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A b s t r a c t  

Airline capacity utilization, or load factors, increased dramatically between 1993 and 
2007, after staying fairly level for the first 15 years following deregulation. We argue 
that consumers’ adoption of the Internet, and their use of the Internet to investigate 
and purchase airline tickets, explains this increase. We find that differences in the 
rate of change of metropolitan area Internet penetration explain differences in the rate of 
change of airline-airport-pair load factors. Consistent with our explanation, we also 
find that, all else equal, changes in Internet penetration have a bigger impact on load 
factors on flights in more competitive markets and on flights with fewer total 
passengers. We argue that a significant part of the associated $3 billion reduction in 
airlines’ annual capacity costs, represents a previously unmeasured social welfare 
benefit of the Internet. 

                                                             
∗ We would like to thank seminar participants at the Kellogg School of Business, Stanford University 
School of Business, MIT-Harvard Industrial Organization workshop, and Columbia Business School, and 
conference participants at the 2008 IIOC and the 2009 AEA meetings for their helpful comments. We 
particularly want to thank Glenn Ellison, Diego Escobari, Dan Greenfield, Shane Greenstein, Mike 
Mazzeo, Bruce Meyer, Kathryn Spier, and Scott Stern. James Dana is a professor of economics and 
strategy at Northeastern University, and a visiting scholar at Harvard Business School. He can be reached 
via e-mail at j.dana@neu.edu or jdana@hbs.edu. Eugene Orlov is a senior economist at Compass Lexecon 
and can be reached via e-mail at eorlov@compasslexecon.com. 



 
 

2 

1. Introduction 

US airline industry domestic passenger load factors, or capacity utilization, have 

increased from 62% in 1993 to 80% in 2007 after ranging from 57% to 63% in the years since 

deregulation. One potential explanation is the use of sophisticated revenue management 

systems by airlines. These sophisticated data and capacity management systems help airlines to 

forecast demand, more efficiently utilize their aircraft and personnel resources, and create 

incentives for consumers to choose alternatives to purchasing seats on flights with scarce 

capacity, even when that capacity was not expected to be scarce. However, revenue 

management systems were widely adopted in the 1980’s, and hence cannot be a sole 

explanation for increased capacity utilization in the late 1990’s. 

Instead, we argue that the rapid increase in consumer Internet penetration in the late 

1990’s and early 2000’s, and the associated increase in the use of the Internet as the primary 

method for investigating and booking airline reservations, is responsible for most, if not all, 

of the increase in airlines’ load factors. The Internet has given consumers more information 

about available products including alternative departure times, alternative carriers, 

alternative airports, alternative legroom, and alternative in-flight durations (the number of 

stops), which has made it more likely that consumers will take advantage of incentives to 

travel on flights with excess capacity and more likely that airlines will find it profitable to 

offer those incentives. Consistent with this explanation, we find strong statistical evidence 

that changes in airlines’ airport-pair load factors are associated with changes in US 

metropolitan area Internet penetration rates.  

Until now, research on the economic impact of the Internet has primarily focused on 

the impact of lower search costs on the level and dispersion of firms’ prices. An obvious 

implication of lower search costs is increased price competition. While the impact on price 

levels can be dramatic (see, for example, Brynjolfsson and Smith, 2000), the increases in 

social welfare associated with price decreases can be small.1 We look at the effect of the 

Internet on a more direct type of allocative efficiency: the increased utilization of existing 

                                                             
1 Holding market structure and costs fixed, the welfare gain from the lower equilibrium prices is equal to the 
reduction in the dead weight loss associated with the firms’ mark-ups, significantly less than the increase in 
consumer surplus, while the welfare gain from a reduction in firms’ costs holding price fixed is equal to the entire 
increase in producer surplus.  
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resources, as measured by airline load factors. We find that the elasticity of capacity utilization 

with respect to Internet penetration is .102 and that the increase in Internet penetration 

from 1997 to 2003 resulted in an estimated 7.2% increase in load factors or almost $3 

billion in cost savings each year. We argue that at least half of this savings represents a social 

welfare gain. 

Any attempt to measure the impact of the Internet on capacity utilization must 

address why capacity isn’t being fully utilized in the first place. Many economic models 

assume either spot market pricing or forward contracts and conclude that excess capacity 

exists only when shadow cost of capacity is zero. Other models, including the stochastic peak-

load pricing research in the economics literature and most of the revenue management 

research in the operations research literature, predict that capacity is not fully utilized by 

introducing price rigidities. Indeed, casual observation suggests airlines typically do not adjust 

their prices significantly as a departure time approaches and certainly do not set market 

clearing prices ex post. Instead they set prices in advance and then use sophisticated 

software to manage the inventory available at each price. Setting prices ex ante before 

demand is known clearly result in allocative inefficiencies and lead to the underutilization of 

capacity. 

The empirically testable predictions of increases in Internet use are very similar for 

these two classes of models. Because we think it is somewhat more descriptive of the 

airline industry, we present a simple stochastic peak-load pricing model based on Dana 

(1999a).2 In our model, airlines set prices ex ante before learning the distribution of 

demand across flights. As in Dana (1999a) airlines offer multiple prices inducing some 

consumers to shift their purchases from the peak to the off-peak flight even when the firm 

cannot anticipate which flight is off peak. We then generalize the model by assuming that 

some customers are fully informed while others observe only the prices for their preferred 

departure time. The model predicts that an increase in the amount of price and product 

information (e.g., because of increased access the Internet) leads to an increase in load 

factors, an associated decline in capacity, and an unambiguous increase in social welfare. 

                                                             
2 Other papers that examine stochastic peak-load pricing are Carlton (1977) and Brown and Johnson 
(1969), but these papers consider a social planner who is restricted to uniform prices. Dana (1999a) shows 
that the competitive equilibrium prices in these models are generally non-uniform. 
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This holds in both competitive and monopoly markets, but effect is strongest when the 

market is competitive.  

We test our theoretical predictions by estimating a reduced-form regression of load 

factors on metropolitan area Internet penetration. We match the metropolitan area Internet 

penetration to the segment load factors by measuring the fraction of passengers on a given 

segment whose travel originates in each metropolitan area, since this is the metropolitan are 

where the tickets were most likely purchased.  Also, by using airline-quarter and airline-

segment fixed effects we are able to identify the impact of the Internet on load factors 

controlling for unobserved market, airport, airline, and time-specific characteristics. That is, 

we test whether differences in the rate of change of Internet penetration in the metropolitan 

area where an airline’s passengers’ travel originate can explain differences in the rate of 

change of airline-airport-pair load factors.  

We estimate that the elasticity of load factors with respect to Internet penetration is 

about 0.107, and hence a 100% increase in Internet penetration implies load factors should 

increase by over 7%, which is roughly consistent with the observed increase in Internet use 

and load factors during our sample period.  We also find that load factors are higher in more 

competitive markets and that the impact of Internet penetration is greater on flights in more 

competitive markets and greater on flights serving lower volume airport-pair segments, 

which is consistent with our theoretical model and more generally consistent with our theory 

that the Internet has increased load factors by increasing consumers’ price and product 

information. 

The next section of the paper discusses the related literature in airline pricing and the 

economics of the Internet. Section 3 presents the theoretical model, while Section 4 

describes our data. Section 5 describes the estimation and results, and Section 6 concludes. 

2. The Related Literature  

The traditional peak load pricing literature, see in particular Boiteaux (1980), 

assumes prices are used ex post, once demand is known, to shift demand from peak to off-

peak times.  This is desirable either because capacity is set before demand is known, or 

constrained to be identical at the peak and off-peak times.  In the stochastic peak-load 

pricing literature (Brown and Johnson, 1969, and Carlton, 1977), firms choose capacity and 
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set prices for the different times ex ante, before learning consumer demand. After demand is 

realized, consumers purchase their preferred product subject to availability. Stochastic peak 

load pricing predicts that capacity will be underutilized at off-peak times because prices are 

set before demand is realized. Crew and Kleindorfer (1986) review both literatures. 

Note that there is little incentive for consumers to switch from a peak flight to an 

off-peak flight when firms set uniform ex ante prices. However by using price dispersion, 

firms can increase demand shifting. The earliest paper on price dispersion as a response to 

demand uncertainty is Prescott (1975) who considered a simple competitive model with a 

single good. Several papers in the industrial organization literature have built on Prescott’s 

work, including Dana (1998, 1999a, and 1999b), and Deneckere, Marvel and Peck (1997).  

In particular, Dana (1999a) shows that price dispersion increases demand shifting and in so 

doing increases social welfare by improving the allocation of consumers to available 

capacity. 

Few papers have tried to empirically test the Prescott model. One exception is 

Escobari and Gan (2007) who directly test the hypothesis that price dispersion is induced by 

demand uncertainty. They also show that airline price dispersion increases with competition 

as implied by Dana (1999a and 1999b).  Another exception is Puller, Sengupta and Wiggins 

(2007). They have detailed data on airline tickets purchased through a single computer 

reservation system which allows them to ask what portion of fare differences are associated 

with restrictions and what portion represent pure dispersion of the type predicted by Dana 

(1999b). They find modest support for Dana (1999b) and strong support for models of 

second-degree price discrimination. 

The empirical literature on the impact of the Internet is extensive. Many papers 

have compared online markets to traditional markets, and in particularly, focused on price 

levels and price dispersion (see Ellison and Ellison, 2006). Brynjolfsson and Smith (2000) 

report that compact disk and book prices are 9 to 16% lower in online markets and that price 

dispersion is slightly smaller. It is not immediately apparent whether price differences 

reflect differences in costs, or differences in margins, but Brynjolfsson and Smith conclude 

the significant sources of heterogeneity, such as brand and reputation, are not diminished 

by Internet competition. Other papers (for example, Clay, Krishnan and Wolf, 2001, and 



 
 

6 

Baye, Morgan and Scholten, 2004) have found less evidence of price declines, but all of 

these papers find consistent evidence that online price dispersion is quite large, even 

compared to traditional markets. 

A handful of papers have considered the impact of the Internet on prices in the 

airline industry. Clemons, Hann and Hitt (2002) and Chen (2002) find that prices available 

from online travel agents are just as dispersed as those available from traditional offline 

travel agents. Using national data on Internet use, Verlinda and Lane (2004) find that 

increased Internet usage is associated with greater differences between restricted and 

unrestricted fares. Using a cross section of airline tickets purchased both online and offline, 

Sengupta and Wiggins (2007) find that tickets sold online have lower average prices and 

that increases in the share of tickets purchased online imply lower offline fares and lower 

price dispersion. Finally, using metropolitan area Internet access and a differences-in-

differences estimation strategy similar to ours, Orlov (2007) examines the impact of Internet 

access on prices and price dispersion in the airline industry. He finds that increases in 

Internet access are associated with decreases in airport-pair fares and fare dispersion.  

Several papers have tried to measure other ways in which the Internet increases 

consumer surplus. Brynjolfsson, Hu and Smith (2003) show that the Internet enables 

consumers to obtain hard-to-find books. Ghose, Telang and Krishnan (2005) argue that the 

Internet increases the resale value of new products, and Ghose, Smith and Telang (2006) 

show that the Internet facilitates the market for used books. Other papers have emphasized 

that the Internet reduces consumers’ offline transportation costs. For example, Forman, 

Ghose and Goldfarb (2007) conclude that the Internet reduces consumer travel and 

transportation costs in the market for books. 

Undoubtedly, the Internet has also directly impacted firms’ costs. For example, the 

Internet helps firms improve their demand forecasts, reduce their communications costs, and 

more efficiently monitor their workers and suppliers. However, to our knowledge this paper is 

the first paper to show that increasing consumer access to the Internet lowers firms’ costs.  

Our paper is also related to empirical work on inventory management. Gaur, Fisher, 

and Raman (2005) find that inventory turns (the cost of goods sold to inventory ration) are 

negatively correlated with margins and capital intensity, and positively correlated with 
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unexpected demand (see also Roumiantsev and Netessine, 2006). Gao and Hitt (2007) 

consider the impact of information technology on operation decisions; however, their focus 

is on product variety and not on inventory or capacity utilization. Cachon and Olivares 

(2007) show that competition increases service levels, and hence inventory ratios, in 

automobile dealerships. Rajagopalan and Malhotraw (2001) document trends in inventory 

levels and show that finished goods inventories, materials, and work-in-progress ratios have 

declined in most manufacturing industries, but they do not find that the evidence of greater 

improvements post-1980 as compared to pre-1980.  

Finally, in the macroeconomics literature Kahn, McConnell and Perez-Quiros 

(2002) use firm level data to test the impact of information technology on the volatility of 

inventories. They find that information technology has led to a reduction in aggregate output 

and inflation volatility. However, they do not directly address a question of how information 

technology lowers inventory costs. 

3. Theory  

We consider a model of stochastic peak load pricing, based on Dana (1999a), in which 

firms set both capacities and prices ex ante, before they or consumers learn consumer demand. 

The model generates clear, testable predictions for the impact of market power and 

consumer information on the equilibrium capacity utilization.  As we discuss later, these 

testable predictions are also common to a variety of alternative specifications of the model, 

including specifications in which capacity is set ex ante, but prices are set ex post after firms 

learn demand. 

Assume two departure times, A and B, each of which is equally likely to be the peak 

period, and assume the fraction of consumers who prefer the peak departure time is 

!
H
> !

L
 where !

H
+ !

L
= 1 . Assume N consumers have uniform valuations V for their 

preferred departure time and V ! w  for the other departure time.  Assume the distribution of 

the disutility from traveling at their least preferred time, w, is F w( ) . We interpret w as the 

cost of waiting for the next flight.  Finally, assume that a fraction α of all consumers are 

informed and observe all of the firms’ products and prices and that a fraction 1!"  of all 
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consumers observe only the prices for products offered at their preferred departure time.3,4 

We interpret !  as a measure of the share of consumers with access to the Internet for 

price and product information. 

The cost of capacity is k per seat departure plus c per passenger departure.  So a firm 

with q units of capacity and q/2 passengers at each of its two departure times has costs 2kq + cq.   

Firms choose their capacity and the price for each unit of their capacity ex ante 

before they know which departure time is the peak time. The exact timing is as follows: 

1) The firm or firms choose their capacity  

2) Firms set their prices for their capacity for each departure time.  

3) Consumers learn their departure preferences, w.   

4) Informed consumers observe all of the firms’ prices and products. Uninformed 

consumers observe only the prices and products at their preferred departure time.   

5) Consumers purchase in random order given availability and the restriction that 

the uninformed consumers cannot purchase a product that they do not observe. 

For example, suppose that firms offer !
H
N  units of capacity at each departure time 

and sell all of their capacity at a uniform price, V. Then peak period sales are !
H
N , off-peak 

period sales are !
L
N , and the average capacity utilization rate is 1 2!

H( ) < 1 . In this 

example, each consumer flies at his or her preferred time because peak capacity is not 

rationed and the price of the off-peak departure time is the same as the price of the peak 

departure time, so there is no benefit from switching.   

On the other hand, if firms sell their capacity at multiple prices at each departure 

time, then once enough consumers have made their purchase decisions, the remaining 

consumers will face higher prices at the peak departure time then at the off-peak departure 

                                                             
3 For simplicity, we assume that each consumer’s departure time preferences, the strength of his or her 
departure time preferences, w, his or her willingness to pay for the product when it is offered at their 
preferred departure time, and whether or not he or she is fully informed, are all independently 
distributed.  However, consumers’ departure time preferences are correlated across consumers so the total 
demand at each departure time is unknown ex ante.  
4 The assumption that uninformed consumers choose to observe only prices and products at their preferred 
departure time is not without loss of generality; consumers with low waiting costs strictly prefer to search 
at their non-preferred departure time because the expected price is lower.  However, the testable predictions 
of the model are unchanged if we instead assume that uninformed consumers choose which information to 
acquire. 
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time, and hence these consumers will choose to fly at the off-peak time if their waiting cost, 

w, is less than the price difference.  

Below we derive the equilibrium prices in the competitive and monopoly 

environments.  In both cases, firms offer just two prices in equilibrium. Firms offer enough 

capacity at the low price to meet demand at the ex post off peak departure time, and ration 

consumers at the ex post peak departure time.  This implies that low-price capacity is 

utilized 100% of the time (is sold with probability one).  Firms offer enough capacity at the 

high price to meet the demand at the ex post peak departure time, which implies that high-

price capacity is utilized 50% of the time, or equivalently, is sold with probability ½.5 

Given two prices, p
L

 and p
H

, or equivalently, a base price, p = p
L

, and a price 

premium, ! = p
H
" p

L
, where p + ! "V , the capacity offered at the low price is equal to 

the off-peak demand, or the number of consumers who prefer the off-peak departure plus 

the number of switching consumers (i.e., those who are informed, prefer the peak departure, 

are rationed at the low price, and have waiting costs less than ! ), or 

 QL p,!( ) = "LN + "HN #QL p,!( )( )$F !( ) . 

The capacity offered at the high price is equal to the number of consumers who prefer the 

peak departure less the number of these consumers who are served at the low price less the 

number of switching consumers, or 

 QH p,!( ) = "HN #QL p,!( ) # "HN #QL p,!( )( )$F !( ) . 

It follows that in the equilibrium capacities are 

 QL p,!( ) = "LN + "H #"L( )N
$F !( )

1+$F !( )
, (1) 

and 

 QH p,!( ) = "H #"L( )N
1#$F !( )

1+$F !( )
. (2) 

The total industry capacity at each departure time is  

                                                             
5 This behavior is optimal in a neighborhood of the optimal prices, so we make this assumption without loss 
of generality (see Dana, 1999a). 
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 Q
L
+Q

H
= 1!

"
2
+ "

1

1+#F $( )

%

&
'

(

)
*N  (3) 

where ! = "
H
#"

L
 is a measure of the volatility of demand for each departure time (! is 

proportional to the standard deviation divided by the mean).  Note that !
L
= 1" # / 2 . 

Total sales are equal to 

2Q
L
+Q

H
= 2!

L
N
1+"F #( )

1+"F #( )
+ 2 !

H
$!

L( )N
"F #( )

1+"F #( )
+ !

H
$!

L( )N
1$"F #( )

1+"F #( )
= N  

so the capacity utilization, or load factor,  is 

  LF !,",#( ) =
2Q

L
+Q

H

2Q
L
+ 2Q

H

=
1

1+
#
2

1$!F "( )
1+!F "( )

%

&
'

(

)
*

.  (4) 

It follows that !LF !" > 0 , !LF !" > 0 , !LF !" < 0 , !2LF !"!# > 0 , and 

!2LF !"!# > 0 . 

3.1 Competitive Pricing 

In a competitive market, the equilibrium prices are the zero-profit prices, 

pL = k + c  and pH = 2k + c , or equivalently, pc = k + c  and !
c
= k  where the 

subscript c denotes competitive pricing (not to be confused with the cost c). 

Evaluating load factor and capacity at these prices, equations (3) and (4) clearly imply 

that in a competitive market equilibrium load factors are increasing in ! , 

i.e.,dLF
C
d! > 0 , and equilibrium capacity is decreasing in ! , i.e., d QL +QH( ) d! < 0 . 

3.2 Monopoly Pricing 

Now consider the monopolist’s pricing problem. Following Dana (1999a), the 

monopolist offers two prices, p
L

 and p
H

, or equivalently, p
m

 and p
m
+ !

m
, where the 

subscript m denotes monopoly pricing.  

The monopolist chooses p
m

 and !
m

 to maximize its profits, however clearly 

p
m
+ !

m
= V , or  p

m
= V ! "

m
, so the monopolist’s problem is  

 max
!m

2"LQL V # !m ,!m( ) V # !m # k # c( ) + "HQH V # !m ,!m( ) V # 2k # c( ) . 
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The first order condition is 

 !2 "L + "H !"L( )
#F $m( )
1+#F $m( )

%

&'
(

)*
+ "H !"L( )

2# f $m( )

1+#F $m( )( )
2
k ! $m( ) = 0 , 

which uniquely defines !
m

 as a function of ! . It follows from the first order condition that 

!
m
< k = !

c
 which implies !F "

m( ) <!F "
c( ) , or, all else equal, fewer customers 

shift their purchases from the peak to the off-peak flight in a monopoly market than in a 

competitive market.  

As in the case of competitive markets, the monopolist’s load factor rises as α rises. 

This follows from (4), holding !
m

 fixed, but is true more generally because the first order 

condition implies d!
m
d" > 0  and so dLF

m
d! = "LF "! + "LF "#d#

m
d! > 0 . 

Also, !
m
< k = !

c
 and !2LF !"!# > 0  implies that holding !

m
 fixed, that 

monopolist’s load factor is less sensitive to increases in information than a 

competitive firm. Moreover, when F is uniform, it also follows that 

dLF
c
!,"

c
,#( ) d! > dLF

m
!,"

m
!( ),#( ) d! . 

3.3 Theoretical Predictions 

The theory predicts that the expected load factor is decreasing in the volatility of the 

market, ! , increasing in the extent of product and price information, ! , increasing in the 

number of firms in the market, n, increasing in the elasticity of departure time preferences 

with respect to the price differential, ! = " f "( ) F "( ) , and increasing in the cost of 

capacity, k. The theory also predicts that greater competition, n, and volatility, ! , will 

increase the sensitivity of load factor to product and price information.  More succinctly, the 

model predicts that 

 E LF[ ] =
E Sales[ ]
Capacity

= F !
"

,#
+

,n
+

,k
+

,c
+

,$
+

,!#
+

,n#
+%

&
'
( .  (5) 

3.4 Robustness 

The theoretical model is quite stylized and includes several potential restrictive 

assumptions.  First, we considered a model in which capacity and prices were set ex ante 
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before firms learned demand.  Ex post pricing is more realistic in many contexts, but in the 

airline industry where many tickets are purchased in advance, we think ex ante pricing is 

more realistic.  Most importantly, all of our theoretical predictions also hold in a model with 

ex post pricing.  The important assumption is that firms set capacity before they know 

demand. 

Another strong assumption is that uninformed consumers choose to search at their 

preferred departure time. In a more realistic model in which consumers searched optimally, 

a few consumers with very low waiting costs would choose to search first at their non-

preferred departure time.  However, all of our theoretical predictions also hold in a model 

with optimal search. 

Another limitation was that we looked only at the monopoly and competitive models 

and did not actually analyze an oligopoly model. Our comparison of the monopoly model 

and the competitive model reveals firms with greater market power have lower load 

factors, but we did not consider an oligopoly model because in this simple model with just 

two discrete demand states, firms’ equilibrium strategies would have been mixed.6   

We also chose to focus exclusively on uncertainty about departure time 

preferences and ignored uncertainty about the level of demand.  A more general model 

that included uncertainty about the level of demand would also predict that the expected 

load factor was increasing in the elasticity of demand; firms facing relatively fewer price 

inelastic customers make relatively fewer speculative investments in capacity. 

In addition, the model ignores asymmetries across firms.  In an oligopoly model 

with heterogeneous costs or product differentiation, firms will have different equilibrium 

market shares.  While asymmetries could affect load factors in several ways, an important 

one is that firms with competitive advantages will draw a larger share of the market and face 

a less volatile demand then firms with smaller shares (we discuss the relationship between 

volatility and volume further in the estimation section below).  

Finally, the model does not capture some other important sources of variation in the 

airline industry that affect equilibrium capacity utilization. For example, the hub and spoke 

system is likely to increase load factors. By increasing density on its spokes, airlines are able to 
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increase frequency and take advantage of size to reduce the demand uncertainty. Other complex 

network scheduling decisions will also impact an airline’s capacity utilization. For example, an 

airline may schedule one of its larger planes to fly late in the evening (typically off-peak), so 

that it is available at its hub in the morning (typically peak).  

3.5 Welfare 

Note that social welfare increases as α increases. First, for many consumers using 

the Internet is a lower cost way to search, so holding the amount of information gather fixed, 

consumers have lower search costs. Second, an increase in α leads to increases in consumer 

surplus by allowing consumers to choose among a greater variety of prices and products.  And 

third, an increase in !  leads to an increase in consumer switching, reduces the ex post peak 

demand, and reduces the capacity that airlines need to offer to meet demand.7 

In the competitive model, profits are zero so the increase in social welfare is equal to 

the increase in consumer surplus. For every additional consumer who switches, costs fall by 

2k. These switching consumers also bear a waiting cost, w, because they switch to their non-

preferred departure time. However since they switch voluntarily, it follows that w < k. So 

consumer surplus (and social welfare) increases by 2k − E[w|w < k] > k per switcher. 

When w is uniformly distributed on 0,w[ ]  for w > k , this implies that the social welfare 

gain from an increase in consumer information is ¾’s of the cost savings and regardless of 

the distribution is at least ½ of the cost savings.  

In some respects, our theoretical model may overstate the welfare gains from 

increased consumer information. First, if prices are set ex post, after firms learned demand, 

then in the competitive model the increase in consumer surplus is 2k − E[w|w < 2k] per 

consumer, which is strictly positive but nevertheless smaller than 2k − E[w|w < k]. 

When w is uniformly distributed on 0,w[ ]  for w > k , this implies that the social welfare 

gain from only ½ of the cost savings, but across all distributions there exists no theoretical 

lower bound on the welfare gain.  

                                                                                                                                                                                     
6 A more general model with a continuum of demand states and a pure-strategy equilibrium is beyond the 
scope of this paper (see Dana, 1999b). 
7 Another potential cost of an increase in consumer information is greater passenger congestion, however it 
may also lower airport congestion and improve on-time performance.  
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Second, some of the increase in capacity utilization could come from consumers with 

low valuations as opposed to low waiting costs.  Still, when prices are set ex ante, revealed 

preference implies the social welfare gain is at least k per new consumer. 

However, in other respects our model clearly understates the welfare gains from 

increased consumer information.  Most importantly, we do not include the direct effect on 

consumers lower search costs.   

Also, the Internet may have significantly lowered the costs in the airline industry. 

Clearly ticketing and distribution costs have fallen as online ticketing has eliminated travel 

agents and travel agency fees and even reduced costs relative to telephone reservation 

systems. This social welfare benefit is neither included in our stylized model nor measured 

in our empirical analysis. 

4. Data 

We use multiple data sources. First, we use the T100 (Form 41) database from the 

Bureau of Transportation Statistics. This dataset reports the monthly capacity and 

passenger traffic by airline, by directional airline-airport-pair segment, or leg, and by 

aircraft type, for all domestic passenger flights in the US. A directional airline airport-pair 

segment includes all the flights that travel nonstop from one airport to the other (a single 

take-off and landing). The capacity and passenger traffic data in the T100 database are used 

to calculate the average load factor for each airline on each directional airport-pair segment.8 

We also use the T100 data to obtain travel distance for each airport-pair segment and to 

obtain an historical measure of segment size. 

Our second data source is the Computer Use and Ownership Supplement to the 

Consumer Population Survey (CPS).  We use the CPS to measure Internet penetration for 

every major metropolitan area. The survey asks about Internet access at home, school, and 

business. For each metropolitan area we compute the fraction of respondents answering yes to 

any of these Internet access questions using sample weights provided by the CPS. The data 

are available for the years 1997, 1998, 2000, 2001, and 2003, and we interpolate the penetration 

for years 1999 and 2002. Table 1 provides descriptive statistics for this variable. 

                                                             
8 Load factor is commonly defined as revenue passenger miles divided by available seat miles.  On a single 
segment this is equivalent to revenue passengers divided by available seats, so we ignore the distinction. 
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Our third data source is the Origin and Destination Survey (DB1B) market database. 

This is a 10% sample of all passenger tickets purchased in each quarter for each year in our 

sample (1997 to 2003) and includes the airline, the quarter in which the ticket was used, the 

fare, the number of passengers paying the fare, the origin and destination airports (for the 

passenger), and the itinerary (the individual flight segments flown). The DB1B market 

database includes two entries for each roundtrip ticket and one entry for each one-way 

ticket. Importantly, the DB1B database identifies which entries are the outbound and return 

portions of round-trip tickets, so we know which airport is the passenger’s home airport 

(and therefore the associated metropolitan area in which he or she is likely to have 

purchased his or her ticket). However, before 1999, Southwest Airlines reports all of its 

roundtrip ticket sales as two one-way tickets, so we cannot identify the home airport for 

these Southwest passengers in the DB1B database. 

For simplicity we restrict the DB1B database to customer itineraries with at most 

one stop on each directional market. We also drop itineraries on which the carrier on any 

segment was unknown, itineraries with “top-coded” fares, and itineraries with fares below 

$25 in 2000 dollars. We also dropped itineraries with a total travel distance less than 50 miles.  

These restrictions allow us to limit our analysis to economically significant markets and 

avoid introducing noise or bias associated with data entry errors. 

We use the DB1B dataset for several purposes. First, we use the DB1B dataset to 

calculate the metropolitan-area traffic weights used to match our metropolitan area data, in 

particular Internet penetration, to our segment data. Simply matching the segment data to the 

metropolitan area in which the flights’ origination airport is located is inadequate. First, 

many passengers are returning home on the return portion of a round-trip ticket, so these 

passengers are just as likely to have purchased their ticket in the metropolitan area in which 

the flight’s destination airport is located. Still other passengers are on the second leg of their 

outbound itinerary (or the first leg of their return itinerary) so the airport at which these 

passenger began their round-trip travel is neither the airplane’s origination nor destination 

airport. The distinction is important because our hypothesis is that the Internet penetration in 

the metropolitan area where passengers live and purchase their tickets affects load factors, not 

the Internet penetration in the metropolitan area in which the plane originates its flight. 
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The metropolitan-area traffic weights constructed from the DB1B database are equal 

to fraction of each airline’s passengers flying on each segment that originate their one-way 

or round trip itinerary in each metropolitan area. We use the DB1B database to find all of 

the passengers with itineraries that include the particular airline airport-pair segment and 

then calculate the fraction of these consumers whose itineraries originated at each airport.  A 

metropolitan-area traffic weight is the sum of the airport weights across all airports located 

in the metropolitan area.  Finally we compute the traffic-weighted average of the 

metropolitan area Internet penetration to obtain a measure of Internet penetration that is 

unique to each airline airport-pair segment.9 

Second, we use the DB1B dataset to calculate airlines’ market shares.  As is standard 

in the literature, our market definition is a directional origin-and-destination market, which 

includes all passenger travel from the origin airport to the destination airport, including non-

stop flights (a single segment or leg) and connecting flights (two segments or legs).  The 

distinction between market structure within a segment and market structure within an origin-

and-destination market is important because clearly an airline can be the only carrier flying on 

the A-to-B and B-to-C segments yet face a great deal of competition in the A-to-C market. 

Specifically we calculate each airline’s share of each origin-and-destination market as its share 

of the total traffic, including all one-way itineraries from the origin airport to the destination 

airport, the outbound potion of all round-trip itineraries from the origin airport to the 

destination airport, and the inbound portion of all round-trip itineraries from the destination 

airport to the origin airport. We use these market shares to construct definitions of market 

structure (dummy variables for monopoly, duopoly, and competition) for each origin-and-

destination market. 

                                                             
9 For example, consider a flight from airport A to airport B. Assume that 40 percent of the passengers are 
flying round trip from A to B, so they are on the outbound portion of their round-trip itinerary; another 35 
percent of the passengers are flying round trip from B to A, so they are on the return portion of their round-
trip itinerary; another 15 percent of the passengers are flying round trip from airport C to airport B with a 
stop each way in airport A, so they are on the second segment of the outbound portion of their round-trip 
itinerary; and finally, the remaining 10 percent are flying round trip from airport A to airport D with a stop 
each way in airport B, so they are on the first segment of the outbound portion of their round-trip itinerary. 
Then the weighted average Internet penetration for passengers on this particular airline’s flight from airport 
A to airport B is equal to (0.40 + 0.10) IPA + 0.35 IPB + 0.15 IPC, where IPi denotes the Internet penetration 
in the metropolitan area in which airport i is located. 
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Third, we use the DB1B dataset to construct the origin-and-destination-market traffic 

weights we use to match the origin-and-destination-market definitions of markets structure to 

our segment data.  Specifically we consider every passenger flying on a particular directional-

airline-airport-pair segment and calculate the share of those passengers that are customers in 

each possible origin-and-destination market. 

Fourth, we calculate the average fare paid for each directional airline airport-pair 

segment. To do this, we first allocate the fare paid for each consumer’s itinerary among the 

itinerary’s segments in proportion to the distance flown and then average these fares across 

passengers who flew on that directional-airline-airport-pair segment. Note that because the 

fare is allocated in proportion to the distance flown, this is an imperfect measure of the 

incremental cost to a consumer of flying on the segment. 

And finally, we use the DB1B dataset to calculate some airline characteristics. For 

each directional-airline segment we calculate the fraction of the passengers whose itinerary is 

non-stop and the total number of the airline’s itineraries that include the segment. And for 

each airline at each airport we calculate the number of other airports served with non-stop 

flights by that airline from that airport and the fraction of the airline’s itineraries that are direct. 

Another data source is the Bureau of Economic Analysis for metropolitan area 

demographic and economic data used as controls for expected and unexpected demand 

changes that may be spuriously correlated with Internet penetration. We use the traffic weights 

described above to match this data to the directional-airline segments. We also obtained 

wholesale jet fuel monthly price series from the US Department of Energy.   

After matching these datasets, we further limit our sample to traffic on the 20 largest 

airlines and between the 75 largest airports in the US. These 20 airlines are listed in Table 2. 

Note again, that Southwest Airlines was excluded because of the reporting issues noted 

above. We also removed the 3rd and 4th quarters of 2001 from our sample because of the 

events on 9/11/2001, which severely disrupted airline service in the 3rd and 4th quarters of 

2001. This leaves us with 85568 quarterly observations. Table 3 lists descriptive statistics 

for each of the variables we use in our analysis. 
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5. Estimation 

To test the theory empirically, we estimate a log-log version of equation (5), where 

the level of observation is airline i on segment j in quarter t,   
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This is a reduced-form regression of airline, airport-pair capacity utilization (LF) on traffic-

weighted measures of metropolitan area Internet penetration (IP) and market structure (MS); 

on demand ( XD ) and cost ( XC ) controls; on interactions between Internet penetration and 

market structure ( IP !MS ); and between Internet penetration and segment size ( IP ! S ); 

and on airline-segment (! jt ) and airline-quarter (!
it

) fixed effects.  

We use a log-log specification because we believe that the impact of an increase in 

Internet penetration is greatest when the level of Internet penetration is small. That is, the 

early adopters of the Internet are more likely to be air travelers than the late adopters. 

Also, throughout our analysis, we weight our observations by the number of 

available seats. While our unit of observation is an airline, directional, airport-pair quarter, 

the economic unit of observation that is of interest is a seat. Particularly because our goal is 

to make welfare calculations, we need to put more weight on airport-pairs with more flights 

and more available seats.  

The dependent variable in our analysis is the logarithm of the quarterly, airline, 

directional, airport-pair load factor. This is a measure of the average realized capacity 

utilization as opposed to the expected capacity utilization.  Because of this difference, we are 

introducing additional noise that is correlated with unexpected short-run demand 

fluctuations.  For this reason our regression includes controls for unexpected changes in 

demand as well as changes in expected demand.  Failure to control for unexpected demand 

could bias our estimates if other independent variables are correlated with unexpected 

demand. 

The main independent variable is the measure of Internet penetration, which, as 

discussed above, is specific to each directional airport-pair segment and each quarter 

(although the measure of metropolitan area Internet penetration changes annually and is the 
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same across airports in the same metropolitan area, the traffic weights vary by airport and 

change quarterly). That is, 

 IPijt = ! ijktIk
m
IPmt

k

" , 

where ! ijkt  is the share of all passengers that fly on airline i’s flight serving segment j in 

quarter t who began the travel itinerary in airport k, IP
mt

 is the internet penetration in 

metropolitan area m, and I
k

m  is an indicator that is equal to 1 if airport k is located in 

metropolitan area m and is equal to 0 otherwise.  

 The market size and demand controls are metropolitan area population, metropolitan 

area employment as a percentage of population, and average per capita income.  Each of 

these measures is matched to the segment data using the same weights as used above to 

match Internet penetration to the segment data. These variables are included to control for 

both short and long run variations in demand growth across airline-segments and hence are 

constructed from the MSA data in the same way as Internet penetration. 

Our main controls for cost shocks are the airline-quarter fixed effects, since we 

expect most cost changes to be common across segments, but we also include the product of 

fuel costs and segment length and measures of scale and scope at the origin and destination 

airport. The latter include the number of other airports served with non-stop flights by that 

airline from both the origin and destination airport, the fraction of the airline’s passengers on 

the segment who are transferring at one of the airline’s hubs, and the fraction of the airline’s 

total passengers departing the origin (and destination) airport whose itineraries are non-stop.  

Note that these variables control for product characteristics as well as costs and hence may 

influence load factor either through their impact on costs or demand. 

Another important set of independent variables is market structure and the 

interaction between market structure and Internet penetration. As we discussed above 

market power is more accurately measured at the origin-and-destination market level rather 

than the segment level; therefore, we construct traffic-weighted measures of market 

structure for each airline, airport-pair segment. Our measures of market structure are the 

fraction of passengers that are traveling in a monopoly origin-and-destination market, the 

fraction of passengers are traveling in a duopoly origin-and-destination market, and the 
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fraction of passengers that are traveling in a competitive origin-and-destination market. More 

formally, the fraction of passengers traveling in a monopoly market is 

 M
ijt
= !

ijrt
M

rt

r

" , 

where ! ijlt  is the share of all passengers traveling on segment j on a flight offered by airline 

i in quarter t whose directional-origin-and-destination itinerary is part of market r; and Mrt is 

a dummy variable equal to one if market r is a monopoly market in quarter t. A monopoly 

market is defined as a market in which the largest firm’s market share (share of 

passengers) exceeds 90%. The market structure variables Dijt and Cijt are similarly defined, 

where a duopoly market is a non-monopoly market in which either the two largest firms’ 

combined market shares exceeds 90% or the two largest firms’ combined market shares 

exceeds 80% and the third largest firm’s share is less than 10%; and a competitive market 

is every market which is neither a monopoly market nor a duopoly market. Note that our 

segment-level market structure variables are airline specific because the weights are 

airline specific, even though the underlying market-level market structure variables are not 

airline specific. 

The expected volatility of demand is an important determinant of load factors that 

we do not directly observe. However, one important measurable source of variation in 

demand volatility is segment size, which we exploit when we explore whether the impact of 

Internet penetration varies with segment size. If the aggregate demand distribution is the sum 

of independent binomial decisions, then the aggregate demand will be approximately 

normally distributed with a mean proportional to the number of consumers and a standard 

deviation proportional to the square root of the number of consumers.  Because 

contemporaneous measures of size are endogenous, we use an historical measure of size. 

Our measure of segment size is a proxy variable equal to average traffic in the same quarter 

of the 1994 calendar year. Of course, the impact of segment size is not identified because we 

also include airline-segment fixed effects; however, the interaction between Internet 

penetration and segment size is identified.  

Since we have limited data on costs, the volatility of demand, the elasticity of 

demand with respect to price, and the elasticity of departure time preference with respect to 
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the price differential, we control for these omitted exogenous variables with directional 

airline-segment and airline-quarter fixed effects. The airline-segment fixed effects control 

for non time-varying airline, metropolitan area, airport, and airport-pair segment 

characteristics, as well as airline-airport characteristics such as the presence of a hub or local 

brand loyalty. The airline-quarter fixed effects control for time-varying airline-specific 

characteristics, such as brand loyalty, contract driven costs (such as labor, fuel, and aircraft 

maintenance), and capacity (such as differences in capacity planning that lead to variation in 

the shadow cost of capacity).  

Some sources of unobserved variation are not adequately controlled for with our 

fixed effects.  The most important of these are probably segment-specific changes in 

characteristics of demand, including the level, volatility, and composition of market 

demand. Other important sources of unobserved variation are changes in the degree of firm 

rivalry and the threat of entry. 

5.1 Instruments 

Several of our independent variables, including market structure, airline’s segment 

share, average segment fare, as well as interactions between market structure variables and 

Internet penetration, are all potentially endogenous. In this subsection we discuss the 

instruments that we used in our regression analysis.10  

The instruments we chose for these potentially endogenous variables are largely 

based on the discrete choice literature (see, for instance, Berry, Levinsohn and Pakes, 1995, 

or Bresnahan, Stern and Trajtenberg, 1997) and literature on the airline industry (see 

Borenstein, 1989, and Peters, 2006).  Specifically, we use instruments for market structure 

that are broader measures of market size and competitiveness, including the average 

population of the origin and destination cities across all itineraries that include the segment, 

and the number of carriers who serve the segment; and characteristics of the airline’s rivals’ 

networks that affect demand, including the average fraction of rivals’ passengers who are 

flying in monopoly, duopoly, and competitive directional-origin-and-destination markets, 

                                                             
10 The weights that we use to match metropolitan area Internet penetration (and other metropolitan area 
variables) to the segment level observations are also potentially endogenous. While we don’t know how to 
directly control for endogenous weights, we repeated our analysis using weights that are fixed over time at 
their average levels and we obtained very similar results. 
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the average fraction of the airline’s rivals’ passengers that are flying nonstop, and the 

average of the airline’s rivals’ total itineraries that include the segment. 

Our instruments for average segment fare are the average segment fare on all other 

segments of a similar length (we divide segments by length into five quintiles), and the 

airline’s rivals’ average fare on the reverse segment. 

5.2 Results 

In our first set of regressions in Table 4 we ignore the issue of endogeneity and 

concentrate on qualitative relationship between the variables.   All of our regressions include 

airline-quarter and airline-segment fixed effects. The regression in Column 1 includes only 

Internet penetration and finds a large and statistically significant effect of Internet 

penetration on load factors. The coefficient of 0.08 implies that each percentage point 

increase in Internet penetration increases load factors by 0.08%. 

In Column 2 we introduce our basic controls for expected and unexpected demand, 

and for capacity costs. This is a long run, reduced-form regression and measures the long-

run equilibrium impact of the Internet under the assumption that market structure, capacity, 

and prices are all exogenous. The coefficients of our controls are consistent with our 

predictions.  Higher fuel costs increase the cost per available seat and increase load factors 

and demand shocks have a positive effect on load factors.11 

When we include our controls, the coefficient on Internet penetration is 0.107, which 

is even larger then in Column 1. Recall that our dependent variable is realized load factor 

and not expected load factor, so a potential source of bias in our regression is positive 

correlation between unobserved, unanticipated demand and Internet penetration.  This is 

because unanticipated demand shocks are clearly correlated with average quarterly load 

factors. And this is one reason why we include traffic-weighted population at the 

passengers’ origin city and traffic-weighted average income as controls for unanticipated 

demand. However, we find that including these controls actually increases the coefficient on 

Internet penetration, which suggests that the coefficient on Internet penetration is probably 

                                                             
11 Variation in household income is likely to be inversely correlated with the elasticity of consumers’ 
departure time preferences, and negatively correlated with load factor but we think most of this variation is 
constant over time and being captured by the fixed effects. 
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not being significantly biased by our failure to control more completely for unanticipated 

demand shocks. 

In Column 3 we estimate a medium run, reduced-form regression including the 

fraction of passengers on a segment whose travel is in monopoly and duopoly markets as 

additional controls. While market structure is endogenous, it is likely that much of the 

variation in market structure over time will be driven by the financial conditions of the 

airlines and by demand changes in other markets. As predicted by the theory, we find that 

load factors are lower on segments that serve more concentrated markets. A segment that 

serves passengers flying in monopoly markets is estimated to have a 7.4% lower load factor 

than a segment that serves passengers flying in competitive markets, and a segment that 

serves passengers flying in duopoly markets is estimated to have a 3.0% lower load factor 

than a segment that serves passengers flying in competitive markets. Both of these 

differences are statistically significant. Intuitively, firms with greater market power have 

higher margins and therefore greater incentive to hold speculative capacity. 

In Column 4 we include Internet penetration interacted with the fraction of 

passengers on a segment whose travel is in monopoly and duopoly markets. In these 

regressions the coefficient on Internet penetration represents the impact of Internet 

penetration in competitive markets. The coefficients on the interaction terms are all 

statistically significant and also statistically different. The impact of Internet penetration 

increases with competition as predicted by the model; the effect of Internet penetration is 

largest on segments on which all of the passengers are traveling in competitive directional-

origin-and-destination markets, followed by segments on which all of the passengers are 

traveling in duopoly directional-origin-and-destination markets, and then followed by 

segments on which all of the passengers are traveling in monopoly directional-origin-and-

destination markets.  Again, the differences in the effects across different market structure are 

statistically significant. Intuitively, changes in Internet penetration have a greater impact on 

load factors in more competitive markets because firms with market power offer fewer 

incentives to consumers to switch departure times (they wish to avoid cutting prices to non-

switchers in order to induce switching) so an increase in informed consumers leads to less 

switching. 
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As discussed earlier, our only measure of market volatility is historical segment size. 

Nevertheless, since the theory predicts that the impact of Internet penetration on load factors 

is higher in more volatile markets, we can exploit the time series and cross-sectional 

variation in Internet penetration to estimate the coefficients on the interaction between 

Internet penetration and the square root of market size.  In Column 5, we include the square 

root of segment size times the log of Internet penetration as an additional dependent 

variable. Consistent with our theoretical model, the coefficient on this interaction is positive 

and statistically significant. That is, the impact of Internet penetration is larger in lower 

volume segments. 

In Table 5 we estimate the last three regressions from Table 4, but this time using 

our instruments for the market structure variables. The instrumental variables estimation has 

little effect on our estimate of the impact of the Internet.  The coefficient in the regressions 

without the market structure interactions is unchanged, equal to 0.106, and in the regressions 

with the market structure interactions it falls slightly from 0.121 to 0.119.  Note though that 

the coefficients on market structure are somewhat larger in the instrumental variables 

regressions while the coefficients on the interactions between market structure and Internet 

penetration are somewhat smaller. 

5.2 Average Fare and Segment Share 

In Table 6, we include two additional controls that are not part of our theoretical 

analysis: average fare and segment share. While these variables are endogenous, they are 

correlated with important unobserved segment characteristics.  Average fare is inversely 

correlated with unobserved heterogeneity in demand elasticity and unobserved 

heterogeneity in firm rivalry, while segment share is correlated with differences in firm size 

and unobserved differences in cost and demand between airlines. 

We find that higher fares lead to lower load factors, which is consistent with the 

intuition that holding costs fixed, airlines with higher fares are more willing to hold 

speculative capacity. While the biggest source of variation in fare levels is likely to be costs, 

these results are not surprising since we control for costs with airline-segment fixed effects, 

so the remaining variation in fares over time is likely to be because of segment-specific 
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changes in the elasticity of demand, in the intensity of firm rivalry, or in the threat of entry 

rather than segment-specific changes in cost. 

Controlling for average fare also helps us better understand the mechanism by 

which Internet penetration is affecting load factors.  Our theory is that giving consumers 

additional information increases their consumption of flights at ex post off-peak departures 

times, which in turn increases capacity utilization.  However a plausible alternative is that 

price information increases price competition, which in turn reduces the incentives for 

airlines to invest in capacity.   

The regression results in Table 6 suggest that both explanations are true.  In 

Column 1, adding average fare as a control variable reduces the coefficient on the Internet 

variable from .107 to .075. That is, holding fare fixed, Internet penetration has a positive and 

significant effect on load factors. So the Internet appears to be diverting traffic holding 

average fare fixed.  However the total impact of the Internet is much larger, suggesting that 

the increases in Internet penetration also lead to higher load factors through increased price 

competition.  However, it is also possible that average fare falls when Internet penetration 

rises because average costs are falling and not because increased price competition.   

In Column 2, we find that load factors are higher for firms with a larger segment 

share within each segment. While our model ignored differences between firms, the data 

suggests these differences are very important.  This is consistent with our intuition about the 

impact of segment size; firms with larger segment share may face less volatile demand and 

find it easier to match capacity to demand.  That is, it is easier to match the number of planes 

to the number of passengers when a firm has more passengers. On the other hand, firms with 

a larger segment share may also have a superior product or lower costs.  However, a firm 

with lower costs, or a superior product, is likely to have higher margins and lower load 

factors, which is inconsistent with our estimates.  However, clearly much more work can be 

done to better understand the role of firm asymmetries in predicting capacity utilization. 

In Columns 3 and 4, we introduce both the average fare on a segment and our 

market structure variables. The results do not change substantially from previous 

specifications. While these variables are all endogenous, they are likely to be correlated with 

other unobserved exogenous variables. The fact that our estimate of the impact of Internet 
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penetration is robust to the inclusion of these endogenous variables makes us more confident that 

our results are not a consequence of correlation between Internet use and other unobserved 

market characteristics.  

Finally, in Column 5 we estimate a regression with the average fare on a segment 

and our market structure variables using our full set instruments for market structure and 

fare and find qualitative similar results. Not surprisingly, the coefficient on average fare is 

significantly larger. 

6. Conclusion 

In all of our regressions analysis, we find that Internet penetration has a positive and 

statistically significant effect on load factors. Using the results in Column 2 of Table 4, the 

elasticity of Internet penetration on load factor is 0.107. That is, each percentage point increase 

in Internet penetration increases load factors by .107%, and a doubling in Internet 

penetration increases load factors by 7.7% (i.e., 2.107 − 1). From a starting point of 69%, this 

implies load factors would increase to 74.3%. In our sample period, Internet access more 

than doubled in many cities while load factors have increased from about 69% to 73%. So 

the increase in Internet penetration appears to explain all of the increase in airlines’ load 

factors during our sample period.  

Total US airline industry passenger flying operations and maintenance costs were 

$40 billion in 2000, so an increase of 7.7% in load factor represents approximately a 7.7% 

decrease in these costs, or over $3 billion in cost savings every year. 

The Internet has made it easier for consumers to become informed about alternatives 

to their preferred time of departure, carrier, or destination. A customer buying a ticket on an 

airline’s web site, such as United.com, or on a third party web site, such as Expedia.com, 

selects their itinerary from a much larger set of options than those that are available to a 

customer making a reservation on the telephone, and probably also a much larger set of 

options than those that are available to a customer making a reservation through a travel 

agent. The increase in consumers’ information has helped airlines to reduce their capacity 

costs, and airlines appear to be well aware of this. On United Airlines’ web site even after 

choosing their itinerary from the wide selection available, a customer is shown yet another 

set of lower fare options before making their final purchase decision. Undoubtedly United 
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Airlines is able to capture some of the surplus created when it induces consumers to switch 

flights, so it is interesting to note that it is United, not Expedia, which offers this feature.  

Because consumers are more informed, consumers are more likely to take advantage 

of inducements to fly at off-peak times, particularly in more competitive markets, in which 

firms are more likely to offer incentives for switching because the efficiency gains are more 

likely to outweigh the lost rents from passengers who choose to fly off-peak without 

incentives. Similarly, Internet penetration has a larger effect on smaller segments, in which 

firms are more likely to offer incentives for switching because they have a more difficult 

time forecasting demand.  Consistent with this theoretical prediction, we find that 

differences in Internet penetration across time and metropolitan areas are positively 

correlated with differences in load factors, and that the magnitude of the relationship 

between Internet penetration and load factor is greater in segments that serve more 

competitive markets and greater in segments that have less traffic historically. 

While increases in Internet access have lead to increases in airlines’ load factors and a 

decrease in airlines’ costs of over $3 billion each year, we believe that much of this cost 

savings has been passed on to consumers through lower prices. This is consistent with the 

fact that airlines did not see dramatic increases in profits during this period. It is also 

consistent with the empirical literature, which has found that the Internet has significantly 

reduced average airline prices. However, whether or not the cost savings is passed on to 

consumers, we argue that half or more of this costs savings represents an increase in social 

welfare. 
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Table 1. Internet Penetration across Metropolitan Statistical Areas (N=243) 
 

Year Mean Std. Dev. Min Max 
     

1997 0.194 0.074 0.043 0.489 
1998 0.413 0.114 0.103 0.699 
1999 0.482 0.098 0.210 0.764 
2000 0.551 0.106 0.218 0.829 
2001 0.652 0.103 0.222 0.911 
2002 0.672 0.091 0.277 0.892 
2003 0.692 0.099 0.332 0.913 

     
Source: Computer Use and Ownership Supplement to the Consumer Population Survey. 
Note:     Data for 1999 and 2002 are interpolated. 
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Table 2. Differences Across Airlines 
 

 
 

Average  
Segment Fare 

Average 
Load Factor 

Average  
Segment Share 

    
Air Wisconsin Airlines 182.78 0.681 0.442 
AirTran 90.51 0.675 0.262 
Alaska Airlines 129.81 0.677 0.629 
America West 111.61 0.689 0.492 
American Airlines 183.60 0.692 0.625 
American Eagle 161.34 0.646 0.444 
ATA Airlines 124.44 0.727 0.752 
Atlantic Southeast Airlines 163.57 0.677 0.168 
Comair 152.40 0.665 0.516 
Continental Airlines 178.67 0.713 0.789 
Delta Airlines 148.24 0.702 0.725 
Frontier Airlines 132.94 0.613 0.214 
JetBlue 120.74 0.823 0.738 
Mesaba Airlines 194.40 0.569 0.309 
Northwest 167.98 0.692 0.822 
Spirit Airlines 113.94 0.767 0.263 
Trans World Airlines 139.73 0.683 0.760 
United Airlines 185.01 0.702 0.633 
US Airways 151.22 0.670 0.835 
    

Notes:   Each cell contains (weighted by number of seats) average values over each airline’s 
directional segments in the sample over 18 quarters. Fares are in 2000 dollars. 
Airlines’ segment shares are defined as their share of the total number of paying 
passengers on the segment. 
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Table 3. Descriptive Statistics (85568 observations) 
 

Variable Mean Std. Dev. Min Max 

     
LOAD FACTOR 0.674 0.161 0.003 1.000 
INTERNET 0.536 0.170 0.053 0.854 
     
Demand Variables:     
EMPLOYMENT (%) 0.605 0.037 0.373 0.775 
LOG (INCOME PER CAPITA) 10.385 0.100 9.528 10.897 
LOG (POPULATION) 15.090 0.647 11.454 16.744 
     
Cost Variables:     
FUEL * DISTANCE 65.287 50.738 2.315 512.419 
LOG (# CITIES NON-STOP, ORIGIN) 39.122 32.658 1.000 140.000 
LOG (# CITIES NON-STOP, DEST) 38.898 32.544 1.000 140.000 
% PASS TRANSFER AT HUB 0.359 0.318 0.000 1.000 
% DIRECT ITINERARIES, ORIGIN 0.115 0.096 0.006 1.000 
% DIRECT ITINERARIES, DEST 0.116 0.096 0.006 1.000 
     
Market Structure Variables:     
% PASS. IN MONOP. MARKETS 0.077 0.163 0.000 1.000 
% PASS. IN DUOP. MARKETS 0.443 0.323 0.000 1.000 
% PASS. IN COMP. MARKETS 0.480 0.327 0.000 1.000 
     
Additional Variables:     
SEGMENT SIZE 99641.880 96991.930 30.000 739529.000 
SEGMENT FARE ($) 164.203 79.532 3.714 1718.000 
SEGMENT SHARE 0.585 0.369 0.000 1.000 
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Table 4. OLS Regression Results 
 

Dependent Variable: LOG (Load Factor) 
       
 (1) (2) (3) (4) (5)  

LOG (INTERNET) .080*** .107*** .106*** .121*** .128***  
 (.018) (.021) (.021) (.021) (.023)  
EMPLOYMENT (%)  .414** .435** .492*** .446**  
  (.178) (.178) (.175) (.184)  
LOG (INCOME PER CAPITA)  .589*** .570*** .563*** .575***  
  (.064) (.063) (.062) (.068)  
LOG (POPULATION)  .006 .008 .011 .009  
  (.014) (.014) (.014) (.015)  
FUEL * DISTANCE  .026*** .027*** .020*** .024***  
  (.007) (.007) (.007) (.007)  
LOG (# CITIES NON-STOP, ORIGIN)  .027*** .028*** .028*** .026***  
  (.006) (.006) (.006) (.006)  
LOG (# CITIES NON-STOP, DEST)  .023*** .024*** .023*** .021***  
  (.005) (.005) (.005) (.005)  
% PASS TRANSFER AT HUB  .019 .008 .009 .003  
  (.027) (.028) (.028) (.029)  
% DIRECT ITINERARIES, ORIGIN  -.084 -.093* -.087* -.07  
  (.052) (.051) (.051) (.053)  
% DIRECT ITINERARIES, DEST  -.067 -.076 -.070 -.047  
  (.047) (.046) (.046) (.048)  
% PASS. IN MONOP. MKTS.   -.040*** -.093*** -.041***  
   (.010) (.014) (.010)  
% PASS. IN DUOP. MKTS.   -.024*** -.043*** -.025***  
   (.005) (.007) (.005)  
LOG (INTERNET) * % PASS. IN MONOP. MKTS.    -.074***   
    (.014)   
LOG (INTERNET) * % PASS. IN DUOP. MKTS.    -.030***   
    (.007)   
LOG (INTERNET) * SQRT (SEGMENT SIZE)     -.034**  
     (.017)  
Observations 85568 85568 85568 85568 78870  
       

Notes: Standard errors are in parentheses. Stars denote the significance level of coefficients: *** - 1 
percent, ** - 5 percent, * - 10 percent. All reported regressions include airline-segment and 
airline-quarter fixed effects. The regression in column (5) contains fewer observations than the 
other regressions because segment size is not defined for all segments. 
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Table 5. IV Regression Results 
 

Dependent Variable: LOG (Load Factor) 
    
 (1) (2) (3) 

LOG (INTERNET) .106*** .119*** .128*** 
 (.021) (.021) (.023) 
EMPLOYMENT (%) .414** .456*** .425** 
 (.178) (.177) (.184) 
LOG (INCOME PER CAPITA) .576*** .572*** .580*** 
 (.063) (.062) (.067) 
LOG (POPULATION) .007 .009 .007 
 (.014) (.014) (.015) 
FUEL * DISTANCE .028*** .023*** .025*** 
 (.007) (.007) (.007) 
LOG (# CITIES NON-STOP, ORIGIN) .028*** .028*** .026*** 
 (.006) (.006) (.006) 
LOG (# CITIES NON-STOP, DEST) .024*** .024*** .021*** 
 (.005) (.005) (.005) 
% PASS TRANSFER AT HUB .009 .01 .004 
 (.028) (.028) (.029) 
% DIRECT ITINERARIES, ORIGIN -.097* -.092* -.076 
 (.051) (.051) (.053) 
% DIRECT ITINERARIES, DEST -.080* -.075 -.051 
 (.046) (.046) (.048) 
% PASS. IN MONOP. MARKETS -.074*** -.104*** -.077*** 
 (.018) (.024) (.018) 
% PASS. IN DUOP. MARKETS -.015*** -.033*** -.017*** 
 (.006) (.009) (.006) 
LOG (INTERNET) * % PASS. IN MONOP. MARKETS  -.042*  
  (.022)  
LOG (INTERNET) * % PASS. IN DUOP. MARKETS  -.027***  
  (.009)  
LOG (INTERNET) * SQRT (SEGMENT SIZE)   -.034** 
   (.017) 
Observations 85568 85568 78870 
    
Notes: Standard errors are in parentheses. Stars denote the significance level of coefficients: *** - 1 

percent, ** - 5 percent, * - 10 percent. All reported regressions include airline-segment and 
airline-quarter fixed effects. The regression in column (3) contains fewer observations than the 
other regressions because segment size is not defined for all segments. 
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Table 6. Additional Regression Results 
 

 
Dependent Variable: LOG (Load Factor) 

 OLS IV 
 (1) (2) (3) (4) (5) 

LOG (INTERNET) .075*** .104*** .072*** .086*** .070*** 
 (.018) (.021) (.018) (.019) (.020) 
EMPLOYMENT (%) .384** .416** .378** .427** .396** 
 (.174) (.177) (.172) (.169) (.173) 
LOG (INCOME PER CAPITA) .677*** .563*** .659*** .652*** .701*** 
 (.063) (.064) (.063) (.063) (.066) 
LOG (POPULATION) -.005 .009 -.003 .000 -.007 
 (.015) (.014) (.015) (.015) (.016) 
FUEL * DISTANCE .007 .024*** .003 -.002 -.009 
 (.006) (.007) (.006) (.006) (.007) 
LOG (# CITIES NON-STOP, ORIGIN) .027*** .024*** .022*** .022*** .023*** 
 (.006) (.005) (.005) (.005) (.005) 
LOG (# CITIES NON-STOP, DEST) .021*** .020*** .017*** .016*** .016*** 
 (.005) (.005) (.005) (.005) (.005) 
% PASS TRANSFER AT HUB .029 -.003 .010 .011 .020 
 (.023) (.027) (.022) (.022) (.021) 
% DIRECT ITINERARIES, ORIGIN -.170*** -.079 -.158*** -.152*** -.193*** 
 (.052) (.049) (.050) (.050) (.054) 
% DIRECT ITINERARIES, DEST -.141*** -.063 -.129*** -.124*** -.159*** 
 (.047) (.046) (.046) (.046) (.048) 
% PASS. IN MONOP. MARKETS  -.065*** -.035*** -.075*** -.063** 
  (.010) (.009) (.011) (.029) 
% PASS. IN DUOP. MARKETS  -.030*** -.022*** -.040*** -.029*** 
  (.005) (.004) (.006) (.008) 
LOG (INTERNET) * % PASS. IN MONOP. MKTS.    -.056*** -.040** 
    (.012) (.018) 
LOG (INTERNET) * % PASS. IN DUOP. MKTS.    -.028*** -.026*** 
    (.007) (.008) 
SEGMENT SHARE  .108*** .127*** .127*** .111*** 
  (.015) (.014) (.014) (.030) 
LOG (SEGMENT FARE) -.234***  -.238*** -.237*** -.342*** 
 (.012)  (.012) (.012) (.025) 
Observations 85568 85568 85568 85568 85568 
      

Notes: Standard errors are in parentheses. Stars denote the significance level of coefficients: *** - 1 
percent, ** - 5 percent, * - 10 percent. All reported regressions include airline-segment and 
airline-quarter fixed effects.  

  
  

 


