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Abstract

The combinatorial assignment problem has three principal features: (i) agents require bundles of

indivisible objects; (ii) monetary transfers are prohibited; and (iii) the market administrator cares

about both e¢ ciency and fairness. An example of this problem is the assignment of course sched-

ules to students. Impossibility theorems have established that the only e¢ cient and strategyproof

mechanisms in this environment are dictatorships. Any non-dictatorship solution will involve com-

promise of e¢ ciency or strategyproofness.

This paper proposes a solution to the combinatorial assignment problem. Since we lack attain-

able criteria of fairness for this environment, I begin by formalizing two such criteria. The maximin

share guarantee, based on the idea of divide-and-choose, generalizes and weakens fair share. Envy

bounded by a single good weakens envy freeness. Both criteria recognize that indivisibilities com-

plicate fair division, but exploit the fact that bundles of indivisible objects are somewhat divisible.

Dictatorships fail both criteria.

Second, I propose a speci�c mechanism, the Approximate Competitive Equilibrium from Equal

Incomes Mechanism, which satis�es the fairness criteria while maintaining attractive compromises

of e¢ ciency and strategyproofness. An exact CEEI may not exist due to indivisibilities and comple-

mentarities. I prove existence of an approximate CEEI in which: (i) incomes (in arti�cial currency)

must be unequal but can be arbitrarily close together; (ii) the market clears with some error, which

approaches zero in the limit and is small for realistic problems. I then show that this approx-

imation satis�es the fairness criteria, so long as income inequality is set su¢ ciently low. Also,

the mechanism based on this approximation satis�es an intuitive relaxation of strategyproofness,

strategyproof in a large market. The theoretical case for the proposed mechanism is complemented

with empirical analysis, using data on course allocation at Harvard.



1 Introduction

How can a set of indivisible objects be allocated e¢ ciently and fairly amongst agents who require

bundles of the objects? An instance of this problem occurs at many educational institutions. The

objects are seats in courses, which may be scarce due to limits on class size. The agents are students,

each of whom requires a schedule (bundle) of courses.1 The allocation problem is complicated by an

exogenous restriction against using monetary transfers to balance supply and demand.2 A closely

related problem, within �rms, is the assignment of �xed-wage shifts (or tasks) to interchangeable

workers.3

This combinatorial assignment problem4 (or course-allocation problem) is one feature removed

from several canonical market design problems that have received considerable attention and have

compelling solutions. It is like a combinatorial auction problem, except for the restriction against

using real money.5 It is like a school assignment problem, except that agents demand bundles of

goods, rather than single goods.6 It is like a matching problem except that preferences are one-

sided: course seats do not have preferences over the students.7 And it is like a classical fair-division

(or cake-cutting) problem, except that the goods are indivisible.8

Yet, progress on this problem has been elusive. There are two related reasons. First, we lack

realistic criteria of fairness for this environment. Second, even if we can articulate criteria of fairness,

there is likely to be a tension between these criteria and e¢ ciency. A series of papers has shown

that the only mechanisms for this problem that are ex-post Pareto e¢ cient and strategyproof are

1As an illustration of the problem and the market-designer�s objectives, consider the opening sentences of the
document that describes Wharton�s course-allocation procedure: "Beginning with the 1996-97 academic year, we
introduced an auction-based process for registering in Wharton�s MBA electives. The auction is designed to achieve
an equitable and e¢ cient allocation of seats in elective courses when demand exceeds supply." (Wharton, 2007.
Emphasis in original.)
News coverage of the course-allocation problem can be found in Bartlett (2008), Guernsey (1999), and Neil (2008).
2Levitt (2008a, b) describes instances where university administrators sanctioned students who used real money

in trades of course seats. Roth (2007) and Sandel (1998) describe numerous other markets that have exogenous
constraints against the use of money.

3The health care services company McKesson (2008) o¤ers an "equitable open shift management" software product,
eShift, that is used by many hospitals to assign nurses to vacant shifts based on their preferences. Interestingly, the
software has both a �xed-price version and an auction version, depending on whether the client hospital has discretion
to use �exible wages (e.g., due to union restrictions).

4The term "assignment" is used in allocation problems with and without monetary transfers. A more speci�c
name of the problem I study would be "combinatorial assignment problem without monetary transfers."

5This literature traces to Vickrey (1961). See Milgrom (2004) and Cramton et al (2006) for textbook treatments
that discuss both theory and applications.

6See Shapley and Scarf (1974), Roth (1982), Abdulkadiroglu and Sonmez (1998), Sonmez (1999), Pathak (2007),
and Abdulkadiroglu et al (2006). This problem is often called the "house allocation problem."

7The seminal reference is Gale and Shapley (1962). See Roth and Sotomayor (1990) for a textbook treatment and
Roth (1984) and Roth and Peranson (1999) on the most well-known instance of such a market.

8The classical references are Steinhaus (1948) and Dubins and Spanier (1961). See Moulin (1995), Brams and
Taylor (1996), and Robertson and Webb (1998) for textbook treatments.
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dictatorships.9 But dictatorships result in very unequal outcomes: some students get to choose all

their courses before others get to choose any. Any non-dictatorship solution will involve compromise

of e¢ ciency or strategyproofness.

This paper proposes a solution to the combinatorial assignment problem. First, I propose two

realistic criteria of outcome fairness, the maximin share guarantee and envy bounded by a single

good. An agent�s maximin share is de�ned as the most preferred bundle he could guarantee himself

as divider in divide-and-choose against adversaries. Maximin share generalizes and weakens fair

share (Steinhaus, 1948) to accomodate environments with indivisibilities and complementarities.

An allocation satis�es the maximin share guarantee if all agents obtain a bundle they weakly prefer

to their maximin share. An allocation satis�es envy bounded by a single good if, whenever agent

i envies agent j�s bundle (Foley, 1967), by removing some single object from j�s bundle we can

eliminate the envy. Both criteria explicitly recognize that indivisibilities complicate fair division,

but exploit the fact that bundles of indivisible objects are somewhat divisible.

To illustrate, suppose there are two agents and four indivisible objects: two diamonds (big and

small) and two rocks (pretty and ugly).10 The criteria are satis�ed by allocations in which one

agent gets the bundle {big diamond, ugly rock} while the other gets {small diamond, pretty rock}.

(The procedural fairness requirement of symmetry ensures that each agent has an equal chance at

the bundle with the big diamond.) The agent who gets the small diamond may envy the other, but

he does as well as he could have as divider in divide-and-choose, and his envy is bounded by a single

object (the big diamond). Dictatorships fail both criteria, because whichever agent chooses �rst

obtains {big diamond, small diamond}, leaving the other agent with just the rocks. The criteria

thus formalize what is so unfair about dictatorships in multi-unit assignment. Note however that

dictatorships actually satisfy the proposed criteria for single-unit assignment problems, for which

they are often used in practice, e.g., school choice.

Second, I propose a speci�c mechanism, the Approximate Competitive Equilibrium from Equal

Incomes Mechanism, which satis�es the fairness criteria while maintaining attractive compromises of

e¢ ciency and strategyproofness. The mechanism is based on an old idea, Competitive Equilibrium

from Equal Incomes ("CEEI"; Foley 1967; Varian, 1974). CEEI uses arti�cial money �i.e., money

with no value outside the problem at hand �and so does not violate the constraint against monetary

transfers. In divisible-goods environments, CEEI satis�es fair share and is envy free. Unfortunately,

9Variants of this result are obtained in Sonmez (1999); Papai (2001); Ehlers and Klaus, (2003); and Hat�eld,
(2005). For discussion of these and related results see Budish and Cantillon (2008) and Section 2.1.
Whereas ex-post e¢ ciency is incompatible with fairness, ex-ante e¢ ciency may be altogether impossible to achieve.

In an environment that is a special case of ours, Zhou (1990) shows that there is no mechanism that is ex-ante e¢ cient
and strategyproof. See further discussion on ex-ante e¢ ciency at the end of the introduction.
10This example is presented formally as Example 1. Agents require at most two objects each, and have the

preferences we would expect given the names of the objects.
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CEEI may not exist in our environment, due to indivisibilities and complementarities.

My main theoretical result (Theorem 1) recovers existence by approximating CEEI in two ways.

First, incomes must be unequal, but can be arbitrarily close together. The market designer can

assign these close but unequal budgets to the agents however she likes; assigning them randomly

ensures the procedural fairness requirement of symmetry. Second, I allow for a small amount of

market clearing error. Speci�cally, I show existence of a price vector such that the Euclidean

distance of the corresponding excess demand vector is smaller than
p
2kM
2 , where k is the number

of courses per student, and M is the number of courses. This bound is tight, and it is small in

two respects. First, it does not grow with the number of students or the number of seats per class.

So, in the limit, market-clearing error as a fraction of the endowment goes to zero.11 Second, it is

actually a small number for practical-sized problems. For instance, in a single semester at Harvard

Business School k = 5 and M = 50, and so
p
2kM
2 � 11. This corresponds to a maximum market-

clearing error of 11 seats in one class, or of 3 seats in each of 13 classes (since
p
13 � 32 � 11),

etc., as compared with about 4500 course seats allocated each semester. Such error can easily be

accommodated in practice by adding or removing a few chairs to or from a few classrooms.

The payo¤ to the existence result is that we can exhibit an approximate CEEI that satis�es the

proposed criteria of outcome fairness. The key is to set the degree of budget inequality su¢ ciently

low, as measured by the ratio (1 + �) of the largest budget to the smallest budget. Theorem 2

shows that for small enough � the approximation to CEEI approximately satis�es the maximin

share guarantee. At worst, each student receives her maximin share in a hypothetical economy in

which there is one additional student. Often the approximation is even tighter. For instance, in the

two diamonds - two rocks example, we can guarantee that each student receives a diamond, but

the approximation error is that the student who gets the small diamond might also get the ugly

rock. Theorem 3 shows that for small enough � the approximation to CEEI satis�es envy bounded

by a single good.

A mechanism based on the Approximate CEEI is not strategyproof. But it satis�es an intuitive

relaxation of strategyproofness, which I call strategyproof in a large market. A mechanism satis�es

this notion of approximate implementation if in a limit market where agents are zero measure, agents

can do no better than to report their preferences truthfully. This is a mild criterion, which essentially

asks that a mechanism act in an agent�s best interest given her preference report and realized

"opportunity set". Yet, none of the course-allocation mechanisms currently found in practice satisfy

this criterion. For instance, in the HBS Draft Mechanism studied by Budish and Cantillon (2008),

11This notion of approximate competitive equilibrium was emphasized in an old literature on general equilibrium
with non-convexities (Starr 1969, Dierker 1971). These papers study exchange economies, in which the notion of
equal incomes may not be well de�ned given indivisibilities.
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a student who reports her preferences truthfully risks wasting early-round draft choices on courses

that do not reach capacity until a much later round. By contrast, many non-strategyproof market

designs that have found widespread use in practice satisfy this incentives criterion. Examples

include the Double Auction, the Assignment Exchange, the Uniform Price Auction, Probabilistic

Serial, and the Deferred Acceptance Algorithm.12

Putting this all together, my solution to the combinatorial assignment problem is the following

procedure: (1) agents report their preferences over permissible schedules; (2) agents are randomly

assigned budgets in the interval [1; 1 + �] for suitably small �; and (3) a computer �nds and

implements an approximate CEEI, taking care to break ties in a way that preserves incentives in

a limit market. The mechanism is approximately ex-post e¢ cient, in the sense that it is e¢ cient

with respect to the allocated goods and allocation error is small. In exchange for compromising

e¢ ciency and using a milder notion of incentive compatibility than strategyproofness, we obtain

attractive fairness properies: it is symmetric, guarantees approximate maximin shares, and bounds

envy by a single good.

The proposed mechanism has an element of randomness and so it might be argued that e¢ ciency

and fairness should be assessed ex-ante rather than ex-post. With fairness, ex-post is actually

the more stringent perspective: for instance, a random serial dictatorship is ex-ante envy free

even though it results in very unequal outcomes ex-post. Additionally, ex-post is likely to be the

perspective that matters to real-life market administrators. A procedure that is fair at some interim

stage but not ex-post might have di¢ culty being adopted for practice. With e¢ ciency, ex-ante is

the more stringent perspective. In assignment contexts without transferable utility, a necessary but

not su¢ cient condition for a lottery over allocations to be ex-ante e¢ cient is that all realizations

of the lottery are ex-post e¢ cient.

I leave theoretical analysis of the tradeo¤ between ex-post fairness and ex-ante e¢ ciency to

future work.13 In this paper I provide empirical evidence that the mechanism has attractive ex-

ante e¢ ciency properties in a speci�c course-allocation environment, that at Harvard Business

School.14 The key feature of the HBS data is that it contains not only the preferences students

reported under the HBS draft mechanism, but also their underlying truthful preferences, from

12See Cripps and Swinkels (2006) on Double Auctions; Milgrom (2008) on Assignment Exchanges; Milgrom (2004)
and Cramton et al (2006) on Uniform Price Auctions; Bogomolnaia and Moulin (2001) and Kojima and Manea
(2008) on Probabilistic Serial; and Roth and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and
Pathak (2008) on Deferred Acceptance Algorithms. Roberts and Postlewaite (1976) study the large-market incentive
properties of Walrasian equilibrium itself.
13Budish, Che, Kojima and Milgrom (2008) study course-allocation procedures that are ex-ante e¢ cient when stu-

dents�preferences for courses can be described by assignment messages (Milgrom, 2008). Their proposed mechanism
does not satisfy the fairness criteria developed in this paper.
14The existence theorem is non-constructive. Othman, Budish and Sandholm (2008) develop a computational

procedure that �nds approximate CEEI prices in life-size problems. See Section 8.1.
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surveys.15 It is these latter preferences I use to analyze the Approximate CEEI Mechanism. First,

I show that market-clearing error is substantially smaller than the Theorem 1 bound; this suggests

that ex-post ine¢ ciency is small. Second, I show that students�outcomes are not too sensitive to

the randomly drawn budget ordering, unlike in random serial dictatorship. This suggests ex-post

e¢ ciency is a reasonable proxy for ex-ante e¢ ciency.16 Finally, I compare the distribution of realized

utilities under the proposed mechanism to that from HBS�s own procedure. The Approximate CEEI

Mechanism �rst-order stochastically dominates the actual strategic play of the HBS procedure.

Interestingly, it performs a bit worse than a non-equilibrium counterfactual in which students play

the HBS procedure truthfully. The di¤erence arises because the Approximate CEEI Mechanism

respects incentive constraints that the non-equilibrium counterfactual ignores.

Aren�t CEEI-like Mechanisms Already Used In Practice? Some readers may worry that

the procedure proposed in this paper is not new. Many prominent universities �including Berkeley,

Chicago, Columbia, Michigan, Northwestern, Penn, Princeton and Yale �use equal income arti�cial-

currency procedures to allocate courses.17

A clue that something is funny in these mechanisms is that they all use exactly equal incomes,

even though we know that a CEEI need not exist. Each of these mechanisms is making a variant of

the following conceptual error: they treat fake money as real money that directly enters the utility

function. (Currency is fake if it has no value outside the allocation problem at hand). This causes

the mechanism to allocate incorrect bundles �i.e., not the bundle the student actually demands at

the realized prices �and creates incentives to misreport.

With fake money, student i�s correct demand, given a budget of bi and a price vector of p, is

x = argmax
x0

(ui(x
0) : p � x0 � bi) (1)

where ui is some arbitrary cardinal representation of student i�s preferences over schedules.

Prices that clear the market according to (1) may not even exist, and even if they did a sophisticated

15Budish and Cantillon (2008) study this data and �nd that students indeed strategically misreport their preferences
to game the HBS draft mechanism, and that this misreporting harms welfare in the aggregate: the distribution of
utilities under the actual strategic play is (second-order stochastically) dominated by that under a non-equilibrium
counterfactual in which students play truthfully.
16This is not always the case. Budish and Cantillon (2008) show that random serial dictatorship, which is ex-post

e¢ cient, has very poor ex-ante e¢ ciency performance due to a phenomenon they call "callousness".
17Sonmez and Unver (2008) describe the Bidding Points Mechanism used at the University of Michigan Busi-

ness School, and close variants used at the Haas School of Business at UC Berkeley, Columbia Business School,
Kellogg Graduate School of Management at Northwestern, Princeton University, and Yale School of Management.
Graves et al (1993) describe the Primal-Dual Linear Programming procedure used at the University of Chicago
Graduate School of Business. Information on the Bidding Points Double Auction procedure used at the Wharton
School of the University of Pennsylvania can be found in Bartlett (2008), Guernsey (1999), Wharton (2007), and
http://technology.wharton.upenn.edu/auction/.
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�xed-point algorithm would be required to �nd them. My proposed mechanism �nds prices that

approximately clear the market according to (1) when students have approximately equal incomes.

An algorithm for �nding these prices is described in Othman, Budish and Sandholm (2008) and

section 8.1.

What each of the schools listed above do is the following. First, they require each student

i to report his preferences in a reporting language that ensures that ui(x) � bi, for all possible

schedules x. Then they treat his preferences as quasi-linear over courses and fake money! That is,

they allocate student i the incorrect bundle

x = argmax
x0

(ui(x
0)� p � x0) (2)

Prices that clear the market according to the incorrect demands (2) are easy to compute. For

instance, here is how the widely used Bidding Points Mechanism works. Each student submits bids

for classes, the sum of their bids not to exceed some �xed budget amount like 1000 points. A course

with q seats is allocated to the q students who bid the most for it.18 The qth highest bid is described

as a "clearing price". Implicitly, the BPM interprets bids as reports of an additive-separable utility

function, and then "clears the market" at these prices with respect to demands of the form (2).

Here is a simple illustration of the harm this can cause. Suppose there are four courses

(A;B;C;D) and Alice bids uAlice = (700; 200; 50; 50). Interpret this bid as a truthful report of

her additive-separable preferences. Suppose budgets are 1000 and prices under the BPM turn out

to be p� = (900; 250; 100; 75). At these prices, Alice�s most-preferred a¤ordable bundle is fA;Cg
(i.e., (1)) but under the BPM (i.e., (2)) she gets none of the courses she bid on. The BPM prices

simply do not clear the market with respect to students�actual preferences, and Alice will regret

reporting truthfully. Implicitly, the mechanism expects her to take consolation in a large bank

account of unspent fake money.19

18More precisely, bids for all courses are sorted in descending order, and are either �lled or rejected one at a time
depending on whether (i) the course still has capacity for the student; and (ii) the student still has capacity for the
course. Because of (ii), a student whose bid for course j is amongst the qj highest might not get it, meaning some
bids lower than the qthj are successful.
Strategic issues aside, (ii) can lead to ine¢ cient allocations. Sonmez and Unver (2008) and Krishna and Unver

(2008) propose a mechanism that eliminates the ine¢ ciencies that arise from this speci�c aspect of the Bidding Points
Mechanism.
19Some of the institutions named above allow fake money to be carried over from one period (e.g. semester) to

the next. If there were in�nitely many such periods, then fake money would be like real money, because it always
has a future use (see Abdulkadiroglu and Bagwell (2007) for a related problem and see Athey and Miller (2006) on
some limitations even if using real money). In the course-allocation context, the number of periods each student
participates in is �nite. Each of these institutions treats students in their �nal period as if they have quasi-linear
preferences over courses and fake money.
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Organization of the Paper The remainder of this paper is organized as follows. Section 2

describes the environment and reviews the relevant impossibility results (dictatorship theorems)

from the social choice literature. Section 3 proposes the new criteria of outcome fairness: the max-

imin share guarantee and envy bounded by a single good. Section 4 proposes the approximate

incentives criterion: strategyproof in a large market. Section 5 de�nes the approximation to Com-

petitive Equilibrium from Equal Incomes (CEEI) and states the main existence theorem (Theorem

1). The proof is sketched in the body and is contained in full in an appendix. Section 6 explores the

outcome fairness properties of an approximate CEEI (Theorems 2 and 3). Section 7 proposes the

Approximate CEEI Mechanism and compares its properties to those of other mechanisms known

in theory and practice. Section 8 empirically studies the ex-ante e¢ ciency performance of the

proposed mechanism, using course-allocation data from Harvard Business School. I conclude with

open questions and a note on methodology.

2 Environment

The Combinatorial Assignment Problem A combinatorial assignment problem consists of

a set of objects, each with integral capacity, and a set of agents, each with scheduling constraints

and preferences. I emphasize the course-allocation application, in which the objects are "courses"

and the agents are "students". The elements of a problem (S; C;q; (	i)Ni=1; (ui)Ni=1), also called an
economy, are de�ned as follows.

Students There is a set of N students, S =fs1; :::; si; :::; sNg:

Courses There is a set of M courses, C = fc1; :::; cj ; :::; cMg. There are no other goods in the
economy other than seats in courses. In particular, there is no divisible numeraire like money.

Capacities Each course has integral capacity. The capacity vector is q = (q1; :::; qj ; :::; qM ).

Schedules A schedule consists of 0 or 1 seats in each course. For each student si there is a

set 	i � f0; 1gM of permissible schedules. The set 	i encodes any universal scheduling constraints

(e.g., cannot take two courses that meet at the same time), and also encodes any scheduling con-

straints speci�c to student si (e.g., prerequisites). Each 	i includes the empty schedule (0; 0; :::; 0).

Notationally, I will use x to denote a generic schedule (i.e., x 2 f0; 1gM ), xi 2 	i to denote a
generic schedule in student si�s permissible set, and xij 2 f0; 1g as an indicator of whether schedule
xi contains course cj . Despite the fact that each individual schedule x 2 f0; 1gM is a vector I do

not use boldface, reserving boldface x for an N�agent allocation, de�ned below.
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Let k denote the maximum number of courses any student is allowed to take, i.e., k � max
i
max
xi2	i

P
j xij .

The constants k and M will play a role in the approximation bound of Theorem 1.

Preferences Each student si is endowed with a von-Neumann Morgenstern utility function

that indicates her utility from each of her permissible schedules: ui : 	i ! R+. This is a private

values or no peer e¤ects assumption: each student cares only about her own allocation, and perfectly

knows her own preferences. Preferences are private information.

I assume agent si�s utility is zero both for the empty schedule and for any schedule not in 	i.

Otherwise, preferences over bundles are strict: for xi 6= x0i 2 	i; ui(xi) 6= ui(x0i). Indi¤erences can
be accomodated but at some notational burden without much additional insight.

No further restrictions are placed on the utility function: in particular, students are free to

regard courses as complements and substitutes. This is the reason the assignment problem is called

"combinatorial" as opposed to "multi-unit".

Feasible Allocations An allocation assigns a schedule to each student. An allocation x = (xi)Ni=1
is feasible in economy (S; C;q; (	i)Ni=1; (ui)Ni=1) if: (i) xi 2 	i for each student si; (ii)

PN
i=1 xij � qj

for each course cj .

Mechanisms A (direct) combinatorial assignment mechanism (or course-allocation mechanism)

is a systematic procedure, possibly with a random element, that selects a feasible allocation for

each problem. Formally, it is a function � which associates a probability distribution over feasible

allocations with each problem (S; C;q; (	i)Ni=1; (ui)Ni=1).
Students�preferences are private information, and so they might misreport their preferences.

Student si can report any utility function bui : 	i ! R+, the set of which we call Ui. We are often
interested in how students�outcomes under a mechanism vary with the pro�le of reports, holding

the other elements of the problem �xed. For �xed S; C;q; and (	i)Ni=1; we will use �i(bui; bu�i) to
denote si�s distribution over schedules under � in economy (S; C;q; (	i)Ni=1; (bui)Ni=1). Her expected
utility from this lottery is written as Eui[�i(bui; bu�i)].

The revelation principle indicates that restricting attention to direct mechanisms, i.e., in which

students directly report a vNM utility function, is without loss of generality. The Approximate

CEEI Mechanism that will be developed in this paper does not actually utilize all of this preference

information. Instead, it uses only students�ordinal preferences over bundles. In practice it may

actually be useful to have students report cardinal rather than ordinal preferences, because there

exist good cardinal reporting languages.20

20Milgrom (2008) proposes a bidding language in which agents report their cardinal preferences as a linear program.
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Most other course-allocation mechanisms found in practice can also be thought of as direct

revelation mechanisms that discard some utility information. The HBS Draft Mechanism and the

widely used Bidding Points Mechanism use only preferences over singletons. The Chicago Primal-

Dual Mechanism uses only preferences over a limited number of schedules per student.

Generality While I emphasize the course-allocation application, the environment is easily seen

to be quite general.

For instance, to obtain the problem of "fair division of indivisible objects" as de�ned in Brams

et al (2003), set q = (1; 1; :::; 1); and 	i = f0; 1gM for all i. The multi-unit assignment problem

studied by Budish and Cantillon (2008) sets each 	i to be the set of schedules containing at most

k courses, and rules out most forms of complementarity and substitutability.

In some combinatorial allocation settings there is no requirement that each agent consumes at

most one of each kind of object. All stated results remain valid for this generalization of the sets

(	i)
N
i=1, but the market-clearing bound of Theorem 1 may be less compelling. See discussion at

the end of section 5.2.

In a shift-assignment setting feasibility might require that at least a certain number of agents

are assigned to each shift (or task), rather than at most. This can be accomodated by setting qj < 0

equal to the negative of the minimum requirement, and letting each 	i � f0;�1gM rather than

f0;+1gM .

2.1 E¢ ciency, Strategyproofness, and the Dictatorship Theorems

A feasible allocation x is (ex-post) Pareto e¢ cient if there is no other feasible allocation x0 such

that ui(x0i) � ui(xi) for all i, with at least one strict.
A combinatorial assignment mechanism � is strategyproof in economy (S; C;q; (	i)Ni=1; (ui)Ni=1)

if, for all si 2 S, Eui[�i(ui; bu�i)] � Eui[�i(bui; bu�i)] for any bui; bu�i. In words, no matter the reports
of the agents other than si, it should be expected-utility maximizing for si to report her preferences

truthfully. A mechanism is strategyproof if it is strategyproof in any economy.

Serial Dictatorship is a deterministic mechanism in which each student is endowed with a serial

number and then, in order of their serial number, each student chooses her most preferred set

of courses out of those courses still available. Sequential Dictatorship is similar, except that the

A language along those lines for the course-allocation problem is sketched in Othman et al (2008).
By contrast there are no known methods that directly elicit ordinal preference relations, except for the case of unit

demand. In the National Resident Matching Program (Roth and Peranson, 1999), hospitals with multi-unit demand
for doctors express only their ordinal preferences for individual doctors. This leaves their preferences over bundles
of these doctors ambiguous; this ambiguity does not harm mechanism performance under an additive-separability
assumption (responsiveness) on hospitals�preferences.
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choosing order is allowed to be endogenous, in the sense that the �rst l choices determine who gets

the l+1st choice. The Random Serial Dictatorship is a random mechanism in which serial numbers

are drawn uniform randomly, and then the corresponding Serial Dictatorship is implemented.

It is easy to see that dictatorships are strategyproof and Pareto e¢ cient. A series of papers sug-

gests that dictatorships may be the only mechanisms that satisfy these two criteria for combinatorial

assignment problems. Papai (2001) shows that these two properties, combined with non-bossiness,

characterize Sequential Dictatorships. Ehlers and Klaus (2003) show that non-bossiness can be

replaced with coalitional strategyproofness, and Hat�eld (2005) shows that the Papai (2001) result

obtains even for additively-separable preferences.21

Klaus and Miyagawa (2001), Konishi et al (2001), and Sonmez (1999) obtain similar negative

results under slightly di¤erent conditions, including existing endowments. Kojima (2007) obtains

related negative results for random mechanisms.

3 Fairness

3.1 Indivisibilities Complicate Fair Division

Moulin (1995) writes: "In fair division, the two most important tests of equity are fair share guar-

anteed and no envy".

In a divisible-goods fair division problem, an agent is said to receive his "fair share" if he receives

a bundle he likes at least as well as his per-capita share of the endowment. Formally, if q is an

endowment of divisible goods, an allocation x satis�es the fair-share guarantee if ui(xi) � ui(
q
N )

for all i. Early papers on the cake-cutting problem (Steinhaus 1948, Dubins and Spanier 1961)

actually de�ned fairness itself as this guarantee. The appeal of the fair-share guarantee is that

it expresses the ideal of common ownership of the goods which are to be divided. Agents might

expect to do better than this ideal, due to heterogeneity in preferences, but certainly they should

not do worse.

An allocation x is said to be envy free if ui(xi) � ui(xj) for all i; j (Foley, 1967). In words, envy-
freeness requires that each agent likes his own bundle weakly better than anyone else�s. Arnsperger

(1994) describes envy freeness is an "ordinalist version of egalitarianism" (see also Thomson and

Varian, 1985), i.e., a way to operationalize egalitarianism without inter-personal comparability of

utilities.
21A deterministic mechanism is non-bossy if, whenever some agent si�s outcome is the same under (u0i; u�i) as

under (u00i ; u�i), all other agents have the same outcomes under these two report pro�les as well. A deterministic
mechanism is coalitionally strategyproof if no set of agents ever has a manipulation that weakly improves the outcome
of all agents in the set, with at least one strict improvement.
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In divisible-goods economies, Competitive Equilibrium from Equal Incomes ("CEEI"; Foley,

1967; Varian, 1974) satis�es both criteria. These criteria form the core of the argument that CEEI

is an attractive procedure for fair division of divisible goods.

Indivisibilities complicate fair division. With indivisibilities, fair share is not even well de�ned:
q
N is not a valid consumption bundle. Envy freeness remains well de�ned, but will be impossible

to guarantee: what if there are two agents and a single indivisible object?

This section proposes two new criteria of outcome fairness: the maximin share guarantee (Sec-

tion 3.3), which generalizes fair share, and envy bounded by a single good (Section 3.4) which

weakens envy freeness. The criteria explicitly recognize that indivisibilities complicate fair divi-

sion, but exploit the fact that bundles of indivisible objects are somewhat divisible. We begin

though by reviewing, in Section 3.2, previous approaches to de�ning fairness in environments with

indivisibilities.

3.2 Previous Approaches to Outcome Fairness with Indivisibilities

There have been several previous approaches to de�ning fairness in environments with indivisibili-

ties.

A �rst approach is simply to ignore outcome fairness altogether, and look solely to procedural

fairness. Klaus and Ehlers (2003) take this approach to argue that a dictatorship might be fair for

multi-unit assignment: "Dictatorships can be considered to be fair if the ordering of agents is fairly

determined."

A second approach is to assume that there is a divisible numeraire good, like money, in addition

to the endowment of indivisible goods. Moulin (1995) and Alkan, Demange and Gale (1991) study

such problems, and propose de�nitions of fair share and envy-freeness, respectively, that include

transfers. This approach is ruled out by exogenous constraint in the context of course allocation.

A third approach is to follow Hylland and Zeckhauser (1979) and transform indivisible objects

into perfectly divisible "probability shares" of the objects. An agent is said to receive his fair share

if he receives a bundle of probability shares that he likes at least as well as his per-capita share of the

probability-share endowment. An allocation is said to be envy free if, at the interim stage, no agent

envies the lottery of any other agent. Brams and Taylor (1996) and Pratt (2007) take this approach.

There are two reasons this approach is unattractive for combinatorial assignment problems. First,

it requires restrictive assumptions on preferences.22 Second, it can result in outcomes that seem

22The Brams and Taylor (1996) and Pratt (2007) procedures require that preferences are additive-separable and
that there are no scheduling constraints. Budish, Che, Kojima and Milgrom (2008) show that probability-shares
allocations can be resolved into deterministic assignments under more general circumstances that include certain
kinds of scheduling and substitutability constraints.

11



unacceptably unfair ex post. (See footnote 24 to Example 1 below).

3.3 The Maximin Share Guarantee

I explicitly accept that indivisibilities complicate fair division and propose a weakening of the

fair-share common-ownership ideal:

De�nition 1. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). Agent si�s maximin share, ui, is

ui = max
(xl)

N
l=1

[min(ui(x1); :::; ui(xN ))] subject to (3)

xl 2 	i for all l = 1:::NX
xlj � qj for all j = 1:::M

A course-allocation mechanism satis�es the maximin-share guarantee if, for any allocation x

selected with positive probability under the mechanism, ui(xi) � ui for all i = 1:::N:

There are two ways to think about the de�nition of maximin shares. First, each agent�s maximin

share corresponds to the utility level he could obtain for himself as divider in an N�player game
of divide-and-choose against adversarial opponents. As divider, the agent will propose a division

such that his least favorite of the N bundles is as attractive as possible (in particular, each of the N

bundles will be from his own permissible set 	i). Divide-and-choose is perhaps the oldest method

of fair division, with accounts of its use appearing in the old testament and in Greek mythology

(see Brams and Taylor, 1996; Crawford, 1977).

Second, maximin share is a Rawlsian guarantee from behind what Moulin (1991, 1992) calls

a "thin veil of ignorance". The agent knows his own preferences and knows what resources are

available to be divided (this is what makes the veil "thin"), but does not know other agents�

preferences.

Note that when preferences are convex and goods are divisible maximin share and fair share

coincide. The allocation that maximizes min[(ui(x1); :::; ui(xN )] sets each xk equal to 1
N of the

endowment.

The maximin share guarantee is somewhat pessimistic about the possibilities for fair division

when there are indivisibilities. For instance, if two agents are to divide two objects �a diamond

and a rock �then even the agent who receives the rock is said to have received his maximin share.

(The procedural fairness property of symmetry ensures that each agent has an equal chance at the

diamond.)

Despite its pessimism the maximin-share guarantee has bite. The following example shows that

dictatorships fail the criterion.
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Example 1. (Two Diamonds, Two Rocks.) There are two students (s1; s2), four classes

(A;B;C;D), one seat in each class, and each student can consume at most two classes.

Students have additive-separable utility functions. That is, for i = 1; 2 there exists

vi = (viA; viB; viC ; viD) such that ui(xi) =
P
xijvij for all xi 2 	i: Scale v such thatP

j v1j =
P
j v2j = 100. Label A as the "Big Diamond", B as the "Small Diamond",

C as the "Pretty Rock", and D as the "Ugly Rock". Course values are as given by the

following table (e.g., v1A = 70):

Big Diamond Small Diamond Pretty Rock Ugly Rock

s1 70 25 3 2

s2 52 40 5 3

Student s1�s maximin share is calculated as:

u1 = max
x0 feasible

min[u1(x
0
1); u1(x

0
2)]

= min[u1(fA;Dg); u1(fB;Cg)]

= u1(fB;Cg)

Similarly u2 = u2(fB;Cg): In a dictatorship, whichever student gets to choose �rst will
obtain fA;Bg (the diamonds), while the other student is left with fC;Dg (the rocks),
which fails her maximin share guarantee.23

Example 1, in conjunction with the characterization theorems of Papai (2001) and Ehlers and

Klaus (2003) (see Section 2.1) yields the following simple result.

Proposition 1. There is no combinatorial assignment mechanism that satis�es the maximin-share

guarantee, is ex-post Pareto e¢ cient, and is either coalitionally strategyproof or both strategyproof

and non-bossy.

3.4 Envy Bounded by a Single Good

I propose a weakening of the envy free test that acknowledges that indivisibilities complicate fair

division.
23The Brams and Taylor (1996) and Pratt (2007) procedures are not well de�ned for this example, due to the

schedule constraints. If we eliminated the schedule constraints, each of these procedures assigns s1 the bundle fAg
with probability a and the empty bundle with probability 1 � a (Brams and Taylor: a = :833; Pratt: a = :827).
Student s2 gets fB;C;Dg with probability a and fA;B;C;Dg with probability 1 � a. At an interim phase this
lottery satis�es certain fairness criteria, but ex post it is possible that s1 gets zero objects, so these procedures fail
the maximin share guarantee.
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De�nition 2. An allocation x satis�es envy bounded by a single good if

For any si; sj 2 S: There exists some cj0 2 xj s.t. ui(xi) � ui(xjnfcj0g) (4)

In words, if student si envies sj , we require that by removing some single good from sj�s bundle

we can eliminate the envy. A student who obtains the small diamond in Example 1 above may

envy his fellow student who gets the big diamond, but his envy is bounded by a single good: by

removing the big diamond from his fellow student�s bundle the envy is eliminated.

Example 1 shows that dictatorships fail this test, because some agent might get both diamonds.

Dictatorships allow for more envy than is necessary given the level of indivisibility in the economy.

Even though the big diamond and small diamond are indivisible goods, the bundle {big diamond,

small diamond} is divisible. This implies the following result, analogous to Proposition 1.

Proposition 2. There is no combinatorial assignment mechanism that satis�es envy bounded by a

single good, is ex-post Pareto e¢ cient, and is either coalitionally strategyproof or both strategyproof

and non-bossy.

3.5 Procedural Fairness

This section has focused on outcome fairness. The other main aspect of fairness is procedural

fairness, and all course-allocation mechanisms found in practice satisfy its fundamental requirement,

symmetry. Symmetry, also called equal treatment of equals, requires that if two agents are identical

in all dimensions relevant to a course-allocation mechanism �that is, they have identical permissible

sets, and report the same preferences �they should receive the same distribution over outcomes.

This property rules out that a mechanism discriminates on the basis of non-relevant information.

De�nition 3. Let � : f1; :::; Ng ! f1; :::; Ng be a permutation of the N agents. A course-

allocation mechanism � is symmetric if, for any economy (S; C;q; (	i)Ni=1; (ui)Ni=1) and any feasible
allocation x = (x1; :::; xN ), x is as likely to be selected by � under (S; C;q; (	i)Ni=1; (ui)Ni=1) as
�(x) = (x�(1); :::; x�(N)) is under (S; C;q; (	�(i))Ni=1; (u�(i))Ni=1).

This paper takes the view that procedural fairness is necessary but not su¢ cient for fairness.

For instance, the random serial dictatorship is symmetric but not fair.

3.6 Discussion: Dictatorships and Fairness

In the context of course allocation, dictatorships violate the maximin share guarantee and the

requirement of envy bounded by a single good. These criteria formalize the sense in which dicta-
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torships are unfair for multi-unit assignment. Furthermore, they suggest an explanation for why

we do not observe dictatorships used in practice for multi-unit assignment.

By contrast, dictatorships are frequently observed as allocation mechanisms in single-unit as-

signment contexts. Examples include school choice and house allocation problems. (See references

in footnote 6). But in single-unit assignment we have the following simple observation.

Remark 1. In single-unit assignment problems, dictatorships satisfy the maximin share guarantee

and envy bounded by a single good.

Hence, these properties help to formalize the intuition that dictatorships may be fair for single-

unit assignment.

4 Strategyproof in a Large Market

If a mechanism satis�es the following two properties it is strategyproof:

(i) an agent�s report never a¤ects her opportunity set (de�ned formally in Section 4.2).

(ii) for any �xed opportunity set, truthful reporting selects the agent�s favorite outcome from

the set.

Mechanisms that are not strategyproof violate either (i) or (ii). In a wide variety of economic

contexts, it has been found that an agent�s ability to in�uence her opportunity set diminishes with

market size.24 As a result, mechanisms that fail to be strategyproof due to a failure of (i) may

nevertheless have good incentives properties in realistic market environments. By contrast, if a

mechanism is manipulable because it fails (ii), it may have a more fundamental incentives problem.

This section proposes a notion of approximate incentive compatibility that requires (ii) but not

(i). A mechanism is strategyproof in a large market if it is strategyproof in a certain limit market in

which all agents are zero measure (Section 4.1). A necessary condition for a mechanism to satisfy

this criterion is (ii) (Section 4.2). I argue in Section 4.3 that strategyproof in a large market is

useful both as a conceptual device and as a desideratum in practical market design.

4.1 The Continuum Replication

De�nition 4. The continuum replication of (S; C;q; (	i)Ni=1; (ui)Ni=1), written (S1; C;q; (	1i )Ni=1; (u1i )Ni=1)
is constructed as follows

24For instance, the most familiar kind of opportunity set is the budget set in a Walrasian mechanism, and it is well
known that agents become price takers in limit markets (Roberts and Postlewaite, 1976). Other studies of incentives
in large markets include Rustichini et al (1994) and Cripps and Swinkels (2006) on Double Auctions; Roth and
Peranson (1999), Immorlica and Mahdian (2005) and Kojima and Pathak (2008) on deferred acceptance algorithms;
and Kojima and Manea (2008) on the Probabilistic Serial mechanism.
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� The set of students is S1 = fesigi2(0;N ]
� The set of courses and their capacities are left as is, except now we understand a course�s
capacity constraint as a Lebesgue measure of students in the course.

� Student esi 2 S1 in the continuum-replication economy has the same permissible-schedule set

and utility function as student sdie in the original economy, where d�e is the ceiling operator.
That is, students numbered (0; 1] in the continuum are identical to s1 in the original, students

numbered (1; 2] in the continuum are identical to s2 in the original, etc.

De�nition 4 combines elements of the classic Debreu and Scarf (1963) and Aumann (1964)

conceptions of a large market. As in Debreu and Scarf (1963) there is a �nite number of types, but

as in Aumann (1964) each agent is zero measure.

For the remainder of this section we restrict attention to mechanisms that are well-de�ned in

the continuum replication of De�nition 4.25 All course-allocation mechanisms found in practice

satisfy this requirement, as do many widely-known allocation procedures (see Table 1).

De�nition 5. A course-allocation mechanism � is strategyproof in a large market if, for any

(S; C;q; (	i)Ni=1; (ui)Ni=1); it is strategyproof in the continuum replication (S1; C;q; (	1i )Ni=1; (u1i )Ni=1):
That is, for all esi 2 S1, Eui[�i(ui; bu�i)] � Eui[�i(bui; bu�i)] for any bui; bu�i, where bu�i indicates
the reports of all students in S1nfesig:

This property requires that truthful reporting is a dominant strategy for the kinds of agents we

think of as "price takers." Note though that prices do not explicitly appear in the de�nition, and

so we can accomodate both price and non-price allocation mechanisms. For instance, to encode

combinatorial auctions we add anM+1st good, money, set qM+1 to be very large, and then rede�ne

permissible-schedule sets and utility functions in terms of combinations of both goods and money.

Matching problems can be accomodated with slight modi�cation to De�nitions 4 and 5.26

25Formally, an allocation (xi)esi2S1 is feasible in (S1; C;q; (	1i )Ni=1; (u1i )Ni=1) if (i) xi 2 	i for all esi 2 S1; and
(ii)

R
S1 xijdesi � qj for each course cj . For a mechanism � to be well de�ned in continuum economies, for any con-

tinuum replication (S1; C;q; (	1i )Ni=1; (u1i )Ni=1); �[(S1; C;q; (	1i )Ni=1; (u1i )Ni=1)] must be a measurable probability
distribution over feasible allocations.
26A one-to-one matching problem is de�ned as the tuple (F;M; (uf )f2F ; (um)m2M ), where F is a set of females,

M is a set of males, uf are the preferences of female f over the males, and likewise for um: The key to de�ning
the continuum replication is to exploit the fact that males have a dominant strategy of reporting their preferences
truthfully. Speci�cally, we treat F analogously to the set of students S, but treat M like the set of courses, C: The
continuum replication is (F1;M; (u1f )f2F ; (um)m2M ); where the superscript

1 plays the same role as in De�nition
4. A matching mechanism is strategyproof in a large market if the zero-measure females never wish to misreport
their preferences. (Men are non-strategic, and each type of man has capacity for a measure one set of females).
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4.2 A Simple Interpretation of Strategyproof in a Large Market

De�nition 6. Consider a mechanism � and �nite economy (S; C;q; (	i)Ni=1; (bui)Ni=1). Create the
continuum replication (S1; C;q; (	1i )Ni=1; (bu1i )Ni=1). For student si in the �nite economy and any
report u0i in her report set Ui, let (u

0
i; bu1�i) denote the strategy pro�le in the continuum replication

in which

� Student esj 2 S1nfesig plays strategy budje
� Student esi plays strategy u0i
That is, students numbered (0 ; 1 ] play bu1, students numbered (1 ; 2 ] play bu2; etc., except for

student esi who plays u0i: We say that student si�s opportunity set in the �nite economy is
f�i(u0i; bu1�i) : u0i 2 Uig (5)

That is, si�s opportunity set in the �nite economy is de�ned as the set of outcomes (possibly

random) she can achieve in the continuum replication in which all agents but for herself play

according to bu. For instance, consider a competitive equilibrium mechanism in which the realized

price vector depends in a deterministic way on the distribution of agents� reports. In a �nite

economy, si�s report bui a¤ects this distribution, and so a¤ects price. Say the price under bu is p�.
In the continuum replication, there is a set of measure one of agents whose preferences are identical

to si�s, fesjgj2(i�1;i]. We have the set of agents fesjgj2(i�1;i) continue to report bui, but we let esi vary
her report. Now, her report no longer a¤ects p�; because she is zero measure. By varying over all

of esi�s possible reports in Ui, we obtain si�s opportunity set. The concept of opportunity set is not
restricted just to price-based mechanisms; for instance, in a one-to-one Male-Proposing Deferred

Acceptance Algorithm the opportunity set for a female agent is the set of proposals she receives.27

In either a competitive equilibrium mechanism or a deferred acceptance algorithm, for any

�xed opportunity set, reporting truthfully selects the agent�s favorite outcome from that set. The

following simple result shows that this feature is a necessary condition for a mechanism to be

strategyproof in a large market.28

Proposition 3. If a mechanism � is strategyproof in a large market, then for any economy and

any set of reports (bui)Ni=1; each student si�s most-preferred element in her realized opportunity set
27Her report a¤ects which proposals she rejects, and in a �nite economy each rejection has a positive probability

of causing a "rejection chain" that causes her to receive new proposals that she would not otherwise have received.
(Kojima and Pathak, 2008).
28 It is not su¢ cient, because it restricts attention to strategy pro�les in which, for each l = 1; :::; N , a set of measure

one plays bul. Strategyproofness makes no such restriction.
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is �i(ui; bu1�i); i.e., the element that corresponds to her truthful report. Formally
Eui[�i(ui; bu1�i)] � Eui[�i(bbui; bu1�i)] for any (bui)Ni=1; any si, and any bbui2 U i

Proof. Follows immediately from the de�nition of strategyproof in a large market. QED.

The Bidding Points Mechanism described in the introduction fails this necessary condition. At

the prices p� = (900; 250; 100; 75) Alice�s realized opportunity set was the set of bundles that cost

weakly less than her budget of 1000, i.e., ffA;Cg; fA;Dg; fB;Cg; fB;Dg; fC;Dg; fAg; fBg; fCg; fDg; ;g:
Her favorite bundle, fA;Cg, corresponds to the report bbui(c1) = 750, bbui(c2) = 250. By contrast, the
truthful report uAlice = (700; 200; 50; 50) causes her to obtain zero courses. So, reporting truth-

fully does not select the most preferred element in her opportunity set, and the mechanism is not

strategyproof in a large market.

4.3 The Usefulness of Strategyproof in a Large Market

The incentives criterion of strategyproof in a large market is useful both as a conceptual device and

as a desideratum in practical market design.

Conceptually, it is a simple-to-apply criterion that separates market designs that are certainly

manipulable in large �nite markets from market designs that may not be. All course-allocation

mechanisms currently found in practice fail the criterion. By contrast, many widely-used non-

strategyproof mechanisms satisfy the criterion. See Table 1.

Table 1. Which Market Designs are Strategyproof in a Large Market?

Manipulable in Large Markets Strategyproof in Large Markets

Bidding Points Mechanism Deferred Acceptance

HBS Draft Mechanism Double Auctions

Boston Mechanism Assignment Exchange

All-Pay Auctions Probabilistic Serial

Discriminatory Auctions Uniform Price Auctions

A seeming exception to this pattern is the single-unit �rst-price sealed bid auction, a widely

used auction format (e.g., in procurement) that is manipulable. First-price auctions are a special

case of multi-unit Discriminatory Auctions, which are manipulable in large markets (even though

an agent is zero measure, his own bid amount determines what he pays when he wins). But �rst-

price auctions are also a special case of multi-unit Uniform Price Auctions, which are strategyproof
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in large markets.29

As a practical matter, the criterion may be a su¢ cient condition for market administrators to

feel comfortable advising market participants that it is in their interest to report their preferences

truthfully; this saves market participants any costs of strategizing.30 Note too that if a mechanism

satis�es this criterion, then at whatever opportunity set is realized ex post, agents are happiest

if they reported their preferences truthfully. That is, unless they understand the speci�c way

that their misreport would have a¤ected their opportunity set,31 truthful agents are unlikely to

experience ex-post regret.

5 The Approximate Competitive Equilibrium fromApproximately

Equal Incomes

Competitive Equilibrium from Equal Incomes ("CEEI")32 is an attractive solution to the problem

of e¢ cient and fair division of divisible goods. It is Pareto e¢ cient by the �rst welfare theorem.

It satis�es the fair share guarantee and is envy free. A CEEI mechanism can be de�ned to satisfy

the procedural fairness requirement of symmetry, and the incentives criterion of strategyproof in a

large market. Arnsperger (1994) writes "essentially, to many economists, [CEEI is] the description

of perfect justice."33

Unfortunately CEEI need not exist. Either indivisibilities or complementarities alone would

make existence problematic, and our economy features both. In order to recover existence we will

need to approximate both the "CE" and the "EI" of CEEI:

29 In a recent presentation on auction design for the United States Treasury�s Troubled Asset Relief Program,
Ausubel and Cramton (2008) wrote: "General assessement is that uniform price performs at least as well as pay-as-
bid [i.e., discriminatory price] for �nancial instruments ... Bidders hate pay-as-bid auctions, as they look foolish (or
unemployed) after selling at unnecessarily low prices." (Emphasis added).
30By contrast, here is an excerpt from the advice that Wharton provides its students on how to play its course-

allocation mechanism, which is a multi-round variant on the Bidding Points Mechanism (in the �rst round students
buy courses; in subsequent rounds they can both buy and sell):
"Look at past results and the price history of individual courses over all rounds in which it was o¤ered; Last

round results are a good measure of �nal market equilibrium. Each semester is generally similar to the corresponding
semester last year in terms of the demand for courses. Beware of the mid-auction "bubble". Don�t pay too high a
price for a course that will eventually open up. Look at the 8th round of the Fall 2006 auction to see where prices
eventually settled. This should help mitigate some of the anxiety that middle rounds inevitably create with their
high prices and low liquidity." (Wharton, 2007)
31Which they likely would in �rst-price auctions, but likely would not for competitive equilibrium and deferred

acceptance mechanisms.
32See Foley (1967), Varian (1974), and several other seminal references summarized in Thomson and Varian (1985).
33The philosopher Ronald Dworkin (1981, 2000) argues extensively that CEEI is fair, using CEEI as the motivation

for his theory that fairness is "Equality of Resources".
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5.1 De�nition of Approximate CEEI

De�nition 7. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1): The allocation x� = (x�1; :::; x
�
N ), bud-

gets b� = (b�1; :::; b
�
N ) (with mini b

�
i = 1; wlog), and prices p� = (p�1; :::; p

�
M ) constitute an (�; �)-

approximate competitive equilibrium from equal incomes (Approximate CEEI) of this economy if:

(i) x�i = argmax
x0i2	i

[ui(x
0
i) : p

� � x0i � b�i ] for all i = 1; :::; N

(ii) jjz�jj2 � � where z� = (z�1 ; :::; z�M ) and
z�j =

P
i x
�
ij � qj if p�j > 0

z�j = max(
P
i x
�
ij � qj ; 0) if p�j = 0

(iii) max
i
(b�i ) � 1 + �

Condition (i) indicates that, at the competitive equilibrium prices and budgets, each agent

chooses her most-preferred schedule that costs weakly less than her budget. Observe that agents

consume sure bundles rather than probability shares of objects as in Hylland and Zeckhauser (1979).

Condition (ii) is where we approximate "CE". The market is allowed to clear with some error,

�, calculated as the Euclidean distance (squareroot of sum of squares) of market clearing error. If

a course has a strictly positive price both excess demand and excess supply count as error. If its

price is zero then only excess demand counts as error. (Preferences are non-monotone, and so it is

quite possible for a course to have excess supply at price zero).

Condition (iii) is where we approximate "EI". The largest budget can be no more than �

proportion larger than the smallest budget.

If � = � = 0 then we have an exact CEEI. Our version of exact CEEI is stated a bit di¤erently

from the classical version (Foley, 1967; Varian, 1974), which is formulated as the competitive

equilibrium of an exchange economy in which all agents have the same endowment.

5.2 The Existence Theorem

For a price vector p � 0, let B�(p) denote its �-ball in non-negative space. Formally, B�(p) =

fp0 � 0 : jjp0 � pjj2 � �g.

De�nition 8. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). Set bi = 1 for all i (wlog) and let

d�i (p) 2 	i denote student i�s demanded schedule when prices are p and his budget is 1. The

Demand Sensitivity of this economy, �, is de�ned by

� =sup
i;p

lim
�!0+

sup
p02B�(p)

�

d�i (p)� d�i (p0)

2�2
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The Demand Sensitivity of an economy tells us the maximum possible discontinuity in a single

agent�s demand with respect to price. This discontinuity is measured as the square of Euclidean

distance. In the course-allocation context the maximum possible discontinuity occurs when some

student�s demand changes from one bundle of k courses to an entirely disjoint bundle of k courses

(unless 2k > M which is unusual in practice).

Remark 2. In the course-allocation problem, in which each student demands at most one of each

course and at most k courses overall, � � min(2k;M).

The main existence result is:

Theorem 1. Fix any economy (S; C;q; (	i)Ni=1; (ui)Ni=1). For any � > 0, there exists a (
p
�M
2 ; �)�

Approximate CEEI.

In particular, for any budget vector b0 that satis�es maxi(b0i) � 1 + � and mini(b0i) = 1, and

any " > 0; there exists a (
p
�M
2 ; �)�Approximate CEEI with budgets of b� that satisfy jb�i � b0ij < "

for all i.

Theorem 1 indicates that any strictly positive amount of budget inequality is enough to ensure

that there is a price vector whose market clearing error is smaller than
p
�M
2 .

The market administrator is free to specify any vector of target budgets b0 and any " > 0, and

is assured that each realized budget b�i is within " of its target. So long as the target budgets are

strictly unequal, the perturbation " can be made small enough so that b� preserves the same strict

budget order as b0. Two natural choices for how to specify b0 are: (i) randomly assign unequal

budgets in [1; 1+�]; and (ii) assign unequal budgets in [1; 1+�] based on some pre-existing priority

order like seniority or grade-point average.

In Section 6 we will show that by setting � su¢ ciently small the market administrator can

guarantee attractive outcome fairness properties.

Discussion of the approximation bound The
p
�M
2 bound is small in two respects. First, it

does not grow with either N (the number of agents) or q (the capacity vector). This means that in

the continuum replication of any �nite economy we can guarantee exact market clearing (market

clearing error will be zero measure).

Second,
p
�M
2 is actually a small number for practical problems. For instance, in a semester at

Harvard Business School k = 5 and M = 50, and so � � 10 and
p
�M
2 . 11. This corresponds to

a maximum market-clearing error of 11 seats in one class, or of 3 seats in each of 12 classes, etc.,

as compared with about 4500 total course seats allocated per semester. Such error can easily be

accomodated in practice, by adding or removing a few chairs to or from a few classrooms.
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Relation to the Combinatorial Auctions Literature A notable feature of Theorem 1 is that

it provides an approximate existence result for item prices in an economy with complex prefer-

ences including complementarities. This seems counterintuitive given the combinatorial auctions

literature, where results for the existence of market-clearing item prices are negative (Gul and

Stachetti, 2000; Milgrom, 2004, 2007; Bikhchandani and Mamer, 1997; Bikhchandani and Ostroy,

2002; Parkes, 2007) and even approximate existence is thought to require non-linear non-anonymous

prices (Nisan and Segal, 2006).

The key to understanding the di¤erence is �, the Demand Sensitivity parameter.

In a general combinatorial auction setting it is possible that some agent gets positive utility only

if he consumes the bundle of all goods. If this bundle costs more than his value for it, he consumes

nothing. The demand of this agent is highly discontinuous at prices where he is indi¤erent between

the all and nothing bundles. If for simplicity we assume qj = q for all j, then the demand sensitivity

of an economy with such an agent is � = Mq2. So the Theorem 1 bound
p
�M
2 = Mq

2 : This is a

meaningless bound: the market-clearing error from allocating no goods at all (
p
Mq) can be lower!

By contrast, in the combinatorial assignment problem studied here, any complementarities

must be "small", because each agent consumes at most one of each object. This is what allows

item prices to clear the market to within an attractive approximation bound. There may be other

combinatorial allocation environments in which � is small, and so a result along the lines of Theorem

1 can guarantee an attractive approximation with item prices.

5.3 Sketch of Proof

The proof of Theorem 1 is contained in Appendix A. Here we provide a detailed sketch of the

proof in order to provide the main intuition for how it works. For the sketch it is convenient to

assume that agents�permissible sets are identical (	i � 	 for all i). Also, the sketch ignores some
boundary issues that are handled in the formal proof.

5.3.1 The Tâtonnement Price-Adjustment Function

Consider a tâtonnement price adjustment function of the form

f(p) = p+ z(p) (6)

where z(p) indicates excess demand as in (ii) of De�nition 7. If f(�) has a �xed point, this point
is a competitive equilibrium price vector.

Unfortunately there is no guarantee that f(�) has a �xed point. Any time any agent�s demand
changes it does so discontinuously, because goods are discrete. So z(�), and hence f(�), are not
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continuous with respect to price and we cannot apply �xed-point theorems to f(�). Instead, we
�rst mitigate the potential discontinuities in f(�) by perturbing budgets, and then we �nd an
approximate �xed point of f(�).

5.3.2 The Role of Unequal Budgets

The role of unequal budgets is to mitigate discontinuities in f(�):
Consider a student s1 whose budget is 1000 and whose favorite bundle at some price vector p0,

x0, costs 999. If we change the price vector a small amount to p00 so that x0 costs 1001 instead, s1

no longer can a¤ord it. Her demand will change. The size of a single agent�s demand discontinuity

is bounded by
p
�.

Suppose that students s2:::sN also have a budget of exactly 1000: Then as price changes from

p0 to p00 their choice sets vary identically with s1�s. Their demands might change as well. It is

possible that all N agents�demands change exactly as s1�s demand changes. That is, it is possible

that f(�) has a discontinuity with respect to price of size N
p
�. Note that the size of this potential

discontinuity grows with the number of agents, N .

Suppose instead that s2 has a budget of 1002, s3 of 1004, etc. Now, as the price of x0 rises from

999 to 1001 s1 can no longer a¤ord it, but s2; s3; ::: still can. So the change in price that causes s1�s

demand to change need not cause other students�demands to change. This is the basic intuition

for why even an arbitrarily small amount of budget inequality is so helpful.

The story is a bit more complicated than this sketch involving bundle x0 suggests, because our

economy usesM item prices, not j	j >> M bundle prices. So any change in the price of x0 changes

the price of some other bundles as well. Let H(si; x) = fp : p � x = big denote the hyperplane
in M -dimensional price space along which agent si can exactly a¤ord bundle x. Every time price

crosses such a "budget-constraint hyperplane", some agent�s choice set changes, and hence their

demand might change. In the sketch above, p0 and p00 were on opposite sides of H(s1; x0).

Because the number of agents and the number of permissible bundles are �nite, so too is the

number of budget-constraint hyperplanes. I de�ne a perturbation scheme �a tiny "tax / credit"

speci�c to each agent-bundle pair �that does two things.34 First, no more thanM budget-constraint

hyperplanes intersect at any one point - now the maximum discontinuity in f(�) with respect to
price is M

p
�, which no longer grows with N . Second, no two budget-constraint hyperplanes are

identical �this means that for any two price vectors p0 and p00, there is a path through price space

that connects p0 and p00 and that crosses just one budget-constraint hyperplane at a time, i.e., a

path along which all discontinuities are of size at most
p
�.

34This perturbation scheme is the reason for the " in the theorem statement.
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5.3.3 Finding an Approximate Fixed Point

How are we going to use the fact that the discontinuities in f(�) are now "small" to obtain an

approximate �xed point? Consider the following convexi�cation of f(�):

F (p) = cofy : 9 a sequence pw ! p;pw 6= p such that f(pw)! yg (7)

where co denotes the convex hull. Cromme and Diener (1991; Lemma 2.4) show that, for any map

f(�) on a compact and convex set, correspondences of the form (7) are upper-hemicontinuous. This
allows application of Kakutani�s �xed-point theorem (the other conditions are trivially satis�ed):

there exists p� such that p� 2 F (p�):
What does (7) tell us about such a p� 2 F (p�)? In any arbitrarily small neighborhood of p�,

there must exist a set of points such that some convex combination of the f�s of these points is

equal to p� : that is, a convex combination of their excess demands exactly clears the market.

Because agents�demands change only when price crosses one of their budget-constraint hyper-

planes, we can put a lot of structure on demands in a small neighborhood of p�. If p� is not on any

budget-constraint hyperplane, then in a small enough neighborhood of p� demand is unchanging,

and so p� 2 F (p�) actually implies p� = f(p�), and we are done. Suppose instead that p� is on L
budget-constraint hyperplanes. We know from the perturbation above that L �M .

The two key ideas are the following. First, for any price p0 in a small enough neighborhood of

p�, demand at p0 is entirely determined by which side of the L hyperplanes p0 is on (the a¤ordable

side or the una¤ordable side). That is, out of a whole neighborhood, we can limit attention to a

�nite set of at most 2L points.

Second, for each of the L agents corresponding to the L hyperplanes, their demand depends only

on which side of their own budget-constraint hyperplane price is on. For each of the L agents s(i),

i = 1:::L, we can de�ne a "change-in-demand vector" v(i) that describes how their demand changes

as price crosses from the a¤ordable to the una¤ordable side of their budget-constraint hyperplane.

Thus a set of L change-in-demand vectors entirely describe how demand changes near p�.35 The

set of feasible demands in an arbitrarily small neighborhood of p� is:

fa 2 f0; 1gL : z(p�) +
LX
i=1

a(i)v(i)g (8)

35There are two exceptions to this statement that are handled in the proof. The �rst exception is if p� is on the
boundary of price space. In this case we may need to perturb budgets a tiny bit more in order to cross certain
combinations of hyperplanes. The second exception is if multiple hyperplanes belong to a single agent. Then their
change in demand close to p� is a bit more complicated than can be described by a single change-in-demand vector.
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Now p� 2 F (p�) tells us something much more useful than above: perfect market clearing is
in the convex hull of (8)! Our market-clearing error is the maximum-minimum distance between a

vertex of (8) �one of the feasible demands near p� �and a point in the convex hull of (8). The

worst case distance occurs when there are M change-in-demand vectors, each of the maximum

possible length
p
�; the vectors are mutually orthogonal, and the perfect market clearing ideal

is equidistant from all 2M vertices. This worst case distance is half the diagonal length of an

M -dimensional hypercube of side length
p
�:

p
�M
2 :

5.4 Tightness of Theorem 1

The bound of Theorem 1 is tight. I present an illustrative example and then the formal tightness

statement.

Example 2. There are 4 courses fA;B;C;Dg each with capacity 2. There are 4

students whose budgets are b� = (1203; 1202; 1201; 1200) and whose preferences over

the scarce courses are:

u1(fA;B;Cg) > u1(fDg) > :::

u2(fA;B;Dg) > u2(fCg) > :::

u3(fA;C;Dg) > u3(fBg) > :::

u4(fB;C;Dg) > u4(fAg) > :::

Consider the price vector p� = (402; 401; 400; 399): Student s1 can exactly a¤ord

fA;B;Cg at p�. So along pw ! p� her demand converges either to fA;B;Cg or fDg:
Similarly, student s2�s demand converges to either fA;B;Dg or fCg, etc. Some feasible
total demands in a neighborhood of p� are (1; 1; 1; 1), (2; 2; 2; 0), (3; 3; 1; 1); (4; 2; 2; 2);

and (3; 3; 3; 3). A convex combination of students�demands in a neighborhood of p�

exactly clears the market.

Observe that every feasible demand in a neighborhood of p� is Euclidean distance 2 from

q = (2; 2; 2; 2): Why?

25



The change-in-demand matrix at p� (i.e., the matrix formed by stacking the v(i)�s) is0BBBBB@
�1 �1 �1 +1

�1 �1 +1 �1
�1 +1 �1 �1
+1 �1 �1 �1

1CCCCCA (9)

This is an example of a Hadamard matrix: all of its entries are �1 and its rows are mutually
orthogonal.36

Whenever the change-in-demand matrix at p� is a Hadamard matrix, aggregate demand in a

neighborhood of p� forms a hypercube with sides of length
p
M (here, � =M; so

p
�M
2 = 2). If q

is the hypercube�s center, as here, we obtain the worst-case bound for market clearing.

The Hadamard matrix (9) has an additional feature, called regularity, which requires that each

row has the same number of +1�s. It can be shown that regular Hadamard matrices exist for

all powers of 4:37 So we can construct examples that are analogous to Example 2 � in which all

courses have approximately the same price and each agent�s two favorite bundles are disjoint �for

M = 16; 64; 256; :::. We summarize this sense that the Theorem 1 bound is tight as:

Proposition 4. For any M 0, there exists an economy with M 00 � M 0 courses such that, for

� <
p
�M
2 and some � > 0, there does not exist an (�; �)-Approximate CEEI.

Note that the preferences in Example 2 seem unrealistic. This gives some hope that in practice

we will be able to �nd approximations that are better than the bound.

6 Theoretical Properties of the Approximate CEEI

The purpose of this section is to show that the approximation to Competitive Equilibrium from

Equal Incomes (CEEI) guaranteed by Theorem 1 can be the basis of a mechanism that approximates

the desirable e¢ ciency and outcome-fairness properties of CEEI.

36See Wallis et al (1972) or http://en.wikipedia.org/wiki/Hadamard_matrix.
37 I thank Neil Sloane for the proof. Let A be the matrix de�ned in (9). The tensor product of two Hadamard matri-

ces is itself a Hadamard matrix, and the tensor product preserves the "same number of +1s per row" property. So A
A
is a 16-Dimensional Hadamard matrix with the same number of +1s per row, A
(A
A) is a 64-Dimensional example,
etc. It is conjectured that there exist regular Hadamard matrices of order (2n)2 for any integer n. Useful references
are http://www.research.att.com/~njas/hadamard/ and http://www.research.att.com/~njas/sequences/A016742.
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6.1 E¢ ciency

An Approximate CEEI is not Pareto e¢ cient, because a small number of positive-priced goods

might go unallocated. It is easy to see though that it is e¢ cient with respect to whatever goods are

allocated; that is, there will not be any ex-post Pareto improving trades amongst the students.38

6.2 Theorem 2: Approximate CEEI Guarantees Approximate Maximin Shares

What is unusual about this de�nition of CEEI is that it is possible that agents�optimal bundles do

not exhaust their budgets. And yet, the currency is arti�cial; it has no use outside the allocation

problem at hand and does not enter the utility function. So we should worry: to what extent do

equal budgets actually guarantee that agents will receive acceptable outcomes?

We begin by showing that exact CEEI�s guarantee exact maximin shares. The proof will be

instructive for the main result of this section, which is that an approximate CEEI guarantees an

approximation to maximin shares that is based on adding one more agent to the divide-and-choose

procedure.

Proposition 5 (CEEIs guarantee Maximin Shares). If x�;b�; and p� constitutes an exact CEEI,

then each student receives at least her maximin share.

Proof. Suppose there exists some agent si such that, for

ex 2 argmax
(xl)

N
l=1

min[ui(x
0
1); :::; ui(x

0
N )] subject to

x0l 2 	i for all k = 1:::NX
x0lj � qj for all j = 1:::M

we have ui(x�i ) < ui(exl) for each exl 2 ex. By conditions (i) and (iii) of a CEEI we have p� � exl > b�i
for each exl 2 ex, and p� � x�l � b�i for each x

�
l 2 x�. But by condition (ii) of a CEEI, any course

that has positive price under p� is at full capacity under x�, so ex cannot cost more in total than
x�. This yields a contradiction:

Nb�i �
X
l

p� � x�l �
X
l

p� � exl > Nb�i
38Proof. Suppose that there exists a feasible allocation bx that Pareto improves upon x� and that uses at most the

same number of each strictly-positive priced good as x�. By condition (i) of the de�nition of Approximate CEEI,
for any agent i for which bxi 6= x�i it must be the case that p� � bxi > p� � x�i . This implies that the allocation bx has a
total cost at p� strictly greater than that of x�; which is a contradiction since prices are non-negative. QED.
If agents have indi¤erences then Condition (i) of De�nition 7 needs to be modi�ed for this proof to work: each

agent buys the least cost bundle out of those that maximize their utility subject to the budget constraint.
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QED.

The proof that a CEEI guarantees maximin shares relies on two facts about CEEI�s: (i) EI

means each student has 1
N of the endowment; (ii) at a CE price vector p� the goods endowment

costs weakly less than the income endowment.

The approximate CEEI jeopardizes both of these properties. We need to use two approximation

parameters to ensure that the error from (i) and (ii) is minimized. The � budget approximation is

the �rst. The second is de�ned as follows.

De�nition 9. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1): For � � 0 and budgets b, the set

P (�;b) = fp 2 [0;maxi(bi)]M :
PM
j=1 pjqj �

PN
i=1 bi(1 + �)g.

In words, at any price vector in P (�;b); the goods endowment costs at most � proportion more

than the income endowment.

Lemma 1. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). For any � > 0 and any set of target bud-

gets b0 there exists an (�; �)�Approximate CEEI x�;b�;p� that satis�es all of the conditions of
Theorem 1 and additionally p� 2 P (�;b�):

The proof of Lemma 1 is in Appendix B. The key fact is that the approximate CEEI price

vector p� guaranteed by Theorem 1 is near a �xed point of F (�) (see 5.3.3): At each price "near"
to the �xed point agents can a¤ord their demands, and a convex combination of these demands is

feasible. Hence, since p� is nearly a �xed point, agents can approximately a¤ord the endowment.

By choosing �; � small enough we will be able to ensure that each agent�s budget is at least 1
N+1

of the cost of the endowment at p�. This guarantees that the approximate CEEI approximately

satis�es the maximin share guarantee.

De�nition 10. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). For bN � N; agent si�s bN�maximin
share is

u
bN
i = max

(xl)
bN
l=1

[min(ui(x1); :::; ui(xN ); :::ui(x bN ))] subject to (10)

xl 2 	i for all l = 1:::N::: bNX
xlj � qj for all j = 1:::M

Agent i�s bN�maximin split is the allocation x1; :::; xN ; :::x bN in (10). A course-allocation mech-
anism satis�es the bN�maximin share guarantee if, for any allocation x selected with positive prob-
ability, ui(xi) � u bNi for all i = 1:::N .

Theorem 2. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). If x�;b�;p� is an (�; �)�approximate
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competitive equilibrium from equal incomes where, for some � � 0, p� 2 P (�;b�) and � < 1��N
N(1+�) ,

then each agent obtains at least their N + 1-maximin share.

Proof. See Appendix B.

Theorem 2 indicates that by using an approximately equal distribution of arti�cial currency (i.e.,

� small) we can provide an attractive guarantee on ex-post utilities, despite the fact that goods

are indivisible, and so much of this arti�cial currency might go unspent. Speci�cally, each agent

does at least as well as he could guarantee himself as divider in an N + 1-way divide-and-choose

procedure.

We might worry, especially in small markets, about the di¤erence between N and N+1maximin

shares. For instance, if there are two agents and two diamonds, the N -maximin share guarantees

each agent a diamond, whereas the N + 1 share does not. It turns out that we can often provide a

slightly stronger guarantee than Theorem 2.

Proposition 6. If � = 0 and � < 1
N�1 then each agent is guaranteed the weaker of

(a) an outcome weakly better than her N th favorite bundle in her N + 1-maximin split

(b) an outcome strictly better than her N +1st favorite bundle in her N +1-maximin split (i.e.,

her N + 1-maximin share).

Proposition 6 guarantees that each agent receives a diamond in the two-diamond two-rock

example (Example 1). The approximation error is that the agent who gets the small diamond may

get the ugly rock.39 By contrast, in a dictatorship whichever agent goes �rst gets both diamonds,

while the other is left with only rocks.

6.3 Theorem 3: Approximate CEEI Guarantees Envy Bounded by a Single

Object

Exact CEEIs are envy free because all agents have the same choice set. Formally,

Remark 3. (CEEIs are Envy Free). If x�;b�; and p� constitutes a CEEI, then the allocation x�

is envy free.

Proof. If x�j 2 	i then condition (iii) of a CEEI implies that p� �x�j � b�i . If x�j 6= x�i then condition
(i) of a CEEI implies ui(x�i ) > ui(x

�
j ). So si does not envy sj . QED

39For these examples it is easy to see that there exists a (0; �)-Approximate CEEI for any � > 0. Each agent�s
N + 1-maximin split is ffAg; fBg; fC;Dgg, so part (a) of the guarantee is a bundle weakly better than fBg; and
part (b) of the guarantee is a bundle strictly better than fC;Dg (which happens to coincide with part (a); this is not
the case generally). Market clearing then implies each agent gets at least fB;Dg:
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When agents have unequal incomes they have di¤erent choice sets, and so envy-freeness cannot

be assured. The idea of the following result is: if inequality in budgets is su¢ ciently small, then

we can bound the di¤erence in agents�choice sets, and hence the degree of envy.

Theorem 3. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). If x�;b�;p� is an (�; �)�approximate
competitive equilibrium from equal incomes and � < 1

k�1 (where k is the maximum number of

courses per student) then x� satis�es envy bounded by a single object.

Proof. Suppose for a contradiction that si envies sj ; and this envy is not bounded by a single

object. Let k0 � k denote the number of courses in sj�s bundle x�j and number these courses

(c1; :::; ck0). Then we have:

ui(x
�
jnfc1g) > ui(x

�
i )

:::

ui(x
�
jnfck0g) > ui(x

�
i )

Condition (i) of the de�nition of the Approximate CEEI indicates that si cannot a¤ord any of

these k0 bundles formed by removing an object from x�j :

p� � (x�jnfc1g) > b�i

:::

p� � (x�jnfck0g) > b�i

Since p�1 + p
�
2 + :::+ p

�
k0 = p

� � x�j � b�j we can sum these inequalities to obtain

(k0 � 1)b�j � (k0 � 1)(p� � x�j ) > k0b�i

which implies that
b�j
b�i
� k0

k0�1 . Since k
0 � k we have

b�j
b�i
� k

k�1 . So if � <
1
k�1 we have a

contradiction. QED.

Note that the degree of budget inequality necessary to guarantee envy bounded by a single

object (� < 1
k�1) is di¤erent from that required to guarantee agents their approximate maximin

shares (essentially, � < 1
N ). Theorem 1 allows us to choose � arbitrarily small, so we can ensure

that we satisfy the requirements of Theorems 2 and 3.
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7 The Approximate CEEI Mechanism

This section develops the Approximate CEEI Mechanism. The existence theorem ensures that

such a mechanism will be well de�ned. We will ensure that budget inequality is su¢ ciently small

that we can apply Theorems 2 and 3 to guarantee approximate outcome fairness. By allocating

budgets randomly and then choosing randomly amongst multiple equilibria, we can ensure that

the mechanism is symmetric and strategyproof in a large market. We conclude the section by

summarizing the mechanism�s properties and contrasting with those of other known mechanisms.

7.1 De�nition: the Approximate CEEI Mechanism

Approximate CEEI Mechanism. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1). The Approximate
CEEI Mechanism is the following procedure:

1. Agents report utility functions (bui)Ni=1.40
2. The mechanism computes the set of CEEI prices of the economy (S; C;q; (	i)Ni=1; (bui)Ni=1),
normalizing budgets to b� = (1; :::; 1).

3. If the set of CEEI prices is non-empty, the mechanism chooses uniform randomly from this

set and announces the prices p�, the corresponding allocation x�; and budgets b�.

4. If the set of CEEI allocations is empty, the mechanism chooses a target budget vector b0 by

choosing non-identical budgets uniform randomly from [1; 1+ �], for some � < min( 1N ;
1
k�1).

Then, for " smaller than the smallest di¤erence between budgets, � < 1�N�, and � �
p
�M
2 ,

the mechanism computes the set of (�; �)�Approximate CEEI price vectors in P (�) that have
corresponding budget vectors within " of the target b0.

5. The set of Approximate CEEI price vectors is guaranteed to be non-empty by Theorem 1.

The mechanism chooses uniform randomly amongst those in this set with the smallest �, and

announces the prices p�, and the corresponding budgets b� and allocation x�.

Steps 2 and 3 seek an exact CEEI, which is particularly attractive but may not exist. Step

4 uses Theorems 2 and 3 to compute a set of Approximate CEEI�s that satisfy the criteria of

outcome fairness. Theorem 1 guarantees that the set asked for in Step 4 is non-empty. This set is

computable in principle because the number of budget-constraint hyperplanes is �nite, hence so is

40The number of possible schedules can be quite large, so as a practical matter the procedure must provide a way
for students to express their preferences concisely. A natural starting point for the reporting language is Milgrom�s
(2008) class of assignment messages. See the discussion in Othman, Budish and Sandholm (2008).
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the number of regions of price space we have to check. A speci�c algorithm that computes prices

will be discussed in Section 8.1.

7.2 The Approximate CEEI Mechanism is Strategyproof in a Large Market

In this section we will show that the Approximate CEEI Mechanism is strategyproof in a large

market. The �rst step is to de�ne Approximate CEEI for continuum economies.

De�nition 11. Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1); and consider its continuum replication

(S1; C;q; (	1i )Ni=1; (bu1i )Ni=1). The allocation x� = (x�i )i2(0;N ], budgets b� = (b�i )i2(0;N ] (normalized
so that infi(b�i ) = 1) and prices p� = (p�1; :::; p

�
M ) constitute an (�; �)�Continuum Approximate

CEEI if:

(i) x�i = argmax
x0i2	i

[ui(x
0
i) : p

� � x0i � b�i ] for all i 2 (0; N ]

(ii) jjz�jj � � where z� = (z�1 ; :::; z�M ) and
z�j =

R
S1 x

�
ijdsi � qj if p�j > 0

z�j = max(
R
S1 x

�
ijdi� qj ; 0) if p�j = 0

(iii) supi b
�
i � 1 + �

Notice that we have de�ned � as the measure of market-clearing error. Theorem 1 suggests that

we can �nd market-clearing error of zero in continuum economies. In fact, there is a much simpler

proof available in continuum economies, because, given an atomless budget distribution and a

�nite set of possible consumption bundles, it is easy to show that excess demand is continuous with

respect to price. Standard �xed-point arguments then imply the existence of an exact competitive

equilibrium price vector; in particular, so long as the target budget distribution b0 is atomless,

there is no need to perturb budgets by " and so we just set b� = b0. It is also simple to see that

the Approximate CEEI Mechanism has attractive incentive properties in the continuum limit.

Proposition 7. The Approximate CEEI Mechanism is Strategyproof in a Large Market.

Proof. Consider student si. Fix an arbitrary set of reports bu = (bui; bu1�i) where bu1�i denotes the
reports of students in S1nfsig. The distribution of the reports bu (more speci�cally, the distribution
of the ordinalizations of these reports) determines the set of CEEI price vectors in Step 2. If this

set is empty, then in Step 4 si is randomly allocated a budget b�i , and then the distribution of bu and
the randomly assigned budgets determines the set of Approximate CEEI price vectors. Student

si�s own report cannot a¤ect the distribution of bu; nor the amount of market-clearing error for
any price vector, because he is zero measure. So the price vector p� is chosen independently of his

report, and his budget b�i similarly is independent of his report. If si reports bui(�) he is allocated
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x�i = argmax
x0i2	i

[bui(x0i) : p� � x0i � b�i ]: Clearly he can do no better than to report his preferences

truthfully. QED

It is possible to generalize Step 5 of the Approximate CEEI Mechanism in certain ways without

jeopardizing large-market strategyproofness. For instance, a market administrator might specify

a penalty function in terms of � and � (or more complicated statistics of market-clearing error

and budget inequality) and seek the best such Approximate CEEI. All that is important for the

property of strategyproof in the limit is that the tiebreaking is based on aggregate features of

the Approximate CEEI rather than individuals�allocations, so that in a continuum economy the

probability that any agent a¤ects the market administrator�s choice of prices or budgets is zero.

7.3 Summary: the Case for the Approximate CEEI Mechanism

Properties of the Approximate CEEI Mechanism. In any economy, the Approximate CEEI

Mechanism has the following properties.

E¢ ciency

- Ex-post e¢ cient with respect to the allocated goods.

Fairness

- Symmetric

- N+1 Maximin Share Guaranteed

- Envy Bounded by a Single Good

Incentives

- Strategyproof in the Limit

The best way to argue that the Approximate CEEI Mechanism is an attractive compromise

of the competing objectives is by comparing it to the other course-allocation mechanisms used in

practice and proposed in theory. We begin by noting its relationship to Random Serial Dictatorship.

Remark 4. In single-unit assignment problems, the Approximate CEEI Mechanism coincides

with Random Serial Dictatorship. In course-allocation (i.e., multi-unit assignment) problems, RSD

corresponds to a competitive equilibrium mechanism in which b� is a uniform random permuation

of (1; (1 + k); (1 + k)2; :::; (1 + k)N�1), with k the maximum number of courses per student.

Proof. (Single-unit assignment) A CEEI exists if and only if all agents have a di¤erent favorite

object. In this case, RSD and the Approximate CEEI Mechanism clearly coincide. Suppose a

CEEI does not exist. Then the strict budget order selected in Step 4 of the Approximate CEEI

Mechanism plays the same role as the serial order selected in RSD. Speci�cally, the RSD allocation
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can be supported as a (0; �)-Approximate CEEI by the price vector in which an object�s price is

equal to the budget of the last student to obtain a copy of it, or zero if it does not reach capacity.

Any other allocation has strictly-positive market-clearing error at any price vector: if the agent

with the lth highest budget obtains an allocation at some price vector p0 that is strictly better

than he receives under the serial dictatorship then one of the �rst l objects selected in the serial

dictatorship must be over-allocated at p0, and vice versa. So the RSD allocation is selected in Step

5 of the Approximate CEEI Mechanism.

(Multi-unit assignment) Run a serial dictatorship with the same serial order as the randomly

selected budget order. If a course reaches capacity at the lth student�s turn, set its price equal to
1
k times the l

th highest budget. If a course never reaches capacity, set its price equal to zero. At

this price vector, each agent consumes her most preferred bundle that consists of courses available

at her turn in the serial dictatorship, and market-clearing error is zero. QED.

Remark 4 may help us further understand why RSD is observed often in practice for single-unit

assignment (e.g., school choice) but not for multi-unit assignment. The following table compares

the Approximate CEEI Mechanism�s properties to those of all other known course-allocation mech-

anisms, both from theory and practice.

Insert Table 2: Comparison of Alternative Mechanisms

Table 2 shows that the Approximate CEEI Mechanism is on the "e¢ ciency-fairness-incentives

frontier". Every other known mechanism is unfair ex-post, manipulable in large markets, or both

unfair and manipulable.

8 Ex-Ante E¢ ciency of the Approximate CEEI Mechanism

The proposed mechanism has an element of randomness, and so it can be argued that e¢ ciency

should be assessed ex-ante, rather than ex-post. In random assignment contexts such as this one,

ex-ante e¢ ciency is a strictly stronger criterion: a necessary but not su¢ cient condition for a lottery

over allocations to be ex-ante e¢ cient is that all realizations of the lottery are ex-post e¢ cient.41

In this section I empirically assess the ex-ante e¢ ciency properties of the proposed mechanism

in a speci�c course-allocation environment. Theorem 1 is non-constructive, and so I begin by

describing the algorithm used to compute approximate CEEI prices (Section 8.1). Section 8.2

describes the data, which comes from the course-allocation procedure at Harvard Business School.

41As discussed in the introduction, fairness criteria should be assess ex-post, both because ex-post is the perspective
that matters to market administrators, and because ex-post is actually the more stringent perspective. For instance,
a random serial dictatorship is ex-ante envy free even though it results in very unequal outcomes ex post.
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Section 8.3 examines market-clearing error: it is substantially smaller than even the Theorem 1

bound, suggesting that ex-post ine¢ ciencies are small. Section 8.4 examines how sensitive students�

outcomes are to the randomness of the mechanism. This exercise suggests that ex-post e¢ ciency

is likely to be a reasonable proxy for ex-ante e¢ ciency. Finally, in Section 8.5 I directly assess the

ex-ante e¢ ciency of the proposed mechanism, by comparing it to that used at HBS. The proposed

mechanism is superior to the actual strategic play of the HBS draft mechanism, but, notably, is a

bit worse than a non-equilibrium counterfactual in which students play the HBS draft mechanism

truthfully.

8.1 Approximate CEEI Algorithm

Theorem 1 is non-constructive and so computing Approximate CEEI prices is non-trivial. There

are two computational challenges. The �rst is that calculating demands is NP Hard: the problem

of solving for an agent�s demand at a particular price vector is formally equivalent to a set-packing

(i.e., knapsack) problem. The complexity of solving for an agent�s demand grows with the number

of bundles he must consider, which itself grows exponentially with the maximum number of courses

per bundle. The second is that even if excess demand were easy to compute, �nding an approximate

zero of excess demand is a challenging search problem.

Othman, Budish and Sandholm (2008) develop a computational procedure that overcomes these

two challenges in life-size problems. Agents� demands are calculated using an integer program

solver, CPLEX. Our search procedure takes a traditional tâtonnement search process � which

Scarf (1960) showed can cycle even in economies with divisible goods and convex preferences �

and enhances it using an arti�cial-intelligence method called Tabu Search. There are two basic

ideas to the enhancement. First, we consider not only a tâtonnement adjustment of the form

pt+1 = pt+ z(pt) but also adjustments that raise or lower just a single price at a time. This set of

potential adjustments is called the neighborhood of pt. Second, of this neighborhood, the algorithm

travels to the price vector that has the lowest market-clearing error, except that we avoid prices

that have an excess demand vector that has been encountered recently (the "Tabu List"). That is,

the algorithm often travels in a seemingly less attractive direction, in an attempt to avoid cycles.42

The algorithm can currently handle problems that are the size of a single life-size semester (5

courses per student; 50 courses overall of which 20 are scarce; 456 students).

42Russell and Norvig (2002; Chapter 4) provide an overview of Tabu Search. See also
http://en.wikipedia.org/wiki/Tabu_search. Our algorithm stops when it has (i) found a price vector with
market clearing error within the Theorem 1 bound; (ii) gone 100 iterations without further improvement. The
algorithm does not explicitly calculate the full set of Approximate CEEI price vectors.
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8.2 Data and Key Assumptions

I use the Budish and Cantillon (2008) data on course allocation at Harvard Business School (HBS)

for the 2005-2006 academic year. The data consist of students�true and stated ordinal preferences

over 50 Fall semester courses and 47 Spring semester courses, as well as these courses�capacities.

Data on true course preferences are generally di¢ cult to obtain because all of the course-allocation

mechanisms used in practice are easy to manipulate. Budish and Cantillon (2008) use a survey

conducted by HBS a few days�prior to the run of its mechanism as the proxy for true preferences,

and then corroborate this assumption by running an additional survey several months after the run

of the mechanism. We have the stated preferences for all 916 HBS students, and true preferences

for the 456 who �lled out the survey. In the analysis we consider an economy with just the 456,

adjusting course capacities proportionally. Robustness checks reported in Budish and Cantillon

(2008) indicate that there are no systematic di¤erences in strategic preferences between the 456

who �lled out the survey and the 460 who did not.

In order to convert the HBS data on ordinal preferences over individual courses into data on

students�preferences over lotteries for bundles of courses, I need to make additional assumptions. I

assume: (A1) preferences are additively-separable; and (A2) students care about the average rank

of the courses they receive (e.g. they prefer their 2nd and 3rd favorite courses to their 1st and 5th

because 2:5 < 3). These assumptions seem reasonable for handling the data incompleteness problem

for two reasons: (i) the HBS elective-year curriculum is designed to avoid complementarities and

overlap between courses; and (ii) in the HBS draft mechanism43 students are unable to express the

intensity of their preference for individual courses beyond ordinal rank. Preliminary exploration of

preferences more complex than average-rank suggest that all of the reported results are robust. In

particular, the performance of the HBS draft mechanism deteriorates relative to the Approximate

CEEI Mechanism when there are complementarities or intense preferences, making the welfare

di¤erence found in Section 8.5 more pronounced.

The other main substantive assumption is (A3) that students report their preferences truthfully

under the Approximate CEEI Mechanism. While we know that the mechanism is strategyproof in

continuum markets, we have no way of assessing whether 916 students is large enough to provide

incentives for truthful reporting. The main obstacles are: (i) the number of potential misreports

is large;44 and (ii) we have no theoretically-motivated way to restrict attention to some subset of
43The HBS Draft Mechanism works as follows. Students report their ordinal preferences over individual courses.

A computer assigns each student a random priority number. Then, over a series of rounds, it chooses courses for the
students one at a time based on their reported preferences. In rounds 1, 3, 5, ... the computer proceeds through
students in ascending order of the random priority numbers, whereas in rounds 2, 4, 6, ... it proceeds in descending
order. At each turn, the choosing student is given his most-preferred course that (i) he has not yet received; (ii) is
not yet at capacity.
44There are 50 courses per semester, and each student ranks about 15 courses per semester. So there are about
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these potential manipulations, unlike in Roth and Peranson (1999).45

Two other small assumptions are necessary for the analysis. First, I treat each semester�s

allocation problem separately. This is due to computational limitations of the Othman et al (2008)

algorithm, which currently can handle semester-size problems (�ve courses per student) but not

full-year size problems. Second, I ignore scheduling constraints, but for the constraint that each

student takes at most �ve courses per semester.

8.3 How Large is Market-Clearing Error?

Theorem 1 indicates that, so long as budgets are unequal, there exist prices that clear the HBS

course-allocation market to within market-clearing error of
p
2kM
2 (Euclidean distance), where k is

the number of courses per student, and M is the number of courses. Here, k = 5 and M = 50; 47

for the Fall and Spring semesters, respectively. So the market clearing bound is
p
2kM
2 � 11.

Figure 1 reports the actual market clearing error over 100 runs of the Approximate CEEI

Mechanism on the Fall and Spring semesters of course allocation at HBS. Each run corresponds to

a di¤erent random budget ordering. There are 456! possible orderings, and each run takes about

one hour of computational time, so we are able to explore just a tiny fraction of them.

[Insert Figure 1: Distribution of Market Clearing Errors]

The actual error is substantially smaller than the bound implied by Theorem 1. The maximum

observed error in Euclidean Distance is
p
14 in the Fall and

p
15 in the Spring (versus the Theorem

1 bound of
p
125 and

p
117:5). In terms of seats, the maximum observed error is 14 seats in the

Fall and 11 seats in the Spring, with averages of 6:04 and 5:50, respectively.

8.4 How Sensitive is Ex-Post Utility to Income?

There are two elements of randomness in the proposed mechanism. First, budgets are distributed

uniform randomly on [1; 1 + �]. Second, for a given realization of budgets there might be multiple

approximate CEEI price vectors with equivalent market-clearing error.

50!
(50�15)! � 2� 10

12 possible reports, even within the restricted class of additive-separable average-rank preferences.
45 I have run computational experiments on a highly stylized economy in which the number of reports is so small

that we can search exhaustively for pro�table manipulations. Speci�cally, there are four courses; students have
additive-separable preferences, with student i�s value for course j given by uij = vj + "ij ; with average course values
of v = (1; 2; 3; 4) and "ij � N(0; 1) i.i.d. across students and courses. There are N agents, and each course has
capacity

�
1:1N
2

�
, i.e., there is 10% excess capacity.

Student i has a Bayesian manipulation if he has a misreport that is pro�table on average over a large number
of opponent value draws and random budget draws. I �nd some Bayesian manipulations for small N , but not
for N � 200. The results are very preliminary, and it is di¢ cult to extrapolate much from this highly stylized
environment, but at least these results suggest that the mechanism provides exact incentives in some �nite markets.
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If students�outcomes are invariant across trials, then ex-post e¢ ciency is an exact proxy for

ex-ante e¢ ciency. We explore how sensitive students� outcomes are to the randomness of the

mechanism by looking, student by student, at the di¤erence in utility between their single best and

single worst outcome over the 100 trials. See Figure 2.

[Insert Figure 2: Distribution of Di¤erence Between Best and Worst Outcomes]

Around half of the students� outcomes are invariant over the trials. For another 15%, the

di¤erence between their best and worst outcome is a single rank, i.e., the di¤erence between getting

one�s lth and l + 1st favorite course, for some l. For about 3.5% of students in the Fall and 5% in

the Spring, the maximum di¤erence is 4-5 ranks, and the maximum observed di¤erence is 7.

These di¤erences seem small, especially by contrast with dictatorships. Students who get to

choose early in a dictatorship get their top-�ve favorite courses, whereas students who choose late

might get a very poor selection. In simulations of a Random Serial Dictatorship, over 80% of

students have an observed maximum di¤erence in excess of 20 ranks.46

8.5 How Does Ex-Ante E¢ ciency Compare Against an Alternative?

In order to assess the welfare performance (i.e., distribution of realized utilities) of the Approximate

CEEI Mechanism we need a benchmark. The HBS Draft Mechanism is a natural candidate for

comparison. First, variants of the mechanism are used at other universities and in many other

allocation contexts (see Brams and Stra¢ n, 1979). Second, our data consist of students�actual

strategic reports under this mechanism, so we do not need to solve for equilibrium play. Third,

Budish and Cantillon (2008) show that even though the HBS Draft Mechanism is manipulable in

theory and manipulated in practice, it performs better than a strategyproof dictatorship on several

measures of ex-ante e¢ ciency. So in a sense the HBS Draft Mechanism is the current "high-water

mark" in course-allocation mechanism design.

We have assumed that students�ordinal preferences over bundles are based on the average rank

of the courses contained in each bundle. We have not yet made any additional assumption about

how their cardinal utilities depend on average rank. For instance, if x0i has a lower average rank

for si than x00i , then we have assumed ui(x
0
i) > ui(x

00
i ) but have not made any assumptions on the

magnitude of this di¤erence. This in mind, let us now look at the distribution of average ranks for

46Budish and Cantillon (2008) show that the variability in outcomes in RSD translates to substantial ex-ante
ine¢ ciency under the assumption of average-rank preferences. The theoretical intuition is simple: lucky students
who get early serial numbers make their last choices independently of whether these courses would be some unlucky
student�s �rst choice. The lucky students "callously" disregard the preferences of the unlucky students.
Ex-ante, students do not know whether they will be early or late in the choosing order, and regard the distribution

over callous outcomes as unattractive.
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each of the two mechanisms. See Figure 3.

[Insert Figure 3: Average Rank Comparison: Approximate CEEI versus HBS]

In each semester, the distribution of average ranks under the Approximate CEEI Mechanism

�rst-order stochastically dominates that under the HBS Draft Mechanism. First-order stochas-

tic dominance is an especially strong comparison relation: we do not need to make any further

assumptions on how utility responds to average rank to reach a welfare comparison.

There are two equivalent ways to interpret the f.o.s.d. �nding. First, utilitarian school admin-

istrators should prefer the Approximate CEEI Mechanism to the HBS Draft Mechanism. Second,

a student who knows the distribution of outcomes but does not yet know his own preferences �i.e.,

a student behind a veil of ignorance in the sense of Harsanyi (1953) or Rawls (1971) �should prefer

the Approximate CEEI Mechanism to the HBS Draft Mechanism.

Notably, the HBS Draft Mechanism would be a bit better than the Approximate CEEI Mech-

anism if students submitted their true preferences under the HBS procedure. The mean average

ranks are 4.09 in the Fall and 4.40 in the Spring under HBS-Truthful, versus 4.24 and 4.44 for Ap-

proximate CEEI.47 The cause of this di¤erence is that the Approximate CEEI Mechanism respects

students�incentives to misreport their preferences. This has a cost in terms of average welfare.48

47 In the Fall there is a second-order stochastic dominance relation in addition to the di¤erence in means. There is
no dominance relation in the Spring.
48For instance, suppose that student si�s four favorite courses are very unpopular her �fth favorite course, cj , is

popular. She has a natural strategic manipulation under the HBS draft mechanism - by asking for cj in the �rst
round, she is likely to get it, without undermining her chances of getting the other courses she likes. This is likely
to be bad for welfare as measured by average rank �because cj is so popular, there is probably some student who
likes it much higher than �fth who no longer gets it, because of si. The Approximate CEEI Mechanism respects
si�s incentive constraint: because the top four courses he likes will have price zero, he is very likely to get cj even if
he ranks it �fth. By contrast, under truthful play of the HBS draft mechanism he probably does not get cj , which
is good for welfare as measured by average rank, because it allows someone else who ranks it more highly to get it
instead.
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9 Conclusion

Combinatorial assignment is a problem of theoretical and practical importance. Most of what

is known about the problem are impossibility theorems which indicate that there is no perfect

solution.

This paper�s solution gets around the impossibility theorems by seeking tight approximations

of the ideal properties a mechanism should satisfy. Ideally, a course-allocation mechanism would

be both ex-post and ex-ante e¢ cient. My proposed solution is approximately ex-post e¢ cient

in theory (Theorem 1), and has attractive ex-ante e¢ ciency performance in a speci�c empirical

environment. Ideally, a course-allocation mechanism would satisfy the outcome fairness criteria of

maximin share guarantee and envy freeness. My proposed solution approximates these two ideals

(Theorems 2 and 3). Ideally, a course-allocation mechanism would be strategyproof. My proposed

solution satis�es a large-market notion of strategyproofness.

There are many open questions for future research. Can we improve the market-clearing ap-

proximation bound of Theorem 1 for restrictive classes of preferences (e.g. additive-separable)?

How closely can we approximate fair outcomes if we require exact as opposed to approximate

market clearing? What are the tradeo¤s between ex-ante e¢ ciency and ex-post fairness? Is there

a Bayesian argument that the mechanism is di¢ cult to manipulate in �nite markets? What if

there are multiple sets of objects that cannot be allocated simultaneously (e.g., shift allocation over

multiple months)?

I close on a methodological note. Practical market-design problems often prompt the develop-

ment of new theory that enhances and extends old ideas. To give a prominent example, the elegant

matching model of Gale and Shapley (1962) was not able to accommodate several complexities

found in the practical design problem of matching medical residents to residency positions. This

problem prompted the development of substantial new theory (summarized in Roth (2002)) and

a new market design described in Roth and Peranson (1999). Similarly, the beautiful theory of

Competitive Equilibrium from Equal Incomes developed by Foley (1967), Varian (1974) and others

is too simple for practice because it assumes perfect divisibility. This paper proposes a richer theory

that accommodates indivisibilities, and develops a market design based on this richer theory. I hope

that, just as a concrete application renewed interest in Gale and Shapley�s remarkable deferred-

acceptance algorithm, this paper and its motivating application will renew interest in CEEI as a

framework for market design.
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A Proof of Theorem 1

Preliminaries

Fix an economy (S; C;q; (	i)Ni=1; (ui)Ni=1), and �x � > 0; " > 0. Let b0 = (b01; :::; b
0
N ) be any

vector of budgets that satis�es maxi(b0i) � 1 + � and mini(b0i) = 1. In particular, b0 can be the

target budgets speci�ed by the market administrator.

Notationally, throughout the proof I will use markers like 0 and � (e.g., b0 and b�) to denote

speci�c instances of objects, and will not use such markers (e.g., b) when de�ning functions.

Boldface is used to indicate objects that pertain to all students (e.g., an allocation x = (x1; :::; xN )

or price vector p = (p1; :::; pM )). Vectors are not bolded when they pertain to just a single student;

e.g., an individual schedule xi = (xi1; :::; xiM ) is not bolded. The generic student/agent si is

sometimes referred to simply as i when this does not cause confusion.

Let b = 1+ �+ ". De�ne an M�dimensional price space by P = [0; b]M : For much of the proof
we will work with an enlargement of this space eP = [�1; b + 1]M in order to handle a boundary

issue that arises because excess supply is allowable for goods at price zero but not for goods with

strictly positive prices.

De�ne a truncation function t : eP ! P that takes any price vector in eP and truncates all prices
to be within [0; b]. Formally, t(p) = (t1(p); :::; tM (p)) with tj(p) = min(b;max(0; pj)).

In Step 2 we will assign to each agent i -bundle x pair a small reverse-tax � ix 2 (�"; ") that
a¤ects i�s cost of purchasing x: at prices p her total cost is p � x � � ix (that is, a positive � ix
decreases the price of x to i).

Demand and excess demand are de�ned on all prices in eP (including negative prices). Agent

i�s demand di(�) depends on prices p, her budget bi, and the set of taxes � i � (� ix)x2	i :

di(p; bi; � i) = argmax
x02	i

(ui(x
0) : p � x0 � bi + � ix0) (11)

Let � � (� i)i=1;:::;N . Excess demand z(�) is de�ned by

z(p;b; � ) =
NX
i=1

di(p; bi; � i)� q: (12)

We will suppress the b and � arguments from di(�) and z(�) when their values are clear from
the context. (Usually we are interested in how di(�) and z(�) move with price).

Since each agent consumes either 0 or 1 of each object, it is without loss of generality to assume

qj 2 f1; :::; Ng and so �N � zj � N � 1 for all j = 1:::M .
For agent i = 1; :::; N , schedule x 2 	i, de�ne the budget-constraint-hyperplane H(i; x) by

41



H(i; x) � fp 2 eP : p � x = bi + � ixg: Each budget-constraint hyperplane is of dimension M � 1.
Both the taxes and the enlarged price space play a role that is entirely internal to the proof.

At the end we will have a price vector in P and set all of the taxes to zero.

Step 1. De�ne a standard tâtonnement price-adjustment function f on eP : If f has a �xed pointep� = f(ep�); then its truncation p� = t(ep�) is an exact competitive equilibrium.
We de�ne a standard tâtonnement price-adjustment function on the enlarged price space eP .

Let 
 2 (0; 1N ) be a small positive constant. Given budgets b and taxes � de�ne f : eP ! eP by:
f(ep) = t(ep) + 
z(t(ep);b; � ) (13)

The reason we impose 
 < 1
N is to ensure the image of f lies in eP .

Suppose, for budgets of b = b0 and taxes of � = 0, that f has a �xed point ep� = f(ep�). Then
its truncation p� = t(ep�) is an exact competitive equilibrium price vector for budgets of b0.

First, note that at any �xed point no individual price p�j � b: Given the de�nition of b no

agents can a¤ord a seat in course cj at price b. So ep�j � b implies zj(p�;b0;0) � 0 � qj < 0 which
contradicts ep�j � b being part of a �xed point since fj(ep�) = b+ 
zj(p�;b; � ) < b.

Second, note that p�j 2 (0; b] implies zj(p�;b0;0) = 0. Finally, p�j = 0 implies that zj(p�;b; � ) �
0. So, if f(�) has a �xed point we have perfect market clearing.

Discussion.

Unfortunately f is not continuous, so there is no guarantee that such a �xed point will exist.

In particular, f is potentially discontinuous at every price vector that is on a budget-constraint

hyperplane. Every time price crosses some budget-constraint hyperplane H(i; x), agent i�s choice

set changes: he can a¤ord bundle x if p � x � b0i but not if p � x > b0i. If price crosses just a single
such hyperplane the discontinuity is "small" - it is bounded by how much a single agent can change

their demand (i.e.
p
�). If agents have equal budgets their budget-constraint hyperplanes coincide,

so it is impossible for price to cross just one at a time. Discontinuities in f might be "large".

The purpose of step 2 is to perturb the budget-constraint hyperplanes using taxes � so that the

potential for discontinuities in f is mitigated in two ways: (i) no two hyperplanes coincide; and (ii)

no more than M hyperplanes intersect at a single point.

Step 3 then de�nes a convexi�cation of f that smoothes f as price crosses the budget-constraint

hyperplanes. The convexi�cation, F , is guaranteed to have a �xed point by Kakutani�s theorem.

The remainder of the proof uses the hyperplane structure provided by step 2 and the de�nition

of F in step 3 to show that there must be a price vector arbitrarily close to the �xed point of F
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that clears the market to within the Theorem 1 approximation bound of
p
�M
2 . Care is taken along

the way to ensure the other conditions of Theorem 1 are satis�ed.

Step 2. Choose taxes (��ix)i;x2	i such that

(i) �" < ��ix < " (taxes are small)
(ii) ��ix > �

�
ix0 if ui(x) > ui(x

0) (taxes favor more-preferred bundles)

(iii) max
i;x
(b0i + �

�
ix) � maxi(b0i), min

i;x
(b0i + �

�
ix) � mini(b0i); (inequality bound is preserved)

(iv) b0i + �
�
ix 6= b0i0 + ��i0x0 for any i 6= i0; x 2 	i; x0 2 	i0); (no two perturbed budgets are equal)

(v) there is no price p 2 eP at which more than M perturbed budget-constraint hyperplanes

intersect.

It will be important for obtaining the approximation bound that no two hyperplanes coincide

(iv), and no more than M of the hyperplanes intersect at any particular price vector (v). We

could ensure the former by perturbing just the budgets, but to ensure (v) we need to perturb each

budget-constraint hyperplane separately.

At the end of the proof, if agent i is actually assigned bundle x0 in the approximate CEEI we

will adjust i�s budget to b�i = b0i + �
�
ix0 . Then we will set all of the taxes to zero. Property (ii)

will ensure that x0 is i�s most-preferred choice at a budget of b�i . Property (i) will ensure that

jb�i � bij < ", and property (iii) will ensure that b� preserves the inequality bound �.
Existence of a set of taxes (��ix)si2S;x2	i satisfying (i)-(v) is trivial. Choose initial (�

0
ix)si2S;x2	i

that satisfy (i)-(iii) and bi + � 0ix 6= bi0 + � 0i0x0 for (i; x) 6= (i0; x0), which is a bit stronger than (iv).
There are a �nite number of hyperplanes (H(i; x))si2S;x2	i and because of bi+�

0
ix 6= bi0+� 0i0x0 no two

hyperplanes are homogeneous (i.e., have the same constant on the RHS). Generically, no more than

M of a �nite set of inhomogeneous hyperplanes intersect at a single point of an M -dimensional

space. If the (� 0ix)si2S;x2	i happen to yield an L > M -way intersection, perturb L �M of the

taxes associated with the hyperplanes in the intersection in a manner that preserves (i)-(iv). Let

(��ix)si2S;x2	i denote the set of taxes that satis�es (i)-(v).

Step 3. De�ne an upper hemicontinuous set-valued correspondence F which is a "convexi�cation"

of f , and which is guaranteed to have a �xed point by Kakutani�s theorem. Let ep� 2 F (ep�) denote
the �xed point and let p� = t(ep�) denote its truncation.

Fix budgets to b0 and taxes to the �� found in step 2. Create the correspondence F : eP ! eP :
as follows

F (p) = cofy : 9 a sequence pw ! p;pi 6= p such that f(pw)! yg (14)

where co denotes the convex hull. Cromme and Diener (1991, Lemma 2.4) show that for any
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map f , the correspondence F constructed according to (14) is upper hemicontinuous, and hence

has a �xed point (the other conditions for Kakutani�s �xed point theorem �F is non-empty; eP is

compact and convex; and F (p) is convex �are trivially satis�ed).

So there exists ep� 2 F (ep�). Let p� = t(ep�) denote its truncation.
Step 4. If the price vector p� is not on any budget-constraint hyperplane then it is an exact

competitive equilibrium price vector and we are done.

Recall that H(i; x) = fp 2 eP : p � x = b0i + �
�
ixg denotes the budget constraint hyperplane

associated with agent si purchasing bundle x: Let eH(i; x) = fep 2 eP : t(ep) � x = b0i + ��ixg. Observe
that p� =2 H(i; x) =) ep� =2 eH(i; x). Agents�choice sets change only when price crosses a budget-
constraint hyperplane. So if p� is not on any budget-constraint hyperplane, f is continuous at ep�.
So F (ep�) is single valued, hence ep� = F (ep�) = f(ep�), and by Step 1 we are done.
Step 5. Suppose p� is on L � 1 budget-constraint hyperplanes. By Step 2 we know L � M . Let
� = f0; 1gL. De�ne a set of 2L price vectors fp�g�2� satisfying the following conditions:

(i) Each p� is close enough to p� that there is a path from p� to p� that does not cross any

budget-constraint hyperplane (until the moment it reaches p)

(ii) Each p� is on the "a¤ordable" side of the lth hyperplane if �l = 0 and is on the "una¤ord-

able" side if �l = 1.

That is, each � 2 � "labels" a region of price space close to p�.

For l = 1; :::; L we write the lth hyperplane as H(i(l); x(l)) := fp 2 eP : p � x(l) = bi(l) + � i(l)x(l)g.
Each hyperplane H(i(l); x(l)) de�nes two half spaces: H0

l := fp 2 eP : p �x(l) � bi(l) + � i(l)x(l)g is the
closed half space in which agent si(l) can (weakly) a¤ord bundle x(l), and H

1
l := fp 2 eP : p � x(l) >

bi(l) + � i(l)x(l)g is the open half space in which agent si(l) cannot a¤ord bundle x(l).
We label combinations of half spaces as follows. Let � = f0; 1gL, with each label � =

(�1; :::; �L) 2 � an L-dimensional vector of 00s and 10s. The convex polytope �(�) :=
LT
l=1

H
�l
l

denotes the set of points in eP that belong to the intersection of half spaces indexed by �.
Let H denote the (�nite) set of all hyperplanes formed by any i; x : H = fH(i; x)si2S;x2	ig.

Let � < inf
p002P , H2H

jj(p� � p00) : p00 2 H;p� =2 Hjj2. That is, any hyperplane to which p� does not
belong is strictly further than � away from p� in Euclidean distance. Let B�(p�) denote a �-ball of

p�.

We can now de�ne the set fp�g�2� : each p� is an arbitrary element of �(�) \B�(p�).49

49 It is possible, if p� is on the boundary of P , that �(�) \ P = ; for some combinations �. (For instance, it is
impossible to be below x+ y = 1 and above y = 1 while x; y � 0). In that case p� might include some prices which
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Step 6: By the way we have constructed F , for any y 2 F (p�) there exist non-negative weights
f��g�2� with

P
�2� �

� = 1 such that
P
�2� �

�f(p�) = y:

The idea of this step is: for any price p0 close enought to p�, excess demand at p0 is determined

entirely by the combination of budget-constraint hyperplane half spaces to which it belongs.

Consider an arbitrary � and consider any two prices p0;p00 2 �(�) \B�(p�). Since both prices
are in �(�) they are on the same side of each of the L hyperplanes that intersect at p�. Since both

prices are in B�(p�), by the way we chose �, for any other hyperplane in H, p0 and p00 are on the
same side. Together, this means that every agent has the same choice set at p0 as at p00. Since we

chose p0, p00 arbitrarily, demand at any price vector in �(�) \B�(p�) is equal to demand at p�.
Consider any sequence of prices pw;� ! p�, with each pw;� 2 �(�) \ B�(p�). The preceding

argument implies:

f(pw;�)! p� + 
z(p�) (15)

Note too that any sequence pw ! p� for which f(pw) converges must converge to p� + z(p�
0
)

for some �0 2 �. This follows because
S
�2�

�(�) \B�(p�) = eP \B�(p�).
Combining these facts, if y 2 F (p�) then

9f��g�2� with
P
�2�

�� = 1 and �� � 0; all � 2 � s.t.: (16)P
�2�

��[p� + 
z(p�)] = y

Step 7. Map from the set of prices fp�g�2� to the set of excess demands fz(p�)g�2�: Step 6
implies that a perfect market clearing excess demand vector lies in the convex hull of fz(p�)g�2�.

Any price near to ep� has a truncation that is near to p�.50 Examining the de�nitions of f and
F , i.e. (13) and (14), this means that F (ep�) � F (p�). So ep� 2 F (ep�) =) ep� 2 F (p�). Adapting
the argument of Step 6 yields

9f��g�2� with
P
�2�

�� = 1 and �� � 0; all � 2 � s.t.: (17)P
�2�

��[t(ep�) + 
z(p�)] = ep�
are strictly negative. We have de�ned demand and excess demand to be well de�ned for such prices, but note that
at the �nal step of the proof we will ensure that all prices are weakly positive.
50 (Note that the converse need not be true; if ep�c < 0 then every price p0 near to ep�c has p0c = 0, whereas some prices

p00 near to p� will have p00c > 0):
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which in turn implies (using the same ��s)

P
�2�

��z(p�) =
ep� � p�



(18)

By the same argument as in Step 1, demand for a course cj must be zero at price b, so ep�j 2 [�1; b)
for all j = 1:::M . So, for all j, either ep�j = p�j or ep�j < 0 = p�j : So we have that

P
�2�

��z(p�) � 0

with
P
�2�

��zj(p
�) < 0 =) p�j = 0, as required for market clearing. That is, a convex combination

of excess demands for prices near p� exactly clears the market at prices p�.

Consider the set of excess demands fz(p�)g�2� and let � =
P
�2�

��z(p�). The vector � is

a "perfect market clearing" ideal at prices p� since � � 0 with �j < 0 =) p�j = 0. Clearly

� 2 cofz(p�)g�2�, where co denotes the convex hull.

Step 8. The set of excess demands fz(p�)g�2� has a special geometric structure. In particular, if
the L hyperplanes correspond to L distinct agents then fz(p�)g�2� are the vertices of a zonotope.

The L intersecting budget-constraint hyperplanes name L0 � L distinct agents. Renumber

these agents i = 1; :::; L0, and renumber the bundles that correspond to them as (x1i ; :::; x
wi
i )i=1;:::;L0

where wi is the number of intersecting budget-constraint hyperplanes that involve agent si, and

ui(x
1
i ) > ::: > ui(x

wi
i ). Note that

PL0

i=1wi = L.

We will show that agent si purchases at most wi + 1 distinct bundles at prices near to p�. In

the halfspace H0(i; x1i ) he can a¤ord x
1
i , his favorite bundle whose a¤ordability is in question near

to p�, and so it does not matter which side of H(i; x2i ); :::;H(i; x
wi
i ) price is on. Let d

0
i denote his

demand at prices in H0(i; x1i ) \B�(p�).
If price is in H1(i; x1i ) \H0(i; x2i ) then i cannot a¤ord x

1
i but can a¤ord x

2
i , his second-favorite

bundle whose a¤ordability is in question. So it does not matter which side of H(i; x3i ); :::;H(i; x
wi
i )

price is on. Let d1i denote his demand at prices in H
1(i; x1i ) \H0(i; x2i ) \B�(p�).

Continuing in this manner, de�ne d2i ; :::; d
wi
i . The process ends when we have crossed to the un-

a¤ordable side of all wi of si�s budget-constraint hyperplanes, and so cannot a¤ord any of x1i ; :::; x
wi
i .

The demand of any agents other than the L0 named on budget-constraint hyperplanes is un-

changing near p�. Call the total demand of such agents d�L0(p�) =
PN
i=L0+1 di(p

�; b0i; �
�
i ), and let

z�L0(p
�) = d�L0(p

�)� q:
We can now characterize the set fz(p�)g�2� in terms of the demands of the L0 individual agents

near p�:
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fz(p�)g�2� = fz�L0(p�) +
L0X
i=1

wiX
f=0

bfi d
f
i g (19)

subject to

bfi 2 f0; 1g for all i; f
wiX
f=0

bfi = 1 for all i = 1; :::; L0

At any price vector near to p�, each agent i = 1; :::; L0 demands exactly one of their wi + 1

demand bundles. Over the set � = f0; 1gL every combination of the L0 agents�demands is possible.
Informally, it is possible to "walk through price space" near to p� in such a way that we cross just

a single budget-constraint hyperplane (and hence change just a single agent�s demand) at a time.

This would not be possible if agents had identical budgets, because then their hyperplanes would

coincide. (Also, we would not be able to guarantee that at most M intersect.)

Step 7 tells us that there exists a market-clearing excess demand vector in the convex hull of

(19). This convex hull can be written as

fz(p�)g�2� = fz�L0(p�) +
L0X
i=1

wiX
f=0

afi d
f
i g (20)

subject to

afi 2 [0; 1] for all i; f
wiX
f=0

afi = 1 for all i = 1; :::; L0

The set (19) has a particularly interesting structure in case L0 = L (and so wi = 1 for i =

1; :::; L0). De�ne vi = d1i � d0i . The vector vi describes how i�s demand changes as we raise price
from p� in a way that makes d0i una¤ordable. Observe that total excess demand at p

� satis�es

z(p�) = z�L0(p
�) +

PL0

i=1 d
0
i . The set fz(p�)g�2� can be rewritten as

fz(p�)g�2� = fz(p�) +
LX
i=1

bivig (21)

subject to

bi 2 f0; 1g for all i

The set (21) gives the vertices of a geometrical object called a zonotope. The zonotope itself
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is the convex hull of (21). A zonotope is the Minkowski sum of a set of generating vectors; here,

the generating vectors are v1; :::; vL. If the vectors are linearly independent then the zonotope is a

parallelotope, the multi-dimensional generalization of a parallelogram. (See Ziegler, 1995)

Step 9. There exists a vertex of the geometric structure from Step 8, (19), that is within
p
M�
2

distance of the market-clearing excess demand vector found in Step 7. That is, for some z(p�
0
) 2

fz(p�)g�2�, jjz(p�
0
)� �jj2 �

p
M�
2 .

We are interested in bounding the distance between an element of (19) and an element of its

convex hull (20), which we know contains �.51

Fix an arbitrary interior point of (20). That is, �x a set of afi 2 [0; 1] that satisfy the constraintPwi
f=0 a

f
i = 1 for all i = 1:::L0. For each i de�ne a random vector �i = (�0i ; :::;�

wi
i ) where the

support of each �fi is f0; 1g, E(�
f
i ) = a

f
i for all i; f , and in any realization �i,

Pwi
f=0 �

f
i = 1. De�ne

the random matrix � = (�1; :::;�L0), and suppose that the �0is are independent. Let

�2 =

0@E�







L0X
i=1

wiX
f=0

[(afi � �
f
i )d

f
i ]








2

1A2

By linearity of expectations, we have that

�2 =

L0X
i=1

0@E�i







wiX
f=0

[(afi � �
f
i )]d

f
i








2

1A2

(22)

+
X
j 6=i

wiX
f=0

wjX
g=0

E
�fi ;�

g
j
[(afi � �

f
i )(a

g
j � �

g
j )](d

f
i � d

g
j )

And by independence we get that

E
�fi ;�

g
j
[(afi � �

f
i )(a

g
j � �

g
j )] (23)

= E
�fi
[afi � �

f
i ]E�gj [a

g
j � �

g
j ] = 0

since the random vectors are independent across agents and E
�fi
�fi = a

f
i for all i; f .

Lemma 2. For each i = 1; :::; L0,
�
E�i




Pwi
f=0[(a

f
i � �

f
i )]d

f
i





2

�
�

p
wi�
2

Proof. Fix i. For any dfi ; d
f 0

i , we have jjd
f
i � d

f 0

i jj2 �
p
�, where � is the demand sensitivity

of the economy. Let di =
Pwi
f=0 a

f
i d
f
i : In words, di is si�s average demand as used in the convex

51The proof technique for this step closely follows that of Theorem 2.4.2 in Chapter 2 of Alon and Spencer, 2000.
I am grateful to Michel Goemans for the pointer.
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combination. Now rewrite

E�i








wiX
f=0

[(afi � �
f
i )]d

f
i








2

=

wiX
f=0

afi




di � dfi 



2

(24)

If wi = 1 then (24) is largest when


d1i � d0i 

2 = p� and a0i = a1i = 1

2 ; this maximum value is
p
�
2 which is equal to the bound. If wi = 2 then (24) is largest when fd0i ; d1i ; d2i g forms an equilateral
triangle of side length

p
� and a0i = a1i = a2i =

1
3 ; this maximum value is

p
3�
3 which is strictly

lower than the bound of
p
2�
2 : If wi = 3 then (24) is largest when fd

0
i ; d

1
i ; d

2
i ; d

3
i g forms a triangular

pyramid of side length
p
� and a0i = a

1
i = a

2
i = a

3
i =

1
4 ; this maximum value is

p
6�
4 which is strictly

lower than the bound of
p
3�
2 : For wi � 4 the bound can be obtained by observing that there exists

some sphere of diameter
p
� that contains the convex hull of fdfi g

wi
f=0, and the RHS of the boundp

wi�
2 �

p
�. QED.

Combining Lemma 2, (22), and (23) yields

�2 =

L0X
i=1

0@E�







wiX
f=0

[(afi � �
f
i )d

f
i ]








2

1A2

�
L0X
i=1

wi�

4

=
M�

4

This means that, for each interior point of (20) there must exist at least one realization of �

such that



PL0

i=1

Pwi
f=0[(a

f
i � �

f
i )]d

f
i




 � p
M�
2 . Call this realization e�. This realization points us

to an element of fz(p�)g�2�, namely z�L0(p�) +
PL0

i=1

Pwi
f=0

e�fi dfi , that is within p
M�
2 Euclidean

distance of the interior point, namely z�L0(p�) +
PL0

i=1

Pwi
f=0 a

f
i d
f
i :

Step 10. Use the vertex found in Step 9 to produce prices, budgets and an allocation that satisfy

the statement of Theorem 1.

In Step 9 we showed that the excess demand vector z(p�
0
) approximately clears the market

at prices p�. There is no guarantee that p�
0 2 P ; in particular if p�j = 0 it is possible that p�

0

j

is strictly negative. So we will use the prices p�, which are guaranteed to be in P , and perturb

budgets in a way that generates excess demand at p� equal to z(p�
0
) from Step 9.

If agent si is not named on any of the L budget-constraint hyperplanes of step 5, then his
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consumption is x�i = di(p
�; b0i; �

�
i ) and we set b

�
i = b

0
i + �

�
ix�i
. Observe that requirement (i) of Step

2 implies that any bundle he prefers to x�i costs strictly more than b
0
i+ �

�
ix�i
, else he would demand

it at prices p�, budget b0i, and taxes of �
�
i .

If agent si is named on some of the budget-constraint hyperplanes, then we will use the infor-

mation in �0 to perturb his taxes and ultimately his budget. The label �0 tells us which side p�
0
is

on of each of si�s hyperplanes H(i; x1); :::;H(i; xwi). If p�
0 2 H1(i; xf ), i.e., it is on the una¤ordable

side of bundle xf , then set ���
ixf
= ��

ixf
� �2 for �2 > 0 but tiny. At the price vector p� and initial

taxes �� agent si could exactly a¤ord bundle xf , i.e., p� was on the budget-constraint hyperplane

H(i; xf ). This tiny perturbation ensures that at taxes ��� he can no longer a¤ord xf :52 Choose �2

small enough that conditions (i)-(iii) of Step 1 still obtain. For all other bundles, including bundles

not named on any hyperplane, set ���ix = �
�
ix. Consider di(p

�; b0i; �
��
i ) : this is simply si�s demand

at the original budget and taxes but at prices p�
0
, i.e., di(p�; b0i; �

��
i ) = di(p

�0 ; b0i; �
�
i ).

Set x�i = di(p
�; b0i; �

��
i ) and set b

�
i = b

0
i+�

�
ix�i
. Since we set �2 small enough to ensure requirement

(ii) of Step 1 still obtains, we preserve optimality. Similarly, we have preserved the original level of

budget inequality and the " bounds, by requirements (iii) and (i), respectively, of Step 1. Finally,

approximate market clearing is ensured by Step 9. So budgets of b�, prices of p�, and the allocation

x� satisfy all of the requirements of Theorem 1. QED.

B Proof of Lemma 1 and Theorem 2

Proof of Lemma 1

In step 7 of the proof of Theorem 1 we showed that
P
�2� �

�p� � z(p�) = 0 for a set of prices
(p�)�2� arbitrarily close to p�. Recall that " > 0 is the maximum discrepancy between the target

budgets of b and the �nal budgets of b�: At each price p� we have the simple identity that

p� � di(p�; b0i; ��i ) � b�i + ", and so
PN
i=1 p

� � di(p�; b0i; ��i ) �
NP
i=1
b�i + N". Let "2 > 0 denote the

maximum distance in the L1 norm between p� and any of the p��s. Note that for any bundle x

52 In Step 5 we indicated that if p� is on the boundary of P then it is possible that some of the combinations of
half spaces � 2 � are entirely disjoint from P . By perturbing budgets rather than prices and keeping prices at p� we
avoid the worry that we end up with an illegal price vector.
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and any � this means p� � x � p� � x� "2: Adding up over all p� we have

X
�2�

��p�
NX
i=1

di(p
�; b0i; �

�
i )

�
X
�2�

��p�
NX
i=1

di(p
�; b0i; �

�
i )�N"2

=
X
�2�

��p� � (z(p�) + q)�N"2

=
X
�2�

��p� � q�N"2

= p� � q�N"2

So
NP
i=1
bi + N" � p� � q � N"2. In the proof of Theorem 1 we are free to choose "; "2. Choose

them su¢ ciently small such that N("+"2) < �(
NP
i=1
bi+N"). Then p� �q �

NP
i=1
b�i (1+�), as required.

QED.

Proof of Theorem 2.

Since b� and p� are part of an (�; �)-approximate CEEI with p� 2 P (�;b�), N(1+�)(1+ �) �
NP
i=1
b�i (1 + �) � p� � q. Suppose that there is some agent si who cannot a¤ord any bundle in her

N + 1 maximin split ex at p�. Then p� � exl > b�i � 1 for all l = 1; :::; N;N + 1. By the de�nition of

a maximin split we have
P
l p
� � exl � p� � q. Putting this all together gives

N(1 + �)(1 + �) � p� � q �
X
l

p� � exl > (N + 1)

So set � su¢ ciently small that N(1+�)(1+�) > (N+1) is a contradiction, i.e., set � < 1�N�
N(1+�) :

QED.

Proof of Proposition 6.

Suppose � = 0. Then condition (ii) of the de�nition of an Approximate CEEI implies that

N(1 + �) � p� � q: Let ex = (ex1; :::; exN+1) be agent si�s N + 1�maximin split, ordered such that
ui(exl) � ui(exl+1) for l = 1; :::; N . We know from Theorem 2 that we can at least guarantee

ui(x
�
i ) � ui(exN+1). Suppose that si gets exactly his N + 1 maximin share, i.e., ui(x�i ) = ui(exN+1).

If ui(exN ) = ui(exN+1) then (a) is satis�ed and we are done. Suppose ui(exN ) > ui(exN+1). Condition
(i) of the de�nition of Approximate CEEI implies

b�i < p
� � exl for l = 1; :::; N (25)
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Since � = 0; condition (ii) of the de�nition of Approximate CEEI implies that the other N � 1
agents can collectively a¤ord the endowment but for exN+1, i.e.,

NX
l=1

p� � exl �X
l 6=i
b�l (26)

The � inequality bound implies

X
l 6=i
b�l � (N � 1)(1 + �)b�i (27)

Combining (25) and (27) the previous two inequalities gives Nb�i � (N � 1)(1 + �)b�i . So if
� < 1

N�1 we have a contradiction, and so ui(x
�
i ) > ui(exN+1), as required for (b). QED

52



References

[1] Abdukadiro¼glu, Atila, Parag Pathak, and Alvin E. Roth (2009). "Strategyproofness versus

E¢ ciency in Matching with Indi¤erences: Redesigning the NYC High School Match." Forth-

coming, American Economic Review.

[2] Abdukadiro¼glu, Atila, Parag Pathak, Alvin E. Roth, and Tayfun Sonmez (2006). "Changing

the Boston School Choice Mechanism." Mimeo.

[3] Abdukadiro¼glu, Atila and Tayfun Sönmez (1999). "House Allocation with Existing Tenants."

Journal of Economic Theory, 88: 233-60.

[4] Abdukadiro¼glu, Atila and Tayfun Sönmez (1998). "Random Serial Dictatorship and the Core

from Random Endowments in House Allocation Problems." Econometrica, 66(3), 689-702.

[5] Abdukadiro¼glu, Atila and Kyle Bagwell (2007). "Trust, Reciprocity and Favors in Cooperative

Relationships." Mimeo.

[6] Alkan, Ahmet, Gabrielle Demange and David Gale (1991). "Fair Allocation of Indivisible

Goods and Criteria of Justice." Econometrica, 59(4), 1023-1039.

[7] Alon, Noga and Joel Spencer (2000). The Probabilistic Method. Wiley. Second Edition.

[8] Athey, Susan and David A. Miller (2006). "E¢ ciency in Repeated Trade with Hidden Valua-

tions." Mimeo.

[9] Aumann, Robert J., 1964. "Existence of Competitive Equilibria in Markets with a Continuum

of Traders." Econometrica, 32: 39-50.

[10] Ausubel, Lawrence M. and Peter Cramton (2008). "Auction Design for the Rescue Plan."

October 5, Powerpoint Presentation.

[11] Bartlett, Thomas (2008). "Class Warfare: When Getting in is the Hardest Part." Chronicle of

Higher Education 54(23), Feb 15, Page A1.

[12] Bikhchandani, S and JW Mamer, 1997. "Competitive Equilibrium in Exchange Economy with

Indivisibilities." Journal of Economic Theory, 74(2), 385-413.

[13] Bikhchandani, S and J Ostroy, 2002. "The Package Assignment Model." Journal of Economic

Theory, 107(2), 377-406.

53



[14] Brainard, William C. and Herbert E. Scarf (2005). "How to Compute Equilibrium Prices in

1891". American Journal of Economics and Sociology, 64(1), 57-83.

[15] Brams, Steven J., Paul H. Edelman and Peter C. Fishburn (2003). "Fair Division of Indivisible

Items." Theory and Decision 55: 147-80.

[16] Brams, Steven J. and Philip D. Stra¢ n, Jr. (1979). "Prisoners�Dilemma and Professional

Sports Drafts." The American Mathematical Monthly, 86(2), 80-88.

[17] Brams, Steven J and Alan D. Taylor (1996). Fair Division: From Cake Cutting to Dispute

Resolution. Cambridge University Press

[18] Brams, Steven J and Alan D. Taylor (1999). "The Win-Win Solution: Guaranteeing Fair

Shares to Everybody." W.W. Norton and Company.

[19] Budish, Eric and Estelle Cantillon (2008). "Strategic Behavior in Multi-Unit Assignment Prob-

lems: Theory and Evidence from Course Allocation." Mimeo.

[20] Budish, Eric, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom (2008). "Implementing Ran-

dom Assignments: A Generalization of the Birkho¤-von Neumann Theorem." In Preparation.

[21] Cramton, Peter, Yoav Shoham and Richard Steinberg eds. (2006). Combinatorial Auctions.

MIT Press.

[22] Crawford, Vincent P. (1977). "A Game of Fair Division." The Review of Economic Studies,

44(2), 235-47.

[23] Cripps, Martin W. and Jeroen M. Swinkels (2006). "E¢ ciency of Large Double Auctions."

Econometrica, 74(1), 47-92.

[24] Cromme, Ludwig J. and Immo Diener (1991). "Fixed Point Theorems for Discontinuous Map-

ping." Mathematical Programming, 51, 257-67.

[25] Debreu, George and Herbert Scarf (1963). "A Limit Theorem on the Core of an Economy."

Econometrica.

[26] Dierker, Egbert (1971). "Equilibrium Analysis of Exchange Economies with Indivisible Com-

modities." Econometrica, 39(6), 997-1008.

[27] Dubins, L.E. and E.H. Spanier (1961). "How to Cut a Cake Fairly." American Mathematical

Monthly, 68, 1-17.

54



[28] Dworkin, Ronald (1981). "What is Equality? Part 2: Equality of Resources." Philosophy and

Public A¤airs, 10(4), 283-345.

[29] Dworkin, Ronald (2000). Sovereign Virtue: The Theory and Practice of Equality. Harvard

University Press.

[30] Ehlers, Lars and Bettina Klaus (2003). �Coalitional Strategy-proof and Resource-Monotonic

Solutions for Multiple Assignment Problems.�Social Choice and Welfare, 21: 265-80.

[31] Foley, Duncan (1967). "Resource Allocation and the Public Sector." Yale Economic Essays, 7,

45-98.

[32] Gale, David and Lloyd Shapley (1962). "College Admissions and the Stability of Marriage."

American Mathematical Monthly, 69(1), 9-15.

[33] Graves, Robert L., Linus Schrage and Jayaram Sankaran (1993). "An Auction Method for

Course Registration." Interfaces, 23(5), 81-92.

[34] Guernsey, Lisa (1999). "Business School Puts Courses in Hands of an On-Line Market." New

York Times. Sept 9.

[35] Gul, Faruk and Ennio Stachetti (2000). "The English Auction with Di¤erentiated Commodi-

ties." Journal of Economic Theory, 92(1), 66-95.

[36] Harsanyi, John C. (1953). "Cardinal Utility in Welfare Economics and in the Theory of Risk-

taking." Journal of Political Economy, 61(5), 434-435.

[37] Hat�eld, John William (2005). �Strategy-proof and Nonbossy Quota Allocations.�Mimeo.

[38] Herreiner, Dorothea and Clemens Puppe (2002). "A Simple Procedure for Finding Equitable

Allocations of Indivisible Goods." Social Choice and Welfare, 19, 415-30.

[39] Hylland, Aanund and Richard Zeckhauser (1979). "The E¢ cient Allocation of Individuals to

Positions." Journal of Political Economy, 87(2), 293-314.

[40] Immorlica, Nicole and Mohammad Mahdian (2005). "Marriage, Honesty, and Stability." SODA

2005, 53-62.

[41] Klaus, Bettina and Eiichi Miyagawa (2001). "Strategy-proofness, Solidarity, and Consistency

for Multiple Assignment Problems." International Journal of Game Theory, 30: 421-435.

55



[42] Konishi, Hideo, Thomas Quint and Jun Wako (2001). "On the Shapley-Scarf economy: the

case of multiple types of indivisible goods." Journal of Mathematical Economics, 35: 1-15.

[43] Kojima, Fuhito (2007). "Random Assignment of Multiple Indivisible Objects." Mimeo.

[44] Kojima, Fuhito and Mihai Manea (2007). "Strategy-Proofness of the Probabilistic Serial Mech-

anism in Large Random Assignment Problems." Mimeo.

[45] Kojima, Fuhito and Parag Pathak (2007). "Incentives and Stability in Large Two-Sided Match-

ing Markets." Forthcoming, American Economic Review.

[46] Kolm, Serge-Cristophe., 1972. Justice et Equité. Paris: Editions du CNRS. Translated 2002

by Harold F. See. MIT Press.

[47] Konishi, Hideo, Thomas Quint, and Jun Wako (2001). "On the Shapley-Scarf Economy: the

Case of Multiple Types of Indivisible Goods." Journal of Mathematical Economics, 35(1), 1-15.

[48] Krishna, Aradhna and Utku Unver (2008). "Improving the E¢ ciency of Course Bidding at

Business Schools: Field and Laboratory Studies." Management Science, 27(March/April),

262-82.

[49] Levitt, Steven (2008a). "What Do I Have in Common with Hannah Montana?" Freakonomics

Blog on the New York Times. January 8.

[50] Levitt, Steven (2008b). "The Coase Theorem Rules at NYU Law." Freakonomics Blog on the

New York Times. August 11.

[51] McKesson (2008). Website description of eShift. Accessed October 2008 at

http://www.mckesson.com/en_us/McKesson.com/For%2BHealthcare%2BProviders/Hospitals/

Workforce%2BManagement%2BSolutions/eShift.html

[52] Milgrom, Paul (2004). Putting Auction Theory to Work. Cambridge University Press.

[53] Milgrom, Paul (2007). "Package Auctions and Exchanges." Econometrica, 75(4), 935-65.

[54] Milgrom, Paul (2008). "Assignment Exchanges." Mimeo.

[55] Moulin, Hervé (1990). "Welfare Bounds in the Cooperative Production Problem." Games and

Economic Behavior, 4, 373-401.

[56] Moulin, Hervé (1991). "Welfare Bounds in the Fair Division Problem." Journal of Economic

Theory, 54, 321-37.

56



[57] Moulin, Hervé (1995). Cooperative Microeconomics. Prentice Hall.

[58] Moulin, Hervé (2004). Fair Division and Collective Welfare. MIT Press.

[59] Neil, Martha (2008). "NYU Students Seek Coveted Law School Classes, Will Pay Cash." ABA

Journal. Jul 28.

[60] Nisan, Noam and Ilya Segal (2006). "The Communication Requirements of E¢ cient Allocations

and Supporting Prices." Journal of Economic Theory, 129, 192-224.

[61] Othman, Abe, Eric Budish and Tuomas Sandholm (2008). "ApproxCEEI: A Computational

Algorithm for Finding Approximate Competitive Equilibria from Approximately Equal In-

comes." In Preparation.

[62] Pápai, Szilvia (2001). "Strategyproof and Nonbossy Multiple Assignments." Journal of Public

Economic Theory, 3(3): 257-71.

[63] Parkes, David (2006). �Iterative Combinatorial Auctions.�In Peter Cramton et al, Combina-

torial Auctions. MIT Press.

[64] Pathak, Parag (2006). "Lotteries in Student Assignment." Mimeo.

[65] Pathak, Parag and Tayfun Sonmez (2008). "Comparing Mechanisms by their Vulnerability to

Manipulation." Mimeo.

[66] Pratt, John W. (2007). "Fair (and Not So Fair) Division." Journal of Risk and Uncertainty,

35(3), 203-36.

[67] Rawls, John (1971). A Theory of Justice. Revised Edition. Harvard University Press.

[68] Roberts, John and Andrew Postlewaite (1976). "Incentives for Price-Taking Behavior in Large

Exchange Economies." Econometrica, 44(1), 115-27.

[69] Robertson, Jack and William Webb (1998). Cake-Cutting Algorithms: Be Fair if You Can.

AK Peters.

[70] Roth, Alvin E. (1982). "Incentive Compatibility in a Market with Indivisible Goods." Eco-

nomics Letters, 9, 127-132.

[71] Roth, Alvin E. (1984). "The Evolution of the Labor Market for Medical Interns and Residents:

A Case Study in Game Theory." Journal of Political Economy, 92, 991-1016.

57



[72] Roth, Alvin E. (2007). �Repugnance as a Constraint on Markets.�Journal of Economic Per-

spectives, 21(3), 37-58.

[73] Roth, Alvin E. (2002). "The Economist as Engineer: Game Theory, Experimentation, and

Computation as Tools for Design Economics." Econometrica, 70(4): 1341-1378.

[74] Roth, Alvin E. and Marilda Sotomayor (1990). Two-Sided Matching. Cambridge University

Press.

[75] Roth, Alvin E. and Elliot Peranson (1999). "The Redesign of the Matching Market for Ameri-

can Physicians: Some Engineering Aspects of Economic Design." American Economic Review,

89, 748-80.

[76] Russell, Stuart and Peter Norvig (2002). Arti�cial Intelligence: A Modern Approach. Prentice

Hall, 2nd Edition.

[77] Rustichini, Aldo, Mark A. Satterthwaite and Steven R. Williams (1994). "Convergence to

E¢ ciency in a Simple Market with Incomplete Information." Econometrica, 62(5), 1041-63.

[78] Sandel, Michael, 1998. �What Money Can�t Buy: the Moral Limits of Markets.�The Tanner

Lecture on Human Values, Oxford.

[79] Scarf, Herbert. (1960). "Some examples of global instability of competitive equilibria." Inter-

national Economic Review, 1, 157�172.

[80] Sen, Amartya (1979). "Equality of What?" Tanner Lecture on Human Values. Reprinted in

Choice, Welfare and Measurement, 1982. Harvard University Press.

[81] Shapley, Lloyd and Herbert Scarf (1974). "On Cores and Indivisibility." Journal of Mathemat-

ical Economics, 1(1) 23-37.

[82] Sönmez, Tayfun (1999). "Strategy-Proofness and Essentially Single-Valued Cores." Econo-

metrica, 67(3): 677-89.

[83] Sönmez, Tayfun and Utku Unver (2008). "Course Bidding at Business Schools." Forthcoming,

International Economic Review.

[84] Starr, Ross M. (1969). "Quasi-Equilibria in Markets with Non-Convex Preferences." Econo-

metrica, 37(1), 25-38.

[85] Steinhaus, Hugo (1948). "The Problem of Fair Division." Econometrica. 16(1), 101-4.

58



[86] Thomson, WIlliam and Hal R. Varian (1985). "Theories of Justice Based on Symmetry." In

Hurwicz, Schmeidler and Sonnenschein (eds), Social Goals and Social Organiztion: Essays in

Memory of Elisha Pazner. Cambridge University Press.

[87] Varian, Hal, 1974. �Equity, Envy and E¢ ciency.�Journal of Economic Theory, 29(2), 217-244.

[88] Wallis, W. D.; Street, Anne Penfold; Wallis, Jennifer Seberry (1972). Combinatorics: Room

Squares, Sum-free Sets, Hadamard Matrices. Lecture Notes in Mathematics, Vol. 292. Springer-

Verlag, Berlin-New York.

[89] Wharton (2007). "The Course Registration Auction for MBA Electives." Version 15.0, Grad-

uate Division, MBA Program O¢ ce, The Wharton School, University of Pennsylvania.

[90] Ziegler, Gunter M. (1995). Lectures on Polytopes. Springer-Verlag.

[91] Zhou, Lin (1990). "On a Conjecture by Gale About One-Sided Matching Problems." Journal

of Economic Theory, 52(1), 123-135.

59



Figure 1: Distribution of Market‐Clearing Error
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Description: The Othman, Budish and Sandholm (2008) Approximate CEEI algorithm is run 100 times for each semester of the Harvard 
Business School course allocation data (456 students, ~50 courses, 5 courses per student). Each run uses randomly generated budgets. This 
table reports the distribution of the amount of market‐clearing error per trial, measured in Euclidean Distance (square‐root of sum of 
squares). Both excess demand and excess supply count as error (except that courses priced at zero are allowed to be in excess supply 
without counting as error).



Figure 2: Distribution of Difference Between 
Best and Worst Outcomes
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Description: The Othman, Budish and Sandholm (2008) Approximate CEEI algorithm is run 100 times for each semester of the Harvard Business 
School course allocation data (456 students, ~50 courses, 5 courses per student). Each run uses randomly generated budgets. This table reports 
the distribution of the difference between a student’s single best and single worst outcome over the 100 trials, in ranks. Here is an example 
calculation: a student whose best received bundle consists of his  1,2,3,4,5th favorite courses, and worst bundle consists of his 2,3,4,6, 7th  favorite 
courses has a difference of (2+3+4+6+7) ‐ (1+2+3+4+5) = 7



Figure 3: Average Rank Comparison
Approximate CEEI vs. HBS Draft Mechanismpp
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Description: The Othman, Budish and Sandholm (2008) Approximate CEEI algorithm is run 100 times for each semester of the Harvard Business School  
course allocation data (456 students, ~50 courses, 5 courses per student). Each run uses randomly generated budgets. For each random budget ordering 
I also run the HBS draft mechanism, using the random budget order as the draft order. The HBS draft mechanism is run using students’ actual strategic 
reports under that mechanism. The Approximate CEEI algorithm is run using students’ truthful preferences. This table reports the cumulative distribution 
of outcomes, as measured by average rank, over the 456*100 = 45,600 student‐trial pairs.  Average rank is calculated based on the student’s true 
preferences. For instance, a student who receives her 1,2,3,4,5th favorite courses has an average rank of (1+2+3+4+5)/5 = 3.



Table 2: Comparison of Alternative Mechanisms 

Mechanism  Efficiency
(Truthful Play) 

Fairness
(Truthful Play) 

Incentives Preference 
Language 

Approximate CEEI Mechanism  Pareto Efficient w/r/t Allocated Goods 

Allocation error is small for practice and 
goes to zero in the limit 

N+1 – Maximin Share Guaranteed 

Envy Bounded by a Single Object 

Strategyproof in the 
Limit 

Ordinal over Schedules 

 

HBS Draft Mechanism  If preferences are responsive, Pareto 
Efficient with respect to the reported 
information (i.e., Pareto Possible) 

If preferences are responsive and k=2, 
Maximin Share Guaranteed 

If preferences are responsive, Envy Bounded 
by a Single Object 

Manipulable  Ordinal over Items 

Bidding Points Mechanism  If preferences are additive‐separable, 
Pareto Efficient but for quota issues 
described in Unver and Sonmez (2008) 

Worst Case: Get Zero Objects  Manipulable  Cardinal over Items 

Unver‐Sonmez Enhancement 
to Bidding Points Mechanism 

If preferences are additive‐separable, 
Pareto Efficient 

Worst Case: Get Zero Objects  Bidding Phase: 
Manipulable 

Allocation Phase: SP 
in the Limit 

Bidding Phase: Cardinal 
over Items 

Allocation Phase: 
Ordinal over Items  

Random Serial Dictatorship  Pareto Efficient  Worst Case: Get k worst Objects  Strategyproof  Ordinal over Schedules 

UChicago Primal‐Dual Linear 
Program Mechanism 

Pareto Efficient when preference‐
reporting limits don’t bind 

Worst Case: Get Zero Objects  Manipulable  Cardinal over a Limited 
Number of Schedules 

Pratt Geometric Prices 
Mechanism 

If preferences are additive‐separable, 
Pareto Efficient 

Worst Case: Get Zero Objects  Strategyproof in the 
Limit 

Cardinal over Items 

Brams and Taylor Adjusted 
Winner 

If preferences are additive‐separable, 
Pareto Efficient 

Worst Case: Get Zero Objects  Manipulable  Cardinal over Items 

Herreiner and Puppe 
Descending Demand 
Procedure 

Pareto Efficient  Does not satisfy Maximin Share Guarantee 
or Envy Bounded by a Single Object 

Manipulable  Ordinal over Schedules 

References: HBS – Budish and Cantillon (2008); Bidding Points Mechanisms – Unver and Sonmez (2008); RSD – Budish and Cantillon (2008); UChicago Primal‐Dual Linear Program Mechanism – Graves 
et al (1993); Pratt(2007); Brams and Taylor (1996); Herreiner and Puppe (2002) 


