent, P, applied for in year t, will cite a 

particular patent, a, granted in year T. This probability is determined by the combination of an 

exponential process by which knowledge diffuses and a second exponential process by which 

knowledge becomes superseded by subsequent research (Jaffe and Trajtenberg, 2002). The 

probability, , is a function of the attributes of the citing patent (P), the attributes of the 

cited patent (a), and the time lag between them (t-T), as depicted formally below: 

))(exp(1()(exp(),(),( 21 TtTtpapap −−−⋅−−⋅= ββα           (1) 

                                                 
1The possible biases in patent citations due to examiners (Alcacer and Gittelman, 2006) or due to the strategy 
behavior of patent applicants (Mowery, Oxley, and Silverman, 1996) are well known.  Still, there is substantial 
evidence validating these data as useful indicators of knowledge spillovers (Duguet and MacGarvie, 2005; Jaffe, 
Trajtenberg, Fogarty, 2000).   
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We sort all potentially citing patents and all potentially cited patents into cells 

corresponding to the attributes of articles and patents.  The attributes of the citing patents that we 

incorporate into our analysis include the citing patent’s grant year, its geographic location, and 

its technological field (IT, software). The attributes of the cited patents that we consider are 

again the cited patent’s grant year, its geographic location, and its technological field. Thus, the 

expected value of the number of citations from a particular group of citing patents to a particular 

group of cited patents can be expressed as the following: 

))(exp(1()(exp()( 21 TtTtnncE abcdefdefabcabcdef −−−⋅−−⋅⋅⋅= ββα          (2) 

where the dependent variable measures the number of citations made by patents in the 

appropriate categories of grant year (a), geographic location (b), and technological field (c) to 

patents in the appropriate categories of grant year (d), geographic location (e), and technological 

field (f). The alpha terms are multiplicative effects estimated relative to a benchmark or “base” 

group of citing and cited patents. Rewriting equation (2) gives us the Jaffe – Trajtenberg (2002) 

version of the citation function:  

))(exp(1()(exp(
)(

)( 21 TtTt
nn

cE
cp abcdef

defabc

abcdef
abcdef −−−⋅−−⋅=

⋅
= ββα         (3) 

Adding an error term, we can estimate this equation using the nonlinear least squares 

estimator. The estimated equation thus becomes the following: 

abcdeffedcbaabcdef TtTtcp εββαααααα +−−−⋅−−⋅⋅⋅⋅⋅⋅= ))(exp(1()(exp()( 21 …… 4) 

In estimating equation (4) we adjust for heteroscedasticity by weighting the observations 

by the square root of the product of potentially cited patents and potentially citing patents 

corresponding to the cell, that is 

   )()( defabc nnw ⋅=                     (5) 
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We use patents granted by the United States Patent and Trademark Office (USPTO) 

between 1980 and 2002. We use the geographic location of the first inventor to determine the 

“nationality” of the patent.2 We identified patents belonging to IT, broadly defined, by using a 

classification system based on USPTO classes, developed by Hall, Jaffe, and Trajtenberg (2001). 

They classified each patent into one of six broad technological categories: (1) chemical, (2) 

computers & communications, (3) drugs & medical, (4) electrical & electronic, (5) mechanical, 

and (6) others. They further broke down each category, generating a total of 36 technological 

subcategories. We applied their system and identified IT patents broadly defined as those 

belonging to any of the following categories: computers & communications category, electrical 

devices, or semiconductor devices. We obtained these data from the updated NBER patent 

dataset.3  

Next, we identified software related patents. The most pressing challenge is the definition 

and identification of software patents. There have been three significant efforts to define a large 

set of software patents. Graham and Mowery (2003) defined software patents as an intersection 

of those falling within a narrow range of IPC classes and those belong to packaged software 

firms. This created a sample that was severely under-inclusive according to Allison et al, (2006).  

The second effort was that of Bessen and Hunt (2007), who define a software invention 

as one in which the data processing algorithms are carried out by code either stored on a 

magnetic storage medium or embedded in chips. They rejected the use of official patent 

classification systems for defining the set of software patents, and used a keyword search method 

instead. They identified a small set of patents that adhered to their definition, and then used a 

                                                 
2 Patents with inventors from multiple countries currently represent a small fraction of the total patent population, so 
using first inventor’s location only is not likely to introduce noticeable measurement error into our data. 
3 Downloaded from the following link: http://elsa.berkeley.edu/~bhhall/bhdata.html (12/15/2007) 



8 

machine learning algorithm to identify similar patents in the patent population, using a series of 

keywords in the patent title and abstract. Recently, Arora et al (2007) use a similar approach that 

connects the Graham-Mowery and Bessen-Hunt definitions.4  

We use a combination of a broad keyword-based and patent class strategy to identify 

software patents. First, we generated a set of patents, applied for after January 1st 1980 and 

granted before December 31st 2002, that used the words “software” or “computer program” in 

the patent document. Then, we defined the population of software patents as the intersection of 

the set of patents the query returned and IT patents broadly defined as described above, granted 

in the period 1980-2002. This produced a dataset consisting of 104,407 patents.  

 These data are potentially affected by a number of biases.  Not all invention is patented, 

and special issues are raised by changes in the patentability of software over the course of our 

sample period – this makes it all the more important for us to control for the expansion in the 

pool of software patents over time, as we do.  We also rely on patents generated by a single 

authority – the USPTO – to measure invention for both U.S. and Japanese firms.  However, 

Japanese firms have historically been among the most enthusiastic foreign users of the U.S. 

patent system.  Evidence suggests that examination of the U.S. patents of Japanese firms does 

provide the researcher with a reasonably accurate portrayal of their inventive activity 

(Branstetter, 2001; Sakakibara and Branstetter, 2000).  This is particularly likely to be true in IT, 

given the importance of the U.S. market in the various components of the global IT industry. 

                                                 
4Allison et al. (2006) rejected the use of both the standard classification system and keyword searches, resorting to 
the identification of software patents by reading through them manually.  Although potentially very accurate, this 
method is inherently subjective and not scalable.   
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The unit of analysis in Table I is an ordered pair of citing and cited patent classes.  In this 

regression, we are primarily interested in the coefficient on the software patent dummy. It is 

large, positive, statistically significant, and indicates that IT patents in the 1990s are 1.34 times 

more likely to cite software patents than other IT patents, controlling for the sizes of available IT 

and software knowledge pools. The second specification in Table I includes only software 

patents in the population of possibly cited patents. The coefficients on the citing grant years 

show a sharp increase in citation probabilities from 1992 to 2002. An IT patent granted in 1996 

is 1.74 times more likely to cite a software patent than an IT patent granted in 1992. 

Furthermore, an IT patent granted in 2002 is almost 4 times more likely to cite a software patent 

than that granted in 1992. Comparing this trend to that of the specification in the left-hand 

column of Table I, we see that this trend is much more pronounced, suggesting that software 

patents are becoming increasingly important for IT innovation broadly defined. In Table I, we 

also explore citation differences between Japanese and non-Japanese invented IT inventions. The 

specification in the left-hand column indicates that Japanese invented IT patents are 34 percent 

less likely to cite other IT patents than non-Japanese IT patents. However, they are 93 percent 

less likely to cite software patents than non-Japanese IT patents. This result is corroborated by 

the regression in the right-hand column, where the coefficient on the Japanese dummy again 

shows that Japanese invented IT patents are significantly less likely to cite software patents than 

non-Japanese patents. 

The citations function’s complexity makes it difficult to estimate different tendencies for 

Japanese and American firms to increase their propensity to cite software patents over time, 

holding all other factors constant, but we see evidence consistent with this in the raw data.  
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Figure 1 shows trends over time in the fraction of total (non-software) IT patents’ citations that 

are going to software patents.  While the trends for both Japanese and U.S. firms rise 

significantly over the 1990s, then level off a bit in the 2000s, the measured gap between Japanese 

and U.S. firms rises substantially over the period. 

 
Figure 1:  Software Intensity of Non-Software IT Patents 
(Measured by fraction of patent citations going to software patents) 

 

The results from the two specifications in Table I portray an interesting picture: software 

innovation is (increasingly) important for IT innovation broadly defined, and this appears to be 

especially true in the U.S.  If this is true, then we might expect to see supporting evidence in 

patterns of employment in IT industries.  The U.S. Bureau of Labor Statistics conducts periodic 

surveys of U.S. employment by occupation and industry.  Inspection of the data from 1999-

20075 reveal trends consistent with a rising importance of software in IT innovation.  For 

instance, Figure 2 illustrates how two measures of the share of software engineers in total 

employment in the computer and peripheral equipment manufacturing industry have trended 

upward over time.  We see similar trends in other IT subsectors.  Interestingly, the relative share 
                                                 
5 Methodological changes in the survey make it difficult to track occupational employment in the U.S. IT industry in 
a consistent way over time, particularly in comparing the periods before and after 1999.   
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of software engineers in total employment across subsectors appears to accord with patent 

citation-based measures of software intensity.  The share is highest in computers and peripherals, 

lowest in audio and visual equipment manufacturing, and at intermediate levels in 

semiconductors.   
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III. Comparing US and Japanese Firm-Level Innovation Performance in IT 
We use two of the most commonly employed empirical approaches to compare firm-level 

innovation performance of US and Japanese IT firms: the innovation (patent) production 

function and the market valuation of R&D. While the former approach relates R&D investments 

to patent counts and allows us to study the patent productivity of R&D, the second approach 

relates R&D investment to the market value of the firm and explores the impact of R&D on the 

value of the firm (Tobin’s Q). This allows us to tie together firm-level results reported in this 

section with the reported shift in IT innovation of the previous section.  
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This approach builds on Pakes and Griliches (1984) and Hausman, Hall, and Griliches 

(1984).  We begin by specifying a functional relationship between research and development 

effort, proxied by R&D expenditures, and innovation resulting from this effort, proxied by the 

number of patents taken out by a firm. We use a log-log form of the patent production function.  

                  (6)      

where                               (7) 

In equation (6), Pit are patents taken out by firm i in period t, rit are research and development 

expenditures, JPi indicates if the firm is Japanese, and �’s represent innovation-sector-specific 

technological opportunity and patenting propensity differences across c different innovation 

sectors D, which follow a functional form as specified in (7). Substituting (7) into (6), taking 

logs of both sides, and expressing the sample analog we obtain the following: 

                 (8) 

where pit is the natural log of new patents (flow) and the error term which is defined below.  

                    (9) 

We allow the error term in (9) to contain a firm-specific component, �i, which accounts for 

the intra-industry firm-specific unobserved heterogeneity, and an iid random disturbance, uit. The 

presence of the firm-specific error component suggests using random or fixed effect estimators. 

Since the fixed effects estimator precludes time-invariant regressors, including the firm origin 

indicator, we feature the pooled OLS and random effects estimators, and use the fixed effects 

estimator as a robustness check.  
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 Griliches (1981) pioneered the use of Tobin q regressions to measure the impact of R&D 

on a firm’s economic performance (see also Jaffe, 1986; Cockburn and Griliches, 1988; Hall and 

Oriani, 2006).6 In this approach, efficient capital markets are assumed, so that the market value 

of the firm represents the value maximizing combination of its assets. We can represent the 

market value V of firm i at time t as a function of its assets: 

                                                                                                                          (10) 

where Ait is the replacement cost of the firm’s tangible assets, typically measured by their book 

value, and Kit is the replacement value of the firm’s technological knowledge, typically measured 

by stocks of R&D expenditures7. The functional form of f is not known, and we follow the 

literature, which assumes that the different assets enter additively..: 

                                                                                                              (11) 

where qt is the average market valuation coefficient of the firm’s total assets, � is the shadow 

value of the firm’s technological knowledge measuring the firm’s private returns to R&D, and � 

is a factor measuring returns to scale. Again following practice in the literature (e.g. Hall and 

Oriani, 2006), we assume constant returns to scale (� = 1). Then, by taking natural logs on both 

sides of (11) and subtracting lnAit, we obtain the following expression that relates a firm’s 

technological knowledge to its value above and beyond the replacement cost of its assets, 

Tobin’s Q: 

                                           (12)      

                                                 
6 See Hall (2000) for a detailed review. 
7 The construction of variables is explained in greater detail in subsequent sections. 
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Following Hall and Kim (2000), Bloom and Van Reenen (2002) and others, we estimate a 

version of (12) using the nonlinear least squares estimator, with time dummies and a firm origin 

indicator. We were unable to estimate a specification with firm-fixed effects because the NLS 

algorithms did not converge.  As a robustness check, we estimated a linearized version of (12) 

with fixed effects. 
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Our sample consists of large publicly traded IT companies in the United States and Japan, 

observed from 1983 to 1999. We obtained the sample of US firms from historical lists of 

constituents of Standard & Poor’s (S&P) US 500 and S&P 400 indices. The resulting set of firms 

was refined using Standard & Poor’s Global Industry Classification Standard (GICS) 

classification8 so that only firms appearing in “electronics”, “semiconductors”, “IT hardware” 

and “IT software and services” categories remained in the sample. This produced an initial set of 

approximately 220 firms. The sample was narrowed further in the following way: (a) only firms 

that were granted at least 10 patents in the 1983-1999 period were retained, (b) US firms in “IT 

software and services” were removed from the estimation samples in order to achieve 

compatibility with the sample of Japanese firms,9 and for Tobin’s Q regressions, only (c) firms 

for which at least 3 consecutive years of positive R&D investment and sales data were available 

were kept in the sample. This produced a final unbalanced panel of 140 and 135 US IT firms for 

patent production function and Tobin’s Q regressions respectively. 

                                                 
8 GICS, the Global Industry Classification System, is constructed and managed by Moody’s in collaboration with 
Compustat.  
9 NTT is the only Japanese firms in “IT services and software” in our sample. 
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The sample of large publicly traded Japanese IT firms was derived from the Development 

Bank of Japan (DBJ) database, which gave us an initial unbalanced panel of 154 publicly listed 

Japanese IT firms in the period 1983-1999.10 The sample was supplemented by an additional 37 

firms that were listed as constituents of Standard & Poor’s Japan 500 index as of January 1st 

200311, and that were listed as belonging to either “electronics”, “semiconductors”, “IT 

hardware”, or “IT software and services” based on their GICS code. This created an unbalanced 

panel of 191 Japanese firms.  

Japanese accounting standards do not force firms to report R&D data in a uniform way, 

which rendered the R&D investment data from the DBJ database unusable. As a consequence, 

we were forced to obtain self-reported R&D expenditure data for Japanese firms from annual 

volumes of the Kaisha Shiki Ho12 survey. Lack of reliable R&D expenditure data for some firms 

led to their exclusion from our sample. We further restricted the sample by (a) dropping all firms 

without at least 10 patents in the observed period, (b) dropping Nippon Telephone and 

Telegraph, which was as the only “IT Software and Services” firm, and, for Tobin’s Q 

regressions, (c) all firms for which at least three consecutive years of R&D investment and 

positive output data were not available in DBJ. This produced a final sample of 98 and 89 

Japanese IT firms for the patent production function and Tobin’s Q regressions respectively. 
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 To explore how innovation performance differentials between US and Japanese 

firms vary with software intensity, we classify firms into industry segments.  GICS provided us 

                                                 
10   We thank the Columbia Business School Center on the Japanese Economy and Business for these data.   
11 January 1st, 2003 was the date of creation of this index. 
12 Kaisha Shiki Ho (Japan Company Handbooks) is an annual survey of Japanese firms, published by the Japanese 
equivalent of Dow Jones & Company, Toyo Keizai Inc.  We thank Ms. Kanako Hotta for assistance in obtaining 
these data from the collections at the School of International Relations and Pacific Studies of the University of 
California at San Diego.   
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with a classification of all US firms in our sample into four sectors – “electronics”, 

“semiconductors”, “IT hardware”, and “IT software and services”.  Japanese firms were 

classified manually using the two-digit GSIC classification data from the S&P Japan 500 along 

with the data from Japan’s Standard Industrial Classification (JSIC), supplemented by manual 

Google Finance, Yahoo! Finance and corporate websites. 

We construct two separate measures of software intensity, both of which suggest a 

similar ranking of IT subsectors.  First, we use the shares of software patents in total patents 

taken out by the firms in our sample to construct a firm-level measure of software intensity, then 

we average these across firms in an industry category.  Second, we calculate the fraction of 

citations to software parents that appear in the non-software IT patents of our sample firms, and 

average these across firms within a sample category. Table II presents summary statistics for 

both these measures of software intensity.  As expected, electronics is the least software 

intensive, followed by semiconductors and IT hardware. A two-sided test for the equality of 

means rejects that the intensities are the same in any pair of sectors when we use the share of 

software patents as our measure. The second measure, citations to software patents, yields 

similar results, albeit at lower levels of significance in some cases.  Tables III and III-2 calculate 

the industry averages of our measures of software intensity separately for U.S. and Japanese 

firms.  In general, the ranking of industries in terms of software intensity suggested by the 

overall sample appears to apply to the country-specific subsamples.13  Japanese firms’ measures 

of software intensity tend to be far lower than that of their US counterparts, consistent with the 

findings of the previous section that showed Japanese firms were less likely to use software 

                                                 
13 Depending on the measure, statistical tests of equality are not always significant at the conventional threshold 
levels when we disaggregate by country of origin, and when Japanese software intensity is measured by citations to 
software in non-software patents, electronics is (insignificantly) more software intensive than semiconductors.   
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innovation than their foreign counterparts.14 We also find that large Japanese IT firms are 

disproportionally located in less software-intensive sectors.  

Taking the assignment of firms to the different IT industries as given, we test whether US 

firms outperform Japanese firms, and whether this performance gap is more marked in IT 

industries that are more software intensive.  
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Patent Counts: Patent data for our sample of firms were collected from the updated NBER patent 

dataset containing patents granted by the end of 2002. Compustat firm identifiers were matched 

with assignee codes based on the original and updated matching as constructed and available on 

Bronwyn Hall’s website.15 The matching algorithm was manually updated by matching strings of 

Compustat firm names and strings of assignee names as reported by the USPTO. An identical 

procedure was used for matching Japanese firms to their patents, except that we based it on a 

Tokyo Stock Exchange (TSE) code - assignee code matching algorithm previously used in 

Branstetter (2001). Next, we computed patent counts for all firm-year observations based on 

patent application years. In addition to total patent counts, counts of IT and software patents, as 

defined in the previous sections, were collected. 

R&D Investment: Annual R&D expenditure data for US firms were collected from Compustat, 

and a set of self-reported R&D expenditure data for Japanese firms were collected from annual 

volumes of the Kaisha Shiki Ho survey. We deflated R&D expenditures following Griliches 

(1984), and constructed a separate R&D deflator for US and Japanese firms that weighs the 

output price deflator for nonfinancial corporations at 0.51 and the unit compensation index for 

the same sector at 0.49. Using data on wage price indexes for service-providing and goods-
                                                 
14 This is true in five out of six cases, although the measured differences are not always statistically significant. 
15 Downloaded from the following link: http://elsa.berkeley.edu/~bhhall/bhdata.html (12/15/2007) 
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producing employees,16 we constructed a single unit compensation index for each country, and 

then applied the proposed weights and appropriate producer price indexes to compute the R&D 

deflators and deflate the R&D expenditure flows. 

R&D stocks: We calculated R&D capital stocks from R&D expenditure flows using the 

perpetual inventory method,with a 15% depreciation rate (Hall and Vopel, 1997; Mairesse and 

Hall, 1996; Hall, 1993).17 We used 5 pre-sample years of R&D expenditures to calculate the 

initial stocks.18  

Market Value of the Firm: Market value of a firm equals the sum of market value of its equity 

and market value of its debt (Perfect and Wiles, 1994). Market value of equity equals the sum of 

the value of outstanding common stock and the value of outstanding preferred stock. The value 

of outstanding common (preferred) stock equals the number of outstanding common (preferred) 

shares multiplied by their price. For US firms, we used year-close prices, year-close outstanding 

share numbers, and year-close liquidating values of preferred capital. For Japanese firms, the 

only available share price data were year-low and year-high prices, and we used the arithmetic 

average of the two to obtain share price for each firm-year combination. In addition, preferred 

capital data was not available for Japanese firms. Although this can introduce a source of 

measurement error in our dependent variable, as long as preferred capital does not systematically 

vary with time and across technology sectors in a particular way, our results regarding sector and 

sector-origin differences will remain valid. Market value of debt was calculated following 

Perfect and Wiles (1994) as a sum of the value of long-term and short-term debt. For U.S. firms, 

                                                 
16 We obtained these data from the Bureau of Labor Statistics and Statistics Bureau of Japan, respectively. 
17 See Griliches and Mairesse (1984) and Hall (1990) for a detailed description and discussion of this methodology. 
We used several depreciation rates between 10% and 30%, with little change in the results.. 
18 When the expenditure data was not available, we used first 5 years of available R&D expenditure data, “backcast 
them” using linear extrapolation, and calculated the initial R&D capital stock based on the projected R&D 
expenditures. 
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we used total long-term debt as a proxy for the former and debt due in one year as a proxy for the 

short term debt. In the case of Japanese firms, we used fixed liabilities as a proxy for the value of 

long-term debt and short-term borrowings as a proxy for the value of short-term debt.19 

Replacement Cost of Assets: The replacement cost of the firm’s assets is the deflated year-end 

book values of total assets.20 where the deflator is a country-specific capital goods deflator 

obtained from the Bureau of Labor Statistics and the Statistics Bureau of Japan, respectively. 
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Figure 3 compares the number of patents per firm for the US and Japanese firms in our 

sample. We observe that Japanese firms obtain more non-software IT patents than their US 

counterparts. Between 1983 and 1988, the average number of non-software IT patent 

applications were almost identical for Japanese and US firms. Between 1988 and 1993, patent 

applications by Japanese firms outpaced those of US firms, after which both grew at the same 

pace. By contrast, Japanese firms file fewer and increasingly fewer software patents than their 

US counterparts. The difference has grown steadily since the late 1980s and at an increasing pace 

in the mid and late 1990s. 

                                                 
19 We use the book value of debt as our measure of debt. Although this might introduce measurement error, the 
results in Perfect and Wiles (1994) using a variety of measures provide us with some reassurance as they do not 
differ much, regardless of the measure used. Similarly, complicated recursive methods have been suggested for 
calculating the market value of short-term debt. Using book value approximations could again introduce 
measurement error to our data, but we again rely on the discussion in Perfect and Wiles (1994) for reassurance that 
this error will not be severe.  
20 Perfect and Wiles (1994) note that different calculation methodologies do result in different absolute replacement 
cost values, but do not seem to bias coefficients on R&D capital. In a discussion particular to calculating 
replacement cost of assets in Japan, found in Hayashi and Inoue (1991) and Hoshi et al. (1991), several complex 
methodologies were proposed. For the purpose of this paper, we did not compare our results against the alternative 
of using replacement cost calculated with their methodology. 
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Figure 3: Average Number of non-software IT and Software Patents Per Firm 





Table V in the Appendix reports the estimates of the patent production functions of 

Japanese and US IT firms. Our first key result is presented in Figure 4 below, which plots the 

pooled OLS average difference in log patent production per dollar of R&D, between Japanese 

and US firms in our sample through time, controlling for time and sector dummies,.21 We see 

that R&D spending by Japanese firms was 40% more productive than in their US counterparts 

during 1983-1988, but 30% less productive during 1989-1993. This trend accelerated in the 

1990s, resulting in Japanese IT firms producing 60% fewer patents, controlling for the level of 

R&D spending, than their US counterparts in the period 1994-1999. 

  

                                                 
21 Detailed results are found in Table IV in the Appendix. 
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Figure 4: Average Japan-US Productivity Differences, Entire Sample 
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Figure 5: Average Japan-US Productivity Differences, By Software Intensity Sector 
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Figure 5 reports Japan-U.S. differences in average R&D productivity by IT sector, where 

the measure of R&D productivity is based on patent output controlling for R&D input. In 

electronics, previously shown to be the least software intensive, and where average software 

intensity is similar between US and Japanese firms, Japanese firms have been less productive in 

patent production in the 1980s and early 1990s, but have been catching up to their US 

counterparts in the mid and end 1990s. On the other hand, in semiconductors and IT hardware, 

which have significantly higher software intensity than electronics, and where average software 

intensity of US firms is greater than of Japanese firms, Japanese firms exhibited higher 
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productivity in the mid 1980s, lost all of their advantage by the turn of the 1990s, and 

increasingly started to lag behind their US counterparts in the mid to end 1990s.  

 All of the results are statistically significant at the 5% level and robust to changes in the 

particularities of estimation techniques. Random effects and fixed effects estimators, which take 

into account firm-specific unobserved differences in patent productivity, do not produce 

qualitatively different results, suggesting that our results are not driven by unobserved firm-

specific research productivity or patent propensity differences.  

Robustness checks: These results have as the dependent variable the log of total patents applied 

for by firm i in year t. We estimated our regressions using the log of IT patents, and the log of IT 

patents excluding software patents, with no qualitative change in the results.  We also weighted 

total patent output by subsequent citations and by the number of claims appearing in the patent 

documents, with no qualitative change in the results.22  

 One might argue that the bursting of the Japanese asset price bubble at the break of the 

1990s and the economic slowdown that followed might distort our results, for instance by 

reducing Japanese R&D investments. Note however that we are estimating the productivity of 

R&D in producing patents, rather than merely the number of patents produced.  Further, insofar 

as Japanese firms reduced their R&D, diminishing returns to R&D should have resulted in higher 

not lower measured productivity.  Alternatively, Japanese firms may have changed patent 

propensity, filing fewer but higher quality patents.  However, estimates using citation weighted 

patents (not reported here) yield similar results.  But most telling of all, no simple story about the 

bubble can explain the observed pattern, wherein the relative decline in productivity is greater in 

more software intensive segments. 

                                                 
22 We do not report these results in the paper, but are available from the authors upon request. 
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Our empirical approach does, however, suffer from other possibly serious limitations. One is 

that we have estimated the patent production regressions based on a relatively narrow sample of 

Japanese firms, especially in the semiconductor sector. If the few large Japanese semiconductor 

firms that we capture in the sample are systematically less productive in research than smaller or 

privately held Japanese semiconductor firms that we do not observe in our sample, then US-

Japan productivity difference estimators might be upward biased. However, entry of privately 

held firms has been limited in Japan, making it unlikely that we are missing a significant part of 

important Japanese IT firms in our data.  

Another limitation is that we are unable to compare the research productivity of US and 

Japanese software firms, which is the sector where we could expect differences to be most 

pronounced. However, the lack of Japanese software firms is itself suggestive; if we were to such 

firms, the productivity differences would likely be favorable to US firms.23  

Finally, if Japanese firms exhibited lower propensities to patent in the United States than 

their US counterparts, this would bias the estimated Japan-US research productivity differences 

upwards. We have a two-fold response. First, a survey of patenting activity in the US suggests 

that Japanese IT firms have patented ferociously in the US in our sample period, accounting for 

up to 30% of total IT patents filed at the USPTO (e.g. Arora et al, 2007). Secondly, in order for 

our time-period and industry-period differences to be biased, one would have to construct a 

viable story for why the patent propensity of Japanese firms dropped significantly in the 1990s, 

and more so in more software-intensive sectors.  

                                                 
23 Towards the end of the 1990s, a small number of publicly listed firms that we could classify as software firms 
appeared on the Tokyo Stock Exchange. Softbank is a canonical example. We could not include these firms in our 
analysis as we are only looking at the period 1983-1999.  
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 We begin by plotting the average difference in Tobin’s Q between our sample of US and 

Japanese firms through time, shown in Figure 6 below. We observe that Japanese firms, on 

average, have had higher Q values than US firms in the mid 1980s, particularly in what would 

become more software intensive sectors – semiconductors and IT hardware. These differences 

diminished with the bursting of the Japanese economic bubble at the dawn of the 1990s, and 

Japanese Q values have lagged throughout the 1990s, especially in semiconductors, and to a 

lesser extent, also in IT hardware. Thus trends in average Tobin’s Q values by sector parallel 

those in patent production.  

Moving beyond the descriptive analysis, we regress Tobin’s Q on the ratio of R&D 

stocks by total assets to estimate private returns to R&D (shadow value of R&D). Table IV 

reports estimates of equation (12) by period using nonlinear least squares.  It shows that the 

shadow price of R&D/Assets for US firms was negative and statistically significant in the period 

1983-1988, but rose to positive and statistically significant levels by the mid to end 1990s. On 

the other hand, the coefficient on R&D/Assets for Japanese firms has not followed this trend. It 

has hovered just above 0 in the 1980s and dropped to just below 0 in the mid 1990s. In none of 

the periods was it statistically significantly different from 0. This is consistent with what we 

observed when plotting the values of Tobin’s Q through time, except that we see that it is not the 

Japanese who experienced a drop in returns, but that it is the US firms who exhibited a hike in 

private returns to R&D. 

 Interestingly, this “reversal of fortune” for the market valuation of U.S. firm R&D 

appears to be sensitive to the inclusion of a direct measure of software intensity.  Table IV-2 

reports the results of a regression in which we add the software intensity (measured by average 
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firm citations to software in non-software IT patents), and also interact with R&D/Assets.  This 

additional regressor changes our results.  The R&D/Assets coefficient for U.S. firms is positive 

in the last period, but not statistically significant from zero.  These results support the view that 

the relative increase in U.S. performance is related to software intensity.   

Figure 6: Average Difference in Tobin’s Q, By Sector 
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Figure 7 compares private returns to R&D for Japanese and US firms by IT sector. As 

with patent productivity, we find that results differ by sector. In electronics, the least software 

intensive sector, the US firms started off with an advantage in the mid 1980s, before losing it all 

by the mid to end 1990s. The reverse is true in IT hardware, the most software-intensive sector.  

We report detailed regression results in Tables VII-IX of the Appendix. 
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Figure 7: Average Difference in Private Returns to R&D, By Sector 
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We conducted several robustness checks. We first estimated versions of (12) and (13) 

using NLS and FE estimators, where we directly estimated time trends for private returns to 

R&D separately for US and Japanese firms. Table VI shows that the direction of the trends 

remains unperturbed, but they lose their statistical significance when we use the NLS estimator 

on the sample of US firms. Private returns to R&D for Japanese firms linger, as before, around 0, 

and have no significant trend over time. In the left columns of Tables VII-IX, we report estimates 

of the linear approximation using firm fixed effects. Again, we observe that the signs of the 

coefficients remain essentially unchanged, except in the case of US semiconductors, where the 

FE reveals a highly statistically significant positive trend in private returns to R&D.  

Finally, we estimate a linearized version where we split US and Japanese firms into 

quartiles according to the share of software patents in total patents. Table X of the Appendix 

provides summary results of this effort. We observe that US firms’ private returns to R&D 

increase with software intensity, while they fall in the case of Japanese firms. This is consistent 

with our results from above. However, when we perform the same exercise by sector, we observe 

that, in semiconductors and IT hardware this no longer holds, suggesting that our results might 



27 

be driven by trends in electronics. This is plausible since Japanese firms are disproportionally 

located in this sector. Interestingly, we also observe that US firm’s private returns to R&D 

increase with the software intensity of the sector when they are also in the top quartile of 

software intensity. The same is true for Japanese firms. Conversely, private returns to R&D 

decrease with the software intensity of the sector for firms located in the bottom quartile of 

software intensity.  

IV. Discussion 
The empirical part of our paper documents three key observations. First, we show that IT 

innovation has become more software intensive. Second, Japanese firms produce significantly 

fewer software inventions and rely less on software knowledge in innovation production than 

their US counterparts. Third, the innovation performance of Japanese IT firms is increasingly 

lagging behind particularly in software intensive sectors. This suggests, but does not 

conclusively demonstrate, a causal link running from the changing technology of technical 

change in IT to an inability of Japanese firms to respond adequately to the shift, leading to 

worsening performance. 

The question is what prevented Japanese firms from using software advances as 

effectively as U.S. firms?  There are at least two explanations, not mutually exclusive. The first 

is that U.S. firms have superior access to software knowledge, and software professionals. The 

first explanation posits that the software related knowledge pool is constrained in Japan, whereas 

the same is not true in the US, and it also presumes that Japanese IT firms cannot overcome this 

disadvantage by tapping into foreign knowledge pools.  
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Japan’s weakness in software has been widely recognized in the literature.24 

Anchordoguy (2000) argues that Japan has historically lagged the United States in systems and 

application software. Cusumano (1991), in his book, showed how Japan’s electronics and 

hardware companies, at least partially due to the lack of availability of skilled software labor, 

took a factory approach to software, focusing on cost minimization, software reuse, bug 

minimization, and other techniques in order to increase productivity of their inadequately skilled 

and scarce software labor. Other studies, citing reasons as diverse as the Japanese language, lack 

of creativity of Japanese workers, and weak university computer science education, all reach the 

same conclusion of weak software competence of Japanese firms, weak software skills of 

Japanese software workers, and inadequate supply of highly skilled software labor in Japan (e.g., 

Fransman, 1995; Baba et al, 1996). 

Further, it is widely acknowledged that tapping into distant knowledge pools is difficult, 

particularly across national boundaries (Jaffe, Trajtenberg, and Henderson 1993; Thompson and 

Fox-Kean 2005). Anchordoguy (2000) provides circumstantial evidence that tapping into foreign 

software knowledge pools might be particularly difficult for Japanese firms due to language 

barrier, labor market frictions, and important differences between Japanese and other firms in 

terms of the institutional environment and business conduct conventions. 

Finally, an important strand of literature in international economics argues that country-

specific factor endowments are crucial for explaining comparative differences in innovation 

performance of industries in national economies. For instance Acemoglu (2001, 2002), Dudley 

and Moenius (2007) and others, argue that not only do countries specialize in the production of 

goods intensive in factors they are abundant in, but that they also specialize in innovation 

                                                 
24 Exceptions to this are the video game industry, some parts of the robotics industry, and Japan’s indigenous 
cellular phone industry. 
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activities intensive in factors they are abundant with, a phenomenon they dub “factor-biased 

technical change”.  

It is also possible that Japanese firms are simply less efficient in taking advantage of the 

access to software knowledge that they possess. Several strands of literature have explored this 

problem and proposed explanations for why it could occur.  The literature on learning and 

innovation has argued that the ability of a firm to recognize the value of external information, 

assimilate it, and apply it to commercial ends is critically dependent on previous investments in 

that sector.  For instance, Cohen and Levinthal (1990) argue that lack of investment in a sector of 

expertise may foreclose the future development in it. Our data suggest that, relative to American 

firms, Japanese IT firms have invested fewer resources in software innovation. Following a 

software-intensive technology shift, this mechanism would lead to vicious circle where the 

Japanese have lower absorptive capacity for software knowledge, thus produce fewer software 

inventions, which in turn again diminishes their absorptive capacity. This idea is similar to the 

notion of technological lock-in by historical reasons (Arthur, 1989) and learning myopia 

(Levinthal and March, 1993).  

A related strand of management literature has focused on how managerial mindsets affect 

the (in)ability of firms to make strategic shifts. The key assertion is that managers develop 

mindsets, formed through years of experience, which in turn guide their decisions (Prahalad and 

Bettis, 1986). However, when the environment changes, these mindsets may prevent managers 

from responding to the change (Bettis and Hitt, 1995).  The problem is more severe when 

managers have less experience in diverse settings.  Japanese institutions, such as the lifetime 

employment system, imply that Japanese IT firms are more likely than US IT firms to be led by 

seasoned technocrats who have risen through the ranks. In contrast, US IT firms are more likely 
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to be led by managers with business backgrounds and diverse experience. If this results in US 

firms’ managers having systematically more flexible managerial mindsets, this could again 

explain the inability of the Japanese to make the required strategic innovation shift.   
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 While our current data does not enable us to rule out any of the proposed explanations, 

we can obtain an initial insight by exploring data on patenting behavior of Japanese and US IT 

firms. The identification strategy we follow is based on the fact that the two possible 

explanations yield different predictions regarding what types of innovative activities Japanese 

firms should undertake in Japan and abroad. If they are constrained by their software knowledge 

pool at home, then Japanese firms will have the incentive to tap into foreign knowledge pools by 

setting up software intensive R&D facilities abroad. Thus, if we observe that innovative efforts 

of Japanese firms are markedly more software intensive when done outside Japan, this would 

suggest the existence of the software knowledge/labor constraint in Japan. 

 We classified USPTO granted patents assigned to the Japanese firms in our sample on the 

basis of where they were invented – Japan, United States, or elsewhere (rest). Then, we 

compared the shares of software, IT, and other patents in different invention locations. The 

results of this exercise are reported in Tables XI-XIV of the Appendix.  What we observe is 

consistent with the constraint hypothesis. The share of software patents in total patents invented 

in Japan and assigned to the Japanese firms in our sample is 6%. However, the share of software 

patents in total patents invented in the US and assigned to the Japanese firms is significantly 

higher – 33%. Similarly, software patents represent 24% of total patents invented in other parts 

of the world. This suggests Japanese firms are disproportionally likely to engage in software 

innovation abroad. In addition, comparing citation behavior of non-software IT patents 
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belonging to Japanese firms in our sample, we see that US invented patents are more likely to 

cite software innovation than those invented in Japan. We also conducted the exercise separately 

by sector – electronics, semiconductors, IT hardware - and see that increasing propensity to 

conduct software innovation abroad holds for all of them, but is strongest in IT hardware.  

 This does not rule out managerial myopia insofar as Japanese firms that recognize the 

importance of using software knowledge are also willing and able to invest in software related 

innovation activities abroad.  It does imply that conducting software intensive research in Japan 

is more difficult than doing so elsewhere, consistent with a software resource constraint in Japan. 

V. Conclusions, Implications and Next Steps 
In this paper, we document the existence of a software-biased shift in the nature of the 

innovation process in Information Technology (IT). Using data on citation patterns of IT patents, 

we show that IT inventions increasingly rely on software knowledge. In addition, we provide 

initial evidence of its economic importance by studying how the innovation performance of IT 

firms in the United States and Japan was affected by this shift. Using a panel of large publicly 

listed IT firms, we show that Japanese firms produce significantly fewer software inventions and 

rely less on software knowledge in innovation production than their US counterparts.  We 

present evidence consistent with the hypothesis that this difference has resulted in a deterioration 

in the relative performance of Japanese firms, and show that this effect is more pronounced in 

software intensive sectors. Finally, we provide suggestive evidence, consistent with a constrained 

supply of software knowledge and skills in Japan being a key factor in explaining the relatively 

poor performance of Japanese IT firms in the 1990s. 

Our findings highlight important interconnections between firm competencies, technical 

change, and innovation performance. At an aggregate level, they contribute to a growing 
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literature in international economics that explores linkages between factor endowments, 

technological change, and industry performance (e.g. Acemoglu, 2002; Dudley and Moenius, 

2007). Furthermore, the policy implications of our findings are also potentially significant. Can 

Japan build up software skill and enhance its software related knowledge pools to augment 

Japanese IT firms’ ability to compete in a software-intensive innovation environment? Could 

measures such as setting up more software intensive R&D facilities in the US or attracting Ph.D. 

level software skilled talent to Japan be taken to provide Japanese IT firms with a channel 

through which they can more effectively tap into foreign software knowledge pools? Answering 

these questions will require a model linking factor endowments, the “technology of technical 

change”, and firm behavior.  Empirically, it would require data on the knowledge and skill 

endowments available to firms, and the estimation of their impact on firm performance. 
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Table I: Citation Function Results         ��

      Full Sample   Citations to Software Patents Only ��

Citing Grant Year   Coefficient Std. Error   Coefficient Std. Error ��

1993   0.1364 *** 0.0432   0.2345 *** 0.0533 ��

1994   0.3248 *** 0.0500   0.4157 *** 0.0640 ��

1995   0.6339 *** 0.0609   0.8949 *** 0.0771 ��

1996   1.1426 *** 0.0769   1.7482 *** 0.0954 ��

1997   1.4741 *** 0.0942   2.2345 *** 0.1345 ��

1998   1.9031 *** 0.1123   2.7757 *** 0.1572 ��

1999   2.2265 *** 0.1372   3.2193 *** 0.1635 ��

2000   2.3847 *** 0.1622   3.4400 *** 0.1971 ��

2001   2.8789 *** 0.1978   3.7422 *** 0.2304 ��

2002   3.3690 *** .   3.98453 *** . ��

Cited Grant Year             ��

1981   -0.6114 *** 0.0184   -0.6314 *** 0.0191 ��

1982   -0.7758 *** 0.0119   -0.7851 *** 0.0127 ��

…   … …   … … ��

2000   -0.9977 *** 0.0004   -0.9981 *** 0.0003 ��

2001   -0.9988 *** 0.0005   -0.9990 *** 0.0005 ��

                ��

Citing Patent From Japan -0.3358 *** 0.0220   -0.3916 *** 0.0231 ��

Cited Software Patent 1.3483 *** 0.0484   n/a n/a ��
Citing Patent From 
Japan X Cited 
Software Patent 

  
-0.9225 *** 0.0590 

  
n/a n/a 

��

    ��

Obsolescence   0.3824 *** 0.0053   0.3978 *** 0.0062 ��

Diffusion     0.0002 *** 0.0000   0.0003 *** 0.0000 ��

                ��

Adj R-Squared   0.8526   0.6460 ��

Number of Obs.   804   402 ��

�� �� �� �� �� �� �� �� ��
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Table II: Software Intensity by Sector, Firms in Tobin's Q Regression Sample, 1993-1999 

Industry No. of Firms Mean St. Deviation Mean St. Deviation
Electronics 68 0.0139 (**/**) 0.0183 0.1650 (**/**) 0.1528
Semiconductors 56 0.1452 (**/**) 0.1684 0.2691(**/*) 0.2099
IT Hardware 99 0.2320  (**/**) 0.2200 0.3316 (**/*) 0.2100

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries

( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

Share of Citations to Software PatentsShare of Software Patents

 

 

Table III: Software Patent Shares by Sector and Firm Origin, Tobin's Q Regression 
Sample, 1983-1999 

Industry No. of Firms Mean St. Deviation No. of Firms Mean St. Deviation
Electronics 16 0.0248(**/**) 0.0261 52 0.0106 (*/**) 0.0137
Semiconductors 43 0.1820 (**/**) 0.1749 13 0.0234 (*/**) 0.0450
IT Hardware 76 0.2822 (**/**) 0.2277 23 0.0663 (**/**) 0.0387

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries

( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

Japanese FirmsUS Firms

 

 

Table III-2: Share of Citations to Software by Non-Software IT Patents by Sector and Firm 
Origin, Tobin's Q Regression Sample, 1983-1999 

Industry No. of Firms Mean St. Deviation No. of Firms Mean St. Deviation
Electronics 16 0.1160 (**/**) 0.1231 52 0.1800 (  /**) 0.1589
Semiconductors 43 0.3089 (**/  ) 0.2118 13 0.1374 (  /**) 0.1434
IT Hardware 76 0.3378 (**/  ) 0.2260 23 0.3109 (**/**) 0.1476

** - Test for equality of means rejected at 5% level for a pair of industries, * - Test for equality of means rejected at 10% level for a pair of industries

( / ) - First term in bracket represents the upper pair, second term in bracket represents the lower pair

US Firms Japanese Firms
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(�)���:*;�()��<&�0 �-�%��&&���-�&���&� �'8�4����

lnQ NLS NLS NLS NLS

0.1721 -0.5772 -0.1905 0.1972
(0.0489) *** (0.0655) *** (0.0566) *** (0.0594) ***
-0.1625 0.5819 0.2078 -0.2099

(0.0494) *** (0.0654) *** (0.0611) *** (0.0617) ***
lnSales 0.0380 0.0498 0.0475 0.3236

(0.0016) *** (0.0019) *** (0.0027) *** (0.0022) ***

N 2973 913 888 1172
0.4889 0.6051 0.5171 0.4925

(�)���:* �;�()��<&�0 �-�%��&&���-�&���&� �'8�4����� ��"�# ����:����&��8

lnQ NLS NLS NLS NLS

0.0619 -0.3478 -0.1834 0.0848
(0.0440) (0.1019) *** (0.0689) *** (0.0524)

0.0514 ',--(. 0.3289 -0.0042
(0.0643) (0.1023) *** (0.0934) *** (0.0922)

0.2568 -0.0498 0.3557 0.1671
(0.1233) ** (0.0816) (0.2259) (0.1681)

N 2973 913 888 1172
0.5108 0.6154 0.5304 0.4991

1994-1999

RD/Assets

RD/Assets * Sof.Intensity

R-squared

��������	
�������	����	
�������	���	�����	�����	���	�����	���������	���	��������

RD/Assets * Japan

R-squared

��������	
�������	����	
�������	���	�����	�����	���������	���	��������

Entire Sample 1983-1988 1989-1993

RD/Assets

RD/Assets * Japan

Entire Sample 1983-1988 1989-1993 1994-1999

 

 

������������	
����
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Appendix  

Table V: Patent Production Function Results: Entire Sample and By Sector 

 

      Entire Sample   Electronics Semiconductors IT Hardware 

      OLS RE FE   OLS RE FE OLS RE FE OLS RE FE 
                                
Log 
R&D     0.8300 0.1865 0.0124   1.0778 0.6272 0.2364 0.6294 0.1393 0.0330 0.7564 0.1286 0.0183 

      (0.0452) (0.2159) (0.2178)   (0.0711) (0.0515) (0.0649) (0.0814) (0.0393) (0.0369) (0.0758) (0.0301) (0.0299) 
Time 1989-1993   0.5256 0.5409 0.5388   0.0578 0.1209 0.1771 0.4726 0.6685 0.7089 0.6885 0.6516 0.6342 

      (0.1312) (0.0684) (0.0624)   (0.1611) (0.1314) (0.1252) (0.2566) (0.1486) (0.1282) (0.1718) (0.0907) (0.0834) 

Time 1994-1999   1.0674 1.3098 1.3752   -0.3737 -0.2725 -0.1716 1.3183 1.9250 2.1288 1.2491 1.3759 1.4005 
      (0.1704) (0.0665) (0.0612)   (0.2574) (0.1305) (0.1249) (0.3015) (0.1422) (0.1241) (0.2083) (0.0883) (0.0819) 

Japan Dummy   0.4003 0.4853 n.a.   -0.5425 -1.2094 n.a. 0.2269 0.3428 n.a. 0.9121 1.7556 n.a. 
      (0.1974) (0.1814)     (0.2600) (0.2796)   (0.3511) (0.3336)   (0.3239) (0.2869)   

Japan * Time 1989-1993 -0.6963 -0.2654 -0.1614   -0.3780 -0.1123 0.0072 -0.2529 -1.0391 -0.0492 -0.7936 -0.2734 -0.1812 
      (0.1515) (0.0943) (0.0861)   (0.1941) (0.1479) (0.1415) (0.3583) (0.2621) (0.2264) (0.2038) (0.1472) (0.1353) 

Japan * Time 1994-1999 -1.0023 -0.7146 -0.6435   0.2891 0.5941 0.7105 -1.1184 -1.1435 -1.1602 -1.0569 -0.7088 -0.6333 

      (0.2003) (0.0946) (0.0869)   (0.2884) (0.1490) (0.1431) (0.5263) (0.2498) (0.2173) (0.2767) (0.1491) (0.1377) 
Electronics   -0.9619 0.8915 n.a.                     

      (0.2402) (0.2064)                       
Semiconductors   -1.1759 0.6300 n.a.                     

      (0.2258) (0.2145)                       

IT Hardware   -1.1356 0.5599 n.a.                     
      (0.2443) (0.1938)                       

_cons     n.a. n.a. 2.5148   -0.9807 0.9164 1.5926 -0.4581 0.5473 1.7714 -1.0538 1.0991 2.9155 
          (0.0972)   (0.3612) (0.3284) (0.2433) (0.2985) (0.2386) (0.1657) (0.3462) (0.1978) (0.1540) 
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Table VI: Tobin's Q Regressions - US and Japan - Comparing Time Trends   
                                    
      Entire Sample       US         Japan         
lnQ     FE   NLS     FE   NLS     FE   NLS     
                                    
RD/Assets   0.0175   0.1242 ***   -1.2380   -0.1531     0.0072   0.0105     
      (0.0094) * (0.0322)     (0.1771) *** (0.1791)     (0.0087)   (0.0071)     

RD/Assets * Year_1989-1993 0.0084 
�

  
�

-0.0629 
�

*
�

  -0.3799 
�

  
�

-0.4052 
�

  
�

  0.0059 
�

 
�

0.0072 
�

 
�

  
      (0.0246)   (0.0385)     (0.0920) *** (0.0711) ***   (0.0234)   (0.0306)     
RD/Assets * Year_1994-1999 0.01256   -0.0726 *   1.2647   0.2194     -0.0026   -0.0008     
      (0.0111)   (0.0428)     (0.1771) *** (0.1838)     (0.0275)   (0.0250)     
                                    
                                    
N     2973   2973     1529   1529     1444   1444     
R-squared   0.1129   0.5180     0.2207   0.5883     0.2888   0.7532     
                                    
Firm size coefficient, Industry controls, and other controls not reported                  
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Table VII: Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - Electronics 
                                
      US   Japan     US   Japan           

lnQ     FE   FE     NLLS   NLLS           
                                
RD/Assets   1.1709   0.0178     1.5170   0.0114           
      (0.3692) *** (0.0097) *   (0.6332) ** (0.0078)           

RD/Assets * Time 
1989-1993 -0.7581 

 
  
 

-0.0056 
 
  
 

  -0.5278 
 
  
 

0.0000 
 
  
 

        
      (0.1792) *** (0.0244)     (0.2101) ** (0.0345)           
RD/Assets * Time 
1994-1999 -0.2068   0.0207     -1.6333   0.0093           
      (0.3045)   (0.0294)     (0.6450) ** (0.0286)           
                                
                                
N     209   865     209   865           
R-squared   0.3936   0.3510     0.5828   0.7598           
                                
Firm size, time dummies,  and other controls not reported                     
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Table VIII: Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - Semiconductors 
                                

      US   Japan     US   Japan           

lnQ     FE   FE     NLLS   NLLS           

                                

RD/Assets   -1.4462   0.0061     0.3945   -0.0148           

      (0.3001) *** (0.0294)     (0.3757)   (0.0193)           

RD/Assets *  
Time 1989-1993 -0.5272 

 
 

 

0.0609 
 

 
 

  -0.6778 
 

 
 

0.1805 
 
  
 

        

      (0.1596) *** (0.2403)     (0.1473) *** (0.1903)           
RD/Assets *  
Time 1994-1999 1.4761   -0.1022     -0.1831   -0.3690           

      (0.3001) *** (0.2663)     (0.3957)   (0.1451) **         

                                

                                

N     468   209     468   209           

R-squared   0.3831   0.1276     0.6615   0.7696           

                                

Firm size, time dummies,  and other controls not reported                     
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Table IX Total Sample Period Tobin's Q Regression - Logarithmic Approximation FE and NLS - US and Japanese Firms - IT Hardware 
                                

      US   Japan     US   Japan           

lnQ     FE   FE     NLLS   NLLS           

                                

RD/Assets   -1.6589   -0.0742     0.6943 ** 0.2306           

      (0.2633) *** (0.1185)     (0.3546)   (0.1253) *         

RD/Assets *  
Time 1989-1993 0.2243 

 
  
 

-0.1399 
 
  
 

  0.2566 
 
*** 
 

-0.1201 
 
  
 

        

      (0.1553)   (0.1475)     (0.0946)   (0.1761)           
RD/Assets *  
Time 1994-1999 1.0624 *** -0.0154     1.2291 *** -0.1962           

      (0.2725)   (0.1469)     (0.3558)   (0.1754)           

                                

                                

N     852   370     852   370           

R-squared   0.1798   0.2604     0.5607   0.7524           

                                

Firm size, time dummies,  and other controls not reported                     
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lnQ

RD/Assets - US -0.2975 *** 0.1107 * 0.1059 0.1689 **

RD/Assets- Japan 0.0499 *** 0.0482 0.0155 -0.1519 **

lnQ

RD/Assets - US 0.1012 0.0200 0.9330 *** -0.0989 *

RD/Assets- Japan 0.1677 0.0058 0.2112 ** -0.1863

25 percentile or lowerabove median

below median above median 25 percentile or lower

Table X: Tobin's Q Regressions Summary - Share of Software Patents

ELECTRONICS

TOTAL

75th percentile or 
higher

75th percentile or 
higher

below median
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lnQ

RD/Assets - US -0.4071 *** 0.3880 -0.2349 0.8945 ***

RD/Assets- Japan 0.0562 *** 0.2246 0.0163 0.6957 **

lnQ

RD/Assets - US (n/a) -0.3662 *** -0.4499 *** -0.3327 ***

RD/Assets- Japan (n/a) 0.2175 *** -0.4599 *** 0.0825 ***

75th percentile or 
higher

below median above median 25 percentile or lower 75th percentile or 
higher

IT HARDWARE

below median above median 25 percentile or lower

SEMICONDUCTORS

Table X: Tobin's Q Regressions Summary - Share of Software Patents (contd.)
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Table XI: Distribution of Patents Held By Japanese Firms by Innovation Origin – Entire Sample 
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Table XII: Distribution of Patents Held By Japanese Firms by Innovation Origin – Electronics 
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Table XIII: Distribution of Patents Held By Japanese Firms by Innovation Origin – Semiconductors 
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Table XIV: Distribution of Patents Held By Japanese Firms by Innovation Origin – IT Hardware 
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