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Abstract

We study the impact that algorithmic trading, computers directly interfacing with trading platforms,

has had on price discovery and volatility in the foreign exchange market, using high frequency data

representing a majority of global interdealer trading in three major currency pairs from 2006 to 2007. Our

dataset contains precise observations of the size and the direction of the computer-generated and human-

generated trades each minute. As such, it allows us to analyze the possible links between algorithmic

trading and market volatility and liquidity, to identify whose trades have a more permanent impact

on prices, and to study how correlated algorithmic trades are. Our study provides several important

insights. First, we observe that algorithmic trades tend to be correlated, suggesting that the algorithmic

strategies used in the market are not as diverse as those used by non-algorithmic traders. Second, we

�nd no evident causal relationship between algorithmic trading and increased exchange rate volatility. If

anything, the presence of more algorithmic trading is associated with lower volatility. Third, we show

that even though some algorithmic traders appear to restrict their activity in the minute following a

macroeconomic data release, algorithmic traders increase their provision of liquidity relatively more than

non-algorithmic traders over the hour following the release. Fourth, we �nd that non-algorithmic order

�ow accounts for most of the (long-run) variance in exchange rate returns, i.e. non-algorithmic traders

are better �informed� than algorithmic traders. Fifth, we �nd evidence that supports the literature

that proposes to depart from the prevalent assumption that liquidity providers in limit order books are

passive.
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1 Introduction

The use of algorithmic trading, where computer algorithms directly manage the trading process at high

frequency, has become common in major �nancial markets in recent years, beginning in the U.S. equity

market more than 15 years ago. There has been widespread interest in understanding the potential impact

of algorithmic trading on market dynamics, as some analysts have highlighted the potential for improved

liquidity and more e¢ cient price discovery while others have expressed concern that it may be a source

of increased volatility and reduced liquidity, particularly in times of market stress.1 Despite this interest,

there has been very little formal empirical research on the topic, primarily because of a lack of data where

algorithmic trades are clearly identi�ed. A notable exception is a recent paper by Hendershott, Jones,

and Menkveld (2007), who get around the data constraint by using the �ow of electronic messages on the

NYSE as a proxy for algorithmic trading. They conclude that algorithmic trading on the NYSE, contrary

to the pessimists�concerns, likely causes an improvement in market liquidity.2 There has been no formal

empirical research on algorithmic trading in the foreign exchange market, where the adoption of algorithmic

trading is a far more recent phenomenon than in the equity market, as the two major interdealer electronic

trading platforms only began to allow algorithmic trades a few years ago. Growth in algorithmic trading has

been rapid, however, and a sizable fraction of foreign exchange transactions currently involve at least one

algorithmic counterparty.

In algorithmic trading (AT), computers directly interface with trading platforms, placing orders without

human intervention. The computers observe market data and possibly other information at very high fre-

quency, and, based on a built-in algorithm, instantly send back trading instructions. A variety of algorithms

are used: some look for arbitrage opportunities, for instance small discrepancies in the exchange rates be-

tween three currencies; some seek optimal execution of large orders at the minimum cost; and some seek to

implement longer-term trading strategies in search of pro�ts. Among the most recent developments in algo-

rithmic trading, some algorithms now automatically read and interpret economic data releases, generating

trading orders before economists have �nished reading the �rst line.3

The extreme speed of execution that AT allows and the potential that algorithmic trades may be highly

correlated, perhaps as many institutions use similar algorithms, have been cited as reasons for concerns that

AT may generate large price swings and market instability. On the other hand, the fact that some algorithms
1For instance, an article published by the Financial Times on December 5, 2008, was titled �Algorithmic trades produce

snowball e¤ects on volatility.�
2We also note a paper by Hasbrouck (1996) on program trading, where he analyzes 3 months of data where program trades

can be separately identi�ed from other trades. He concludes that both types of orders have an approximately equivalent impact
on prices. Algorithmic trading is not exactly equivalent to program trading, though it is a close cousin. In principle, a program
trade could be generated by a trader�s computer and then the trade conducted manually by a human trader. Our de�nition of
AT refers to the direct interaction of a trader�s computer with an electronic trading platform; that is, the automated placement
of a trade order on the platform.

3The Economist, June 21, 2007
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aim for optimal execution at a minimal price impact may be expected to lower volatility. In this paper, we

investigate whether algorithmic (�computer�) trades and non-algorithmic (�human�) trades have di¤erent

e¤ects on the foreign exchange market. We �rst ask whether the presence of computer trades causes higher or

lower volatility and whether computers increase or reduce liquidity during periods of market stress. We then

study the relative importance of human and computer trades in the process of price discovery and re-visit

the assumption that liquidity providers are �uninformed.�

We formally investigate these issues using a novel dataset consisting of two years (2006-2007) of minute-

by-minute trading data from EBS on three exchange rate pairs: the euro-dollar, dollar-yen, and euro-yen.

The data represent the vast majority of global interdealer transactions. An important feature of the data is

that the volume and direction of human and computer trades each minute are explicitely identi�ed.

We �rst show some evidence that computer trades are more highly correlated with each other than human

trades, suggesting that the strategies used by computers are not as diverse as those used by humans. But the

high correlation of computer trades does not seem to necessarily translate into higher volatility. In fact, we

�nd next that there is no evident causal relationship between AT and increased market volatility. If anything,

the presence of more algorithmic trading appears to lead to lower market volatility, although the economic

magnitude of the e¤ect is small. In our estimations, to account for the potential endogeneity of algorithmic

trading with regards to volatility, we instrument for the actual level of algorithmic trading with the installed

capacity for algorithmic trading in the EBS system at a given time. We study next the relative provision

of market liquidity by computers and humans at the times of the most in�uential U.S. macroeconomic data

release, the nonfarm payroll report. We �nd that, as a share of total market-making activity, computers

tend to pull back slightly at the precise time of the release but then increase their presence in the following

hour. This result is robust to considering other important macroeconomic news releases and suggests that

computers do provide liquidity during periods of market stress.

Finally, we estimate return-order �ow dynamics using a structural VAR framework in the tradition of

Hasbrouck (1991a). The VAR estimation provides two important insights. First, we �nd that human order

�ow accounts for much of the long-run variance in exchange rate returns in the euro-dollar and dollar-yen

exchange rate markets, i.e., humans appear to be the �informed�traders in these markets. In contrast, in the

euro-yen exchange rate market, computers and humans appear to be equally �informed.� In this crossrate,

we believe that computers have a clear advantage over humans in detecting and reacting more quickly to

triangular arbitrage opportunities, where the euro-yen price is brie�y out of line with prices in the euro-dollar

and dollar-yen markets. Second, we �nd that, on average, computers or humans that trade on a price posted

by a computer do not impact prices quite as much as they do when they trade on a price posted by a human.

One possible interpretation of this result is that computers tend to place limit orders more strategically

2



than humans do. This empirical evidence supports the literature that proposes to depart from the prevalent

assumption that liquidity providers in limit order books are passive.4

The paper proceeds as follows. In Section 2 we introduce the EBS exchange rate data, describing the

evolution over time of algorithmic trading and the pattern of interaction between human and algorithmic

traders. In Section 3 we study the correlation of algorithmic trades. In Section 4 we analyze the relationship

between algorithmic trading and exchange rate volatility. In Section 5 we discuss the provision of liquidity

by computers and humans at the time of a major data release. In Section 6 we report the results of the

high-frequency VAR analysis. We conclude in Section 7.

2 Data description

Today, two electronic platforms process the vast majority of global interdealer spot trading in the major

currency pairs, one o¤ered by Reuters, and one o¤ered by EBS.5 These platforms, which are both electronic

limit order books, have become essential utilities for the foreign exchange market. Importantly, trading in

each major currency pair has over time become very highly concentrated on only one of the two systems. Of

the most traded currency pairs, the top two, euro-dollar and dollar-yen, trade primarily on EBS, while the

third, sterling-dollar trades primarily on Reuters. As a result, the reference price at any moment for, say,

spot euro-dollar, is the current price on the EBS system, and all dealers across the globe base their customer

and derivative quotes on that price. EBS controls the network and each of the terminals on which the trading

is conducted. Traders can enter trading instructions manually, using an EBS keyboard, or, upon approval by

EBS, via a computer directly interfacing with the system. The type of trader (human or computer) behind

each trading instruction is recorded by EBS, allowing for our study.6

We have access to AT data from EBS from 2003 through 2007. We focus on the sample from 2006 and

2007, because, as we show in Figure 1, algorithmic trades were a very small portion of all trades in the

earlier years. In addition to the full 2006-2007 sample, we also consider a sub-sample covering the months of

September, October, and November of 2007, when algorithmic trading played an even more important role

than earlier in the sample.7 We study the three most-traded currency pairs on the EBS system: euro-dollar,

dollar-yen, and euro-yen.

The quote data, at the one-second frequency, consist of the highest bid quote and the lowest ask quote on

4For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and
Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.

5EBS has been part of the ICAP group since 2006.
6EBS uses the name �automated interface� (AI) to describe trading activity directly generated by a computer, activity we

call AT.
7We do not use December 2007 in the sub-sample to avoid the in�uence of year-end e¤ects.
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the EBS system in these currency pairs, from which we construct one-second mid-quote series and compute

one-minute exchange rate returns; all the quotes are executable. The transactions data are at the one-minute

frequency and provide detailed information on the volume and direction of trades that can be attributed to

computers and human in each currency pair. Speci�cally, the transactions volume data are broken down into

categories specifying the �maker�and �taker�of the trade (i.e., human or computer), and the direction of

the trade (i.e., buy or sell the base currency), for a total of eight di¤erent combinations. That is, the �rst

transaction category may specify, say, the minute-by-minute volume of trade that results from a human taker

buying the base currency by �hitting� a quote posted by a human maker. We would record this activity

as the human-human buy volume, with the aggressor (taker) of the trade buying the base currency. The

human-human sell volume is de�ned analogously, as are the other six buy and sell volumes that arise from

the remaining combinations of computers and humans acting as makers and takers.

From these eight types of buy and sell volumes, we can construct, for each minute, trading volume and

order �ow measures for each of the four possible pairs of human and computer makers and takers: human-

maker/human-taker (HH), computer-maker/human-taker (CH), human-maker/computer-taker (HC), and

computer-maker/computer-taker (CC).8 That is, the sum of the buy and sell volumes for each pair gives

the volume of trade attributable to that particular combination of maker and taker (which we symbolize as,

V ol(HH) or V ol(HC), for example). The di¤erence between the buy and sell volume for each pair gives us

the order �ow attributable to that maker-taker combination (which we symbolize simply as HH or HC, for

example). The sum of the four volumes, V ol(HH +CH +HC +CC), gives the total volume of trade in the

market. The sum of the four order �ows, HH +CH +HC +CC, gives the total (market-wide) order �ow.9

Throughout the paper, we will use the expression �order �ow�to refer both to the market-wide order �ow and

to the order �ows from other possible decompositions, with the distinction clearly indicated. Importantly, the

data allows us to consider order �ow broken down by the type of trader who initiated the trade, human-taker

order �ow (HH + CH) and computer-taker order �ow (HC + CC).

The main goal of this paper is to analyze the e¤ect algorithmic trading has on price discovery and volatility

in the foreign exchange market. As we show later, in our exchange rate data as in other �nancial data, the net

of signed trades from the point of view of the takers (the market-wide order �ow) is highly positively correlated

with exchange rate returns, so that the takers are considered to be more �informed�than the makers. Thus,

in our analysis of the relative e¤ects of human and computer trades in the market, we consider prominently

the order �ow decomposition into human-taker order �ow and computer-taker order �ow. However, we also

8The naming convention for �maker and taker� re�ects the fact that the �maker�posts quotes before the �taker�accepts to
trade at that price. Posting quotes is, of course, the traditional role of the market-�maker.�

9There is a very high correlation in this market between trading volume per unit of time and the number of transactions
per unit of time, and the ratio between the two does not vary much over our sample. Order �ow measures based on amounts
transacted and those based on number of trades are therefore very similar.
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consider two other decompositions in our work. We consider the most disaggregated decomposition of order

�ow (HH;CH;HC;CC), as this decomposition allows us to study whether the liquidity suppliers, who are

traditionally assumed to be �uninformed�, are posting quotes strategically. This situation is more likely to

arise in our database, a pure limit order book market, than in a hybrid market like the NYSE, because, as

Parlour and Seppi (2008) point out, the distinction between liquidity supply and liquidity demand in limit

order books is blurry.10 We also decompose the data by maker type (human or computer) in order to study

whether computers or humans are providing liquidity during the release of public information, which are

periods of high exchange rate volatility or market stress.

In our analysis, we exclude data collected from Friday 17:00 through Sunday 17:00 New York time from

our sample, as activity on the system during these �non-standard� hours is minimal and not encouraged

by the foreign exchange community. We also drop certain holidays and days of unusually light volume:

December 24-December 26, December 31-January 2, Good Friday, Easter Monday, Memorial Day, Labor

Day, Thanksgiving and the following day, and July 4 (or, if this is on a weekend, the day on which the U.S.

Independence Day holiday is observed).

We show summary statistics for the one-minute returns and order �ow data in Table 1. This table contains

a number of noteworthy features. First, order �ow, whether in total, broken down by human and computer

takers, or broken down into the 4 possible pairs of makers and takers, is serially positively correlated, which

is consistent with some informed trading models. For example, Easley and O�Hara (1987) model a situation

where sequences of large purchases (sales) arise when insiders with positive (negative) signals are present in

the market. He and Wang (1995) also show that insiders with good (bad) news tend to buy (sell) repeatedly

until their private information is revealed in the prices. The positive serial correlation in order �ow is also

consistent with strategic order splitting, i.e. a trader willing to buy for informational or non-informational

reasons and splitting his order to reduce market impact. Second, the standard deviations of the various order

�ows di¤er by exchange rates, by type of taker and across maker/taker pairs. These di¤erences will be

important in the interpretation of the upcoming VAR analysis and variance decomposition.

We show in Figure 1, from 2003 through 2007 for our three major currency pairs, the fraction of trading

volume where at least one of the two counterparties was an algorithmic trader, V ol(CH + HC + CC) as

a fraction of total volume. From its beginning in the second half of 2003, the fraction of trading volume

involving AT grew by the end of 2007 to near 60% for euro-dollar, and dollar-yen trading, and to about

80% for euro-yen. Figure 2 shows, for our three currency pairs, the evolution over time of the four di¤erent

possible types of trades (i.e. V ol(HH), V ol(CH), V ol(HC), and V ol(CC); as fractions of the total volume).

10Parlour and Seppi (2008) note that in a limit order book investors with active trading motives, some of which are �informed�
traders, may choose to post limit orders that are more aggresive than those a disinterested liquidity provider would use but less
aggresive than market orders.
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By the end of 2007, in the euro-dollar and dollar-yen markets, human to human trades, in black, accounted

for slightly less than half of the volume, and computer to computer trades, in green, for about ten to �fteen

percent. These percentages re�ect, in part, the fact that there are more human participants in the market

than computer participants. In euro-dollar and dollar-yen, we note that V ol(HC) and V ol(CH) are about

equal to each other, i.e. computers �take�prices posted by humans, in red, about as often as humans take

prices posted by market-making computers, in blue. The story is di¤erent for the cross-rate, the euro-yen

currency pair. By the end of 2007, there were more computer to computer trades than human to human

trades. But the most common type of trade was computers trading on prices posted by humans. We believe

this re�ects computers taking advantage of short-lived triangular arbitrage opportunities, where prices set in

the euro-dollar and dollar-yen markets are very brie�y out of line with the euro-yen cross rate. In interpreting

our results later in the paper, we will keep in mind that trading volume is largest in the euro-dollar and dollar-

yen markets, and price discovery happens mostly in those markets, not in the cross-rate. Our conclusions

based on the euro-dollar and dollar-yen markets wil then be more easily generalized than those based on the

euro-yen market. Table 2 tabulates the averages of the volume fractions shown in Figures 1 and 2, both for

the full 2006-2007 sample and the shorter three-month sub-sample.

3 How Correlated Are Algorithmic Trades and Strategies?

We �rst investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans. Since the outset of the �nancial turmoil in the summer of 2007, multiple articles in

the �nancial press have suggested that AT programs tend to be similarly designed, leading them to take the

same side of the market in times of high volatility, and potentially exaggerating market movements.

One such instance may have happened on August 16, 2007, a day of extreme volatility in dollar-yen, the

highest in that currency pair over our sample period. On that day, the Japanese yen appreciated sharply

against the U.S. dollar around 6:00 a.m. and 12:00 p.m. (NY time), as shown in Figure 3. The �gure also

shows, for each 30-minute interval in the day, computer-taker order �ow (HC +CC) in the top panel and

human-taker order �ow (HH +CH) in the lower panel. The two sharp exchange rate movements mentioned

happened when computers, as a group, aggressively sold dollars and bought yen. We note that computers,

during these episodes, mainly trading with humans not with other computers. Human order �ow at those

times was, in contrast, quite small, even though the overall trading volume initiated by humans (not shown)

was well above that initiated by computers (human takers were therefore selling and buying dollars in fairly

equal amounts). The �taking�orders generated by computers were then far more correlated than the taking

orders generated by humans. After 12:00 p.m., humans traders , as a group, then bought dollars fairly
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aggressively, and the appreciation of the yen against the dollar was partially reversed. This is only a single

example, of course, but it leads us to ask how correlated computer trades and strategies have tended to be

overall.

We do not know precisely the exact mix of the various strategies used by algorithmic traders on EBS.

Traders keep the information about their own strategies con�dential, including, to some extent, from EBS,

and EBS also keeps what they know con�dential. However, one can get a general sense of the market and

of the strategies in conversations with market participants. About half of the algorithmic trading volume on

EBS is believed to come from what is often known as the �professional trading community,�which primarily

refers to hedge funds and commodity trading advisors (CTAs). These participants, until very recently, could

not trade manually on EBS, so all their trades were algorithmic. Some hedge funds and CTAs trade at very

high frequency as they seek to exploit short-lived arbitrage opportunities, including triangular arbitrage, often

accessing several trading platforms. Others implement lower-frequency strategies, often grouped under the

�statistical arbitrage�appellation, including carry trades, momentum trades, and strategies spanning several

asset classes. Only a very small fraction of the trading volume in our sample period is believed to have

been generated by algorithms designed to quickly react to data releases. The other half of the algorithmic

trading volume comes from foreign exchange dealing banks, the only participants allowed on the EBS system

until early this decade. Some of the banks�algorithmic trading is clearly related to activity on their own

customer-to-dealer platforms, to automated hedging activity, and to minimizing the impact of the execution

of large orders. But a sizable fraction is believed to be proprietary trading implemented algorithmically, likely

using a mix of strategies similar to those employed by hedge funds and CTAs. Overall, market participants

generally believe that the mix of algorithmic strategies used in the foreign exchange market di¤ers from that

seen in the equity market, where optimal execution algorithms seem to be more prevalent.

The August 16, 2007 episode shown above, where sharp movements in dollar-yen were clearly associated

with algorithmic activity, was widely viewed as the result of a sudden unwinding of the yen-carry trade, with

hedge funds and proprietary trading desks at banks rushing to close risky positions and buying yen to pay

back low-interest loans. The evidence in this episode raises the possibility that many algorithmic traders

were using fairly similar carry trade and momentum strategies at the time, leading to the high correlation

of algorithmic orders and to sharp exchange rate movements. But this is only one episode in our two-year

sample. Next, we investigate whether there is evidence that, over the entire sample, the strategies used by

algorithmic traders have tended to be more correlated than those used by human traders.

If computers and humans are indi¤erent between taking or making liquidity at a given point in time,

then we should observe that computers and humans trade with each other in proportion to their relative

presence in the market. If, on the other hand, computers tend to have more homogeneous trading strategies,
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we should observe computers trading less among themselves and more with humans. At the extreme, if all

computers used the very same algorithms and had the exact same speed of execution, we would observe no

trading volume among computers. Therefore, the fraction of trades conducted between computers contains

information on how correlated their strategies are.

We consider a simple model in which there are Hm potential human-makers (the number of humans that

are standing ready to provide liquidity), Ht potential human-takers, Cm potential computer-makers, and

Ct potential computer-makers. At a given period of time the probability of a computer providing liquidity

to a trader is equal to Prob(computer � make) = Cm
Cm+Hm

, which we label for simplicity as �m, and the

probability of a computer taking liquidity from the market is Prob(computer � take) = Ct
Ct+Ht

= �t. The

remaining makers and takers are humans, in proportions (1 � �m) and (1 � �t), respectively. Assuming

that these events are independent the probabilities of the four possible trades, human-maker/human-taker,

computer-maker/human-taker, human-maker/computer-taker and computer-maker/computer taker, are:

Prob(HH) = (1� �m)(1� �t)

Prob(HC) = (1� �m)�t

Prob(CH) = �m(1� �t)

Prob(CC) = �m�t:

These probabilities yield the following identity,

Prob(HH)� Prob(CC) � Prob(HC)� Prob(CH);

which can be re-written as,
Prob(HH)

Prob(CH)
� Prob(HC)

Prob(CC)
:

We label the �rst ratio, RH � Prob(HH)
Prob(CH) , the �human-taker�ratio and the second ratio, RC �

Prob(HC)
Prob(CC) ,

the �computer-taker�ratio. In a world with more human traders (both makers and takers) than computer

traders, each of these ratios will be greater than one, because Prob(HH) > Prob(CH) and Prob(HC) >

Prob(CC) i.e., computers take liquidity more from humans than from other computers, and humans take

liquidity more from humans than from computers. However, under the baseline assumptions of our random-

matching model, the identity shown above states that the ratio of ratios, R � RCk
RHk

, will be equal to one.

In other words, humans will take liquidity from other humans in a similar proportion that computers take

liquidity from humans.
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Turning to the data, under the assumption that potential human-takers are randomly matched with

potential human-makers i.e., that the probability of a human-maker/human-taker trade is equal to the one

predicted by our model, Prob(HH) = Hm�Ht

(Hm+Cm)�(Ht+Ct)
, we can now derive implications from observations

of R, our ratio of ratios. In particular, �nding that R > 1 must imply that algorithmic strategies are more

correlated than what our random matching model implies. In other words, for R > 1 we must observe

that either computers trade with each other less than expected (Prob(CC) < Cm�Ct
(Hm+Cm)�(Ht+Ct)

) or that

computers trade with humans more than expected (either Prob(CH) > Cm�Ht

(Hm+Cm)�(Ht+Ct)
or Prob(HC) >

Hm�Ct
(Hm+Cm)�(Ht+Ct)

).

Our dataset allows us to estimate an ex-post proxy for R. Namely, for each trading day we estimatedRH = V ol(HH)
V ol(CH) and

dRC = V ol(HC)
V ol(CC) , where V ol (HH) is the daily trading volume between human makers

and human takers, and so forth. In Table 3 we show the mean of the daily ratio of ratios, bR =
dRCdRH ; for

each currency pair for the full sample and the three-month sub-sample. In contrast to the above theoretical

prediction that R � RC
RH = 1, we �nd that for all currency pairs bR is statistically greater than one. This

result is very robust: in euro-dollar, all daily observations of bR are above one, and only a very small fraction
of the daily observations are below one for the other currency pairs. The results then show that computers

do not trade with each other as much as random matching would predict. We take this as evidence that

algorithmic strategies are likely less diverse than the trading strategies used by human traders.

This �nding, combined with the observed growth in algorithmic trading over time, may raise some concerns

about the impact of AT on volatility in the foreign exchange market. As mentioned earlier, some articles in

the �nancial press have pointed to the possible danger of having many algorithmic traders take the same side

of the market at the same moment. However, we note that, in principle, a high correlation of algorithmic

strategies does not necessarily lead to higher volatility or large swings in exchange rates. If, as during the

episode shown at the beginning of the section, the high correlation re�ects a high number of traders using the

same carry trade or momentum strategies, then there may be reason for concern. However, if, for instance,

many algorithmic traders use similar triangular arbitrage strategies, trading mainly on quotes posted by

humans and little with other computers, the high correlation of those strategies should have no impact on

volatility, and may even lower volatility as it improves the e¢ ciency of the price discovery process. Next, we

explicitly investigate the relationship between the presence of algorithmic trading and market volatility.

4 The impact of algorithmic trading on volatility

In this section, we attempt to estimate whether the presence of algorithmic trading causes disruptive market

behavior in the form of increased volatility. In particular, we test for a causal relationship between the
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fraction of daily algorithmic trading, relative to the overall daily volume, and daily realized volatility.

4.1 Identi�cation

The main challenge in identifying a causal relationship between algorithmic trading and volatility is the

potential endogeneity of algorithmic trading. That is, although one may conjecture that algorithmic trading

impacts volatility, it is also plausible that algorithmic trading activity may be a function of the level of

volatility. For instance, highly volatile markets may present comparative advantages to automated trading

algorithms relative to human traders, which might increase the fraction of algorithmic trading during volatile

periods. In contrast, however, one could also argue that a high level of volatility might reduce the infor-

mativeness of historical price patterns on which some trading algorithms are likely to base their decisions,

and thus reduce the e¤ectiveness of the algorithms and lead them to trade less. Thus, one can not easily

determine in what direction the bias will go in an OLS regression of volatility on the fraction of algorithmic

trading. To deal with the endogeneity issue, we adopt an instrumental variable (IV) approach as outlined

below.

We are interested in estimating the following regression equation,

RVi;t = �i + �iATi;t + 
0
i� i;t +

22X
k=1

�iRVi;t�k + �i;t; (1)

where i = 1; :::; 5 represents currency pairs and t = 1; :::; T , represents time. RVi;t is (log) realized daily

volatility, ATi;t is algorithmic trading volume at time t in currency pair i , � i;t is either a time trend or a

set of time dummies that control for secular trends in the data, and �i;t is an error term that is assumed to

be uncorrelated with RVi;t�k, k � 1, but not necessarily with ATi;t. The large number of lags of volatility,

which covers the business days of the past month, is included to control for the strong serial correlation in

volatility (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003 and Bollerslev and Wright, 2000). The exact

de�nitions of RVi;t, ATi;t, and � i;t are given below.

The main focus of interest is the parameter �i, which measures the impact of algorithmic trading on

volatility in currency pair i. However, since ATi;t and �i;t may be correlated, due to the potential endogeneity

discussed above, the OLS estimator of �i may be biased. In order to obtain an unbiased estimate, we will

therefore consider an instrumental variable approach. Formally, we need to �nd a variable, or set of variables,

zi;t, that is uncorrelated with �i;t (validity of the instrument) and correlated with ATi;t (relevance of the

instrument).

The instrument we propose to use is the fraction of algorithmic trading terminals relative to the total
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number of trading terminals in the EBS system.11 That is, in order to place algorithmic trades, a special

user interface is required, and the total number of such user interfaces thus provides a measure of the overall

algorithmic trading �capacity�in the market. The ratio of these algorithmic trading terminals to the total

number of trading terminals therefore provides a measure of the potential fraction of algorithmic trading.

Since the number of trading terminals of each type should clearly be exogenous with regards to daily market

volatility, the fraction of AT terminals provides a valid instrument. In addition, it is positively correlated

with the fraction of algorithmic trading and generally provides a relevant instrument as seen from the tests

for weak instruments discussed below.

Under the breakdown provided by our data, there are three types of terminals in the EBS system: purely

algorithmic trading terminals, purely manual trading terminals, and dual trading terminals that can handle

both manual and algorithmic trades. We consider two natural instrumental variables: the fraction of pure AT

terminals over the total number of terminals (including pure AT, manual, and dual ones), and the fraction

of the sum of pure AT and dual terminals over the total number of terminals. Since it is not obvious which

variable is the better instrument, we use both simultaneously.12

The data on AT terminals is provided on a monthly basis, whereas the data on realized volatility and

algorithmic trading are sampled on a daily frequency. We therefore transform the AT terminals data to daily

data by repeating the monthly value each day of the month. Although this leads to a dataset of two years of

daily data, the number of daily observations (498) will overstate the e¤ective number of observations, since

the coe¢ cient on AT participation will be identi�ed from monthly variations in the instrumental variables.

Transforming the instruments to a daily frequency is, however, more e¢ cient than transforming all data to

a monthly frequency, since the daily data helps to identify the monthly shifts.

The instrumental variable regressions are estimated using Limited Information Maximum Likelihood

(LIML), and we test for weak instruments by comparing the �rst stage F�statistic for the excluded instru-

ments to the critical values of Stock and Yogo�s (2005) test of weak instruments. We use LIML rather than

two-stage least squares since Stock and Yogo (2005) show that the former is much less sensitive to weak

instruments than the latter (see also Stock et al., 2002).

11More precisely, we actually observe the number of EBS �deal codes�of each type. Each deal code may correspond to a small
trading �oor (many with only one terminal) or to part of a larger trading �oor, with several terminals. The actual number of
terminals and the number of deal codes is highly correlated and for simplicity, we refer to the variable as number of terminals.
These data are con�dential.
12Regressions not reported here show that using the pure AT terminals as a single instrument gives qualitatively similar results

to those presented below based on both instruments. Using the fraction of the sum of both pure and dual AT terminals as a
single instrument also leads to the same qualititative conclusion, but with more signs of weak instruments.
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4.2 Variable de�nitions

4.2.1 Realized Volatility

Volatility is measured as the daily realized volatility obtained from one minute returns; that is, the volatility

measure is equal to the daily sum of squared one minute log-price changes. The use of realized volatility,

based on high-frequency intra-daily returns, as an estimate of ex-post volatility is now well established and

generally considered the most precise and robust way of measuring volatility. Although many older studies

relied on �ve minute returns in order to avoid contamination by market microstructure noise (e.g. Andersen

et al., 2001), recent work shows that sampling at the one-minute frequency, or even higher frequencies, does

not lead to biases in liquid markets (see, for instance, the results for liquid stocks in Bandi and Russel, 2006,

and the study by Chaboud et al., 2007, who explicitly examine EBS data on the euro-dollar exchange rate

during 2005 and �nds that sampling frequencies upwards of once every 20 seconds does not lead to noticeable

biases). Here, we restrict ourselves to using minute-by-minute data.13 Following the common conventions

in the literature on volatility modelling (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003), the realized

volatility is log-transformed to obtain a more well behaved time-series.

4.2.2 Algorithmic trading

We consider two measures of the amount of algorithmic trading, ATi;t, in a given currency pair: computer-

participation volume and computer-taker volume. The �rst is simply the percent of the overall trading

volume that includes an algorithmic trader as either a maker or a taker (V ol(CH + HC + CC)); that is,

the percent of trading volume where a computer was involved in at least one side of the trade. In addition,

we also consider an alternative measure de�ned as the fraction of overall trading volume that is due to a

computer-taker (V ol(HC + CC)).

4.2.3 Time controls

As seen in Figure 4, there is a clear secular trend in both the computer-participation and computer-taker

volume, which is not present in realized volatility. Euro-dollar, dollar-yen, and euro-yen volatility is trending

down at the beginning of the period and starts to trend up in the summer of 2007. In order to control for the

trend in algorithmic trading in the regression, we include either a �linear�quarterly time trend or a full set of

year-quarter dummies, one for each year-quarter pair in the data (8 dummies). That is, the linear quarterly

time trend stays constant within each quarter and increases by the same amount each quarter, whereas the

year-quarter dummies allows for a more �exible trend speci�cation that can shift in arbitrary fashion from

13Using realized volatility based on �ve-minute returns leads to results that are very similar to those reported below for the
one-minute returns, and the qualitative conclusions are identical.
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year-quarter to year-quarter. Both secular trend speci�cations are thus �xed within each quarter. This

restriction is imposed in order to preserve the identi�cation coming from the monthly instrumental variables.

Using monthly, or �ner, time dummies would eliminate the variation in the instrument and render the model

unidenti�ed. Although it is theoretically possible to include a monthly time trend, this would lead to very

weak identi�cation empirically. The monthly frequency of the instrumental variable is clearly a restriction

and ideally a more �exible trend speci�cation would be desirable. The quarterly trend or dummies do,

however, likely control for most of the secular shifts in algorithmic trading.

4.3 Empirical results

The regression results are presented in Table 4. We present OLS and LIML-IV results, with either the

quarterly trend or the year-quarter dummies included. We show in Panels A and B the results for the

computer-participation volume, and in Panels C and D the results for computer-taker volume. We report

results for the sample starting in January 2006 and ending in December 2007. In order to save space, we

only show the estimates of the coe¢ cients in front of the fraction of algorithmic trading volume variables.

The OLS results, which are likely to be biased due to the aforementioned endogeneity issues, show a fairly

clear pattern of a positive correlation between volatility and AT participation, with several positive and

statistically signi�cant coe¢ cients. The R2s are fairly large, re�ecting the strong serial correlation in realized

volatility, which is picked up by the lagged regressors. There are also no systematic di¤erences between the

quarterly trend and quarterly dummies speci�cations.

Turning to the more interesting IV results, which controls for the endogeneity bias, the coe¢ cient estimates

change fairly dramatically. All point estimates are now negative and some of them are statistically signi�cant.

Thus, if there is a causal relationship between the fraction of algorithmic trading and the level of volatility,

all evidence suggests that it is negative, such that increased AT lowers the volatility in the market. The

stark di¤erence between the IV and OLS results shows the importance of controlling for endogeneity when

estimating the causal e¤ect of AT on volatility; the opposite conclusion would have been reached if one ignored

the endogeneity issue. The evidence of a statistically signi�cant relationship is fairly weak, however, with

most coe¢ cients statistically indistinguishable from zero. The more restrictive quarterly trend speci�cation

suggests a signi�cant relationship for the euro-dollar and dollar-yen, but this no longer holds if one allows

for year-quarter dummies.

To the extent that the estimated coe¢ cients are statistically signi�cant, it is important to discuss the

economic magnitude of the estimated relationship between AT and volatility. The regression is run with log

volatility rather than actual volatility, which makes it a little less straightforward to interpret the size of the
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coe¢ cients. However, some back-of-the-envelope calculations can provide a rough idea. Suppose that the

coe¢ cient on computer-participation volume is about �0:01, which is in line with the coe¢ cient estimates

for the euro-dollar. The average monthly shift in computer-taker volume in the euro-dollar is about 1.5

percentage points and the average log-volatility in the euro-dollar is about 3:76 (with returns calculated in

basis points), which implies an annualized volatility of about 6:82 percent. Increasing computer-taker volume

by 1.5 percentage points decreases log-volatility by 0:015 and results in an annualized volatility of about 6:72.

Thus, a typical change in computer-taker volume might change volatility by about a tenth of a percentage

point in annualized terms.

The �rst stage F�statistics for the excluded instruments in the IV regressions are also reported in Panels

B and D. Stock and Yogo (2005) show that this F�statistic can be used to test for weak instruments.

Rejection of the null of weak instruments indicates that standard inference on the IV-estimated coe¢ cients

can be performed, whereas a failure to reject indicates possible size distortions in the tests of the LIML

coe¢ cients. The critical values of Stock and Yogo (2005) are designed such that they indicate a maximal

actual size for a nominal sized �ve percent test on the coe¢ cient. Thus, in the case considered here with two

excluded instruments and one endogenous regressor, a value greater than 8:68 for this F�statistic indicates

that the maximal size of a nominal 5 percent test will be no greater than 10 percent, which might be deemed

acceptable; a value greater than 5:33 for the F�statistic indicates a maximal size of 15 percent for a nominal

5 percent test. In general, the larger the F�statistic, the stronger the instruments. As is evident from the

table, there are no signs of weak instruments in the speci�cation with a quarterly trend. There are, however,

signs of weak instruments in the case with year-quarter dummies, for the euro-yen. This is not too surprising

given that the instruments only change on a monthly frequency and the year-quarter dummies therefore put

a great deal of strain on the identi�cation mechanism. Importantly, though, the results for the two major

currency pairs is robust to any weak instrument problems and the reported coe¢ cients and standard errors

are unbiased.

To sum up, the evidence of any causal e¤ect of algorithmic trading on volatility is weak, but what evidence

there is points fairly consistently towards a negative relationship. There is thus no systematic statistical

evidence to back the often voiced opinion that AT leads to increased levels of volatility. If anything, the

contrary appears to be true.
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5 Who provides liquidity during the release of public announce-

ments?

In the previous section we discuss one of the major concerns regarding algorithmic trading, namely, whether

AT causes exchange rate volatility. We now examine another major concern, whether AT improves or reduces

liquidity during stress periods when it is needed the most. To answer this question, we cannot simply regress

computer-maker volume, a proxy for liquidity provided by computers, on exchange rate volatility, a proxy

for stress periods, because, as we discussed in the previous section, volume and volatility are endogenous

variables. In contrast to the previous section we do not estimate an IV regression because there are no obvious

instruments for volatility.14 Instead, we follow the event study literature and compare the liquidity provision

by humans and computers during U.S. nonfarm payroll announcements, a period of exogenous heightened

volatility, to the liquidity provision by both agents during non-announcement days.15 This comparison will

help us determine who provides relatively more liquidity during stress periods.

We consider two liquidity provision estimates: a one-minute estimate and a one-hour estimate. The

one-minute estimate is calculated using 8:30 a.m. to 8.31 a.m. ET (when U.S. nonfarm payroll is released)

volume observations, while the one-hour estimate is calculated using observations from 8:25 am to 9:24 am

ET. We de�ne the one-minute (one-hour) liquidity provision by humans, LH, as the sum of human-maker

volume, V ol(HH+HC), divided by total volume during that period, and the one-minute (one-hour) liquidity

provision by computers, LC, as the sum of computer-maker volume, V ol(CC+CH), divided by total volume

during that period. Similar to the liquidity provision measures, we de�ne the one-minute volatility as the

squared 1-minute return from 8:30 a.m. to 8.31 a.m. ET and the one-hour volatility as the sum of squared

1-minute returns from 8:25 am to 9:24 am ET.

As we discussed in the previous section, exchange rate trading volume follows a secular trend. Thus,

we cannot compare average liquidity provision during announcement days estimated using our full sample

period to average liquidity provision during non-announcement days. Instead, each announcement day ta

we divide the liquidity provision during that day by the liquidity provision surrounding the announcement

day. We then average this ratio over our sample period to test the hypothesis that this ratio is equal to

one. Speci�cally, we divide the one-minute (one-hour) liquidity provision by humans, LHa, (computers,

14One could consider macroeconomic news announcements as potential instruments for volatility. However, macroeconomic
news announcements are exogeneous variables that cause both foreign exchange rate volatility and liquidity changes. Since we
cannot assume that the e¤ect macroeconomic news announcements have on liquidity is only due to the e¤ect macroeconomic
news announcements have on volatility, the exclusion restriction required by IV estimation is violated.
15Andersen and Bollerslev (1998), among others, refer to the nonfarm payroll report as the �king�of announcements, because

of the signi�cant sensitivity of most asset markets to its release. We note that our results are qualitatively similar when we
consider other important macroeconomic news announcements. However, the nonfarm payroll announcement is associated with
the highest volatility among all the macroeconomic announcements we considered.
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LCa) estimated during announcement day ta by the one-minute (one-hour) liquidity provision by humans,

LHn, (computers, LCn) estimated during the surrounding non-announcement day period, tn, de�ned as 10

business days before and after the nonfarm payroll release date ta; the liquidity provision measures on the

non-announcement days are calculated in the same manner as on the announcement days, using data only for

the periods 8:30 a.m. to 8.31 a.m. ET or 8:25 am to 9:24 am ET for the one-minute and one-hour measures,

respectively.16 This methodology amounts to using a non-parametric approach to de-trend the data. We

follow the same procedure with our one-minute and one-hour volatility estimates.

Consistent with previous studies we show in Table 5 Panel A, that the one-hour volatility on nonfarm

payroll announcement days is 3 to 6 times larger than during non-announcement days. The one-minute

volatility is 15 to 30 times larger during announcement days compared to non-announcement days. As

expected given the fact that we focus on a U.S. data release, the volatility increase is smaller in the cross-

rate, the euro-yen exchange rate, than in the euro-dollar and yen-dollar exchange rates. Focusing on the

statistically signi�cant estimates, we show in Table 5 Panel B that, as a share of total volume, human-

maker volume tends to increase during the minute of the announcement (the one-minute ratio LHa

LHn
is greater

than one), while computer-maker volume tends to decrease (the one-minute ratio LCa
LCn

is less than one).

Interestingly, this pattern is reversed when we focus on the one-hour volume estimates for the euro-dollar

and euro-yen exchange rate markets. In relative terms, computers do not increase their provision of liquidity

as much as humans do during the minute following the announcement. However, computers increase their

provision of liquidity relatively more than humans do over the entire hour following the announcement, a

period when market volatility remains quite elevated.

We note that, over our sample period, the U.S. nonfarm payroll data releases were clearly the most

anticipated and most in�uential U.S. macroeconomic data releases. They often generated a large initial

sharp movement in exchange rates, followed by an extended period of volatility. The behavior of computer

traders observed in the �rst minute could re�ect the fact that many algorithms are not designed to react to

sharp, almost discrete, moves in exchange rates. Some algorithmic traders may then prefer to pull back from

the market a few seconds before 8:30 a.m. ET on days of nonfarm payroll announcements, resuming trading

once the risk of a sharp initial price movement has passed. But the data show that algorithmic traders, as a

whole, do not shrink back from providing liquidity during the extended period of volatility that follows the

data releases.
16For simplicity, we label the 10 business days before and after the nonfarm payroll announcement as non-announcement days.

However, during this 20-day period there are days with no macroeconomic news and days with news, e.g., every Thursday, the
day before the nonfarm payroll number is released, initial claims are released. Thus our estimation will be biased towards
not �nding statistically di¤erent behavior across the two periods. As we show in Table 5, volatility is, on average, much lower
during this 20-day period and thus serves as a good non-announcement benchmark period. We note, though, that our results
are stronger when we drop announcement days from the 20 days surrounding nonfarm payroll release dates and consider that
as the non-announcement benchmark period.
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6 Price Discovery

In the previous three sections, we analyze questions that are primarily motivated by practical concerns

regarding algorithmic trading, such as whether computer traders induce volatility or reduce liquidity. In this

section we turn to questions that are more driven by the market microstructure literature, but that also lead

to interesting practical insights regarding the e¤ects and nature of algorithmic trading. In particular, we

study price discovery within a vector autoregressive framework, which enables us to evaluate to what extent

humans or computers represent the �informed�traders in the market. Our �ndings reveal several interesting

features regarding the impact of algorithmic trades and the order placement behavior of computer traders.

6.1 Who is the �informed�trader, humans or computers?

In this section we investigate whose trades, human�s or computer�s, have a permanent impact on prices. To

this end, we estimate return-order �ow dynamics in a structural vector autoregressive (VAR) framework in the

tradition of Hasbrouck (1991a), where returns are contemporaneously a¤ected by order �ow, but order �ow

is not contemporaneously a¤ected by returns. Similar to Hasbrouck�s (1996) decomposition of program and

nonprogram order �ow, we decompose order �ow into two components: human-taker
�
OF (ht) = HH + CH

�
and computer-taker

�
OF (ct) = HC + CC

�
, and thus we estimate for each currency i one return equation

and two order �ow equations. In light of Evans and Lyons (2008) �ndings, we estimate the structural VAR

with U.S. macroeconomic news surprises as exogenous variables that a¤ect both returns and order �ow.

Speci�cally, we estimate the following system of equations for each currency i,
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Here rit is the 1-minute exchange rate return for currency i at time t; OFhtit is the currency i human-taker order

�ow at time t; OF ctit is the currency i computer-taker order �ow at time t; and Skt is the macroeconomic news

announcement surprise for announcement k at time t de�ned as the di¤erence between the announcement

realization and its corresponding market expectation. We use Bloomberg�s real-time data on the expectations

and realizations of K = 28 U.S. macroeconomic fundamentals to calculate Skt. The 28 announcements we
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consider are similar to those in Andersen et al. (2003, 2007) and Pasquariello and Vega (2007).17 Since units

of measurement vary across macroeconomic variables, we standardize the resulting surprises by dividing each

of them by their sample standard deviation. Economic theory suggests that we should also include foreign

macroeconomic news announcements in equation (2). However, previous studies �nd that exchange rates do

not respond much to non-U.S. macroeconomic announcements, even at high frequencies, e.g. Andersen et al.

(2003), so we expect the omitted variable bias in our speci�cation to be small.

The underlying economic model is based in continuous time, and we thus estimate the VAR using the

highest sample frequency available to us, minute-by-minute data.18 The estimation period is restricted to

the 2006 � 2007 sample, and the total number of observations for each currency pair is 717; 120 in the full

sample and 89; 280 in the three month sub-sample (September, October and November of 2007). In both

samples, 20 lags are included in the estimated VARs, i.e. J = 20.

Before considering the impulse response functions and the variance decompositions, we brie�y summarize

the main lessons from the estimated coe¢ cients in the VAR. Focusing on the return equation, we �nd that

minute-by-minute returns tend to be negatively serially correlated, with the coe¢ cient on the �rst own lag

varying between �0:08 and �0:15; there is thus some evidence of mean reversion in the exchange rates at

these high frequencies, which is a well-know empirical �nding. Both order �ows are signi�cant predictors of

returns. The price impact of the lagged order �ows range from around 4 to 18 basis points per billion units

of order �ow (denominated in the base currency), as compared to a range of approximately 28 � 100 basis

points in the contemporaneous order �ow. As theory would predict, we �nd that U.S. macroeconomic news

announcements a¤ect less the euro-yen exchange rate (i.e., the R2 of regressing the euro-yen exchange rate on

macroeconomic news surprises and restricting the sample to announcement-only observations is 23%) than

the euro-dollar and dollar-yen exchange rates (i.e., the R2 of an announcement-only sample is 60% and 59%,

respectively). However, U.S. macroeconomic news announcements still have an e¤ect on the cross-rate to the

extent that the U.S. economy is more or less correlated with the Japanese or the Euro-area economy.

Focusing on the order-�ow equations, we �nd that the �rst own lag in both order �ow equations is

always highly signi�cant, and typically around 0:1 for all currency pairs. There is thus a sizeable �rst-order

autocorrelation in the human-taker and computer-taker order �ows. The coe¢ cients on the �rst order cross-

17Our list of U.S. macroeconomic news announcements is the same as the list of announcements in Andersen et al. (2007) and
Pasquariello and Vega (2007) with the addition of three announcements: unemployment report, core PPI and core CPI. Andersen
et al. (2007) and Pasquariello and Vega (2007) use International Money Market Services (MMS) data on the expectations of
U.S. macroeconomic fundamentals, in contrast, we use Bloomberg data because MMS was acquired by Informa Global in 2003
and no longer exists. Bloomberg, though, provides similar survey data to those MMS has provided.
18At the one-minute frequency, as opposed to in a tick-by-tick setting, the possibility of simultaneity among the variables does

exist. For example, a quote revision that arrives to the market at the beginning of a given minute could conceivably in�uence
the order �ow arriving at the end of that minute. While we acknowledge this possibility, we do not believe that it is of serious
concern at the very high frequency of our analysis. Daníelsson and Love (2004) explicitly try to estimate the e¤ects of such
feedback trading in foreign exchange data. They �nd that feedback e¤ects can play a signi�cant role in data sampled at the
�ve-minute frequency, but less so in data sampled at the one-minute frequency.
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lags in the order �ow regressions are most often substantially smaller than the coe¢ cient on the own lag and

vary in signs. Lagged returns have a small but positive impact on order �ow, suggestive of a form of �trend

chasing�by both computers and humans in their order placement.

We note that despite the strongly signi�cant estimates that are recorded in the VAR estimations, the

amount of variation in the order �ow and return variables that is captured by their lagged values is very

limited. The R2 for the estimated equations with only lagged variables are typically around three to ten

percent for the order �ow equations, and between one and three percent for the return equations. Compared

to an R2 of 20 to 30 percent when one includes contemporaneous order �ow.

6.2 Impulse Response Function and Variance Decomposition Results

As originally suggested by Hasbrouck (1991b), we use the impulse response functions to assess the price

impact of various order �ow types, and the variance decompositions to measure the relative importance of

the variables driving foreign exchange returns. In Table 6 Panel A, we show the results from the impulse

response analysis based on the estimation of equation (2), using the full sample for 2006-2007 and the three-

month sub-sample, when the size of the shock is the same across the di¤erent types of order �ow: a one billion

base currency shock to order �ow. We also show the results when the size of the shock varies according to

the average size shock: a one standard deviation base currency shock to order �ow (Table 6 Panel B).

We show both the short-run (instantaneous) impulse responses, the long-run cumulative responses, and the

di¤erence between the two responses. The long-run statistics are calculated after 30-minutes, at which point

the cumulative impulse responses have converged and can thus be interpreted as the long-run total impact

of the shock. All the responses are measured in basis points.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 6 Panel

A, show that the immediate response of prices to human-taker order �ow is often larger than the immediate

response to computer-taker order �ow. This may partially be attributed to the fact that some of the algorith-

mic trading is used for the optimal execution of large orders at a minimum cost. Algorithmic trades appear to

be successful in that endeavor, with computers breaking up the larger orders and having a minimum impact

on prices. We emphasize that the di¤erences in price impact, although statistically signi�cant, range from 1

to 8 basis points and are thus not that large in economic terms. Furthermore, we often �nd that the result

is reversed in the long-run and in the three-month sub-sample. For example, the euro-dollar human-taker

price impact is larger than the computer-taker price impact in the short-run, but the opposite is true in the

long-run and in the three month sub-sample.

In contrast to these results, the response to a hypothetical one standard deviation shock to the di¤erent
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order �ows (Table 6 Panel B) consistently shows that in the euro-dollar and dollar-yen exchange rate markets,

humans have a bigger impact on prices than computers and the di¤erences are relatively large. For example,

a one standard deviation shock to human-taker order �ow in the yen-dollar exchange rate market has an

average long-run e¤ect of 0.9 basis points compared to an average e¤ect of 0.3 basis points for computer-

taker order �ow. Interestingly, the di¤erence in price impact in the cross-rate, the euro-yen exchange rate,

is very small. In this market, computers have a clear advantage over humans in detecting and reacting more

quickly to triangular arbitrage opportunities so that a large proportion of algorithmic trading contributes to

more e¢ cient price discovery. It is then not so surprising that in this market computers and humans, on

average, appear to be equally �informed.�This �nding suggests that the e¤ect order �ow has on prices may

not so much be a matter of whether computers or humans are trading, but a matter of what computers are

predominantly used for.

In Table 7 we report what fraction of the total (long-run) variance in returns that can be attributed to

innovations in human-taker order �ow and computer-taker order �ow.19 Following Hasbrouck (1991b), we

interpret this variance decomposition as a summary measure of the informativeness of trades, and thus, in the

current context, a comparison of the relative informativeness of the di¤erent types of order �ow. Consistent

with the results from the impulse response functions based on a one standard deviation shock to order �ow,

we �nd that in the euro-dollar and dollar-yen exchange rate markets human-taker order �ow explains more

of the total variance in returns than computer-taker order �ow. Speci�cally, human-taker order �ow explains

about 30 percent of the total variance in returns compared to only 4 percent explained by computer-taker

order �ow. The fact that human-taker order �ow explains a bigger portion of total variance in returns may

not be surprising because human-taker volume is about 75 percent of total volume in these two markets in

the full sample period and about 65 percent of total volume in the three-month sub-sample (see Table 2).

Moreover large buy (sell) orders tend to be human-taker orders, i.e. we show in Table 1 that the standard

deviation of human-taker order �ow is twice as big as that of the computer-taker order �ow.

Do computers tend to contribute �disproportionately� little to the long-run variance in returns relative

to their trading volume? To answer this question we do a back-of-the-envelope calculation. We compute

the relative share of the explained variance that is due to computer-taker order �ow as the percent of total

variation in returns explained by computer-taker order �ow divided by the percent of total variation in returns

explained by total order �ow (human-taker plus computer-taker order �ow). For example, this relative share

is 14% = 100 � 4:74
34 (Table 7) in the euro-dollar market. We can then compare this relative share to the

fraction of overall trading volume that is due to computer-taker volume, which we show in Table 2. In the

19The variance decompositions are virtually identical in the short- and long-run and thus we only show the long-run decom-
position results.
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full 2006-2007 sample for the euro-dollar and the dollar-yen currency pairs, the fraction of volume due to

computer-takers is about twice as large as the fraction of the explained long-run variance that is due to

computer-taker order �ow. In the euro-yen, the fractions are approximately equal. These results are fairly

similar in the three-month sub-sample, although the fraction of explained variance has increased somewhat

compared to the volume fraction. Thus, in the two major currency pairs, there is evidence that computer-

taker order �ow contributes relatively less to the variation in returns than one would infer from just looking

at the proportion of computer-taker volume.

The seemingly disproportionately small fraction of the explained return variance that can be attributed to

computer-taker order �ow is a result both of the generally smaller responses by returns to a one-billion base

currency shocks from this order �ow component (Table 6 Panel A), as well as the generally smaller shocks

that occur in this order �ow as seen from the estimates of the standard deviation in the di¤erent order �ows

(Table 1).20 ;21 However, the results in Table 6 Panel A suggest that it is more due to the latter than to the

former. This makes economic sense because human-makers and computer-makers can not identify ex ante

trades coming from computers or humans. Thus, �xing the order size, computer and human trades should

have similar impact on prices.

6.3 Are liquidity providers �uninformed�?

We now turn to examine whether liquidity providers strategically post quotes. To this end we augment

equation (2) and decompose order �ow into four components. Speci�cally, we estimate the following system

of equations for each currency i;

rit = �r +
JX
j=1

�rijrit�j +
LX
l=1

JX
j=0

rlijOF
(l)
it�j +

KX
k=1

�rikSkt + "
r
it; (3)

OF
(l)
it = �OFl +

JX
j=1

�OFijl rit�j +
LX
l=1

JX
j=1

OF
(l)

ijl OF
(l)
it�j +

KX
k=1

�OFikl Skt + "
OF (l)

it :

where rit is the 1-minute exchange rate return for currency i at time t; L = 4, OF (1)it = OFHHit is the

currency i human-maker/human-taker order �ow at time t; OF (2)it = OFCHit is the currency i computer-

maker/human-taker order �ow at time t; OF (3)it = OFHCit is the currency i human-maker/computer-taker

order �ow at time t; OF (4)it = OFCCit is the currency i computer-maker/computer-taker order �ow at time t;
20The variance decompostion is a function of the (squared) terms in the Vector Moving Average (VMA) representation of the

VAR and the variance of the shocks in the VAR equations (i.e. the variance of the VAR residuals). For a given shock size, the
impulse response functions are a function of the (non-squared) VMA coe¢ cients.
21Strictly speaking, the variance decomposition is a function of the variance in the shocks in the VAR residuals and not in

the original data entering the VAR, i.e. the variance of the unexpected shocks. However, since the R2s in the VAR equations
are small, the variance in the VAR residuals and the original data are very similar.

21



Skt is the macroeconomic news announcement surprise for announcement k at time t.

In addition to identifying whether traders, on average, have a more permanent impact on prices when

trading with humans than with computers, this speci�cation also allows us to observe the e¤ect order �ow

has on prices when, for instance, no party has a speed advantage, i.e. both parties are humans or both parties

are computers, and when either the maker has a speed advantage, CH, or the taker has a speed advantage,

HC. This distinction may be particularly useful when analyzing the cross-rate, where computers likely have

a clear advantage over humans in detecting short-lived triangular arbitrage opportunities.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 8 Panel A

show that there is no clear pattern in whose order �ow impacts prices the most. The dynamics of the VAR

system help reveal an interesting �nding, though: There is a consistent and often large short-run over-reaction

to CC and CH shocks. That is, as seen in Table 8 the short run response to a CC or CH order �ow shock

is always larger than the long-run response, and sometimes substantially so. The euro-dollar in the sample

covering September, October, and November of 2007 provides an extreme case where the initial reaction to

a one billion dollar CC shock is a 22 basis point move, but the long-run cumulative reaction is just 6 basis

points. Interestingly, the opposite pattern is true for the HH order �ow shocks, where there is always an

initial under -reaction in returns. To the extent that an over-reaction of prices to order �ow is suggestive of

the presence of liquidity traders, these impulse response patterns suggest that computers provide liquidity

when the probability of trading with an informed trader is low.22

The response to a hypothetical one standard deviation shock to the di¤erent order �ows consistently

shows that HH order �ow has a bigger impact on prices than CC order �ow (Table 8 Panel B) and that

the di¤erences are large. In particular, a one standard deviation shock to HH order �ow has an average

long-run e¤ect of 0.6 basis points across currencies compared to a one standard deviation shock to CC order

�ow, which has an average e¤ect of 0.1 basis points. Interestingly, we observe that when humans trade with

other humans they in�uence prices more than when they trade with computers (the impact of HH on prices

is bigger than the impact of CH on prices), and when computers trade with other computers they in�uence

prices less than when they trade with humans (the impact of CC on prices is bigger than the impact of HC

on prices). Our interpretation is that computers provide liquidity more strategically than humans, so that the

counterparty cannot a¤ect prices as much. This interpretation is consistent with the over-reaction of prices

to CC and CH order �ow described above: Computers appear to provide liquidity when adverse selection

costs are low. This �nding relates to the literature that proposes to depart from the prevalent assumption

22Dynamic learning models with informed and uninformed investors predict that prices will temporarily over-react to unin-
formed order �ow and under-react to informed order �ow (e.g., Albuquerque and Miao, 2008). We note that the over- and
under-reaction of prices to a particular type of order �ow is di¤erent from the over- and under-reaction of prices to public news,
which are both considered a sign of market ine¢ ciency. Order �ow types are not public knowledge, so that agents cannot trade
on this information.
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that liquidity providers in limit order books are passive.23

We also �nd that the price response to order �ow varies across currencies as these markets di¤er along

several dimensions. Trading volume is largest in the euro-dollar and dollar-yen markets, compared to the

euro-yen market, and price discovery clearly happens mostly in the two largest markets. In the cross-rate

market, the euro-yen, computers have a speed advantage over humans in pro�ting from triangular arbitrage

opportunities, where prices set in the euro-dollar and dollar-yen markets are very brie�y out of line with the

euro-yen rate. Consistent with this speed advantage we observe that human-maker/computer-taker order

�ow has a larger price impact in the cross-rate market than in the other two markets.

In addition to the impulse response functions, we also report the long-run forecast variance decomposition

of returns in Table 9 for both the full sample and the three-month sub-sample. Consistent with the impulse

response functions to a one standard deviation shock to order �ow, the HH order �ow makes up the dominant

part of the variance share in the euro-dollar and dollar-yen exchange rate markets. In the last three months

of the sample, this share has generally decreased. The share of variance in returns that can be attributed

to the CC order �ow is surprisingly small, especially in the latter sub-sample, given that this category of

trades represent a sizeable fraction of overall volume of trade during the last months of 2007, as seen in

Table 2. The mixed order �ow (CH and HC order �ow) typically contributes with about the same share to

the explained variance in the euro-dollar and dollar-yen exchange rate markets. In contrast, in the euro-yen

exchange rate market HC order �ow makes up the dominant part of the variance share, which is consistent

with our discussion of computers taking advantage of triangular arbitrage opportunities in this market.

Overall, about 15 to 35 percent of the total variation in returns can be attributed to shocks to the four

order �ows. However, in most currency pairs, very little of this ultimate long-run price discovery that occurs

via order �ow does so via the CC order �ow. Similar to Table 7, we also report in Table 9 the fraction of

the explained share of the return variance that can be attributed to the di¤erent order �ow combinations.

Comparing these to the fraction of overall volume that is due to these combinations of computers and humans,

reported in Table 2, gives an idea of whether the di¤erent order �ow combinations contribute proportionately

to the variance in returns. It is clear that CC order �ow tends to contribute disproportionately little to the

long-run variance of returns, and that HH order �ow often contributes disproportionately much.

23For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and
Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.
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7 Conclusion

Using high-frequency trading data for three exchange rates over 2006 and 2007, we analyze the impact of the

growth of algorithmic trading on the spot interdealer foreign exchange market. In particular, we try to answer

the following questions. (i) Are the algorithms underlying the computer generated trades similar enough to

result in highly correlated strategies, which may cause disruptive market behavior? (ii) Does algorithmic

trading increase volatility in the market, perhaps as a result of the previous concern? (iii) Do algorithmic

traders improve or reduce liquidity at times when it is needed the most? (iv) Are human or computer traders

the more �informed� traders in the market, i.e. who has the most impact on price discovery? (v) Is there

evidence in this market that liquidity providers (the �makers�) and not just liquidity �takers�, are informed,

and do computer makers post orders more strategically than humans?

The �rst three of these questions are primarily motivated by concerns that have been raised in the

popular press, especially in conjunction with the current �nancial crisis, whereas the last two questions

obviously relate to the empirical market microstructure literature on price discovery and order placement.

However, the analysis of all �ve questions brings new interesting results to the table, both from a practical

and academic perspective.

Our empirical results show that there is a tendency for algorithmic trades to be more correlated than

non-algorithmic trades, suggesting that the trading strategies used by the automated computer traders are

less diverse than those of their human counterparts. Although this may cause some concerns regarding the

disruptive potential of computer generated trades, we do not �nd any evidence of a positive causal relationship

between the proportion of algorithmic trading in the market and the level of volatility; if anything, the

evidence points towards a negative relationship, suggesting that the presence of algorithmic trading reduces

volatility. As for the provision of market liquidity by the di¤erent types of traders, we �nd evidence that,

compared to non-algorithmic traders, algorithmic traders reduce their share of liquidity provision in the

minute following major data announcements, when the probability of a price jump is very high. However

they increase their share of liquidity provision to the market over the entire hour following the announcement,

which is almost always a period of elevated volatility. This empirical evidence thus suggests that computers

do provide liquidity during periods of market stress. Overall, there is little statistical evidence to support

popular concerns that algorithmic trading increases volatility or decreases liquidity.

To address questions (iv) and (v) above, we use a high-frequency VAR framework in the tradition of

Hasbrouck (1991a). We �nd that non-algorithmic trades account for a substantially larger share of the price

movements in the euro-dollar and yen-dollar exchange rate markets than would be expected given the sizable

fraction of algorithmic trades, i.e., non-algorithmic traders are the �informed�traders in these markets. In the

24



cross-rate, the euro-yen exchange rate market, we �nd that computers and humans are equally �informed�;

coincidentally, we believe that in this market a large proportion of algorithmic trades help make markets

more e¢ cient by taking advantage of triangular arbitrage opportunities. This �nding suggests that, in the

analysis of the e¤ect that order �ow from di¤erent sources has on prices, focusing on what algorithmic trading

is predominantly used for may be as important as whether or not the order �ow is generated by computers.

In addition, we �nd that, on average, computer-takers or human-takers that trade with a computer-maker

do not impact prices as much as they do when they trade with a human-maker. One interpretation of this

result is that computers place limit orders more strategically than humans do. This �nding dovetails with

the literature on limit order books that relaxes the common assumption that liquidity providers are passive.
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Table 1: Summary statistics for the one-minute return and order �ow data. The mean and standard deviation,
as well as the �rst-order autocorrelation, �, are shown for each variable and currency pair. The returns are
expressed in basis points and the order �ows in millions of the base currency. The summary statistics are given
for both the full 2006-2007 sample, as well as for the three-month sub-sample, which only uses observations
from September, October, and November of 2007. The �rst two rows for each currency shows the summary
statistics for returns and the total market-wide order �ow. The following two rows give the results for the
order �ows broken down into human takers and computer takers and the last four rows show the results for
the order �ow decomposed into each maker-taker pair. There are a total of 717; 120 observations in the full
two year sample and 89; 280 observations in the three month sub sample. We show the statistical signi�cance
of the �rst order autocorrelation. The ���, ��, and � represents signi�cance at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. � Mean Std. dev. �

USD/EUR
Returns 0:0030 1:2398 �0:005��� 0:0080 1:2057 0:007��

Total order �ow (HH + CH +HC + CC) 0:0315 25:9455 0:150��� �0:0937 29:7065 0:174���

H-taker (HH + CH) 0:0413 23:977 0:155��� �0:0796 26:8096 0:189���

C-taker (HC + CC) �0:0099 9:9363 0:127��� �0:0140 12:8900 0:115���

H-maker/H-taker (HH) 0:1425 19:9614 0:177��� 0:0327 21:9211 0:209���

C-maker/H-taker (CH) �0:1012 8:8970 0:166��� �0:1123 10:7649 0:215���

H-maker/C-taker (HC) 0:0123 8:9232 0:152��� 0:0483 11:5856 0:150���

C-maker/C-taker (CC) �0:0222 2:7939 0:053��� �0:0623 3:9477 0:072���

JPY/USD
Returns �0:0007 1:6038 �0:010��� �0:0045 1:9110 0:007��

Total order �ow (HH + CH +HC + CC) 0:1061 20:0980 0:189��� �0:3439 23:6359 0:211���

H-taker (HH + CH) 0:0853 19:1127 0:190��� �0:2088 22:0344 0:204���

C-taker (HC + CC) 0:0209 8:3941 0:170��� �0:1351 11:5877 0:158���

H-maker/H-taker (HH) 0:1037 15:9972 0:209��� �0:1203 17:4612 0:226���

C-maker/H-taker (CH) �0:0184 6:9030 0:172��� �0:0885 9:1773 0:162���

H-maker/C-taker (HC) 0:0198 7:5686 0:198��� �0:0901 10:1673 0:191���

C-maker/C-taker (CC) 0:0011 2:4556 0:032��� �0:045 3:8751 0:026���

JPY/EUR
Returns 0:0024 1:5976 �0:053��� 0:0036 2:1398 �0:017���
Total order �ow (HH + CH +HC + CC) �0:0648 7:0941 0:152��� �0:1574 8:5978 0:147���

H-taker (HH + CH) �0:0497 5:7006 0:150��� �0:1216 6:2074 0:125���

C-taker (HC + CC) �0:0151 4:8409 0:146��� �0:0358 6:7000 0:131���

H-maker/H-taker (HH) �0:0172 4:4203 0:159��� �0:0600 4:3106 0:157���

C-maker/H-taker (CH) �0:0325 2:8912 0:129��� �0:0616 3:7197 0:092���

H-maker/C-taker (HC) �0:0095 4:5331 0:173��� �0:0264 6:0968 0:161���

C-maker/C-taker (CC) �0:0056 1:5558 0:023��� �0:0095 2:5621 �0:001
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Table 2: Summary statistics for the fractions of trade volume attributable to di¤erent trader combinations.
The table shows the fraction of the total volume of trade that are attributable to di¤erent combinations of
makers and takers. Results for the full 2006-2007 sample as well as for the three-month sub-sample, which
only uses data from September, October, and November of 2007, are shown. We show the average of the
daily fractions, calculated by summing up across all minutes within a day, and the standard deviations of
those daily fractions. For each currency, the �rst row shows the fraction of the total volume of trade where
a computer was involved on at least one side of the trade (i.e. as a maker or a taker). The second row shows
the fraction of the total volume where a human acted as a taker, the third row shows the fraction of the total
volume where a computer acted as a taker, and the following four rows shows the fractions broken down by
each maker-taker pair.

Full 2006-2007 Sample 3-month sub sample
Variable mean Std. dev. mean Std. dev.

USD/EUR
C-participation (V ol (CH +HC + CC)) 0:4163 0:1135 0:5386 0:0355

H-taker (V ol (CH +HH)) 0:7810 0:0791 0:6864 0:0331

C-taker (V ol (HC + CC)) 0:2190 0:0791 0:3136 0:0331

H-maker/H-taker (V ol (HH)) 0:5837 0:1135 0:4614 0:0355

C-maker/H-taker (V ol (CH)) 0:1973 0:0398 0:2251 0:0144

H-maker/C-taker (V ol (HC)) 0:1710 0:0514 0:2304 0:0205

C-maker/C-taker (V ol (CC)) 0:0480 0:0290 0:0831 0:0150

JPY/USD
C-participation (V ol (CH +HC + CC)) 0:4242 0:1065 0:5652 0:0364

H-taker (V ol (CH +HH)) 0:7585 0:0805 0:6461 0:0311

C-taker (V ol (HC + CC)) 0:2415 0:0805 0:3539 0:0311

H-maker/H-taker (V ol (HH)) 0:5758 0:1065 0:4348 0:0364

C-maker/H-taker (V ol (CH)) 0:1827 0:0304 0:2114 0:0126

H-maker/C-taker (V ol (HC)) 0:1860 0:0498 0:2486 0:0154

C-maker/C-taker (V ol (CC)) 0:0555 0:0321 0:1052 0:0193

JPY/EUR
C-involved (V ol (CH +HC + CC)) 0:6186 0:1154 0:7907 0:0410

H-taker (V ol (CH +HH)) 0:5557 0:1018 0:4037 0:0467

C-taker (V ol (HC + CC)) 0:4443 0:1018 0:5963 0:0467

H-maker/H-taker (V ol (HH)) 0:3814 0:1154 0:2093 0:0410

C-maker/H-taker (V ol (CH)) 0:1743 0:0360 0:1944 0:0164

H-maker/C-taker (V ol (HC)) 0:3337 0:0473 0:3734 0:0193

C-maker/C-taker (V ol (CC)) 0:1106 0:0673 0:2229 0:0464
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Table 3: Estimates of the ratio R = RC=RH. The table reports, for various sub-samples, the mean estimates
of the ratio R = RC=RH, where RC = V ol(HC)=V ol(CC) and RH = V ol(HH)=V ol(CH). V ol(HH) is
the daily trading volume between human makers and human takers, V ol(HC) is the daily trading volume
between human makers and computer takers, V ol(CH) is the daily trading volume between computer makers
and human takers, and V ol(CC) is the daily trading volume between computer makers and computer takers.
We report the mean of the daily ratio R and the standard errors are shown in parantheses below the estimate.
We also show the number of days that had a ratio that was less than one. We report the results for the
full 2006-2007 sample and the three-month sub-sample, which only uses data from September, October, and
November of 2007. The ���, ��, and � represents a statistically signi�cant deviation from one at the 1, 5, and
10 percent level, respectively.

Full 2006-2007 sample 3-month sub sample
USD/EUR

Mean of daily R = RC/RH 1:4463��� 1:3721���

Standard Error (0:0063) (0:0099)

No. of days with R < 1 0 0

No. of obs 498 62

JPY/USD
Mean of daily R = RC/RH 1:2619��� 1:1719���

Standard Error (0:0074) (0:0142)

No. of days with R < 1 15 4

No. of obs 498 62

JPY/EUR
Mean of daily R = RC/RH 1:6886�� 1:6242���

Standard Error (0:0154) (0:0250)

No. of days with R < 1 4 0

No. of obs 498 62
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Table 4: Regressions of realized volatility on the fraction of algorithmic trading. The table shows the results
from estimating the relationship between daily realized volatility and the fraction of algorithmic trading,
using daily data from 2006 and 2007. Robust standard errors are given in parentheses below the coe¢ cient
estimates. The left hand side of the table shows the results with a quarterly time trend included in the
regressions and the right hand side of the table shows the results with year-quarter time dummies (i.e., eight
time dummies, one for each quarter in the two years of data) included in the regressions. Panels A and
B show the results when the fraction of algorithmic trading is measured as the fraction of the total trade
volume that has a computer involved on at least one side of the trade (i.e. as a maker or a taker). Panels C
and D show the results when only the fraction of volume with computer taking is used. In addition to the
fraction of algorithmic trading and the control(s) for secular trends, 22 lags of volatility are also included
in every speci�cation. In all cases, only the coe¢ cient on the fraction of algorithmic trading is displayed.
Panels A and C show the results from a standard OLS estimation, along with the R2. Panels B and D show
the results from the IV speci�cation estimated with Limited Information Maximum Likelihood (LIML). In
Panels B and D, the Stock and Yogo (2005) F�test of weak instruments are also shown. The critical values
for Stock and Yogo�s (2005) F-test are designed such that they indicate a maximal actual size for a nominal
sized �ve percent test on the coe¢ cient in the LIML estimation. Thus, in order for the actual size of the
LIML test to be no greater than 10% (15%), the F-statistic should exceed 8:68 (5:33). There are a total of
498 daily observations in the data. The ���, ��, and � represents signi�cance at the 1, 5, and 10 percent level,
respectively.

With quarterly time trend With year-quarter time dummies
USD/EUR JPY/USD JPY/EUR USD/EUR JPY/USD JPY/EUR
Panel A. Fraction of volume with any computer participation, OLS estimation

Coe¤. on AT 0:0029 0:0018 0:0034��� 0:0078��� �0:0030 0:0065���

(0:0024) (0:0021) (0:0012) (0:0027) (0:0024) (0:0016)

R2 (%) 53:44% 61:13% 71:90% 56:73% 62:57% 73:33%

Panel B. Fraction of volume with any computer participation, IV estimation
Coe¤. on AT �0:0121� �0:0186�� �0:0022 �0:0078 �0:0101 �0:0128

(0:0062) (0:0089) (0:0039) (0:0061) (0:0069) (0:0175)

F-Stat 29:5800 19:4568 32:179 38:166 20:8947 2:2521

Panel C. Fraction of volume with computer taking, OLS estimation
Coe¤. on AT 0:0037 �0:0027 0:0015 0:0094�� �0:0034 0:0032��

(0:0036) (0:0024) (0:0012) (0:0038) (0:0027) (0:0016)

R2 (%) 53:39% 61:17% 71:56% 56:43% 62:55% 72:66%

Panel D. Fraction of volume with computer taking, IV estimation
Coe¤. on AT �0:0160�� �0:0215�� �0:0007 �0:0072 �0:0122 �0:0182

(0:0080) (0:0109) (0:0028) (0:0070) (0:0082) (0:0291)

F-Stat 39:9903 17:6348 64:8095 55:4489 21:2043 1:0441
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Table 5: We report the mean ratio of the exchange rate volatility (Panel A), liquidity provision by humans
and by computers (Panel B) estimated during announcement days divided by that estimated during non-
announcement days. The one-hour measure is estimated using observations from 8:25 am to 9:24 am ET and
the one-minute measure is estimated using 8:30 am to 8:31 am ET observations. Announcement days are
de�ned as nonfarm payroll announcement days and non-announcement days are de�ned as 10 business days
before and after the nonfarm payroll announcement. In each panel, we report the chi-squared and p-value
of the Wald test that the ratio is equal to 1. In Panel C we report the chi-squared and p-value of the Wald
test that the liquidity provision of humans during announcement days relative to non-announcement days
is similar to the liquidity provision of computers. The statistics are estimated using data in the full sample
from 2006 to 2007 and there are 23 observations (April 6, 2007 nonfarm payroll announcement is missing
because it falls on Good Friday, when trading in the foreign exchange market is limited). Human liquidity
provision, LH, is de�ned as the sum of human-maker/human-taker volume plus human-maker/human-taker
volume divided by total volume. Computer liquidity provision, LC, is de�ned as the sum of computer-
maker/computer-taker volume plus computer-maker/human-taker volume divided by total volume. The ���,
��, and � represents signi�cance at the 1, 5, and 10 percent level, respectively.

USD/EUR JPY/USD JPY/EUR
Hour Minute Hour Minute Hour Minute

Panel A: Volatility
V ola
V oln

6:236��� 21:704��� 5:595��� 24:812��� 3:697��� 14:403��

�2 (H0 : V ola = V oln) 69:86 18:76 33:34 15:45 19:37 5:96

p-value 0:0000 0:0003 0:0000 0:0008 0:0002 0:0235

Panel B: Liquidity Provision
Liquidity provision by humans, LHa

LHn
0:964��� 1:062��� 1:023 1:183��� 0:888��� 0:980

Liquidity provision by computers, LCa
LCn

1:132��� 0:871��� 0:974 0:652��� 1:227��� 1:151

�2 (H0 : LHa = LHn or LCa = LCn) 16:56 9:04 2:71 31:91 25:19 0:5

p-value 0:0005 0:0067 0:1143 0 0:0001 0:487

Panel C: Comparison of Liquidity Provision between Humans and Computers
LHa
LHn

� LCa
LCn

�0:168��� 0:191�� 0:049 0:532��� �0:339��� �0:171
�2 (H0 :

LHa
LHn

= LCa
LCn

) 19:24 5:91 1:50 36:07 25:21 0:66

p-value 0:0003 0:0241 0:2339 0:0000 0:0001 0:4245
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Table 6: Impulse responses from the VAR speci�cation with human-taker and computer-taker order �ow. The
table shows the impulse responses for returns as a result of shocks to the human-taker order �ow (HH+CH)
or computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table headings, respectively.
The results are based on estimation of equation (2), using minute-by-minute data. In Panel A we show the
return response, in basis points, to a one-billion base-currency shock to one of the order �ows. In Panel B
we show the return response, in basis points, to a one standard deviation shock to one of the order �ows.
We show the results for the full 2006-2007 sample and for the three-month sub-sample, which only uses data
from September, October, and November of 2007. For each currency pair we show the short-run (immediate)
response of returns; the corresponding cumulative long-run response of returns, calculated as the cumulative
impact of the shock after 30 minutes; and the di¤erence between the cumulative long-run response in returns
minus the immediate response of returns, i.e., we provide the extent of over-reaction or under-reaction to an
order �ow shock. There are a total of 717; 120 minute-by-minute observations in the full two year sample
and 89; 280 observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker
Panel A: One billion base-currency shock

USD/EUR
Short run 28:06 26:94 23:20 25:22

Long run 27:87 32:35 24:16 31:38

Di¤erence �0:20 5:42 0:96 6:16

JPY/USD
Short run 46:77 39:81 48:02 44:89

Long run 47:50 44:27 49:54 40:63

Di¤erence 0:74 4:46 1:52 �4:26
JPY/EUR

Short run 99:32 102:71 124:02 115:52

Long run 108:07 109:85 132:53 123:26

Di¤erence 8:75 7:14 8:51 7:74

Panel B: One standard deviation shock
USD/EUR

Short run 0:6617 0:2639 0:6045 0:3181

Long run 0:6570 0:3170 0:6296 0:3957

Di¤erence �0:0046 0:0531 0:0251 0:0777

JPY/USD
Short run 0:8706 0:3269 1:0241 0:5098

Long run 0:8843 0:3635 1:0565 0:4614

Di¤erence 0:0137 0:0366 0:0324 �0:0483
JPY/EUR

Short run 0:5572 0:4901 0:7587 0:7636

Long run 0:6063 0:5242 0:8108 0:8148

Di¤erence 0:0491 0:0341 0:0520 0:0512
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Table 7: Variance decompositions from the VAR speci�cation with human-taker and computer-taker order
�ow. The table provides the long-run variance decomposition of returns, expressed in percent and calculated
at the 30 minute horizon, based on estimation of equation (2), using minute-by-minute data. That is, the
table shows the proportion of the long-run variation in returns that can be attributed to shocks to the human-
taker order �ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker
in the table headings, respectively. For each currency pair we show the actual variance decomposition, and
the proportion of the explained variance in returns that can be attributed to each order �ow type. That
is, we re-scale the variance decompositions so that they add up to 100 percent. We show results for the full
2006-2007 sample and for the three-month sub-sample, which only uses data from September, October, and
November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two year sample
and 89; 280 observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition 29:27 4:74 25:92 7:25

Proportion of explained share 86:06 13:94 78:14 21:86

JPY/USD
Variance decomposition 29:31 4:22 28:59 7:22

Proportion of explained share 87:41 12:59 79:84 20:16

JPY/EUR
Variance decomposition 12:03 9:28 12:47 12:67

Proportion of explained share 56:45 43:55 49:60 50:40
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Table 8: Impulse responses from the VAR speci�cation with all four human/computer-maker/taker or-
der �ow combinations. The table shows the impulse responses for returns as a result of shocks to
the human-maker/human-taker order �ow (HH), computer-maker/human-taker order �ow (CH), human-
maker/computer-taker order �ow (HC), or computer-maker/computer-taker order �ow (CH), denoted in
obvious notation in the table headings. The results are based on estimation of equation (3), using minute-by-
minute data. In Panel A we show the return response, in basis points, to a one-billion base-currency shock to
one of the order �ows. In Panel B we show the return response, in basis points, to a one standard deviation
shock to one of the order �ows. We report the results for the full 2006-2007 sample and for the three-month
sub-sample, which only uses data from September, October, and November of 2007. For each currency pair
we show the short-run (immediate) response of returns; the corresponding cumulative long-run response of
returns, calculated as the cumulative impact of the shock after 30 minutes; and the di¤erence between the
cumulative long-run response in returns minus the immediate response of returns, i.e., we provide the extent
of over-reaction or under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute
observations in the full two year sample and 89; 280 observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run 27:64 29:66 26:57 32:19 20:58 30:94 28:94 21:74

Long run 30:13 20:47 29:89 24:92 24:18 23:35 34:64 5:94

Di¤erence 2:49 �9:19 3:32 �7:26 3:60 �7:59 5:70 �15:80
JPY/USD

Short run 43:48 58:94 40:34 61:57 41:96 64:63 46:08 67:65

Long run 47:01 49:53 42:61 54:37 46:83 57:24 40:33 51:81

Di¤erence 3:53 �9:41 2:27 �7:20 4:87 �7:39 �5:75 �15:85
JPY/EUR

Short run 102:61 92:16 100:91 102:04 139:33 103:92 114:01 94:47

Long run 116:12 91:24 107:18 93:41 159:46 96:85 118:47 95:20

Di¤erence 13:51 �0:92 6:27 �8:63 20:13 �7:07 4:46 0:74

Panel B: One standard deviation shock
USD/EUR

Short run 0:5389 0:2575 0:2318 0:0893 0:4342 0:3211 0:3228 0:0845

Long run 0:5875 0:1777 0:2608 0:0692 0:5101 0:2424 0:3864 0:0231

Di¤erence 0:0486 �0:0798 0:0290 �0:0202 0:0760 �0:0788 0:0636 �0:0614
JPY/USD

Short run 0:6721 0:3968 0:2962 0:1506 0:7019 0:5801 0:4544 0:2607

Long run 0:7267 0:3334 0:3129 0:1330 0:7834 0:5137 0:3976 0:1997

Di¤erence 0:0546 �0:0634 0:0167 �0:0176 0:0815 �0:0663 �0:0567 �0:0611
JPY/EUR

Short run 0:4440 0:2629 0:4481 0:1583 0:5859 0:3829 0:6809 0:2409

Long run 0:5024 0:2603 0:4760 0:1449 0:6706 0:3568 0:7076 0:2428

Di¤erence 0:0584 �0:0026 0:0279 �0:0134 0:0847 �0:0260 0:0266 0:0019
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Table 9: Variance decompositions from the VAR speci�cation with all four human/computer-maker/taker
order �ow combinations. The table provides the long-run variance decomposition of returns, expressed
in percent and calculated at the 30 minute horizon, based on estimation of equation (3), using minute-
by-minute data. That is, the table shows the proportion of the long-run variation in returns that can be
attributed to shocks to the human-maker/human-taker order �ow (HH), computer-maker/human-taker order
�ow (CH), human-maker/computer-taker order �ow (HC), and computer-maker/computer-taker order �ow
(CH), denoted in obvious notation in the table headings. We show the actual variance decomposition, and
the proportions of the explained variance in returns that can be attributed to each order �ow type. That is,
we re-scale the variance decompositions so that they add up to 100 percent. We present results for the full
2006-2007 sample and for the three-month sub-sample, which only uses data from September, October, and
November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two year sample
and 89; 280 observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

USD/EUR
Variance decomp. 20:71 4:73 3:89 0:58 14:19 7:68 7:86 0:59

Proportion 69:24 15:81 13:01 1:94 46:80 25:33 25:92 1:95

JPY/USD
Variance decomp. 18:62 6:48 3:70 0:93 14:47 9:78 6:12 2:00

Proportion 62:63 21:80 12:45 3:13 44:70 30:21 18:91 6:18

JPY/EUR
Variance decomp. 7:84 2:74 7:94 0:99 7:72 3:32 10:47 1:30

Proportion 40:18 14:04 40:70 5:07 33:84 14:56 45:90 5:70
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Figure 1: Participation rates of algorithmic traders 
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Figure 2: Participation rates broken down into four maker-taker pairs 

0

20

40

60

80

100

Jan-03 Jan-04 Jan-05 Jan-06 Jan-07

P
a

rt
ic

ip
a

ti
o

n
 (

P
er

ce
n

t)

EUR/USD

0

20

40

60

80

100

Jan-03 Jan-04 Jan-05 Jan-06 Jan-07

P
a

rt
ic

ip
a

ti
o

n
 (

P
er

ce
n

t)

JPY/USD

0

20

40

60

80

100

Jan-03 Jan-04 Jan-05 Jan-06 Jan-07

P
a

rt
ic

ip
a

ti
o

n
 (

P
er

ce
n

t)

JPY/EUR

Human Maker/Human Taker Computer Maker/Human Taker

Human Maker/Computer Taker Computer Maker/Computer Taker



 

 

Figure 3: Dollar-Yen Market on August 16, 2007 

6

PM

12

AM

6

AM

12

PM

6

PM

12

AM

6

AM

12

PM

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

111

112

113

114

115

116

117

$ Millions Yen/$

Computer-Taker Order Flow

Order Flow

Dollar-Yen

6

PM

12

AM

6

AM

12

PM

6

PM

12

AM

6

AM

12

PM

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

111

112

113

114

115

116

117
$ Millions Yen/$
Human-Taker Order Flow

Order Flow

Dollar-Yen



 

Figure 4: Volatility and Algorithmic Market Participation 

*
Daily realized volatility is based on 5-minute returns. We show monthly observations 
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Share of algorithmic trading is at a monthly frequency 
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