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Abstract

This paper characterizes the welfare-maximizing equilibrium performance and du-

ration of stochastic partnerships, in an economy in which partners choose each period

costly observable efforts, voluntary wages, and whether to leave the relationship to be

re-matched. Individuals’ lives in this economy tend to transition between a few qual-

itatively distinct phases: “dating” at birth or between relationships; “honeymoon”;

“hard times”; “good times”; and “golden years”, from which partners are parted only

by death. Given an exogenous stochastic process, higher states are associated with

higher stage-game and continuation payoffs, as well as longer-lasting relationships.

1 Introduction

Players in an ongoing interaction often face uncertainty regarding the fundamentals of their

relationship. For example, an employer may be unsure about whether his worker will have an

incentive in the future to accept an outside offer. Or, firms engaged in a joint venture may be

unsure about future payoffs within their partnership. Such uncertainty can make it difficult

to sign complete formal contracts, especially if what might change in the relationship is

difficult to communicate to an outside party. At the same time, a long-lasting (or “stable”)

relationship is crucial for the effective provision of informal incentives. If shocks to the
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productivity of a partnership may cause it to end or be less productive in the near future,

players will have less incentive to work today, reducing relational gains and potentially

hastening the partnership’s demise in a vicious cycle.

Partnerships in which players face an uncertain future can generate rich dynamics. For

example, one of General Motors’ most important joint ventures is Shanghai GM, a 50-50

partnership with Shanghai Automotive Industry Corp (SAIC) formed in 1997 that has grown

into a fully integrated operation that moves over one million cars per year. This venture

allows GM to build cars in China, while providing SAIC with valuable expertise. In fact,

GM has aggressively transferred vehicle development know-how to its Chinese partner, as

recently as 2008 with the complete re-design of the Buick Regal for the Chinese market,

despite some mimicking of its past designs in SAIC vehicles. Yet, when announcing plans in

2007 to build a hybrid-engine research center in Shanghai, GM chose not to work with SAIC,

even as the Chinese government announced seemingly strict rules requiring the manufacture

of hybrid engines on Chinese soil (Bradsher (2007)).

As in many uncertain relationships, this partnership’s future is subject to a variety of

risks, some within the players’ control (will GM continue to refuse to share valuable intellec-

tual property, will SAIC continue to copy-cat GM designs?) and others less so. Indeed, the

future of GM Shanghai may well hinge on developments in another stochastic relationship,

that between the Chinese government and foreign auto-makers. For example, should China

stop foreign firms from exporting earnings, or allow them to build hybrid cars without a

Chinese partner, GM would have much less incentive to share its technology.

This paper develops a theory of endogenous stability and performance in a perfect-

information model of stochastic partnerships. Each period, two partners simultaneously

decide how much effort to exert after observing a payoff-relevant state. “Effort” can be

interpreted broadly, e.g. to include costly relationship-specific investments. After observ-

ing efforts, the partners then simultaneously decide whether to quit the relationship. The

partnership ends if either player quits, in which case each player receives an outside option.

Also, players can make voluntary wage transfers at any time during the game, although I

show that it is without loss to restrict attention to “retention bonuses” paid after and only

if both players choose not to quit. (See Figure 1 in Section 2.)
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Incremental payoffs from higher effort satisfy an increasing differences property in a state

variable that follows a controlled stochastic process, i.e. the current state may depend on

past states and past efforts. The main restriction on this process is that it is persistent,

i.e. higher past states make higher future states more likely in the sense of first-order

stochastic dominance, but no substantive restrictions are placed (at first) on how efforts

control the stochastic process. This allows for a rich set of potential applications from labor

to macroeconomics and organizational economics, in which greater effort grows, depletes,

or has a non-monotone effect on a payoff-relevant relational stock. For example, in a labor

context, one could interpret the worker’s (multi-dimensional) effort as including hours worked

as well as investments in firm-specific human capital. The assumptions are sufficiently weak

that the existing literature on comparative statics in stochastic games does not apply. (See

the literature discussion below.)

This paper derives a subgame-perfect equilibrium (SPE) that maximizes players’ joint

welfare among all SPE. Joint payoff in this “optimal equilibrium” is non-decreasing in the

state, but higher states need not be associated with higher joint stage-game payoff or higher

joint continuation payoff. Consequently, players in higher states may or may not exert more

effort, may or may not exit with lower probability, etc.

Such partnerships are then embedded within a “partnership economy” with anonymous

re-matching after partnership dissolution. If some player’s partnership ends at time t in this

economy, whether because he left, his partner left, or his partner died, he is automatically

re-matched with a new partner to begin at time t + 1. This new partnership is a “fresh

start”, in the sense that (i) the stochastic processes driving stage-game payoffs are iid across

partnerships and (ii) players know nothing about their current partner’s history before their

partnership began, including his age, number of past partnerships, etc.1 Expected payoffs

in a new partnership generate outside options for each player should his current partnership

end. The analysis endogenizes the maximal joint outside option that can be supported in

any equilibrium of the overall partnership economy. Further, given an exogenous inflow and

1If historical variables such as age could be observed, then economy-wide welfare might be enhanced in

“old-maid equilibria” in which players who are not newly-born are shunned, since no one will ever leave a

relationship in such an equilibrium.
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outflow of births and deaths, I characterize the steady-state distribution of histories among

active partnerships in this welfare-maximizing equilibrium.

At birth or whenever unmatched in the steady state of this economy, a player will typically

sample several partners before settling into a new relationship, for two related but distinct

reasons. First, if the initial state of a partnership is informative of future payoff possibilities,

each player wants to sample extensively in order to find a “good fit”. More interestingly,

players will act as if initial states matter greatly even when they do not. For instance,

consider the most extreme case in which all partnerships are payoff identical at first, but

in which each partnership receives a random public label from zero to one. In the welfare-

maximizing equilibrium, players will exert no effort and immediately leave all partnerships

in which the label is not sufficiently close to one. Delay in this “dating” process emerges

as an endogenous solution to the incentive problem created by players’ ability to leave for a

new match, similar to the well-known “incubation period” in non-stochastic repeated games

with re-matching. (See the literature discussion below.)

Since players immediately leave all but the best matches, there is a “honeymoon effect”

to partnership formation. Namely, partnerships that persist at all are likely to last a rel-

atively long time and to be highly productive at first. Exit is triggered when the state of

a partnership falls below a threshold-surface in the state-space. Consequently, partnerships

that have lasted a long time tend to be those that have received mostly positive shocks

that made the partnership more stable. This survivorship bias is consistent with a broad

empirical finding that, from employment (Topel and Ward (1992)) to marriage (Stevenson

and Wolfers (2007)) and organizational survival (Levinthal (1991)), partnerships that have

lasted a long time are less likely to end in the near future.

There is a range of states (“hard times”) in which partners exert little or no effort in the

optimal equilibrium but elect to remain together despite this failure to cooperate. Players

endure such hard times, rather than exiting, because of the option value associated with

waiting to exit. However, this option value does not only arise as usual from exogenous

variation in the productivity of the partnership itself. The option to exit later becomes more

valuable, in equilibrium, because of the endogenous variability of players’ behavior.

Finally, more comparative statics are available under the additional assumption that
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players’ efforts do not control future payoff possibilities. In this case, partnerships in higher

states will enjoy (weakly) higher stage-game payoffs as well as higher continuation payoffs,

and persist longer into the future.

The rest of the paper is organized as follows. The introduction continues with discussion

of some related literature. Section 2 describes the model while Section 3 provides a simple

example. Section 4 characterizes the joint-welfare maximizing SPE in a partnership for any

outside options. Section 5 then characterizes the social-welfare maximizing equilibrium of

the overall partnership economy, thereby endogenizing each player’s outside option. Finally,

Section 6 develops more comparative statics in the special case of an exogenous stochastic

process, while Section 7 provides concluding remarks. Most proofs are in an Appendix.

Related literature.

This paper combines elements of Jovanovic (1979a) and Levin (2003) in a rich stochastic

framework with two-sided incentives. Jovanovic (1979a) considers a model in which a worker

learns over time about the productivity of the match with his present firm and quits as

soon as he becomes sufficiently pessimistic about the match. Consequently, workers who

have remained longer at the same firm are less likely to leave and more likely to be more

productive.2 The key difference here is that partners face a two-sided incentives problem as

well as a learning problem. Whereas the worker in Jovanovic always enjoys the full gains

from his current match, players here must work to enjoy those gains and choose how to

distribute them through voluntary wages.

Levin (2003) characterizes optimal “relational contracts” in a principal-agent context in

which the agent’s cost of effort is iid. Unlike Levin (2003), this paper allows for two-sided

incentives and non-iid stage-game payoffs. (However, Levin’s analysis is not less general, as

he allows for incomplete information and imperfect monitoring of effort.) Also, a key step

in the analysis here is to show that performance inside the partnership decreases with the

attractiveness of players’ outside options. This extends a well-known finding of the relational

contracts literature (see e.g. MacLeod and Malcomson (1989) and Baker, Gibbons, and

2Also closely related is Jovanovic (1979b), in which similar effects arise as workers who choose to remain

in their current job make firm-specific investments to improve the future performance of the match. See also

Pissarides (1994) for a related model of on-the-job search.
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Murphy (1994)) to a richer stochastic setting.

This paper also adds to the “dynamic games” literature in which a payoff-relevant state

follows a known stochastic process.3 For example, a key insight in Haltiwanger and Har-

rington (1991) and Bagwell and Staiger (1997)’s models of collusion and the business cycle,

that collusion thrives at those times when the future state is most likely to be conducive to

collusion, is helpful for interpreting this paper’s results as well. However, the focus here is

on how players’ ability to dissolve their partnership interacts with their incentive to exert

costly effort. Also, by allowing for any persistent stochastic process, my analysis encom-

passes both the iid case (as in Rotemberg and Saloner (1986), Ramey and Watson (1997))

and the “positively autocorrelated” case (as in Bagwell and Staiger (1997)), among others.

Like this paper, Roth (1996) shows how to construct welfare-maximizing equilibria in a

dynamic partnership, using an algorithm in the spirit of Abreu, Pearce and Stacchetti (1990).

Indeed, Roth’s model can be viewed as a special case of mine in which, among other things,

payoffs are symmetric, the state is one-dimensional and follows a simple random walk, and

there is no feedback of effort on future states. Also, this paper differs by endogenizing the

players’ outside options via re-matching.

Repeated games with re-matching opportunities have been studied by several authors,

including Kranton (1996), Datta (1996) and recently Eeckout (2006).4 A key finding is

that, in welfare-maximizing equilibria of the overall partnership economy, partners fail to

realize all potential equilibrium gains in their individual partnerships, instead enduring an

“incubation period” with low efforts and low payoffs before transitioning to a maximally

productive phase. The analysis here will show that such results are not robust. Under

mild conditions on the stochastic process driving payoffs (see Theorem 2 and Claim 2),

welfare-maximizing equilibria of the overall partnership economy dictate renegotiation-proof

play within each partnership in which players “date” several partners rather than “starting

small” and enduring an incubation period with just one partner. Intuitively, in a stochastic

setting in which not all partnerships are equal, the dating process allows players to match

3A growing and less closely related literature considers dynamic games in the presence of imperfect

information, e.g. Athey and Bagwell (2001) and Horner and Jamison (2007).
4Separately, in an incomplete information setting, Ghosh and Ray (1996) and Watson (1999) provide a

signaling rationale for “starting small”.
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with partners who are a relatively good initial fit.

Recently, Chassang (2009) and Bonatti and Horner (2009) have developed other theories

of cooperation dynamics. Namely, Chassang (2009) shows how players “build routines”

in repeated games with incomplete information about payoffs, while Bonatti and Horner

(2009) develop a theory of dynamic public good provision given unobserved efforts and

uncertainty about the quality of the public good. In each of these papers, the underlying

environment does not change over time. This paper highlights dynamics that arise when

payoffs are stochastic, while abstracting from (important) issues of incomplete information

and imperfect monitoring.

More tangentially related is the existing literature on “stochastic games”, especially those

papers such as Amir (1996) and Curtat (1996) in which sufficient monotone structure is

imposed to generate comparative statics. However, most of these papers focus on equilibria in

Markov strategies, often proving uniqueness of such equilibria, whereas I consider subgame-

perfect equilibria (SPE) and focus on the SPE that maximizes joint welfare among all SPE.

Further, this literature imposes stronger assumptions than are needed here, in large part

because they prove stronger results (such as uniqueness).

Lastly, although players have the option to exit, the literature on so-called “option games”

is unrelated. In an option game, players’ payoffs depend upon who exercises a real option

(e.g. exiting a market) and when they do so, and papers in this literature tend to focus on

issues of strategic pre-emption or delay that arise when players prefer to be the first or last

to exercise their option. See e.g. Grenadier (2002) and Chassang (2007). By contrast, my

focus is to endogenize the payoffs that can be realized prior to exit.

2 Model

Two (potentially asymmetric) players in a partnership each seek to maximize the expected

present value of their stream of payoffs, given per-period discount factor � < 1. All assump-

tions presented here apply throughout the analysis. Those meriting further discussion are

highlighted and numbered. (Additional assumptions will be explicitly stated when needed.)

Notational shorthand. To improve clarity and shorten equations, I have adopted several
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notational conventions throughout the paper. First, random variables are capitalized while

realizations are in lower case, e.g. xt ∈ supp(Xt). Second, variables specific to a player and

time have two subscripts, e.g. eit. Vectors of such variables for all players and all times no

later than t are bolded with one subscript, e.g. et = (e0, ..., et), while those for all players at

one time t are unbolded with one subscript, e.g. �t(et;xt) = (�it(eit, ejt;xt), �jt(eit, ejt;xt)).

Finally, sums are denoted by a summation subscript, e.g. �Σt(et;xt) =
∑

i �it(et;xt).

v
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Figure 1: Timing of the partnership stage-game in period t = 0, 1, 2, ...

Partnership stage-game. Each period t = 0, 1, 2, ... proceeds as follows until the part-

nership ends (see Figure 1). First, a payoff-relevant state xt ∈ Xt is realized and publicly

observed. (Xt,ર) is a partially ordered set. Second, each player i simultaneously decides

what effort eit ∈ ℰit to exert, where efforts may control the stochastic process (Xt : t ≥ 0).

Efforts are then publicly observed and each player i receives “inside payoff” �it(et;xt). (ℰit,ર)

is a partially ordered, complete topological space having minimal element “0”.5

Assumption 1 (Inside payoffs). �it(et;xt) is weakly decreasing in eit, weakly increasing in

ejt, and continuous in et, �it(0, 0;xt) = 0 for all xt, and �Σt(et;xt) is uniformly bounded

above.

Assumption 2 (Increasing differences). �it satisfies weakly increasing differences in (et;xt).

That is, eHt ર eLt and xHt ર xLt implies �it(e
H
t ;xHt )− �it(eLt ;xHt ) ≥ �it(e

H
t ;xLt )− �it(eLt ;xLt ).

5The effort-set ℰit can be viewed as the set of all mixtures over some underlying set of pure efforts,

endowed with the first-order stochastic dominance ordering inherited from the partial order on that under-

lying set. The assumption here of observable efforts then corresponds to an assumption that effort mixtures

are observed. If mixtures cannot be observed, this paper’s results can be viewed as characterizing welfare-

maximizing pure-strategy SPE.
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Assumption 3 (State). The distribution of Xt depends only on (t, xt−1, et−1).

Third, each player i simultaneously decides whether to stay or quit the partnership. The

partnership ends if either exits and, should both stay, with exogenous probability � ∈ [0, 1].

(� corresponds to the rate of “death” in the application of Section 5.) If so, each player i

receives an outside option having present value vi ≥ 0 and nothing thereafter.6 Otherwise,

the partnership remains active in period t+ 1.

Throughout the game, players can make voluntary wage transfers to one another at any

time. However, it is without loss to restrict attention to SPE in which only “retention

bonuses” are paid each period, after and only if both players decide to stay (Lemma 1). For

simplicity, then, I will proceed as if this is the only time at which players can pay wages.

This is mainly for expositional clarity, as the analysis can be adapted to settings with other

wage timing. (See the related discussion in Levin (2003).)

Solution concept. The solution concept is subgame-perfect equilibrium (SPE), with spe-

cial focus on SPE that maximize players’ joint welfare among all SPE.

Stochastic process. The stochastic process (Xt : t ≥ 0) satisfies a “persistence” property,

that future states are more likely to be higher when the current states is higher. Two

definitions are needed to make this precise.

Definition 1 (Increasing subset). Let (Z,≥) be any partially-ordered set. Y ⊂ Z is an

“increasing subset of Z” if a1 ∈ Y and a2 ≥ a1 ∈ Z implies a2 ∈ Y .

Definition 2 (Generalized first-order stochastic dominance7). Let A1, A2 be random vari-

ables with support in partially ordered set (Z,≥). A1 “first-order stochastic dominates”

6The analysis and basic results extend to settings in which players’ outside options Vt = (Vit, Vjt) are

random, as long as they are not controlled by players’ efforts. (In particular, Vt may be correlated with Xt,

but only if Xt follows an exogenous stochastic process as in Section 6.) Extending the analysis to allow for

endogenous outside options, as when players may search for their next partner while still matched, is an

important direction for future research.
7When Z = R, this condition reduces to the familiar requirement that Pr(A1 ≥ z) ≥ Pr(A2 ≥ z) for all

z ∈ R. There is more than one natural way to generalize FOSD to multi-dimensional settings, some more

restrictive than the notion used here. See e.g. Stoyan and Daley (1983).
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(FOSD) A2 if Pr(A1 ∈ Y) ≥ Pr(A2 ∈ Y) for all increasing subsets Y ⊂ Z.

Assumption 4 (Persistence). x′t ર xt implies Xt+1∣(x′t, et) FOSD Xt+1∣(xt, et) for all et.

Definition 3 (Cost of effort). Let cit(et;xt) = supẽit (�it(ẽit, ejt;xt)− �it(et;xt)) denote each

player’s “cost of effort eit” when player j exerts effort ejt at time t.

Discussion of the model: By Assumption 1, each player has a weakly dominant strategy

to exert zero effort in each effort stage-game, so ct(et;xt) = �it(0, ejt;xt) − �it(et;xt). By

Assumption 2, x′t ≻ xt implies

�it(et;x
′
t) ≥ �it(et;xt) for all et (1)

ct(et;x
′
t) ≤ ct(et;xt) for all et (2)

for all et. (Increasing differences implies (1) when we set eHt = et and eLt = (0, 0) and implies

(2) when we set eHt = et and eLt = (0, ejt).)

Assumption 3 requires that inside productivity and outside options be unrelated. Inter-

actions between inside and outside payoffs can arise quite naturally, for at least two reasons.

First, outside option values may be correlated with the partnership state for exogenous rea-

sons, if there is some common factor driving both. For example, a player’s outside option

might be to start his own business in the same line of work as that pursued by the partner-

ship. Second, “search” activities that enhance a player’s outside option may also enhance or

detract from the future productivity of the partnership.

Assumption 4 states that the partnership is weakly more likely to transition to a “better

state” tomorrow from a better state today, holding fixed the history of players’ efforts. The

fact that no assumptions are made on how efforts impact future states allows for great

flexibility, e.g. the model can accommodate settings in which effort grows, depletes, or has

a non-monotone effect on a payoff-relevant stock. On the other hand, Assumption 4 does

rule out a variety of potential applications in which payoffs are stochastic but not persistent.

For instance, suppose that Xt = {low, high} for all t as in Bagwell and Staiger (1997).

Assumption 4 fails in the case of negative serial auto-correlation.

Here are some simple examples of state processes (Xt : t ≥ 0) satisfying Assumption 4. In

each case, Xt ⊂ RK . Examples (A,B) are exogenous Markov processes, (C) is a non-Markov

exogenous process, (D) is a non-trivially controlled process.
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(A) Xt are iid.

(B) g(Xt) is a random walk where g : RK → RK is any non-decreasing function relative

to the usual product order on RK .

(C) (Xs : s ∈ [0, t]) is a sequence of publicly observed estimates of K unobserved parame-

ters, e.g. unknown productivity of the match à la Jovanovic (1979a).

(D) Xt = Zt(Xt−1 +
∑

i eit), where (Zt : t ≥ 0) is an exogenous stochastic process as in

any of the previous examples. For instance, Xt and Zt − 1 could be the value and

growth rate, respectively, of accumulated capital in a joint venture with new capital

investments et at time t.

3 Example: Dynamic Prisoners’ Dilemma

This section provides a simple example that serves to fix ideas and highlight some aspects

of the more general analysis to come.

Work Shirk

Work 1, 1 −1− ct, 1 + ct

Shirk 1 + ct,−1− ct 0, 0

Figure 2: Stage-game payoffs at time t, while the partnership persists.

Each stage-game has stage-game payoffs as shown in Figure 2.8 “Effort cost” ct > 0, and

log(Ct) evolves according to a known and exogenous random walk with iid motion that is

atomless on support that contains [−", "] for some " > 0. Should the partnership dissolve,

each player gets the same outside option having value v ≥ 0. All assumptions of Section 2

are satisfied when we define the state xt = −ct.
8Such payoffs arise naturally in a context in which players bear all of the cost of their own effort but share

equally the return to that effort. Suppose that each player generates a return equal to his cost when working

alone, but generates an excess return of one when working together with the other player. The payoffs of

Figure 2 then arise when the cost and return of individual effort is 2(1 + ct).
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If ct = c0 for all t, then this is a standard repeated Prisoners’ Dilemma. However, as

I will show, welfare-maximizing equilibrium behavior changes dramatically once we allow

(Ct : t ≥ 0) to follow a non-trivial stochastic process. Results to be presented later in the

paper imply that a “threshold equilibrium” maximizes joint welfare among all SPE in this

setting.9 The optimal work threshold cW∗ = �
1−� in the standard repeated-game setting, but

equals only �
2(1−�) when log(Ct) follows any symmetric random walk with atomless transitions.

Definition 4 (Threshold equilibrium). A SPE is a “threshold equilibrium” if there exists a

“work threshold” cW and “exit threshold” cE ≥ cW such that, on the equilibrium path, both

players (a) work and stay if ct ≤ cW , (b) shirk and stay if cW < ct ≤ cE, and (c) shirk and

quit if ct > cE; off the equilibrium path, both players shirk and quit in all states.

Players’ behavior in this “optimal SPE” is summarized by Figure 3. Since the outside

option is fixed, the state can be viewed as moving up and down a vertical slice of this figure.

When the region labeled “EXIT” is reached, both players shirk and quit. Until then, both

players work and stay when in the region labeled “WORK” while both shirk and stay when

in the region labeled “SHIRK”. The partnership is “doomed” whenever the players’ outside

payoff is close enough to their continuation payoff in a productive partnership, in the sense

that the players shirk and exit immediately in every state in every SPE.

Intuitive derivation of optimal thresholds. Exit threshold. Consider any threshold

equilibrium with work threshold cW . In such an equilibrium, the partnership can be viewed

as a jointly owned asset that, prior to liquidation, generates payoff two when ct ≤ cW and

zero when ct > cW , and that is worth 2v upon liquidation. Since (log(Ct) : t ≥ 0) is a

random walk, the optimal time to exercise the option to liquidate is when the state first

exceeds �∗cW , for some �∗ > 1 that does not depend on cW . Assuming that players can

9Since (Ct : t ≥ 0) is an exogenous stochastic process, joint stage-game payoff and joint continuation

payoff are non-increasing in ct in a joint-welfare maximizing SPE by Theorem 3. Since joint payoff is two

if both players work and zero otherwise, monotonicity of joint stage-game payoff implies that this SPE has

a work threshold (that may vary with history), while monotonicity of joint continuation payoff implies that

this SPE has an exit threshold (that may also vary with history). Finally, since (log(Ct) : t ≥ 0) is a random

walk, it is straightforward to show that the optimal work and exit thresholds do not depend on history.
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Figure 3: Summary of behavior in the optimal SPE.

support work threshold cW in SPE, they can also support the optimal exit threshold given

cW , which is cE = �∗cW . (Intuitively, equilibrium exit can be socially efficient because the

players have no conflict of interest when it comes to the timing of exit, since each player gets

the same outside option v.10)

Work threshold. Threshold equilibrium payoffs are clearly increasing in the work thresh-

old. What then is the maximal work threshold cW that can be supported in SPE, assuming

an optimal exit threshold cE = �∗cW ? Each player can be induced to work at time t = 0 (or

similarly at any time) only if continuing inside the partnership is more valuable than c0 + v,

since otherwise he would prefer to shirk and quit when the other player works. Given work

threshold cW and exit threshold cE = �∗cW , each player’s continuation payoff Πcont
i0 (c0; cW )

when the current state is c0 takes the form∑
t≥1

�t
(

Pr

(
max
1≤s<t

Cs ≤ �∗cW , Ct ≤ cW ∣c0

)
+ v Pr

(
max
1≤s<t

Cs ≤ �∗cW , Ct > �∗cW ∣c0

))
(3)

Πcont
i0 is weakly decreasing in c0 by Theorem 3. Thus, to prove that both players have

sufficient incentive to work when c0 ≤ cW , it suffices to check that they do so when c0 = cW .

Observe next that Πcont
i0 (cW ; cW ) does not depend on cW . (Intuitively, continuation payoffs

depend on how frequently the state will be below cW and how quickly it will first exceed

10In the more general analysis to come with asymmetric players, the possibility of wage transfers is essential

to align the players’ incentives regarding the timing of exit. Optimal wage transfers are zero here.
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�∗cW . Conditional on c0 = cW , this translates as how frequently log(Ct) will be lower than

log(c0) and how quickly it will first exceed log(c0) by more than log(�∗), neither of which

depends on cW by the random walk assumption.) Consequently, the maximal and hence

optimal SPE work threshold is simply cW∗ = Πcont
i0 (1; 1)− v.

Monotonicity of thresholds. Both the optimal work threshold cW∗ and the optimal

ratio �∗ of the exit and work thresholds are decreasing in the players’ outside option v.

Intuitively, �∗ decreases in v because staying in a temporarily unproductive relationship

becomes more costly as v increases, while cW∗ decreases in v because a more valuable outside

option combined with the prospect of quicker exit decreases the future value that can be

credibly created within the partnership.

Cooperation in fewer states. In an unchanging version of the game, ct = c0 for all t,

SPE exist in which players both work and stay forever as long as c0 ≤ �
1−� − v. By contrast,

the optimal work threshold cW∗ < �
1−� − v given a changing state. The following example

illustrates this basic result, which holds much more generally, whenever (log(Ct) : t ≥ 0)

follows a stochastic process in which all states communicate.

Example 1. Suppose that v = 0 and that log(Ct+1) − log(Ct) ∼ U [−", "] for some " ≥ 0.

Let cW∗(") be the optimal work threshold as a function of ".

Claim 1. In this example, cW∗(0) = �
1−� while cW∗(") = �

2(1−�) for all " > 0.

Proof. As discussed earlier in the intuitive derivation of cW∗, a property of the optimal work

threshold is that, conditional on c0 = cW∗, each player must expect continuation payoff of

exactly cW∗ + v. Since v = 0, players never exit in the optimal SPE. Thus, each player’s

continuation payoff takes the relatively simple form∑
t≥1

�t Pr
(
Ct ≤ c0∣c0 = cW∗

)
=

1

2
∗ �

1− �
(4)

for all " > 0, since Pr
(
Ct ≤ c0∣c0 = cW∗

)
= 1

2
for all t by the symmetry assumption.

Discussion of Claim 1. Equilibrium cooperation is impossible whenever the players’ cost of

effort exceeds cW∗. Thus, conditional on ct = cW∗, players anticipate that they will be able
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to cooperate at most half of the time in each future period. This shrinks by half the future

value of the relationship, relative to an unchanging setting in which future cooperation can

be credibly promised in every period, regardless of the speed at which the players’ cost of

effort changes over time. Note: The set of SPE payoffs here is discontinuous in " at " = 0.

However, this discontinuity is itself non-robust to other changes in the game environment. In

particular, if the stage-game is modified to accommodate a continuum of effort-levels, then

the maximal SPE joint payoff from any initial state becomes continuous in ".

Doomed partnerships. Returning to the more general context illustrated in Figure 3,

the partnership is “doomed” if both players shirk and then at least one exits at every history

in every SPE (in which case the optimal work and exit thresholds cW∗ = cE∗ = 0). In an

unchanging version of the game, the partnership is doomed iff v > �
1−� , since

∑
t≥1 �

t = �
1−� is

the continuation payoff generated for each player in a permanently productive relationship.

In this paper’s changing environment, the partnership is doomed even when the outside

option is less valuable than �
1−� . Intuitively, the reason is that partnerships always “break

down before they break up”. Namely, when the time is reached at which the partnership

will end, both players will shirk and earn zero stage-game payoff since they have nothing

to gain from exerting effort. If the players had exited earlier, they could have avoided this

loss. Thus, in order to be willing to remain in the partnership, players will require that

cooperation generate an excess return over their outside option.11

Period 2 3 4 5 10 25

% partnership ends 25% 16.7% 12.8% 9.8% 5.0% 2.0%

Table 1: Probability that the partnership ends in period t, when log(Ct) follows a symmetric

random walk, conditional on c0 = cE∗ and on survival until time t.

Survivorship bias. Since the partnership ends once the cost of effort first exceeds an exit

threshold, the partnerships that have survived several periods will, more likely than not, have

received mostly positive shocks that moved the cost of effort away from the exit threshold.

11The maximal outside option v consistent with any SPE cooperation equals �−X
(1−�)(1+X) < �

1−� where

X = Pr
(
max1≤s<t Cs ≤ c0, Ct > c0∣c0 = cE∗) > 0. The derivation of this formula is omitted to save space.
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This positive selection effect tends to make partnerships that have lasted a long time less

likely to end in the near future. For example, suppose that log(Ct) follows a symmetric

random walk (as in Example 1) and that c0 = cE∗ so that players are just barely willing to

stay in the relationship. Table 1 documents the hazard rate of exit over time. For instance,

conditional on survival until time t = 4, the partnership will end that period approximately

12.8% of the time. The survivorship bias effect is present here, as the probability of exit

decreases with age.12 (The fact that the exit hazard at time t is approximately 1
2t

follows

from the symmetric random walk assumption; see Hughes (1995).)

4 Welfare-maximizing equilibrium

Let Π
eqm

Σt (xt, et−1; v) denote the maximal joint payoff that can be achieved in any subgame-

perfect equilibrium (SPE), as evaluated before efforts at time t from payoff-relevant history

(xt, et−1), given outside options v = (vi, vj).
13 In this section, I will demonstrate a SPE that

achieves this maximal joint payoff at every history reached on the equilibrium path.

Each player i is only willing to exert effort eit as part of an effort-profile et if play

(including wage transfers) after time-t efforts will generate a continuation payoff of at least

vi + cit(et;xt). In particular, costly efforts (such that cΣt(et;xt) > 0) can only be sustained if

joint continuation payoff inside the partnership exceeds players’ joint outside option plus their

joint cost of effort. However, joint inside continuation payoff after efforts et is bounded above

by max
{
vΣ, �E

[
Π
eqm

Σt+1(Xt+1, et; v)∣xt, et
]}

. Thus, maximal SPE joint payoff Π
eqm

Σt (xt, et−1; v)

before time-t efforts is at most

max
et

(
�Σt(et;xt) + max

{
vΣ, �E

[
Π
eqm

Σt+1(Xt+1, et; v)∣xt, et
]})

(5)

subject to cΣt(e;xt) ≤ max
{

0, �E
[
Π
eqm

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
(6)

In fact, this upper bound on time-t joint payoff can be realized in SPE, given wage promises

that take the form of “retention bonuses”, paid after and only if both players decide to stay.

12In general, the hazard of exit need not be monotone. For instance, suppose that log(Ct) is very likely

to either fall by slightly less than two or rise by slightly more than one, and that c0 = cE∗. Conditional on

both staying at time t = 1, the partnership is much more likely end at time t = 3 then at time t = 2.
13It is without loss to restrict attention to SPE in which payoffs do not depend on the history of wages.
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Lemma 1 (Joint welfare-maximizing SPE play). Suppose that SPE exist such that, at time

t+ 1 from each history (xt+1, et), players’ joint payoff is Πeqm
Σt+1(xt+1, et; v). (i) A SPE exists

such that, at time t from history (xt, et−1), players’ joint payoff Πeqm
Σt (xt, et−1; v) solves

max
et

(
�Σt(et;xt) + max

{
vΣ, �E

[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]})

(7)

subject to cΣt(et;xt) ≤ max
{

0, �E
[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
(8)

(ii) In this SPE, wages are paid (only) just after players decide whether to quit.

Proof. Let Πeqm
it (xt, et; v) = �E

[
Πeqm

Σt+1(Xt+1, et; v)∣xt, et
]

be shorthand for player i’s expected

time-t continuation payoff, after efforts et from history (xt, et−1), should it remain active at

time t + 1. Figure 4 illustrates the key idea of Lemma 1. As long as Πeqm
Σt (xt, et; v) exceeds

the players’ joint payoff after exit, vΣ, plus their joint incentive to shirk from efforts et,

cΣt(et;xt), there exists a retention bonus promise given which both players have sufficient

incentives to exert efforts et and then stay. Further, this promise is credible since each player

promises less than his willingness to pay to avoid cooperation breakdown.

vi cit(et;xt) vjcjt(et;xt)

wit

Πeqm
it (xt, et; v) Πeqm

jt (xt, et; v)

Figure 4: Efforts et are incentive-compatible when player i pays wage wit (and wjt = 0).

Let Δit(et) = Πeqm
it (xt, et; v)− vi− cit(et;xt) denote player i’s “excess inside continuation

payoff”, the extra profit that he enjoys inside the partnership after efforts et, relative to

deviating with zero effort and then quitting the relationship. Δit(et) is the most that player

i can credibly promise to pay player j as a reward for not deviating from the prescribed

efforts et and then not quitting.14

14Should efforts et be played, player i becomes willing to pay up to Δit(et)+cit(et;xt) to avoid exit. Then,

should both players stay to period t+1, player i becomes willing to pay more still to avoid a transition to an

optimal punishment continuation SPE in which both players exert zero effort, pay zero wages, and exit for
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Without loss, suppose that Δit(et) ≥ Δjt(et). If Δit(et) + Δjt(et) < 0, then at least one

player must strictly prefer to deviate by exerting zero effort and then quitting, given any

credible wage. Otherwise, any retention bonus wit ∈ [max{0,−Δjt(et)},Δit(et)] from player

i to player j can credibly support efforts et. Thus, effort-profile et can be supported in some

SPE iff it satisfies (8). This completes the proof, since then the maximal SPE joint welfare

given the specified continuation payoffs is the solution to (7).

Joint-welfare maximizing SPE. Lemma 1 maps the maximal joint payoff that can be

supported at time t+ 1 to the maximal joint payoff that can be supported at time t. Thus,

in the spirit of Abreu, Pearce and Stacchetti (1990), one can construct a sequence of upper

bounds for every history,
{

Π
k

Σt(xt, et−1; v) : k = 1, 2, ...
}

, such that Π
k

Σt(xt, et−1; v) is non-

increasing in k and converges to the maximal SPE joint payoff at history (xt, et−1). Also

importantly for this paper’s purposes, these upper bounds exhibit a monotonicity in the

state, i.e. Π
k

Σt(xt, et−1; v) is weakly increasing in xt for all k as well as in the limit.

Theorem 1 (Maximal joint welfare). The maximal joint welfare Π
eqm

Σt (xt, et−1; v) that can

be realized in SPE from history (xt, et−1) is weakly increasing in xt, for all et−1.

�
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C

C

Π
k+1

Σt (xt, et−1; v)

ℱk+1
t (xt, et−1; v)

Π
k

Σt(xt, et; v) Π
k

Σt+1(xt+1, et; v)

Figure 5: Illustration of the key steps of Theorem 1’s proof.

Key steps of the proof of Theorem 1 (Figure 5): Suppose that there exists upper bounds

Π
k

Σt(xt, et−1; v) on SPE joint payoff from all histories at all times and that these upper bounds

are weakly increasing in the current state xt. The essence of the proof is to use these upper

bounds to derive weakly lower upper bounds Π
k+1

Σt (xt, et−1; v) at all histories that remain

weakly increasing in xt. Here in the text, I provide the inductive step to construct this

certain at time t + 1. Thus, as long as player i has not promised to pay more than Δit(et), he has sufficient

incentive to exert his prescribed effort, then stay, then pay the specified bonus.
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sequence of upper bounds on joint payoff and show that monotonicity in xt is preserved along

this sequence. In the Appendix, I prove that this sequence of bounds is weakly decreasing

in k and that it converges to joint payoff that can be realized in SPE.

Step A. Given bounds Π
k

Σt+1(xt+1, et; v) on joint continuation payoff at time t + 1, joint

continuation payoff after time-t efforts is bounded by

Π
k

Σt(xt, et; v) = max
{
vΣ, �E

[
Π
k

Σt+1(Xt+1, et; v)∣xt, et
]}

. (9)

Observe that

E
[
Π
k

Σt+1(Xt+1, et; v)∣xt, et
]

=

∫ ∞
0

Pr
(

Π
k

Σt+1(Xt+1, et; v) ≥ z∣xt, et
)

dz. (10)

By presumption, Π
k

Σt+1(xt+1, et; v) is weakly increasing in xt+1. Thus, the set {xt+1 :

Π
k

Σt+1(Xt+1, et; v) ≥ z} is an increasing subset of Xt+1 for all z. By Assumption 4, then,

each of the probability terms inside the integral in (10) is weakly increasing in xt. Thus,

Π
k

Σt(xt, et; v) is weakly increasing in xt.

Step B. Let ℱk+1
t (xt, et−1; v) be the set of time-t efforts that can be supported in SPE given

joint continuation payoffs Π
k

Σt(xt, et; v) after effort, i.e. those satisfying the IC-constraint (8)

given these expected joint continuation payoffs after time-t effort. Since (8) slackens with

higher continuation payoffs, the fact that Π
k

Σt(xt, et; v) is weakly increasing in xt implies that

ℱk+1
t (xt, et−1; v) is weakly increasing in xt, relative to the set inclusion order.

Step C. By Lemma 1, we may define new upper bounds on time-t SPE joint payoff,

Π
k+1

Σt (xt, et−1; v) = max
et∈ℱk+1

t (xt,et−1;v)

(
�Σt(et;xt) + Π

k

Σt(xt, et; v)
)
. (11)

Π
k+1

Σt (xt, et−1; v) is weakly increasing in xt since both Π
k

Σt(xt, et; v) and ℱk+1
t (xt, et−1; v) are

weakly increasing in xt, while �Σt(et;xt) is weakly increasing in xt by Assumption 2.

Finally, Lemma 2 establishes that the maximal SPE joint payoff depends on players’

outside options only through their sum.

Lemma 2. v′Σ = vΣ implies Π
eqm

Σt (xt, et−1; v′) = Π
eqm

Σt (xt, et−1; v).
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Proof. The proof of Lemma 2 is immediate from the algorithmic construction in the proof of

Theorem 1. Lemma 2 can also be viewed as a corollary of Lemma 1, once one observes that

players’ outside options do not appear in the objective (7) or in the constraint (8) except

through the sum vΣ. Intuitively, asymmetries in players’ outside options have no impact on

what can be achieved in equilibrium, since any such asymmetries can be “counter-balanced”

by appropriate wage payments.

Definition 5 (Maximal SPE joint payoff). Let Π
eqm

Σt (xt, et−1; vΣ) denote the maximal joint

payoff in any SPE from history (xt, et−1), as a function of players’ joint outside option vΣ.

5 Re-matching in a partnership economy

This section embeds the partnership game of Section 2 within a “partnership economy”. In

the context of this economy, I introduce “gender” to capture settings in which players are

born into different roles, e.g. buyer and supplier, worker and firm, entrepreneur and investor.

Partnership economy. There is a unit mass of atomless players, half “male” and half

“female”, with an equal flow of (1− �) births and deaths each period. Each player dies with

exogenous probability (1 − �) each period, where death is iid across periods, and seeks to

maximize his total undiscounted expected payoff prior to death.

Re-matching. Any player who is newly-born or whose partnership ended at time t (whether

due to the death of a partner or due to endogenous exit) is automatically and costlessly re-

matched with a new partner at time t+ 1. Further, each such re-matching is a “fresh start”

in two senses. First, players know nothing about their current partner’s history before their

partnership, including his age, number of past partnerships, and so on. Thus, strategies in

one partnership cannot be conditioned on what happened in previous partnerships. Second,

partnerships are stochastically independent, in the following sense.

Assumption 5 (Fresh start). Let {X ij1t1
t : t ≥ t1} denote the stochastic state of a potential

partnership between players i, j1 at time t, should they have begun such a partnership at

time t1. For all i, j1, j2, t2 ≤ t1, {X ij2t2
t+t2−t1 : t ≥ t1} is iid as {X ij1t1

t : t ≥ t1}.
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Assumption 5 imposes at least two substantive economic restrictions. First, shocks to a

partnership are totally idiosyncratic to the players in that partnership.15 This rules out the

possibility of economy-wide shocks (correlated across partnerships active at the same time),

which would of course be interesting to study in the context of enriching existing models

of the business cycle. Indeed, extending the present analysis to allow for correlated shocks

appears to be an important and promising direction for future research. Second, shocks to a

partnership have no bearing on future partnerships in which those players might participate.

Thus, the “state” here does not capture any payoff-relevant characteristics of the players

themselves (such as intelligence, beauty, or skills).

Each individual partnership fits in the model of Section 2, given discount factor � and

exogenous probability of separation � = 1 − �. (Each player will act as if maximizing

discounted payoffs relative to discount factor �, since he dies with probability (1 − �) each

period. Each player is exogenously separated iff his current partner dies, which happens

with probability 1 − � conditional on his own survival.) Of course, players’ outside options

v = (vi, vj) are endogenous in the partnership economy, as they depend on how players

expect future partnerships to proceed.

Since histories are unobserved, it is without loss to restrict attention to equilibria of

the overall partnership economy in which all pairs of players play the same SPE of the

partnership game.

Definition 6 (Partnership-economy equilibrium). A “partnership-economy equilibrium” is

a SPE of the partnership game with the extra property that each player’s outside option is

the expected present value of his/her option to exit and re-match with a new partner. That

is, any SPE that generates payoffs for each player i such that

vi = �E [Πeqm
i0 (X0; v)] . (12)

In particular, a necessary condition of partnership-economy equilibrium is that the players’

joint outside option can be “self-generated” in SPE (see Lemma 2 and Definition 5):

vΣ = �E [Πeqm
Σ0 (X0; vΣ)] . (13)

15For all (i1, j1) and (i2, j2), Assumption 5 requires that X
(i1,j1)
t , X

(i1,j2)
t , X

(i2,j2)
t all be independent.
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A social-welfare maximizing partnership-economy equilibrium is one that maximizes play-

ers’ joint outside option, among all partnership-economy equilibria. In general, such an

equilibrium need not maximize joint welfare within each partnership. However, such tension

between economy-wide and individual-partnership welfare only arises when the maximal ex

ante expected joint payoff that can be supported in SPE is discontinuous, when viewed as a

function of the players’ joint outside option.

Theorem 2 (Maximal social welfare). Suppose that E[Π
eqm

Σ0 (X0; vΣ)] is continuous in vΣ. In

all social-welfare maximizing partnership-economy equilibria, players’ expected joint payoff

when first matched is v∗Σ/�, where v∗Σ is the unique solution to (13). Further, players in each

partnership play a joint-welfare maximizing SPE given their endogenous outside options.

Social-welfare maximizing partnership-economy equilibria differ in how the surplus is di-

vided between the players. For example, if a wife anticipates that her next husband will pay

her a handsome wage, then her current husband may have to pay her a wage to induce her

to stay. In this way, even if there exists a social-welfare maximizing partnership-economy

equilibrium in which no wages are paid, other such equilibria may exist in which either

player receives the lion’s share of the surplus. On the other hand, all social-welfare max-

imizing partnership-economy equilibria specify the same efforts every period16 and indeed

are indistinguishable save by the endogenous division of surplus through wages.

Theorem 2 contains two key observations. First, assuming that players maximize joint

payoff within each partnership, there is a unique joint outside option v∗Σ that can be supported

in partnership-economy equilibrium. Intuitively, as players’ outside options become less

valuable, they have more reason to invest in their relationship. Thus, even if falling outside

options are bad news in the sense of lowering equilibrium payoffs, this loss is mitigated

(and possibly overwhelmed) by the fact that the players’ partnership becomes stronger and

more productive. Second, in the social-welfare maximizing partnership-economy equilibrium,

players within each partnership play the joint-welfare maximizing SPE.

16If (5) has multiple solutions at some history, then there will exist different joint-welfare maximizing

SPE in which each of these optimal IC efforts is played. Otherwise, the efforts specified in joint-welfare

maximizing SPE are unique.
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This second key finding is not obvious and, in fact, flies in the face of received wisdom

about welfare-maximizing play in repeated games with re-matching. Consider the example

of Section 3, in the special case in which c0 is non-random and ct = c0 for all t. In the

joint-welfare maximizing SPE of this repeated game, players either work and stay forever

(if v ≤ �
1−� ) or shirk and quit immediately (if v > �

1−� ). However, as explained in Section

5.2 of Mailath and Samuelson (2006), the social-welfare maximizing partnership-economy

equilibrium entails an “incubation period” whereby players shirk and stay for several periods

and then work and stay forever. Intuitively, since re-matching is costless and anonymous,

each player would gain from being a “serial shirker” if immediate cooperation could be

supported in partnership-economy equilibrium.

Theorem 2 shows that this failure of renegotiation-proofness in repeated games with re-

matching hinges crucially on the fact that the maximal joint payoff that can be achieved

in SPE is discontinuous in the players’ endogenous outside option. (In the example, joint

payoff 2/(1− �) can be supported for all vΣ ≤ �
1−� whereas only 2v can be supported when

vΣ > �
1−� .) Many combinations of assumptions generate the continuity property needed to

restore renegotiation-proofness of welfare-maximizing play. For example, suppose that the

initial state is augmented with a one-dimensional “partnership type” s0, defined as follows.

Definition 7 (Effort-incentivizing type). The initial state x0 includes an “independent effort-

incentivizing partnership type” s0 if (i) xt = (s0, yt) for all t ≥ 0, (ii) S0 ∈ R is atomless and

independent of (Yt : t ≥ 0), and (iii) �it(e
′
t; s0, yt) − �it(et; s0, yt) is strictly increasing in s0

for all i, t, yt,e
′
t ≻ et.

The partnership type s0 captures an aspect of “initial fit” between partners in that, all

else equal, higher partnership types lead to higher inside payoffs and lower effort costs.

(Both �it(et; s0, yt) − �it(0, 0; s0, yt) = �it(et; s0, yt) and −cit(et; s0, yt) = �it(et; s0, yt) −

�it(0, ejt; s0, yt) are strictly increasing in s0, for all t, xt, et.) Since partnership type can

have an arbitrarily small impact on payoffs, one may view Claim 2 as establishing the con-

tinuity condition of Theorem 2 in a perturbation of the model in which initial fit matters.

(The additional assumption of Claim 2, that there are finitely many efforts, is not essential

but simplifies and shortens the proof.)
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Claim 2. Suppose that the initial state includes an independent effort-incentivizing partner-

ship type, and that ℰt is finite for all t. Then E[Π
eqm

Σ0 (X0; vΣ)] is continuous in vΣ.

Steady-state distribution over partnership histories. One may view a partnership

in the economy as a Markov chain over histories ℎt = (xt; et−1), where any partnership that

ends at time t is understood to transition to a brand new partnership.

Suppose that a partnership is currently in history ℎt. Let et(ℎt) be the effort-profile played

in the optimal SPE at this history, as characterized in the proof of Theorem 1. Similarly, let

pexitt (ℎt) be the probability of endogenous exit, due to at least one player choosing to leave,

and let Xt+1(ℎt) ∼ Xt+1∣(ℎt, et(ℎt)) denote next-period’s state should the partnership persist

to that time. Transition probabilities among histories may be fully described as follows:

∙ With probability 1 − �2, the partnership will end due to death, after which a new

partnership will be created having random initial history H0 = X0.

∙ With probability �2pexitt (xt, et−1), the partnership will end due to some partner’s en-

dogenous departure, after which a new partnership will again be created.

∙ With probability (1−�2)(1−pexitt (xt, et−1)), the partnership will continue to time t+1,

with an augmented random history Ht+1 = (ℎt; et(ℎt);Xt+1(ℎt)).

Note that, through the process of death and re-birth, all histories that are reached on the

equilibrium path communicate and are positively recurrent. Thus, this Markov chain is

ergodic and there exists a unique steady-state distribution over histories. (The proof of

Lemma 3 is omitted to save space. See Sections 4.3 and 4.6.2 of Ross (1996), especially

Theorem 4.3.3.)

Lemma 3 (Steady-state distribution). For every partnership-economy equilibrium, there

exists a unique steady-state distribution over partnership histories.

In the remainder of this section, I discuss some qualitative features of a “typical” player’s

life experience, assuming play of a welfare-maximizing partnership-economy equilibria.
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Dating. At time t = 0, players will immediately exit any relationship in which the realized

initial state is in a decreasing subset of X0. Consequently, any player who is seeking a new

partner will typically experience several partnerships that each last exactly one period – and

in which both players exert zero effort because they anticipate no future interaction – before

finding a partner who they do not immediately leave.

Honeymoon. in any partnership that continues to a second period, players obviously ex-

pect higher continuation payoffs than during their unsuccessful dating phase. In fact, such

“newly-joined” partners will also enjoy higher stage-game payoffs than when they were un-

successfully dating, for two reasons. First, the initial state in a “successful date” will be

higher than in an unsuccessful one, allowing players to generate higher stage-game payoffs

from any time-0 efforts (Assumption 2). Second, since the players view their future rela-

tionship as generating higher continuation payoffs than their outside options, they can also

support non-trivial effort at time t = 0.

There is no guarantee that a partnership in its “honeymoon” will be very profitable or

very stable. For instance, it could be that the initial state lies very close to the threshold

below which the partnership would not have formed, and that there is a high likelihood of

break-up in the near future. On the other hand, depending of course on the distribution

of the initial state, a large fraction of new partnerships may have initial states far enough

above this threshold so that exit is very unlikely for several periods. If so, one would observe

a “dating and honeymoon effect” in which partnerships are very likely to end in their first

period, very unlikely to end in their second period, and then somewhat more likely to end

over the next several periods. The honeymoon effect has also been articulated by Fichman

and Levinthal (1991) in a non-strategic context.17

Hard times. The state of a partnership may rise and fall many times, in ways that affect

the extent of cooperation that can be supported in the welfare-maximizing equilibrium. This

volatility of players’ willingness to cooperate creates payoff volatility that in turn creates an

17Fichman and Levinthal (1991) consider an organization’s decision to form and disband, when profits

follow an exogenous random walk. The analysis here differs in several ways, the most important being that

profits are endogenous.
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endogenous option value to remaining in the relationship. Consequently, players tend to

remain in relationships even when stage-game payoffs are low, in hopes that their partner’s

behavior will improve.

This feature of equilibrium behavior appears consistent with an interesting fact about

marital separation in the United States, if one can interpret reports of “happiness” as re-

flecting stage-game payoffs. The National Survey of Families and Households (NSFH) of

1987-1988 asked about two thousand individuals who had experienced marital separation

relatively recently to evaluate their experience.18 When comparing their overall happiness

“now, compared to the year before you separated”, 57.8% described their current happiness

as “much better” while only 2.9% described it as “much worse.” One possible explanation of

this survey result is that spouses’ expectations regarding the future performance of a mar-

riage (relative to their outside options) changes over time, so that there is an option value of

staying married.19 This option value could arise from exogenous variation in the fundamen-

tals of the marriage (“perhaps my wife will get a raise”) and/or from endogenous variation

in spousal behavior (“perhaps my husband will stop cheating on me”). This paper’s analysis

shows how strategic behavior can amplify the option-value effects due to exogenous variation

(“perhaps I will get a raise, after which my husband will stop cheating on me”).

Good times and golden years. Players stay in the partnership during hard times in the

hope that they will enjoy positive shocks that will enable them to enjoy higher profits and

greater stability in the future. Indeed, depending on the details of the stochastic process

(Xt : t ≥ 0), there may be an increasing subset of the state-space from which the partnership

is certain never to end, save by exogenous death. Such “golden years” can arise for two sorts

of reasons. First, there may be an absorbing portion of the state-space, that is everywhere

high enough to support continuation of the partnership. Second, equilibrium efforts in high

enough states may be sufficiently high and feedback from profitable efforts may be positive

18 All respondents had experienced a separation since January 1, 1977. See www.ssc.wisc.edu/nsfh, ac-

cessed June 4, 2009.
19Other plausible explanations have nothing to do with uncertainty about how the marriage will perform,

such as selection bias (if happier individuals are more likely to be surveyed) or choice-supportive bias (if

respondents tend to remember the past in ways that help justify their decisions).

26



enough to overwhelm any exogenous shocks that might cause the relationship to deteriorate.

6 Comparative statics

The model imposes essentially no restriction on how efforts can control the stochastic pro-

cess driving inside payoffs. Consequently, there is little that one can say in general about

how efforts in the welfare-maximizing SPE vary with the state, nor on how the history of

efforts impacts equilibrium variables such as players’ payoffs, efforts, and exit.20 Indeed,

although Theorem 1 established that players’ joint payoff in the joint-welfare maximizing

SPE is weakly increasing in the state xt, neither realized joint stage-game payoff nor joint

continuation payoff need be weakly increasing in xt. Consequently, partners may exert lower

efforts and even be more likely to exit in higher states. However, additional comparative

statics are available in a notable special case, when players’ efforts have no impact on the

future distribution of payoffs.

Definition 8 (Exogenous stochastic process). (Xt : t ≥ 0) is an exogenous stochastic process

if the distribution of Xt depends only on (t, xt−1).21

Given exogeneity, players’ effort-decisions at time t have no impact on the set of SPE

continuation payoffs. Thus, in any joint-welfare maximizing SPE, players will choose what-

ever efforts maximize joint stage-game payoff, among those satisfying the relevant incentive-

compatibility constraint.

Theorem 3 (Comparative statics with an exogenous state). Suppose that (Xt : t ≥ 0) is an

exogenous stochastic process. In the joint-welfare maximizing SPE, at every history reached

on the equilibrium path: (i) players’ joint stage-game payoff and joint continuation payoff

is weakly increasing in xt; and (ii) partnership stopping time conditional on xt is weakly

increasing in xt, in the sense of first-order stochastic dominance.

20In various special cases of the model, not described here because of space restrictions, one can establish

additional comparative statics vis-a-vis equilibrium effort and its impact on other equilibrium variables.
21The current state may depend on the full history of past states. For example, if xt = (xt−1, yt) for all

t > 0, then the distribution of Xt can depend on all of the “new information” (x0, y1, ..., yt−1) learned during

the course of the partnership.

27



Suppose that (Xt : t ≥ 0) is an exogenous stochastic process and that xt ∈ ℝ for all t.

An immediate and potentially testable corollary of Theorem 3 is that partnership stopping

time conditional on players’ realized time-t joint stage-game payoff �Σt is weakly increasing

in �Σt, in the sense of first-order stochastic dominance.

7 Concluding Remarks

A broad empirical literature from Topel and Ward (1992) on employment, Levinthal (1991)

on firm survival, and Stevenson and Wolfers (2007) on marriage have established certain

stylized facts about relationship dynamics. For example, one common thread is that part-

nerships tend to exhibit a “survivorship bias” in that older partnerships are often more

profitable and less likely to end in the near future.

Theory has offered several sorts of explanations of the survivorship bias. (i) Incomplete

information: Players learn about each other through actions and partnership survival is

associated with a positive selection. See e.g. Ghosh and Ray (1996) in which discount

rates are private and Watson (1999) with private stage-game payoffs. (ii) Exogenous shocks:

Payoffs are subject to exogenous shocks, with partnership survival again associated with a

positive selection. See e.g. Jovanovic (1979a) in which a worker learns about the productivity

of his match with a firm. (iii) Endogenous investment: Relationships that survive are more

likely to be those in which players have and will continue to invest. See e.g. Jovanovic (1979b)

in which a worker can increase his current match profits at a cost. A fourth important type

of theory has other implications for partnership dynamics. (iv) Imperfect monitoring: Play

must occasionally transition from cooperative to non-cooperative phases to overcome an

incentive problem created by imperfect monitoring. See e.g. Green and Porter (1984).

This paper abstracts from issues of incomplete information and imperfect monitoring, and

instead adds to the literature on exogenous shocks and endogenous investment. I develop

a flexible and tractable model of complete-information partnerships with stochastic payoffs

and endogenous exit, in which welfare-maximizing equilibria are relatively simple and can

generate a variety of comparative statics. This model is then used to derive the steady-state

properties of an economy of partnerships with anonymous re-matching.
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The theory developed here has different implications for partnership dynamics than ex-

isting theories. For instance, consider the patterns of effort that arise in the example of

Section 3, in the special case without exit (when players’ outside option is zero), compared

with those in Ghosh and Ray (1996) or in Green and Porter (1984). Here, partners some-

times shirk and sometimes work. Further, stochastic transitions between work and shirk

regimes have the following features (among others): (a) “regime persistence”, the likelihood

that partners will switch from working to shirking or vice versa tends to decrease the longer

that they have continued the same behavior; (b) “back-tracking”, while partnerships become

more cooperative over time on average, individual partnerships may become less coopera-

tive for a while, then return to a more cooperative footing for a while, and so on. Ghosh

and Ray (1996)’s incomplete information model exhibits regime persistence but not back-

tracking. In their model, all partnerships that have lasted longer are less likely to break

down than all brand-new partnerships. On the other hand, Green and Porter (1984)’s im-

perfect information model exhibits backtracking but not regime persistence. Indeed, given a

fixed monitoring technology, a cooperative partnership will enter a punishment phase with

constant rather than declining probability. (Also, transitions back to the cooperative regime

violate regime persistence if the punishment regime is of fixed length.)

I conclude with a brief discussion of a few interesting potential directions for future work.

Macroeconomic volatility. One promising direction for future work would be to consider the

macroeconomic implications of this model of the economy, allowing for the more general

possibility that performance is correlated across active partnerships and that re-matching is

costly. For example, suppose that different partnerships that are active at the same time

are subject to common shocks as well as idiosyncratic private shocks, but that the cost of

re-matching does not change over time. One conjecture in this context is that equilibrium

partnership dynamics will have a dampening effect on macroeconomic shocks. After a string

of positive common shocks, partnerships will generally be very profitable, potentially making

the cost of re-matching negligible relative to the productivity differences across partnerships.

In this case, partnerships will tend to be less stable, dampening the benefits of positive

common shocks. On the other hand, after a string of negative shocks, the cost of re-matching

may loom large enough that players’ outside option may simply be to go out of business. In
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this case, current partners have more incentive to stay and work together, dampening the

negative effect of negative common shocks.

Changing individuals. In this paper, each player’s next partnership is stochastically identical

to his current one. In other words, all shocks are to partnerships, not to the individuals

in those partnerships. Of course, individuals may also change in ways that will persist in

a new match. Enriching the model to allow for such personal characteristics is important

and could have profound implications for the steady-state distribution of the partnership

economy. For one thing, the set of players seeking to re-match will be adversely selected.

This could increase active partners’ desire to avoid the re-matching market, creating a still

deeper adverse selection in this market.

Endogenous learning. The model here can capture a wide array of “learning” settings in the

spirit of Jovanovic (1979a), including ones in which players make investments to increase the

precision of a public signal about an unobserved payoff-relevant parameter. (Such investment

could be one aspect of players’ multi-dimensional effort.) When investing in a more precise

signal of the underlying state, players create short-term volatility in their beliefs about the

state. Such volatility can increase the value of the players’ option to exit, but could also be

harmful if it disrupts an otherwise productive partnership. This suggests a speculation, that

players in a stable relationship may actively seek to avoid uncovering new information, while

players in a rocky relationship may seek to uncover as much new information as possible.
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Appendix

Proof of Theorem 1.

Proof. Let Π
eqm

t (xt, et−1; v) ∈ R2 be the players’ payoff profile in a SPE that maximizes joint

welfare among all SPE from history (xt, et−1), and let Π
eqm

Σt (xt, et−1; v) = Π
eqm

Σt (xt, et−1; v).

Outline of proof. I construct a monotonically decreasing sequence of bounds on SPE joint wel-

fare from each history, (Π
k

Σt(xt, et−1; v) : k ≥ 0), that converges pointwise to Π
eqm

Σt (xt, et−1; v).

Further, Π
k

Σt(xt, et−1; v) is non-decreasing in xt for each k, as well as in the limit Π
eqm

Σt (xt, et−1; v).

Part I: Decreasing sequence of bounding payoff-profile sets. By Assumption 1, there exists a

uniform upper bound M on players’ joint payoff at any history. Define Π
0

Σt(xt, et−1; v) = M
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at all histories. Clearly, Π
0

Σt ≥ Π
eqm

Σt . Next, for all k ≥ 1, define Π
k

Σt(xt, et−1; v) recursively

as follows (using shorthand et = (et−1, et)):

Π
k

Σt(xt,et−1; v) = max
et

(
�Σt(et;xt) + max

{
vΣ, �E

[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]})

(14)

subject to cΣt(et;xt) ≤ max
{

0, �E
[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]
− vΣ

}
(15)

Assuming that Π
k−1

Σt+1(xt+1, et; v) are upper bounds on joint payoff at time t+ 1, then (15) is

a necessary condition for efforts et to be supported in any SPE from history (xt+1, et). Proof:

Players at time t expect joint inside continuation payoff of at most �E
[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]

should they choose effort-profile et. If players’ joint outside option vΣ exceeds this bound,

then at least one player strictly prefers to quit and neither player can be incentivized to

exert any costly effort. Otherwise, players’ joint cost of effort cΣt(et;xt) must be less than

or equal to the amount by which their joint inside continuation payoff exceeds their joint

outside option. (Otherwise, at least one player would strictly prefer to deviate by exerting

zero effort and then quitting.)

Indeed, (15) is also a sufficient condition to support time-t efforts et in SPE given con-

tinuation payoffs Π
k−1

Σt+1(xt+1, et; v). Proof: Players are willing to exert efforts et and then

receive net wage zit = wjt−wit, rather than exerting zero effort, receiving zero net wage, and

quitting, as long as cit(et;xt) ≤ E
[
Π
k−1

it+1(Xt+1, et; v)∣xt, et
]
− vΣ− zit for all i. In particular,

efforts et are supported by a credible promise of net wage

zit =

(
�E
[
Π
k−1

jt+1(Xt+1, et; v)∣xt, et
]
− vj − cjt(et;xt)

)
−
(
�E
[
Π
k−1

it+1(Xt+1, et; v)∣xt, et
]
− vi − cit(et;xt)

)
2

Given these wages (received only after both players commit to remain in the relationship),

each player i prefers not to quit since, given (15),

�E
[
Π
k−1

it+1(Xt+1, et; v)∣xt, et
]

+ zit ≥ vi + cit(et;xt) ≥ vi

Since Π
0

Σt(xt, et−1; v) are uniform upper bounds on joint payoff, Π
0

Σt(xt, et−1; v) ≥ Π
1

Σt(xt, et−1; v).

By induction, Π
k

Σt(xt, et−1; v) is non-increasing in k. (The value of the maximization (14) is

non-decreasing in continuation payoffs. Thus, Π
k

Σt+1(xt+1, et; v) ≤ Π
k−1

Σt+1(xt+1, et; v) for all

(xt+1, et) implies Π
k+1

Σt (xt, et−1; v) ≤ Π
k

Σt(xt, et−1; v).) Further, by induction, Π
k

Σt(xt, et−1; v) ≥
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Π
eqm

Σt (xt, et−1; v) for all k. (Higher-than-equilibrium payoffs can be supported given higher-

than-equilibrium continuation payoffs. Thus, the fact that Π
k−1

Σt (xt, et−1; v) ≥ Π
eqm

Σt (xt, et−1; v)

implies Π
k

Σt(xt, et−1; v) ≥ Π
eqm

Σt (xt, et−1; v).)

Part II: These upper bounds on joint welfare are non-decreasing in xt.

Base step: k = 0. Π
0

t (xt, et−1; v) is constant and hence trivially non-decreasing in xt.

Induction step: k ≥ 1. Suppose that Π
k−1

t (xt, et−1; v) is non-decreasing in xt for all t. Ob-

serve that, for any xHt ર xLt ,

E[Π
k−1

Σt+1(Xt+1; et; v)∣xHt , et]) =

∫ ∞
0

Pr(Π
k−1

Σt+1(Xt+1; et; v) > z∣xHt , et; v)dz

≥
∫ ∞

0

Pr(Π
k−1

Σt+1(Xt+1; et; v) > z∣xLt , et; v)dz (16)

= E[Π
k−1

Σt+1(Xt+1; et; v)∣xLt , et])

By the induction hypothesis, {xt+1 ∈ Xt+1 : Π
k−1

t+1 (Xt+1; et; v) > z} is an increasing subset of

Xt+1 for all z. Inequality (16) now follows from Assumption 4. Thus, for any given effort-

history et, max
{
vΣ, �E

[
Π
k−1

Σt+1(Xt+1, et; v)∣xt, et
]}

is non-decreasing in xt, so that higher xt

slackens the IC-constraint (15) while increasing the second term of (14). Finally, the first

term of (14) is non-decreasing in xt by Assumption 2. All together, we conclude that the

value of the maximization (14) is non-decreasing in xt. This completes the desired induction.

Let Π
∞
Σt(xt, et−1; v) denote the pointwise limit of Π

k

Σt(xt, et−1; v) as k → ∞. Since

Π
k

Σt(xt, et−1; v) is non-decreasing in xt for all k, Π
∞
Σt(xt, et−1; v) inherits this monotonicity

as well (given the continuity of stage-game payoffs imposed by Assumption 1).

Part III: Limit of upper bounds can be achieved in SPE. It suffices now to show that

Π
∞
t (xt, et−1; v) = Π

eqm

t (xt, et−1; v). As shown earlier, Π
∞
t (xt, et−1; v) ≥ Π

eqm

t (xt, et−1; v). Let

et(xt, et−1) denote a limit of any sequence of solutions to (14) subject to (15), as k →∞. By

construction (and assumed continuity of stage-game payoffs), efforts et(xt, et−1) are incentive-

compatible if players expect continuation play in later periods that generates time-(t + 1)

payoffs of Π
∞
t+1(xt+1, et; v) for each player. Again by construction, these efforts generate

continuation payoffs Π
∞
t+1(xt+1, et; v); thus, these strategies constitute a welfare-maximizing

SPE. Thus, Π
∞
t (xt, et−1; v) ≤ Π

eqm

t (xt, et−1; v). This completes the proof.
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Proof of Theorem 2

Proof. First, the bulk of the proof establishes that (13) has a unique solution. Second, this

solution corresponds to a social-welfare maximizing partnership-economy equilibrium.

Part I: vΣ − E[�Π
eqm

Σ0 (X0; vΣ)] is strictly increasing in vΣ. I will show the stronger result

that vΣ − E[Π
eqm

Σ0 (X0; vΣ)] is non-decreasing in vΣ.

In a slight variation on the notation used in the text, let Π
eqm

Σt (ℎt; v
ℎ
Σ) denote the maximal

SPE joint payoff from history ℎt = (xt, et−1) given joint outside option vℎΣ. Consider now a

lower joint outside option vlΣ ∈ [0, vℎΣ) and let ΠΣt(ℎt; v
l
Σ) denote the joint payoff that would

result should players with joint outside option vlΣ mimic welfare-maximizing play as if it

were vℎΣ. Note that the stage-game payoff process and the partnership stopping time T are

identically distributed when players follow the same strategies. Thus, the only difference in

payoffs arises from the fact that players only get vlΣ when the partnership ends instead of

vℎΣ. In particular, for all histories ℎt,

Π
eqm

Σt (ℎt; v
ℎ
Σ)− ΠΣt(ℎt; v

l
Σ) = (vℎΣ − vlΣ)

∑
t′≥t

�t
′−t Pr(T = t′∣ℎt) ≤ vℎΣ − vlΣ (17)

Let et(v
ℎ
Σ) denote the efforts played in the optimal SPE given joint outside option vℎΣ.

Observe that these efforts remain incentive-compatible given lower joint outside option vlΣ:

E
[
ΠΣt+1(Ht+1; vℎΣ)∣ℎt, et(vℎΣ)

]
≥ E

[
Π
eqm

Σt+1(Ht+1; vℎΣ)∣ℎt, et(vℎΣ)
]
−
(
vℎΣ − vlΣ

)
(18)

≥ vℎΣ + cΣt(et(v
ℎ
Σ);xt)

�
−
(
vℎΣ − vlΣ

)
(19)

> cΣt(et(v
ℎ
Σ);xt) + vlΣ

(18) follows from (17). (19) follows from the incentive-compatibility constraint (8) as ap-

plied to the optimal equilibrium given vℎΣ, for any efforts having non-zero cost. (Mimicking

zero-cost efforts is trivial in SPE regardless of outside options.) By similar logic, staying is

incentive-compatible given these mimicking strategies whenever players stay in the optimal

equilibrium given joint outside option vℎΣ. (Details omitted to save space.) Thus, these mim-

icking strategies constitute a SPE given vlΣ. In particular, E[Π
eqm

Σ0 (X0; vlΣ)] ≥ E[Π0(X0; vlΣ)].

Thus, E[Π
eqm

Σ0 (X0; vℎΣ)]− E[Π
eqm

Σ0 (X0; vlΣ)] ≤ vℎΣ − vlΣ as desired.
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Part II: vΣ = E[�Π
eqm

Σ0 (X0; vΣ)] has a unique solution v∗Σ. E[�Π
eqm

Σ0 (X0; 0)] ≥ 0 since each

player can guarantee at least zero payoff by exerting zero effort every period (Assumption 1).

On the other hand, since joint stage-game payoff is uniformly bounded (again by Assumption

1), there exists some outside option v such that E[�Π
eqm

Σ0 (X0; v)] < v regardless of players’

efforts. Existence and uniqueness of a solution to vΣ − E[�Π
eqm

Σ0 (X0; vΣ)] = 0 now follows

immediately from the fact that this difference is continuous (by assumption) and strictly

increasing in vΣ (by Part I).

Part III: v∗Σ is the maximal joint outside option in any partnership-economy equilibrium.

Given any joint outside option vΣ > v∗Σ, players’ (discounted) expected equilibrium joint

payoff should they exit and re-match is at most E[�Π
eqm

Σ0 (X0; vΣ)] < vΣ. Thus, joint outside

option vΣ cannot be supported in any partnership-economy equilibrium. However, I have

already shown that v∗Σ can be supported in equilibrium.

Proof of Claim 2

Proof. Part I: Preliminaries. Since x0 = (so, y0), continuity of E[Π
eqm

Σ0 (X0; vΣ)] in vΣ follows

from continuity of E[Π
eqm

Σ0 (S0, y0; vΣ)] for all y0. Thus, without loss I will focus on the special

case in which the initial state is simply the partnership type, X0 = S0.

Maximal SPE ex ante expected joint payoff may be expressed as

E
[
Π
eqm

Σ0 (S0, ; vΣ)
]

=
∑
t≥0

�t
(

Pr(T ≥ t)E [�Σt(et(Ht; vΣ);ℎt)∣T ≥ t] + vΣ Pr(T = t)

)
where T is the random stopping time of the partnership in the optimal SPE (which depends

on vΣ), and et(ℎt; vΣ) is the prescribed effort-profile in the optimal SPE in history ℎt =

(xt, et−1). Recall that et(ℎt; vΣ) maximizes joint payoff subject to the IC-constraint that

joint continuation payoff is greater than or equal to joint outside option plus joint cost of

effort:22

cΣt(et(ℎt);ℎt) ≤ �E
[
Π
eqm

Σt+1(ℎt, et(ℎt; vΣ), Xt+1; vΣ)
]
− vΣ (20)

22To simplify the presentation, I focus on the case in which there is a unique such maximizer at almost all

histories reached on the equilibrium path. More generally, the proof extends almost unchanged, when one

recognizes that a discontinuity of E
[
Π
eqm

Σ0 (S0, ; vΣ)
]

in vΣ requires that the IC-constraint be binding on all

such maximizers at a set of histories reached with positive probability.
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An increase in joint outside option from vΣ to vΣ +" has two effects on the maximal SPE

joint payoff. First, the direct effect is that players enjoy higher joint payoff when quitting

and quit whenever they were previously almost indifferent to doing so. This direct effect

increases joint payoff by at most ". Second, since �E
[
Π
eqm

Σt+1(ℎt, et(ℎt; vΣ), Xt+1; vΣ)
]
− vΣ

is strictly decreasing in vΣ (see the proof of Theorem 2), an indirect effect is that players

cannot support as many effort-profiles at some histories. This decreases payoffs at those

histories, inducing more exit and less effort at previous histories, and so on in a backward

cascade that decreases joint payoff and may do so discontinuously.

Part II: (20) is binding with zero probability. Fix any joint outside optin vΣ, effort-profile et,

effort-profile history et−1, and sequence of states x1→t = (x1, ..., xt) realized after time 0. By

assumption, cit(et; s0,x1→t) is strictly decreasing in s0 for each player i while, by the proof of

Theorem 1, E
[
Π
eqm

Σt+1(s0,x1→t, et−1, et, Xt+1; vΣ)
]

is weakly increasing in s0. Thus, if the IC-

constraint (20) binds for some efforts et at history (s0,x1→t, et−1), then for all sl0 < s0 < sℎ0 it

fails at history (sl0,x1→t, et−1) and is strictly satisfied at history (sℎ0 ,x1→t, et−1). In particular,

let et(ℎt) denote the effort-profile prescribed in the joint-welfare maximizing SPE from history

ℎt. Then (20) binds on et(s0,x1→t, et−1) for a zero-measure set of types s0 ∈ R. We conclude

that, with probability one in the joint-welfare maximizing SPE, the IC-constraint will not

be binding on any effort-profile prescribed on the equilibrium path.

Part III: Non-binding (20) implies that maximal SPE joint payoff is continuous in vΣ. I

will prove right-continuity here, that lim"→0 Π
eqm

Σt (ℎt; vΣ +") = Π
eqm

Σt (ℎt; vΣ) for all vΣ and all

histories ℎt reached with probability one on the equilibrium path. The proof of left-continuity

is similar, and omitted to save space.

For this final step, I employ a variation on the algorithm used in the proof of Theorem

1. Fix v̂Σ. For all histories ℎt and " ≥ 0, define

Π
1

Σt(ℎt; v̂Σ + ") = Π
eqm

Σt (ℎt; v̂Σ) + "

Since the positive “direct effect” of higher joint outside option discussed earlier is at most "

and the “indirect effect” is always negative, Π
1

Σt(ℎt; v̂Σ + ") > Π
eqm

Σt (ℎt; v̂Σ + "). Also, clearly,

Π
1

Σt(ℎt; vΣ) is continuous in vΣ for all t and all histories ℎt.
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Next, as in Steps A-C of the algorithm illustrated in Figure 5, define

Π
1

Σt(ℎt, et; vΣ) = max
{
vΣ, �E

[
Π

1

Σt+1(ℎt, et, Xt+1; vΣ)∣ℎt, et
]}

ℱ2
t (ℎt; vΣ) =

{
et : vΣ + cΣt(et;xt) ≤ Π

1

Σt(ℎt, et; vΣ)
}

Π
2

Σt(ℎt; vΣ) = max
et∈ℱ2

t (ℎt;vΣ)

(
�Σt(et;xt) + Π

1

Σt(ℎt, et; vΣ)
)

As already shown, Π
1

Σt+1(ℎt, et, xt+1; vΣ) is continuous in vΣ for all histories ℎt+1 = (ℎt, et, xt+1).

Thus, Π
1

Σt(ℎt, et; vΣ) is continuous in vΣ for all t, ℎt as well. Next, since the set of effort-

profiles is finite, Part II above implies that the IC-constraint is not (exactly) binding for

any effort-profile at a probability-one set of histories reached on the equilibrium path. At

all such histories, ℱ2
t (ℎt; vΣ) is unchanging in a neighborhood of v̂Σ. We conclude that, at a

probability-one set of equilibrium histories, Π
2

Σt(ℎt; vΣ) is continuous in vΣ at v̂Σ.

Repeating this argument for all k ≥ 1, we conclude that Π
k

Σt(ℎt; vΣ) is continuous in vΣ

at v̂Σ at a probability-one set of equilibrium histories. Such continuity carries over to the

limit as well, so that maximal equilibrium joint payoff Π
eqm

Σt (ℎt; vΣ) is continuous in vΣ at a

probability-one set of histories. In particular, E[Π
eqm

Σt (S0; vΣ) is continuous in vΣ at v̂Σ.

Proof of Theorem 3

By Theorem 1, joint payoff Π
eqm

Σt (xt, et−1; v) in the joint-welfare maximizing SPE is weakly

increasing in xt for all (et−1, v) . Given an exogenous stochastic process, further, such

payoffs do not depend on the history of efforts. Since the outside option v is held fixed, I

will henceforth use the simpler notation Π
eqm

Σt (xt) here.

Proof of (i). Recall that Π
eqm

Σt (xt) = maxet
(
�Σt(et;xt) + E

[
�Π

eqm

Σt+1(Xt+1)∣xt
])

subject to the

IC-constraint E
[
�Π

eqm

Σt+1(Xt+1)∣xt
]
≥ cΣt(et;xt) + 2v. Joint continuation payoff

E
[
�Π

eqm

Σt+1(Xt+1)∣xt
]

=

∫ ∞
0

Pr
(
�Π

eqm

Σt+1(Xt+1) > z∣xt
)

dz (21)

is weakly increasing in xt: {xt+1 : �Π
eqm

Σt+1(Xt+1) > z} is an increasing subset of Xt+1 so that,

by Assumption 4, each of the probability terms in (21) is weakly increasing in xt. Finally,

since efforts do not control future payoffs, time-t efforts in the optimal SPE will be chosen

to maximize joint stage-game payoff subject to the IC-constraint. Since joint continuation
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payoff is weakly increasing in xt, so is the set of effort-profiles et satisfying the IC-constraint.

Consequently, realized joint stage-game payoff is weakly increasing in xt.

Proof of (ii). In the optimal SPE, the partnership ends in the first period in which joint

continuation payoff is less than 2v (and joint continuation payoff depends only on the current

state). Let pkt (xt) denote the probability that the partnership will end at time t + k, given

that it is active at time t in state xt. I need to show that, for each k ≥ 1, pkt (xt) is weakly

increasing in xt. The proof is by induction.

Base step. By Theorem 3(i), p1
t′(xt′) is weakly increasing in xt′ , including for t′ = t+ k − 1.

Induction step. As the induction hypothesis, suppose that the following is true for some

t′ + 1 ∈ [t+ 1, t+ k − 1]:

∙ pmt′+1(xt′+1) is weakly increasing in xt′+1 for all m = 1, ..., t+ k − t′ − 1.

To complete the proof, it suffices to establish that pmt′ (xt′) is weakly increasing in xt′ for all

m = 1, ..., t+k− t′, since then we may conclude by induction that pkt (xt) is weakly increasing

in xt. (The argument applies for all k ≥ 1.)

First, Theorem 3(i) implies that p1
t′(xt′) is weakly increasing in xt′ . For all m > 0,

pmt′ (xt′) = p1
t′(xt′)E

[
pm−1
t′+1 (xt′ , Xt′+1)

∣∣xt′] (22)

(The partnership survives for m periods iff it survives for m− 1 periods after first surviving

for one period.) The base step showed that the first term of (22) is weakly increasing in xt′ .

It suffices now to show the same of the expectation term

E

[
pm−1
t′+1 (xt′ , Xt′+1)

∣∣xt′] =

∫ 1

0

Pr

(
pm−1
t′+1 (xt′ , Xt′+1) > p

∣∣xt′)dp (23)

By the induction hypothesis, each set {xt′+1 ∈ Xt′+1 : pm−1
t′+1 (xt′+1;xt′) > p} is both an increas-

ing subset of Xt′+1 and weakly increasing in xt′ (relative to set inclusion). By Assumption

4, we conclude that each of the probability-terms in (23) is weakly increasing in xt′ . This

completes the proof.
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