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Abstract

This paper seeks to reconcile the different results from prominent estimators of

the speed of adjustment (SOA) of firms’ leverage ratios. Previous papers overlooked

the simple fact that leverage ratios less than 0% or greater than 100% are not possible.

This made some of them find mean reversion, which they mistakenly considered

as readjustment. When corrected, the best reconciled estimate for the SOA is not

positive: On average, firms do not seem to adjust. Moreover, the data is so plentiful

that SOA estimates can be extremely accurate even when the firm-specific target is

not known. Finally, our paper suggests both a method of reconciling estimators

from prior research and a better way of modeling the underlying leverage ratio

process.

JEL Code: G32
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As early as 1984, Stewart Myers (Myers (1984)) put forth the two contrasting view-

points that have become the central issue in capital structure research: should one view

the existing capital structure to be more in line with a non-adjustment view (such as his

pecking order), or more in line with a (low-friction) optimal tradeoff view? Our paper

estimates one parameter that is related to these two views: the speed of readjustment

(SOA) of leverage ratios to shocks. Its point estimate allows a reader to judge where

on the scale between adjustment and non-adjustment firms lie. Although the SOA has

been estimated in many papers, even 25 years after Myers (1984), it still remains in

dispute. This view is not just our own. In their survey article, Frank and Goyal (2008)

state that “the speed at which [corporate leverage is mean-reverting] is not a settled

issue.” And Huang and Ritter (2009) opine that it is “perhaps the most important issue

in capital structure today.”

The two extremes are perfect non-readjustment (an SOA of 0) and perfect read-

justment (an SOA of 1). The most prominent published estimates for the SOA in the

literature range from 34% (Flannery and Rangan (2006, Table 7)), to 25% (Lemmon,

Roberts, and Zender (2008, Table 6)), to 23% (Huang and Ritter (2009, Table 8), to 7-18%

(Fama and French (2002, Table 4)), to practically zero (Welch (2004, Table 3)). The

economic interpretation of these estimates contrasts starkly. An SOA of 20% suggests

a half-life for the influence of a shock of about log(0.5)/ log(0.8) ≈ 3 years, somewhat

in line with active managerial intervention. An SOA of 10% suggests a half-life of 6.6

years, more in line with the “glacial readjustment” view of Fama and French (2002). An

SOA of 4% suggests a half-life of 17 years, in line with the “practically no-readjustment”

views of Myers (1984) and Welch (2004). 17 years is longer than the median lifetime of

firms on Compustat.

Our paper intentionally does not propose a new estimator. Adding yet another

technique with yet another estimate would only confuse the matter even further.

Instead, the main goal of our paper is explaining why the already existing methods

in this literature have come to such different conclusions. Is it different data sets, or

different leverage definitions, or different techniques, or something else altogether?

Perhaps the most important insights of our paper are also the simplest ones.

First, the data contains thousands of firms and many decades—a total of over

100,000 firm-years. We can show (in retrospect not surprisingly) that reasonable

estimators are able to produce almost perfect estimates. Yet, the aforementioned large

discrepancies in empirical estimates remain even if we use the same data definitions

and sample. The main challenge in this literature is not estimation uncertainty, but the

need to reconcile SOA estimates that should all be perfectly on target and yet are many

standard errors away from one another.
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Second, if target leverage ratios are firm-specific constants (or at least not moving

in a manner that is correlated with the shocks), then it is not important to know the

firm-specific targets when estimating the SOA. After suitable corrections, we already

have techniques that can estimate the SOA with practically perfect precision even in

the absence of firm-specific target information. Thus, differences in control variables

that proxy better or worse for firm-specific leverage target cannot be responsible for

the discrepancies in empirical estimates, either.

Third, the leverage ratios used in these papers are by definition feasible only between

0% and 100%.1 Yet, the properties of even some of the best econometric estimators

that earlier papers have employed were derived under a process assumption that is

impossible in our context, because our dependent variable is not unlimited. This

process is x̃i,t = ρ ·xi,t−1+αi+ ε̃i,t , henceforth SDPP (standard dynamic panel process),

with iid normally distributed shocks ε̃i,t . In most papers in the literature, readjustment

is considered to be the mean reversion, so these papers report a speed of adjustment

that is one minus this rho. Yet, when leverage ratios do not follow this process, these

estimators become biased. They attribute the fact that leverage ratios remain inside

the feasible domain as mean reversion. Therefore, their SOA estimates are too high.

Moreover, when the true SOA is low, leverage ratios reach their domain limits more

frequently. This causes a concave mapping from empirical estimates to true values:

Low speed of adjustment estimates are relatively more biased.

The first point is also a manifestation of our third point. If leverage ratios had

followed the SDPP, (some of) the estimators used in previous papers are excellent and

should have produced virtually perfect and thus identical rho estimates. Again, the

problem is that the SDPP was never suitable in the leverage ratio context.

Our paper then proposes and evaluates a set of processes for (the underlying

true) leverage ratios that do not violate their definitional 0-to-1 range and examines

the performance of existing estimators under these processes. It shows how these

estimators have produced biased estimates under these processes. Rather than leaving

the literature with yet another measure for the speed of adjustment (and thus possibly

even more fractious), our paper proposes a method that reconciles different estimators

from earlier literature. (We see this as a major contribution of our paper.) After suitable

adjustments, we find that the SOA estimate that best reconciles the empirical methods

and estimates in the literature is just about zero. (It could also be negative. If we ignore

some evidence, we can defend it to be “as high as” 5% per year. This still corresponds

1This issue of the importance of domain limits of leverage ratios has also been recently and
independently noted by Chang and Dasgupto (2009) in their analysis of tests of the pecking order
hypothesis and refinancing, all in the context of book-value based ratios. Their paper naturally
complements our own. Similarly, Shyam-Sunder and Myers (1999) mention other forms of mechanical
mean reversion. In some sense, the Chang-Dasgupta piece builds more on the Shyam-Sunder-Myers
piece than on the papers we examine.
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to a half-life for the impact of a shock measured in decades, and roughly as long as the

typical lifetime of firms in the Compustat data base.)

However, the average SOA is not necessarily applicable to all firms. We also find some

evidence that firms may be heterogeneous. Some of this heterogeneity has already been

identified. In particular, Leary and Roberts (2005) are correct that firms that experience

extreme shocks (a rate of return of less than –20% or greater than +50%) and that remain

publicly traded do show leverage ratio readjustments. They unlever. However, we show

that their evidence suffers from selection issues. A large fraction of firms with very

negative stock returns disappear from the tapes before they report their end-of-year

leverage ratios. If we assume that these firms exited because they went bankrupt (with

a leverage ratio of 100%), then the average SOA coefficient is much lower. We find

no economically meaningful readjustment (and definitely not readjustment with the

half-life of 3 years visually suggested by Leary and Roberts (2005)) even for firms that

have experienced stock rates of return of –50% or lower.

Our paper also shows (again) that adjustment and inertia are too different issues.

Our firms are not inactive. In fact, the average non-stock-return-caused change in

leverage ratios is almost 9% per year. Despite such large year-to-year changes (typically

every second or third year), managers do not use the opportunity to readjust towards

a target ratio. It is this evidence—and not the slow speed of adjustment evidence

itself—that casts doubts on explanations for slow SOAs that are based on the costs of

issuing debt or equity.

Our paper now proceeds as follow: We describe the data and the estimators in

Section 1. We successfully replicate the findings of earlier studies in our own data

set, and describe the inference that the reader can draw from the empirical estimates

without adopting our own leverage ratio processes. Section 2 explains the problems

that arise when shocks (epsilons) are additive and normally distributed, and shows

empirical evidence that this is an important concern in our context. It then proposes

four alternative processes to model the underlying evolution of leverage ratios, in which

leverage ratios cannot exceed the unit domain. Section 3 fits the estimators on these

processes. Section 4 determines which process and rho can best reconcile the differing

estimates in the literature. Section 5 looks at some other specifications. It shows that

moving targets do not matter; that lumpiness does not change the inference; that

firms with extreme positive shocks and extreme negative shocks do show just a little

readjustment behavior (if we consider survivorship bias); and that multi-year estimation

methods come to similar conclusions. And Section 6 adds a critical perspective about

what our findings imply, especially for (dynamic) tradeoff theories.
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1 Empirical Estimates and Replication of Findings

1.1 Data and Variables

Table 1 explains our data and the construction of the leverage measures used in our
[Table 1 here]

paper. Our main data source is Compustat from 1963–2007, supplemented with CRSP

stock returns without dividends. Depending on data requirements, the samples used

in later analyses have up to 136,450 firm-year observations. The panel is irregular. The

average number per firms in a given fiscal year is 3,299, with a range from 453 to 5,804.

The average number of years per firm in the sample is 19, although the median is only

16.

We use L as our generic notation for leverage. Our (non-exclusive) emphasis will be

on the market-value based financial debt-to-capital ratio, DC. It is the sum of long-term

and current debt divided by the sum of long-term and current debt and the market

value of equity. Table 1 shows that DC has a pooled mean of 27%, a pooled standard

deviation of 25%, and an average cross-sectional standard deviation of 23%. In some

papers, leverage ratios were defined differently. The most common correct2 alternative

to DC is LA, the ratio of total liabilities over total assets.3 Table 1 shows that the LA
ratio has a mean of 40%, which suggests more indebtedness than the DC ratio. Some

papers calculate leverage ratios using the book value of equity. We denote these with

lower-case letters. Table 1 shows that the means of book-value based ratios are similar

to their market-value based equivalents, but their heterogeneity is a little lower.

The average leverage ratio in the sample drifted up at a rate of around 0.6% to

1.2% per firm-year, with a cross-sectional standard deviation of around 11-12% for the

market-based ratios and 9-10% for the book-based ratios.

The IDC (implied debt-to-capital) ratio is a measure of what would happen to the

leverage ratio if the firm did not change the quantity of its debt or equity instruments,

the value of debt were to remain constant, and only the stock’s rate of return (without

dividends) changed the value of the equity. The difference between IDCt−1,t and DCt−1

can be loosely interpreted as the leverage change that is not due to stock returns, but

due to the intervention of management. Comparing the 12.6% variability in leverage

ratio changes with the 8.7% variability sans stock-return induced changes suggests that

about 30% of the year-to-year change in capital structure is caused by stock returns. The

2The common “leverage” ratio of financial debt divided by total liabilities is not correct, because it
considers non-financial liabilities the same as equity. Thus, it considers a company less levered when
it has more non-financial liabilities.

3Huang and Ritter (2009) do not use our exact LA definition. They use as measure of liabilities “Total
Liabilities + Preferred – Deferred Taxes – Convertibles” and divide by “Total Liabilities + Preferred –
Deferred Taxes + MVE.” The results are similar when we use their definition instead of our simpler LA
definition.
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remaining 70% is (almost entirely) due to debt and equity net issuing activity (including

dividends). Stock returns are a first order determinant of capital structure changes,

but firms are by no means passive or inert.

1.2 The SDPP Process and Leverage Ratio Targets

Table 2 summarizes the methods that have been used in the relevant literature and
[Table 2 here]

that we are investigating in our current paper. We shall formulate the models in terms

of one minus the speed of adjustment (SOA). This coefficient is named “rho.” It is the

parameter of primary interest to us. A fairly general model for the evolution of leverage

in a dynamic panel is

L̃i,t+1 − Li,t = (1− ρ) ·
[
Ti,t+1 − Li,t

]
+ ε̃i,t+1 ,

where Ti,t+1 is a firm-specific target leverage ratio, possibly itself a function of time and

covariates. When rho is zero, the panel loses its dynamic aspect and becomes static.

When the panel is dynamic, the true error and next firm-year’s independent leverage

observation are correlated.

For the most part, we will assume that each firm has its own constant target. The

firm-specific targets themselves are not of interest to us. We only need them as controls

in our quest to estimate rho. We will consider three cases. In the first case, we assume

that the researcher knows them perfectly,

L̃i,t+1 = ρ · Li,t−1 + (1− ρ) · Ti + ε̃i,t .

In the second case, we assume that the researcher does not know anything about the

targets. The estimators can then control for them, e.g., by including firm-specific fixed

effects or differencing. When each target is a firm-specific unknown constant (t′i), then

we can write this model in the form of the econometric standard dynamic panel process

(SDPP),

L̃i,t+1 = (1− ρ) · t′i + ρ · Li,t + ε̃i,t+1 = ρ · Li,t−1 + ti + ε̃i,t , (SDPP)

where ti are firm-specific intercepts. (The 1− ρ scalar on unspecified intercepts does

not change rho estimates.)

In the third case (in Section 5), we allow the unknown target to vary over time,

although not in a manner that is correlated with shocks. In real life, none of these

scenarios is perfectly accurate. The researcher can proxy for the target with fixed effects

and observable covariates, but this probably succeeds in capturing the true target for

each firm only with modest accuracy.
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1.3 Existing Estimators

We now discuss the estimators that have been proposed to recover the rho.

OLS Estimator: The simplest panel estimator is a pooled OLS regression, in which

leverage is regressed on past leverage and usually additional firm-specific variables.

These covariates are included to capture the unknown firm-specific hetrogeneous

targets. It is easy to verify that with thousands of cross-sectional observations, it

also makes no difference whether the model is estimated in differences or in levels."

However, OLS has two problems. The first problem is not too important in our context.

The assumed orthogonality conditions between residuals and independent values does

not hold. When an epsilon is high, the next year’s independent variable will then

also be high. In small samples, with few firms and time-periods, this can create the

well-known “Hurwicz bias” in favor of finding mean reversion (estimated rhos less than

1) even when there is none in the underlying process (true rho of 1). Fortunately, our

panel is primarily cross-sectional, with far more firms than years, and there is only one

parameter to estimate. Moreover, the Hurwicz bias vanishes asymptotically. We will

show that this violation of the orthogonality condition has almost no influence on the

estimates in our context. The second problem is serious. The omission of firm-specific

targets in the estimation creates a bias in favor of not finding mean-reversion if it is

indeed present. We will show that this “omitted variable” bias is severe when firms

have firm-specific targets unknown to the researcher.

Fixed-Effects (FE) Estimator: Flannery and Rangan (2006) in effect argue that

researcher-supplied target covariates may not capture all the heterogeneity across

firms’ targets. Thus, they suggest adding fixed effects into the estimator. This takes

care of the omitted variables problem. However, the FE estimator properties are applica-

ble under static panel processes, not dynamic ones. Huang and Ritter (2009) noted that

the Hurwicz bias reappears, because the intercepts consume a large number of degrees

of freedom. Thus, the fixed-effects estimator suffers seriously from the correlation

between the error and the next independent variable. Put differently, the target fixed

effect assumes the mean of the error realizations.

GMM (BB) Estimators: To allow for fixed effects without suffering the Hurwicz bias,

Lemmon, Roberts, and Zender (2008) suggest using the Blundell-Bond (BB) estimator.

It is a modified version of the more common Arellano-Bond (AB) GMM procedure. An

econometric derivation of this estimator is beyond our scope, but we can provide an

intuitive explanation of some of their moment conditions to help readers unfamiliar

with this technique (and to help them understand its failure in our context).
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The GMM method is easiest to understand by assuming that firm-specific targets

are zero ti = 0. The moment conditions are chosen to be cross-correlations, so that

these means are irrelevant.4 The following explanation is therefore valid even when

firms have their own targets. Any specific rho estimate implies a specific residual for

each firm and year. Thus, the error e can be thought of as a function of ρ, i.e.,

ei,t(ρ) ≡ Li,t − ρ · Li,t−1 .

Arellano-Bond find their moment conditions by pointing out that these residuals should

be uncorrelated with firms’ own two-years-or-more-lagged leverage, (Li,t−2, Li,t−3, ...).5

For example, the expected sum over all firms of, say,
∑
i ei,3(ρ) · Li,1 should be zero. To

improve on the intuition, consider an example with five years of level leverage data.

Differencing eliminates one year. This leaves four years of residuals, of which two (ei,3
and ei,4) have at least one two-year lagged L. The three conditions that the AB estimator

wants to match are
∑
i(ei,3 · Li,1)=0,

∑
i(ei,4 · Li,2)=0, and

∑
i(ei,4 · Li,1)=0. Thus, the

GMM procedure seeks to find the rho that minimizes a squared penalty function of

wM1

∑
i

(Li,4 − ρ · Li,3) · Li,1

 + wM2

∑
i

(Li,4 − ρ · Li,3) · Li,2

 + wM3

∑
i

(Li,3 − ρ · Li,2) · Li,1

 ,

wherewM are weights whose optimal values can be asymptotically derived. The intuition

for their selection is that we want to weight moment conditions more when they have

more to say about ρ—meaning that small changes in ρ would cause large changes in

the particular moment sum. (We would not expect a residual to have much correlation

with leverage from 20 years earlier regardless of what the actual rho is.)

Rearranging the penalty function yields

(y − ρ · x)2

where y = wM1 ·
∑
i

Li,1 · Li,3 +wM2 ·
∑
i

Li,2 · Li,4 +wM3 ·
∑
i

Li,1 · Li,4

and x = wM1 ·
∑
i

Li,1 · Li,2 +wM2 ·
∑
i

Li,2 · Li,3 +wM3 ·
∑
i

Li,1 · Li,3 .

4The fixed effects estimator imposes orthogonality conditions between these errors and the mean of
the independent variables that are not likely to be satisfied. The GMM estimator ignores those (mean)
conditions that are not likely to be orthogonal, and focuses only on those correlation conditions that
are likely to remain valid (orthogonal). By doing so, the GMM estimator loses a large number of (linear)
restrictions. With over 100,000 firm-years, this is not a big problem because the remaining conditions
are sufficiently powerful.

5This also indicates why the BB estimator fails in our context. Intuitively, if the two-period lagged
L is very low, e.g., zero, it is common that the one-period lagged L is also zero. For firm’s with such
zero leverage, the shock ε cannot be negative. It is this feature that is ultimately the problem for
this estimator in our context. It was built upon the lack of correlation between ε and lagged L, which
cannot hold here.
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Consequently, one can obtain the GMM rho via a least-squares estimator by running

a regression y = ρ · x + noise, in which the sums of these predetermined leverage

products are regressed on one another. Intuitively, the GMM rho estimate is higher when

the AR(t) cross-products are more similar to the AR(t+1) cross-products. Generalizing

to an arbitrary number of years, Arellano-Bond provide (T −1)·(T −2)/2 such moment

conditions. It is not uncommon (and Lemmon, Roberts, and Zender (2008) do so) to

use only moment conditions in which e is close (in time) to L. After all, the optimal

weight on moment conditions with more than a few years distance between residual

and leverage is small anyway.

The Blundell-Bond “SYSTEM” statistic innovates over Arellano-Bond by adding an-

other T −2 moment conditions: each residual should also not be correlated with lagged

changes in leverage. For example, ei,3(ρ) should also not be correlated with Li,t−2−Li,t−1.

BB prove that their GMM estimator is asymptotically efficient as N →∞ under the SDPP

with independent normally distributed errors.

Long Difference (LD) Estimator: Huang and Ritter (2009) use the “long difference

instrumental variables” estimator, suggested by Hahn, Hausman, and Kuersteiner (2007)

(HHK). The LD approach suggests running an OLS regression on the longest differences

that are available. For example, with 20 years of data per firm, it would estimate

(Li,20 − Li,2) = ρ · (Li,19 − Li,1) + e1i,Estimation Stage, .

However, (L19 − L1) is measured with error. Even though the average true epsilon error

becomes smaller as the difference increases, higher ε errors can still cause higher

L19 values. This error-in-variables problem means that the estimate of rho would be

biased towards 0 if simple OLS were used. The lagged difference in leverage is still not

orthogonal to the (differenced) error. To reduce this problem, (L19 − L1) is replaced

with its fitted value from an IV regression, which (given a rho estimate) is essentially

(Li,19 − Li,1) = g1 · Li,1 + g2 · (Li,3 − ρ · Li,2)+ g3 · (Li,4 − ρ · Li,3)+ ...+ e2i,IV Stage .

This is then iterated a few times. Although HHK are quite concerned with choosing

a good rho starting value, ultimately this matters little as long as the two equations

are iterated more than a few times. Given an arbitrary starting value for rho between

0 and 1, iterating at least a half a dozen times yields the unique rho estimate. HHK

prove that their LD estimator is asymptotically efficient as N → ∞ under the SDPP with

independent normally distributed errors.

Intuitively, as with the GMM estimators, the quality of the LD estimates in small

samples depends on the strength of its moment restrictions (instruments) that are

not ignored. Because the estimator requires a long time series, and because the data
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set is irregular, Huang and Ritter (2009) consider different length estimators (4, 8, 18

and 28 years). These trade off accuracy against data selection in different ways. Our

replications focus on their overlapping 8-year estimates, but we also confirmed that the

results are robust to different choices. (For example, in Table 3, the estimates typically

varied by about 1%, with the largest discrepancy being 4%.)

Welch (2004) (W) “Implied Target” Estimator: This method is quite different from

the tests above. It is not based on the SDPP model. Instead, it is based on a specific

economic identification. As already noted on Page 4, the implied leverage ratio, IDC,

that comes about in the absence of corporate capital structure activity is IDCt,t+1 ≡
Dt/[Dt + (1+ rt,t+1) · Et]. The W method is a competitive OLS regression of

D̃Ci,t+1 = a+ b ·DCi,t + ρ · IDCi,t,t+1 + ẽi,t .

The lagged DC is intended to capture the most recent firm’s own target (somewhat

similar to a fixed effect), while the constant is intended to capture a common target.

The coefficient ρ measures the degree to which only stock-return-caused noise is or is

not undone.

In our current paper, we implement the estimation with a simple pooled regression

(clustered standard errors) rather than with the Fama-Macbeth-style method used in

the original paper.6 The rho estimates are almost identical. The W estimator nests the

simple pooled OLS estimator. In Table 3 below, we also report the rho estimate from a

simple extension that allows for fixed effects. This can nest the FE estimator.

Not being an SDPP approach, the W estimator cannot be used in other contexts—not

even when leverage is defined by book value. It also has the disadvantage that its

properties are not known. Moreover, it is not clear whether the past leverage (DCi,t)
term in the regression can be successful in controlling for firm-specific targets, as

interpreted by Welch (2004). Thus, one wonders how this estimator performs if each

firm has its own constant target.

1.3.1 What Shock?

The estimators are non-chalant in spelling out what shocks they are considering. This

deserves some clarification.

Changes to leverage ratios have to come either from changes to debt or changes to

equity. In turn, these can come from changes in the quantity or the value of claims.

6There was really no justification for using the Fama-Macbeth method in Welch (2004). It served
only to show that standard errors remain small even when one sacrifices power. The standard errors
in Welch (2004) were wider (around 1.4%) than those reported in our current paper (around 0.4%).
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As for changes to the quantity of debt and equity claims, it is difficult to interpret the

meaning of what a “shock” is and what consequent managerial readjustment is—after

all, these are usually “shocks” caused by the capital structure actions of the managers

themselves.7

Adjustment by managers to manager-caused leverage ratio changes are arguably

less interesting than shocks that are mostly imposed on the firm from the outside.

These more interesting shocks would be to the value of the firm, which would manifest

themselves primarily in the equity portion. (There could also be shocks to the risk of

the claims.) Such shocks are relatively8 more “exogenous.” The W estimator considers

only these shocks. Thus, strictly speaking, the W method does not even ask the same

question as the other estimators: Instead of investigating the question of how firms

respond to any kind of shock, it investigates the response only to a specific kind of

shock—leverage ratio changes associated with stock returns.

But the big advantage of focusing only on stock-return related shocks is that it is

a lot easier to learn the response to them. In this case, the researcher has ex-post

knowledge of the exact amount of the shock that stock-returns would have caused in

the absence of managerial response. Ignoring this information would be equivalent

to ignoring information about the true disturbances in an OLS regression if they were

available. (Such knowledge would allow one to pin down OLS coefficients without error.)

In other words, one can answer the question of how firms respond to stock-return

caused shocks with a lot more accuracy than one can answer the question of how firms

respond to arbitrary shocks of any kind.

7We are not entertaining separate adjustment speeds for stock return caused shocks and other
shocks. This is beyond the scope of our current paper and left to future work. Briefly, the tests could
further be generalized if one could identify more exogenous shocks (as opposed to debt or equity
changes explicitly caused by firms in order to adjust their leverage ratios). For example, one could
measure (unusual) debt coming due in one year (disclosed by firms in their financial footnotes), which
would allow measuring how firms respond to this kind of shock. However, firms would likely have
already planned for them in their capital structure. In this case, “no reaction” may not mean “no
adjustment.” That is, it might not be surprising if firms were not reacting to these anticipated shocks.

8The identification comes at a cost of ignoring one form of reverse causality: if debt issues cause
negative stock returns, then the no-readjustment leverage ratio would go up, and W would mistakenly
attribute managers’ intentional levering up to the no-readjustment hypothesis. The same holds if
equity issues cause positive stock returns. Equity issue stock price announcement evidence suggests
the opposite, however.

In addition, because the identification is so specific (based an a quantitatively exact ratio on own
stock returns), it is both less sensitive to this reverse-causality problem—unless the stock return and
net issuing activity happen in exactly the right proportion, IDC is unlikely to pick it up strongly—and
more difficult to correct. A correction would be difficult because any stock return other than the
actually observed exact one should not work under the functional identification. Unlike common
IV techniques in linear models, in W even a constant added to the stock return would destroy the
usefulness of the IDC identification.

(Association rather than reverse causality is not a problem due to the way this evidence is interpreted.)
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In sum, if the question is how managers respond to the specific shock of stock

returns, then the W estimator has an “unfair” advantage similar to knowledge of the

true OLS epsilons. It uses information ignored by the other methods. Of course, given

our large sample and the fact that in one variation we allow the researcher to know the

firm targets perfectly, other methods should be extremely accurate, too.

1.4 Replication of Findings

Table 3 shows the results of the estimators applied to the empirical data. The coefficient
[Table 3 here]

that is to be interpreted as the influence of past leverage is in bold. For the OLS, FE,

BB, and LD methods, this is simply the coefficient on lagged leverage (DC). For the

W estimators, with its interest in the role of shocks from stock returns, this is the

coefficient on IDC. Different sections in Table 3 consider different definitions of leverage.

Table 4 repeats Table 3 in the 40,708 firm-years that can be used in all estimations.
[Table 4 here]

This sample is mostly limited by the LD estimator’s need for long time series. In such a

“constant sample,” differences in the firm-years that are used by different estimators

cannot be responsible for differences in estimates.

The first observation from both tables is that it does not matter greatly which

definition of leverage is used. The rho estimates are remarkably similar, with differences

caused by leverage definitions of less than 0.02. The often heated disagreements about

whether book-value or market-value based leverage ratios are more appropriate seems

irrelevant in this context.

The second observation is that the estimation methods themselves are responsible

for the ordering of inference. The W estimate for rho is always highest, followed by

OLS, BB, LD, and FE. As in the literature, the range of estimates is uncomfortably large,

with FE seemingly suggesting a rho of less than 0.7, LD suggesting 0.78, BB suggesting

0.85, OLS suggesting 0.9, and W suggesting 1.

Comparing Table 3 and 4 shows that for the DC leverage ratio estimates, the OLS

estimate decreases by 0.1%, the FE estimate decreases by 1.6%, the BB estimate increases

by 1.0%, the LD estimate decreases by 0.04%, and the W estimate increases by 1.2%.

Thus, all in all, Table 4 estimates are similar to those in Table 3. Differences in the

sample cannot explain the discrepancies in estimates.

Our estimates are also similar to the coefficient estimates reported in our predeces-

sors. Lemmon, Roberts, and Zender (2008, Table 6) explain book-leverage and report a

coefficient of 87% in an OLS estimation (a), 64% in an FE estimation (d), and 78% in their

own BB estimation. This is just 4% lower than the rho estimate for the book-value based

dc that we obtain in our sample. Huang and Ritter (2009, Table 8) even include a similar

summary table, although it is based on reporting of the earlier papers and not based on
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an independent replication. They report rhos of between 93% (dividend paying firms)

and 85% (non-dividend paying firms) for the OLS method in Fama and French (2002);

91.7% for the OLS method in Kayhan and Titman (2007); 64.5% for the fixed-effects

method in Flannery and Rangan (2006); 67.8% for the fixed-effects method in Antoniou,

Guney, and Paudyal (2008); and 76.8% for their own long-difference method.

Half-Lives: The common way to gain intuition into the meaning of these SOA

estimates is to translate them into “half-lives.” (1-ρ) is the expected percentage by

which the gap between the past leverage and the target closes in one period. Half-

life is the time that it takes a firm to adjust back one-half the distance to its target

leverage after a one unit shock to the error term (εi,t). For an AR(1) process, half-life

is log(0.5)/ log(ρ). The discrepancies in these methods’ rho estimates cause stark

contrasts in interpretation. The fixed-effect estimate of 0.66 suggests a half-life of

less than 2 years, while the W estimate of 1 suggests a half-life of infinity. Half-life is

particularly sensitive when rho is close to 1. Rhos of 0.8 or lower suggest half-lives

of around 3 years, in line with the limited trade-off based view of capital structure

in Flannery and Rangan (2006), Huang and Ritter (2009), and Lemmon, Roberts, and

Zender (2008). (If projects appear with much higher frequency, and if they need to be

financed quickly, even this adjustment seems slow, however.) Rhos above 0.9 suggest

half-lives of 6 years, more in line with the “glacial readjustment” view Fama and French

(2002). Rhos above 0.95 suggest half-lives in excess of 13.5 years, in line with the

“practically no-readjustment” view of Myers (1984) and Welch (2004). 13.5 years is only

slightly lower than the 16-year median life of firms in our sample.

1.5 Discrepancies and SDPP Inference

The estimated standard errors of estimates in Tables 4 and 3 are very low. This should

not be surprising. The observation count is thousands of firms multiplied by dozens of

years, noise is modest (leverage ratios can only change so much), and there is really

only one parameter of interest. Therefore, the estimation of the standard errors of

these rhos is easy—in fact, if one simply considered them to be economically close to

zero, it would not seem like a big mistake. More precisely, some simple unreported

simulations of the SDPP with normally distributed ε errors confirm that the BB and LD

estimators are not only asymptotically unbiased, but also unbiased in our sample; adn

these simulations show that their asymptotic standard errors are right on the mark,

too. Put simply, they have excellent properties in a sample as large as our’s.

Therefore we can view the BB and LD estimators as “SDPP diagnostics” for one

another. Consequently, we can draw one conclusion from their uncomfortably large

disagreements:
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Proposition: We can reject with extremely high confidence the hypothesis

that leverage ratios follow the SDPP with iid normal errors.

The reason is that we would simply not expect to observe distances between the rho

estimates that are as large as those observed. Even the smallest difference—from the

0.847 and 0.772 for the BB and LD estimators in the full sample—is still 15 standard

deviations.

It is further unlikely that the key problem would be correlations among unknown

normally distributed errors (ε’s) that we have not corrected for—again, there are so

many observations that we believe that the rho point estimates are very accurate even

under reasonably high cross-correlations. The failure is more likely in the functional

process specification itself, and/or in the symmetry and zero assumption of the errors.

2 Leverage Processes

In this section, we first assess the consequences of real-world relevance of the domain

limits of leverage ratio, and then propose some processes that cannot exceed them.

2.1 Problems Due To The Additive Normal Shocks

The process under which the BB and LD panel estimators (and, to a lesser extent, the

FE estimator) were derived and shown to be asymptotically efficient is the SDPP. In our

context, it is
D̃Ci,t+1 = ρ ·DCi,t + ti + ε̃i,t+1

with independent normally distributed epsilon errors. As already noted in the intro-

duction, this is intrinsically flawed. Assuming additive independent normal shocks is

incorrect, because it is impossible in the leverage ratio context. Leverage ratios have to

be between 0 and 1. Thus, when the initial leverage ratio is 100%, a shock to leverage

can only be negative. Fortunately, few firms have very high leverage. When the initial

leverage ratio is 0%, a shock to leverage can only be positive. Unfortunately, this is not

rare. Figure 1 extends the information in Table 1. It shows that firm-years with low
[Figure 1 here]

leverage are quite common. Although mean leverage in the sample is 27%, zero is the

mode of the distribution. With a cross-sectional standard deviation of about 25%, our

variable of interest is left-truncated at just about –1 standard deviation. And as Table 1

showed, the average year-to-year change in leverage ratios, limited by the domain, is a

remarkably high 12%, of which 8.7% is due to managerial intervention.9

9Note that one option is to abandon the definition of leverage that has been used in the literature.
For example, the profession could explain leverage that counts cash as negative debt or the (far more
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The fact that leverage ratios are limited in their domain causes predictable biases

that can be understood even without sophisticated econometrics. A firm with a leverage

ratio of 0% simply cannot experience a shock that further reduces its leverage ratio. It

follows that it is logically not possible to expect standard estimators, built for the SDPP

process with iid errors, to report a coefficient estimate of rho of 1 even if managers

never readjust (the true rho is 1).10

Proposition: Even dynamic panel estimators that are unbiased under the

SDPP with normal errors are predictably biased towards finding positive

speed of adjustment in the leverage ratio context. They attribute the inability

of the leverage ratio to exceed its domain of [0,1] as mean-reversion.

That is, even if managers do not take any measures to readjust, it is quite possible that

the previously used estimators would detect evidence of mean reversion (a rho less

than 1).

The obvious next question is whether hitting the domain limit is merely an intellectual

curiosity or a real issue. When we simulate SDPP processes without truncating leverage

ratios, the number of firm-years with impossible leverage ratios is large. Figure 2 shows
[Figure 2 here]

that even when the true rho is 0, normally distributed random shocks of 12.5% per

year (the average change in the data) would still push just under one-fifth of firm-years

into the infeasible region under the SDPP. When rho increases, there are increasingly

many leverage ratios that are not just exceeding the feasible range but that are just

absurdly high. When rho is 1, this figure rises to more than one quarter. The range of

observed leverage ratios under different rhos is similarly damning. With a rho of 1.0,

the 95 percentile range of observed leverage ratios reaches from –72% (unreasonable) to

+112% (far from the 27% DC average, but still close to the feasible range). With a rho of

1.1, this range increases to –350% to +400%. With a rho of 1.2, it increases to –2,500% to

+2,500%. With this 1.2 rho, even the 80 percentile range reaches from –233% to +260%.

We thus conclude that assuming an unconstrained leverage process as a model for

observed leverage ratios is not just wrong conceptually, but also difficult to defend as

a reasonable empirical approximation that is only violated in rare firm-years.

volatile) interest coverage ratios. However, this would change the meaning of the inference. More
important to our own paper, it would defeat its purpose. We want to reconcile the existing findings on
the existing leverage measures, and not propose new methods to assess the SOA.

10There are well-known biases of the OLS estimator when variables are artificially limited even when
the model is not dynamic. For example, assume that the true relation is y = 1 · x + ε, both ε and
x are unit-noise, and the sample is asymptotically large. If the y variable is winsorized at 0, then
the OLS estimate is 0.5. If the x variable is winsorized at 0, the coefficient is 1.47. If both x and y
are winsorized, the coefficient is 0.91—a bias of 0.09. If instead of winsorizing, observations less
than 0 are not observed (“selected”), the equivalent coefficient estimates are 0.53, 1.00, and 0.66. Of
course, the same biases apply in dynamic panels, with the twist that any one limited leverage data
point (usually) enters both the x and y series, in addition to being subject to the confounding Hurwicz
bias.
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The appendix describes two more potential violations of the SDPP assumption in

our context that could also mechanically cause mean-reversion even where there is

none. (However, the most important seems to be the domain restriction, which is why

we focus our attention primarily on this issue.)

2.2 A Stance

To understand the properties of the estimators better, especially in quantitative terms,

we must now take a stance on what a reasonable alternative process for leverage ratios

could look like.11 We want to stay largely within the same conceptual framework that

lead to the SPP. Loosely, this means that we presume that leverage follows

LNext Year = ρ · LNo Readjustment(·)+ (1− ρ) · LActive Readjustment(·)

with some noise to be specified. The first term captures what happens to the leverage

ratio when the manager does not readjust. The second term captures what happens to

the leverage ratio when the manager does readjust. The dots in the arguments indicate

that both the no-readjustment or the active-readjustment leverage ratios can change or

be a function of covariates, such as lagged leverage. The parameter of interest is still

the coefficient rho. A rho of 1 is perfect non-adjustment. As already noted, our paper

focuses mostly on modeling DC leverage, and active readjustment is considered to be

the moving towards a firm-specific target, so we can rewrite this as

D̃CNext Year = ρ ·DCNo Readjustment(·)+ (1− ρ) · T(·) .

The SDPP is one example of a process that fits into this framework.

2.3 Limiting The Dependent’s Domain in Additive Shock Processes

Our first two processes seek to mimick the SDPP closely. This is important because the

GMM and LD estimators (and to some extent the FE estimator) were derived under this

SDPP process. Their goal is to recover the true rho coefficient. Consequently, our first

proposals are processes that modify the SDPP to fit our specific leverage ratio context.

We now introduce a “truncation” mechanism that keeps simulated leverage ratios

within the feasible domain (the unit interval). The most obvious possible truncation

11We consider only statistical rather than fully structural models. They should be viewed as processes
that are locally robust to alternatives, in the same sense in which OLS assumptions are never fully
satisfied. The alternative of estimates from structural models are much more difficult to interpret
intuitively outside their own contexts (which by necessity usually impose a set of strong economic and
functional assumptions).
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methods that retain most of the functional process specification of the SDPP are the

following:

1. We can assume that firms’ leverage ratios “bounce back” as if the 0 and 1 bound-

aries were mirrors. For example, a –10% shock to a firm with a leverage ratio of

3% would result in a leverage ratio of 7%. In this process, almost no firms would

end up at the borders. This is not realistic, so we will not use this modification.

2. We can assume that when a firm’s leverage ratio exceeds the unit range, its leverage

ratio is simply winsorized. Thus, on the next draw of a (normally distributed)

shock, if the firm is at a border and rho is 1, then it has an even chance of remaining

there and an even chance of returning to an interior leverage ratio.

3. We can assume that the underlying leverage ratio is not the observed leverage ratio.

The underlying leverage ratio can take on any value, but the observed leverage

ratio is only equal to the underlying leverage ratio when the latter is between 0

and 1. Otherwise, observed leverage is the corresponding border leverage ratio.

Firms are more likely to remain at this border than they are in method 2.12

4. We can assume that once a firm’s leverage ratio reaches a border, it remains there

forever. Unfortunately, such a process yields the non-sensible result that with

reasonable year-to-year variability, too many firms would end up in the absorbing

state. For example, assuming a 12.5% year-to-year change in leverage ratios, even

with a true rho of 0, 58% of all leverage ratios should have ended up with zero

leverage in our final year 2007.13

The first methods are more favorable to the hypothesis of no-readjustment. They imply

that leverage ratios have more reverting behavior even when the true rho is 1. This

makes some (possibly observed) empirical reversion behavior achievable even with very

high rhos. We adopt the third method as our way of truncating leverage ratios, although

the second method yields very similar results.14

12In a sense, this converts a vice of our process into a virtue. Because we allow for additive process
errors, our simulated process can enter the negative domain. In this case, while in the negative domain,
we assume that the reported leverage is zero. This allows firms to maintain zero observed leverage for
some time—just as they do in the data. Figure 2, which showed the fraction of firm-years that firms
would report 0% or 100% leverage ratios was actually computed under this third truncation method.

13That is, if rho were 1, 65% should end up with zero leverage. To match the year-to-year empirical
variability in leverage ratios would require even higher true variability than 12.5% in this process.
Thus, the reported probabilities of being in an absorbing state are still much too low. For contrast, the
equivalent frequency of being at a leverage ratio of 0 in the previous truncation method are 35% (28%)
if rho were 1 (0). These are reasonable frequencies.

14For example, the second variant (truncation) raises the rho estimates in Process I by 0.03 for the LD,
FE, and BB estimator. (The poorly performing OLS estimator is raised from 0.71 to 0.89.) In Process II,
it raises the estimate for LD from 0.82 to 0.83; for FE from 0.90 to 0.94; for BB from 0.93 to 1.0; and
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We admit that these truncation methods are ad-hoc, but we are unaware of better

alternatives that retain the general SDPP specification. (We have no guidance from

previous papers, because these did not spell out feasible alternatives.) For a different

approach, we will also offer alternative ways to model leverage ratios.

2.4 Process I: Additive Shocks To Leverage and a Constant No-Adjustment

Ratio

Our Process I’s change vis-a-vis the SDPP is that instead of assuming independent normal

errors, we now assume that leverage ratios suffer the (third method of) winsorizations

just discussed,

D̃Ci,t+1 = ρ ·DCi,t + (1− ρ) · Ti + ε̃i,t+1 , (Process I)

Actual leverage follows the SDPP process, but observed leverage is limited to the unit

domain.

There is one other issue of importance (and which also applies to earlier papers,

except W). The no-readjustment hypothesis in Process I ironically requires active capital

structure management. This is best explained by example. Consider a firm with $1

in debt and $3 in equity. It has a leverage ratio of 25%. Assume that it experiences a

stock return of 10%. This changes its equity value to $3.3, and its firm-value to $4.3.

To keep its debt ratio, this firm must change its debt from $1 to $1.075 in debt, and its

equity from $3.30 to $3.225. This means that it has to issue $0.075 in debt and use it

to repurchase $0.075 in equity under the hypothesis of zero adjustment. These issuing

and repurchasing amounts change for different initial leverage ratios and stock returns.

To use the P I process, it is this adjustment activity exactly that must be considered

“non-adjustment.”

does not change the W estimate. In Process III, truncation is so rare that it makes no difference.)
In Process IV, it lowers the BB from 0.92 to 0.91 and the W from 1.11 to 1.06 (with the LD and FE
estimators staying the same).
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2.5 Process II: Additive Shocks And Stock-Return Dependent No-Adjustment

Ratio

Our Process I is exactly like Process II, except that it changes the assumption of what the

no-readjustment leverage ratio is. Absent managerial issuing/repurchasing activity, if a

stock return perturbs the leverage ratio, it impacts the equity component in the leverage

ratio. The impact on leverage ratios is therefore specific, non-linear, and depends on

the initial leverage. The new no-readjustment benchmark is

IDCi,t,t+1 = Di,t
Di,t + Ei,t+1

= Di,t
Di,t + (1+ ri,t,t+1) · Ei,t

=
Di,t

Di,t+Ei,t
Di,t+Ei,t
Di,t+Ei,t + ri,t,t+1 · Ei,t

Di,t+Ei,t

= DCi,t
1+ ri,t,t+1 · (1−DCi,t)

,

where ri,t,t+1 is the contemporaneous rate of return (without dividends). For example,

a firm that has a zero leverage ratio and experiences an exogenous shock that doubles

its equity value will still have a zero leverage ratio. A firm that has a 50% leverage ratio

and experiences a shock that doubles its equity value will experience a leverage ratio

decline from 50% to 33%.

The change in the no-readjustment debt ratio leads to Process II,

IDCi,t+1 = DCi,t
1+ ri,t,t+1 · (1−DCi,t)

D̃Ci,t+1 = ρ · IDCi,t+1 + (1− ρ) · Ti + ε̃i,t+1 .

(Process II)

In our process simulations below, we will use firms’ own stock returns—so we do not

draw them randomly. The random draw is only on ε̃, just as the process suggests.

Implementation-wise, we continue to shock leverage ratios by ε̃ as in Process I, but then

also apply firms’ observed stock returns to determine their next leverage ratios. This

means that a good calibration for the variance of the additive shocks in Process II is

smaller than its equivalent in Process I, because stock returns can explain some of the

variability in leverage ratios.

The plausibility of Process I vis-a-vis Process II rests on the question of what capital

structure is in the absence of readjustment. The first process (which is closer to the

SDPP) requires that the leverage ratio remains constant, even if stock returns are not

zero. The second process requires that the leverage ratio changes in a very specific

way, consistent with lack of managerial capital structure activity. It is left to the

reader to judge whether the active issuing and repurchasing behavior in Process I
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appropriately reflects the “no-readjustment” hypothesis better than the no-issuing

behavior in Process II. Our paper investigates the estimators under both processes.

2.6 Processes III and IV: Modeling Debt and Equity Changes

Our next processes propose an entirely different approach to modeling the evolution

of leverage ratios.

A more natural way to deal with the intrinsic non-linearity of leverage ratios may

be to model debt and equity changes themselves, and only then compute the ratio.

Without loss of generality, corporate leverage can be written to evolve as

D̃Ci,t+1 = Di,t+1

Di,t+1 + Ei,t+1
= Di,t · (1+ ν̃i,t,t+1)

Di,t · (1+ ν̃i,t,t+1)+ (1+ η̃′i,t,t+1) · Ei,t

=
Di,t

Di,t+Ei,t
Di,t

Di,t+Ei,t +
1+η̃′i,t,t+1

1+ν̃i,t,t+1
· Ei,t
Di,t+Ei,t

where η′i,t,t+1 ∈ [−1,∞] is the fractional change in equity and νi,t,t+1 ∈ [−1,∞] is the

fractional change in debt. We can further decompose η̃′ into a shock due to stock

returns (ri,t,t+1) and a shock due to everything else (η̃), i.e., (1+ η̃′) = (1+ r) · (1+ η̃).

The hypothesis of no-readjustment can then be viewed as the statement that ν̃ and

η̃ are not dependent on the firm’s current leverage ratio. Unfortunately, we have no

theoretical guidance that tells us the joint distribution of the value shocks to debt and

equity and the stock return under the no-readjustment hypothesis. Thus, we will not

identify the shocks parametrically. Instead, we randomly draw some other firm-year

and adopt the sampled (percent) debt and equity changes (excluding stock returns)

as our shocks. It is important for the meaning of this test that this match is chosen

without regard to the match’s leverage ratio. We combine these two shocks, η̃, ν̃ with

the firm’s known existing stock returns, and compute the firm’s next leverage ratio.

The rest of this process is still similar. We can adopt the additive process from

earlier sections,

ÇSDCi,t+1 = DCi,t · (1+ ν̃i,t,t+1)
DCi,t · (1+ ν̃i,t,t+1)+ (1+ η̃i,t,t+1) · (1+ ri,t,t+1) · (1−DCi,t)

D̃Ci,t+1 = ρ ·ÇSDCi,t+1 + (1− ρ) · Ti,t+1

(Process III)

For rhos between 0 and 1, the evolution of leverage ratios is guaranteed to be in the

feasible domain. For rhos above 1, it can happen that the weighted average exceeds the
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domain. In this case, we impose the same winsorization method as in the other two

processes.

We entertain a second similar process, in which the target itself can vary in an iid

fashion from year to year,

ÇSDCi,t+1 = DCi,t · (1+ ν̃i,t,t+1)
DCi,t · (1+ ν̃i,t,t+1)+ (1+ η̃i,t,t+1) · (1+ ri,t,t+1) · (1−DCi,t)

D̃Ci,t+1 = ρ ·ÇSDCi,t+1 + (1− ρ) · Ti,t+1

(Process IV)

and T̃i,t+1 = Ti,t+1 + ũi, where ũi is normal noise with standard deviation of 9.5%. The

rationale is that in the earlier processes, the variability of shocks was independent of

rho. In contrast, in Process III, rho also changes the impact of the (observed) shocks on

leverage ratio changes. This is because all shocks are in the first term. For example,

when ρ = 0, then Process III would imply no annual changes in leverage. Thus, under

Process III, the estimators might choose to try to match the annual time-series volatility

of leverage ratios. This is not the case in Process IV.15

These processes are not without drawbacks, either. The biggest problem is one

of realistic leverage ratio dynamics for firms with border leverage ratios. We face a

conceptual issue: it is not clear how we should interpret the fact that about one in five

firms with a zero debt ratio acquires a positive debt ratio in the following year (i.e., the

firm issues debt). On the one hand, such changes can legitimately be seen as evidence

of active adjustment behavior towards some positive leverage ratio target. On the other

hand, if one believes in the presence of shocks, a positive change in leverage is the only

possible shock. If we knew how frequently firms would deviate “randomly” under the

hypothesis of no readjustment, our tests could become more powerful.

Note also that in Processes I and II, it is possible for firms to move away from

the border even if rho is 1 (when they experience a large shock). This is the case in

Process IV, too, but not in Process III. Recall that we use the empirically observed first

leverage ratio for each firm, this is not the case. If a firm starts out with zero leverage,

no percent shock to debt or equity can move it. Further, if a firm has a target ratio of

zero leverage, it remains in this absorbing state when rho is greater than 1 and can never

exit it. Thus, Process III could benefit especially from a reasonable conjecture about

random managerial behavior that could occasionally move a firm with a leverage ratio

15Simulations suggest that for rhos between 0 and 1, the standard deviation of annual leverage
changes is now between 10.5 (for a true rho of 0.5) and 12.5% (for a true rho of either 0 and 1). In the
most relevant domain of rho between 0.8 and 1, the standard deviation of annual leverage changes
is now above 12%. Sidenote: in Process IV, after the ũ shock, the target can be outside the feasible
domain for this time period. Thus, we occasionally need to apply the same truncation method as that
in the first two processes.
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of zero under the hypothesis of no-readjustment. However, we are reluctant to impose

our own priors on such reasonable disturbances in such a case. This not only favors

the adjustment hypothesis over the no-readjustment hypothesis, but also represents a

shortcoming in the ability of this process to describe the empirical data.

2.7 Process Comparison

In sum, we do not believe that there is an a priori single best candidate process to

model the evolution of capital structures. Consequently, we entertain four different

processes in the remainder of our paper:

Process I is a simple adaptation of the SDPP assumed in the econometric literature. It

differs only by truncating observed (but not underlying) leverage ratios to lie in

the unit interval.

Process II is like Process I but changes the assumption of the capital structure under

no-readjustment to one that does not require issuing or repurchasing to counteract

the influence of stock returns.

Process III makes debt and equity experience (non-parametrically) correlated geometric

shocks, and only then computes a leverage ratio. (This process requires no

truncation for interior rhos.)

Process IV is like Process III, but adds noise to the target.

The first two are adaptations of the conventional SDPP models that led to the

estimators used in the earlier literature. The third and fourth seem more natural.

However, neither the additive-shock processes [with its necessary alteration of the

domain limit] nor the debt-and-equity processes are perfect descriptions of reality.

After all, they are just models. Fortunately, we can evaluate the relative performances

of these processes empirically (in Section 4).

The reader may object that other processes could produce different properties for

the estimators. This is an appropriate concern. However, our approach is the same

as that of every other paper. All econometric estimators and estimates are justified

by and interpretable only under their process assumptions—the BB and LD processes

were derived under an assumed SDPP process, too. Clearly, this SDPP process does

not fit our context. We are unaware of better processes for our context that have been

proposed elsewhere. Thus, our assumed processes seem to be the best current way to

assess the quality of the existing SOA estimators. Moreover, as just noted, we can even

evaluate the relative performances of our processes.
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2.8 Summary of Our Simulation Protocol

Table 5 summarizes our simulation protocols. It is important to remain as close to the
[Table 5 here]

empirically observed leverage data as possible. After all, we are interested in assessing

the magnitude of any biases, not just their presence.

• We adopt the exact irregular panel dimension of the Compustat data set.

• Each firm starts with the leverage ratio that it has in the empirical data.

• When a firm disappears from the Compustat data, it also disappears from the

simulated data set.

• We draw random values only for the ε’s that the simulation processes call for.

In Process II (the process with additive shocks and stock-return perturbed no-

readjustment leverage ratio) and Process III (the debt-and-equity process), each

firm also retains its actual stock returns.

• We need to select a target that each firm would want to pursue. We simply assume

that firms start out with the correct target ratio one period before our simulations

and experience one shock. We have confirmed that the results are similar if we

assume that each firm’s first leverage ratio was also its target.16

• The assumed standard deviations for our shocks are as follows:

Process I (the additive shock process with constant no-readjustment ratios): We

use the standard deviation of shocks of 12.5% (close to 12.6% from Table 1).

This would be suitable especially if the true model rho is 1, because it is

the standard deviation of the series DCi,t − DCi,t−1. Variations based on rho

estimates from 0.7 to 1.1, yielding DCi,t − ρ ·DCi,t−1 do not greatly alter the

shocks’ standard deviations. For example, a rho of 0.9 would suggest a shock

of 12.2% per year.

Process II (the additive shock process with stock-return perturbed no-readjustment

ratios): We use a standard deviation of shocks of 8.7%. This is the standard

deviation of the DCi,t − IDCi,t−1,t series from Table 1.

Processes III and IV (the debt-and-equity process): We are sampling another firm

from the panel. The random match is drawn without regard to the firm’s or the

match’s own capital structure. In Process IV, unlike in the earlier processes,

to preserve similar year-to-year variability, the target is additionally subject

to a yearly iid error of 9.5%.

16The only reason why we do not draw a random target for each firm is that we want some congruence
between the original leverage ratio and the firm’s target. The exact method of choosing a constant
firm-specific target choice does not greatly influence the power of the techniques to identify the AR1
coefficient.
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In processes I, II, and IV, we are keeping the noise distribution of annual leverage

ratio roughly constant when we vary simulating rhos.17

• We simulate the capital structure processes and use the procedures from Table 2 to

estimate rho with different techniques. Our inference is based on 500 simulations

of each process, with each simulation exploring values of true rho from 0.0 to 1.4.

The plots have lines to show the best estimates of the true rho as a function of each

estimator’s actual empirical rho estimate. This is easier to understand than it is to

explain.

3 Fitting Estimators On Processes

3.1 Process I: Additive Shocks To Leverage and a Constant No-Adjustment

Ratio

Figure 3 plots the performance of the first four estimators if target leverage follows
[Figure 3 here]

Process I. Observed leverage cannot exceed 0 or 100% (via the third truncation method,

as explained on page 16). The figure shows the following:

• The OLS estimate is severely upward biased when the true rho is not 1. This is

because it fails to pick up that firms have distinct own capital structure targets. It

is not a very informative estimator. (Estimating the OLS or FE in changes instead

of in levels yields practically identical results.) OLS without target controls is best

ignored.

• The FE estimate is severely downward biased. The constants are correlated with

the residuals. This bias was also observed in Huang and Ritter (2009, Figure 5).

However, the FE estimator has a good slope, and thus a bias-adjusted version

can make a good estimator. After such a bias-adjustment, the 0.68 empirical rho

estimate corresponds to a best true rho estimate of 0.86.

• The BB estimator performs well. It has a downward bias of 0.04. Thus, it suggests

a true speed of adjustment estimate of 0.89.

• The LD estimator performs well. It has a downward bias of 0.03. Thus, it suggests

a true speed of adjustment estimate of 0.80.

17In Process IV, this is roughly true for rhos below 1.1. Note that we could vary the noise with
different rhos, too, but then it would be difficult to distinguish between the influence of rho and
the influence of changing residual variance estimates. The variance estimate changes very little if
we compute DCi,t − a ·DCi,t−1, where a is any number between 0.8 and 1.2; and our inference stays
virtually the same.
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• All inference functions are concave. The graphs are more concave when they

approach the unit-root. This is primarily because high rhos lead to many more

observed leverage ratios that would exceed the feasible leverage ratio domain.18

Not shown in this figure (but obvious in later figures) is the fact that these

functions produce a second set of rhos that match the empirical estimates. Here

this happens only for rhos that are implausibly large (greater than 2), so we can

exclude these estimates on a priori grounds.

The best true rho estimates of between 0.80 and 0.89 suggest half-lives of 3 to 6 years,

which includes readjustment to changes that managers have caused themselves and

are now undoing.

Figure 4 assumes that the researcher has access to covariates that perfectly identify
[Figure 4 here]

the target leverage ratio, T. This makes a difference only to the previously badly

biased and practically useless OLS estimate. Knowing the target perfectly compensates

for the omitted variables problem, i.e., the fact that different firms have different

targets. Comparing the figures shows that none of the other estimates are improved

by knowledge of the target. The best point estimates for the true rho that correspond

to the empirically observed measures remain exactly the same. The standard error is

only mildly perturbed, too. In retrospect, this is not surprising. After all, we have over

130,000 firm-years for our estimation. This provides for almost perfect accuracy to

infer rho, even in the absence of knowledge about the target.

Proposition: With the exception of the OLS estimator, knowledge of firms’

target leverage ratios does not substantially improve the inference. The

Compustat data set is large enough to produce accurate inference even

without this knowledge.

The question of what the best SOA estimate is can thus be answered even without good

covariates for firms’ target leverage ratios. Agonizing over controls for such covariates

is not important under the assumed process (in which the shocks do not correlate with

a time-changing target).

18There is a secondary cause. No known time-series estimator and none of these panel estimators
are robust when rho is greater than one. This is due to so-called “super-convergence.” The OLS bias
that increases as the true rho increases from 0 to 1 actually decreases again after rho increases beyond
1. Both BB and LD have desirable properties in the SDPP only when rho is less than 1.
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3.2 Process II: Additive Shocks And Stock-Return Dependent No-Adjustment

Ratio

Our second process changes the leverage ratio that comes about when firms do noth-

ing. This no-adjustment change in leverage ratio assumption is now a leverage ratio

perturbed by firms’ actual stock returns. The standard error of shocks is now lower,

too. Everything else stays the same. The process continues to assume that shocks are

additive and that observed leverage cannot exceed 0 or 100% (via the third truncation

method, as explained on page 16).

Figure 5 shows that the influence of stock returns worsens the concavity of all
[Figure 5 here]

estimators. This concavity is so strong that many estimators lose their monotonicity

over the graphed domain. A single estimate is then compatible with two different and

potentially plausible underlying true rhos. It would be tempting to select the lower

value, but these higher true rhos are still reasonable enough that one cannot dismiss

them out of hand. Suggesting that (some) firms have true rhos above 1 over a few

decades is not absurd. There is even a theoretical basis for this. In the theory of

market-timing in Baker and Wurgler (2002), firms issue more equity after their stock

prices have gone up, in effect amplifying exogenous stock return shocks.

• The empirical LD estimate of 0.77 is consistent with either a true rho of 0.82 or a

true rho of 1.13.

Comparing the inference from Process I (rho of 0.80) with that from this Process II

(rho of 0.82) shows that the change in what the no-readjustment leverage ratio

means has caused only a modest 0.02 increase on the (lower ) LD estimate.

• The empirical FE estimate of 0.68 is consistent with either a true rho of 0.94 or a

true rho of 1.16.

Comparing the bias-adjusted inference from Process I (rho of 0.86) with that from

this Process II (rho of 0.94) shows that the change in what the no-readjustment

leverage is has caused an economically meaningful 0.08 increase on the (lower )

estimate.

• The empirical BB estimate of 0.85 suffers from a different but modest problem.

No assumption on the true rho can reach a mean BB estimate this high in our

simulations. The closest the process simulation can get to matching the empirical

value occurs when the true rho is 1.0. Fortunately, if the true rho is at 1.0, then

we are not only at the peak of the BB estimate, but we also observe BB estimates

that are close to 0.85 with good frequency. Thus, we can adopt 1.0 as our unique

BB estimate.
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Comparing the bias-adjusted inference from Process I (rho of 0.89) with that from

this Process II (rho of 1.00) shows that the change in the no-readjustment leverage

assumption has caused an economically meaningful 0.11 increase.

• The W estimator is less concave and therefore is monotonic over the graphed

domain. Its empirical estimate of 1.0 translates into a best estimate of the true

rho of 1.04.

In sum, two methods, BB and W provide unique matches over the considered domain,

and these yield the same true rho estimates of 1.0. Two methods are not determinate.

Their lower rho matches are 0.82 (LD) and 0.94 (FE), their upper rho matches are 1.13

(LD) and 1.16 (FE). Even at their lower rho matches, the evidence suggests that earlier

papers had rho estimates that were much too low (their SOA estimates were much too

high).

Figure 6 shows that under Process II, too, knowing the target is unimportant, except
[Figure 6 here]

for correcting the omitted variables problem suffered by OLS. Again, we have enough

observations that estimation uncertainty has become irrelevant.

3.3 Processes III and IV: Modeling Debt and Equity Changes

Our third and fourth processes model the shocks to firms’ debt and equity itself and

only then compute the leverage ratio.

Figure 7 shows the performance of the estimators in Process III. As in the previous
[Figure 7 here]

figures, the inference functions of estimators other than W is highly concave and

non-monotonic over the considered domain.

• The FE estimator suggests either 0.89 or 1.13 as best true rho estimates.

• The BB estimator suggests either 0.87 or 1.05 (ignoring the unreasonable 0.35

value).19

• The LD estimator suggests either 0.86 or 1.07.

• The W estimator is monotonic and suggests an average of 1.04. It is again the

only estimator that can be deemed robust with respect to heterogeneity in rho.

The true rho estimates for the different methods are now closer to one another, both

for the true rhos below 1 and for the true rhos above 1. In particular, the LD and BB

19Note that this estimator has strange behavior when far away from the estimates that fit its empirical
value (i.e., when the true rho is less than 0.6). Further investigation showed that this is not due to our
particular process, but due to the fact that the variance of the shock is very small when rho is very
small. If we assume a similarly small error variance in the additive-shock processes, we get the same
strange behavior. When the noise is 0, the BB estimator is undefined.
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estimators, with their rather different empirical estimates, now map into more true rho

estimates. Thus, reconciling the different estimates should be easier under Process III

than under the first two processes.

Figure 8 shows the performance of the estimators in Process IV. This narrows the
[Figure 8 here]

estimates, but has little effect otherwise. Still, having seen the estimates under this

process has assured us that the best true rho estimates for Process III are not driven

just by the desire of the estimators to match the year-to-year variability in leverage

ratios.

4 Reconciling the Evidence

We now try to reconcile the estimates that one obtains from different methods. This

also allows us to judge the relative quality of the four processes.20

4.1 A Single (Homogeneous) Best Rho Estimate

Consider the following thought experiment. Each arbitrary true rho has a unique

expected estimate of rho for each of the estimators under a given process. We can

measure the degree to which this true rho fits one particular estimator by how far

its empirical value is from its expected (i.e., average simulated) value. This can be

done using the T-statistic that tests for equality of the simulated average rho and the

empirical rho.

To reconcile the estimates, we want to find the true rho estimate (call it µ) that mini-

mizes the differences between the empirical and the expected (i.e., average simulated)

rhos. We consider each estimator equally important. Thus, our objective function is

the equal-weighted21 mean squared error T-statistic for the difference between the

empirically observed rho estimate and the average simulated rho value.

min
µ

Penalty(µ) =
√ ∑

E[TE(µ)]2

Number of E’s

where T(µ) ≡ ρsim(µ)− ρempirical

Stderr(ρsim(µ))
20It also alleviates another concern. In Process III, a different rho implied a different year-to-year

volatility of leverage ratios. If estimators under Process III just tried to match the volatility and thus
produced poor fitting rho estimates, then we should observe a poor fit of Process III’s best true rho
estimates with one another.

21A better way would be to weight the estimators according to their estimated standard errors or
slopes at the estimated values. An estimator with a steeper slope and lower standard error seems
more accurate than one with a shallower slope.
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where ρsim(µ) is the estimate when the rho is mu, the best parameter (to be optimized).

The standard error of each estimator is obtained from the simulated (true expected)

distribution. The value of the penalty function can loosely be interpreted as an average

T-statistic.

Naturally, the best fitting true rho depends on both the underlying processes and

the estimators that are supposed to fit their empirical values. Table 6 considers all
[Table 6 here]

four processes, and tries to reconcile the FE, LD, and BB estimates. (We are omitting

the W estimator, because we want to compare Process I to the other two processes.)

Under Process I, the optimization suggests that the single best true rho is about 0.83.

However, it fits very poorly. The penalty function—our sort of T-statistic for fit—at the

optimum is 12. The smaller table underneath these figures shows that all simulation

averages (i.e., expected values) under a true rho of 0.83 would be more than 5 standard

deviations from their empirically observed rho estimates. Process II fits better than

Process I. Under its best true rho estimate, 0.937, the average penalty is a lower 5.26.

Process III fits best. Under its best true rho estimate, 1.066, the penalty is only 3.43.

Process IV does not fit as well, but offers similar inference about rho.22 Note also that

the W estimate fits quite nicely under Processes III and IV, even though it was not

included in the objective function.

Under the additional assumption that the penalty function is approximately normally

distributed at its optimum, the inverse Hessian is an approximation of the asymptotic

standard error. For our purposes, we prefer to view it as a generic sensitivity measure

of for our infered estimates, rather than as formal standard errors. Table 6 shows that

the rho estimates are fairly accurate.

4.2 Concavity of Inference and Heterogeneity in SOA

Now, recall that all inference functions in Figures 3-8 were not linear, but concave. This

means that it is possible that the empirical estimates have an additional downward bias

if firms’ true rhos are heterogeneous. This is easiest to explain with an example—e.g.,

via the LD inference function in Figure 5. If all firms had a true rho of 1.0, the function

suggests that we would expect to observe an LD estimate of around 0.97. Now contrast

this to a case in which half the firms have a true rho coefficient of 0.7 and the other half

have a true rho coefficient of 1.3. Therefore the true average rho coefficient of firms

is again 1. However, the LD estimator would now likely return a rho estimate of 0.7

for the first half and 0.9 for the second half. The overall-average adjusted LD estimate

would therefore be only about 0.8 in the second (heterogeneous) case and not 0.97

22Not shown here, Process IV also has a second local minimum at a rho of about 0.9. Multiple minima
occur because these estimators are non-monotonic. If we add the more monotonic W to the objective
function (as we do in Table 8), this lower local minimum disappears.
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as in the first (homogeneous) case.23 This also suggests that the W estimator has an

advantage relative to the other methods: its approximate linearity makes it relatively

more robust to firm-specific heterogeneity in rho.

Given the concavity of the inference functions and the reasonable prior that some

firms may adjust while others may not, it makes sense to allow the true rho to be

either homogeneous or heterogeneous. Thus, our reconciliation objective function now

generalizes to

min
µ,σ

Penalty(µ,σ) =
√∑

E[TE(µ,σ)]2

Number of E’s

where T(µ,σ) ≡ ρsim(µ,σ)− ρempirical

Stderr(ρsim(µ,σ))

where ρsim(µ,σ) is the estimate when the true rho is drawn from a normal distribution

with a mean µ and a standard deviation σ , which are now the two parameters to be

determined.

Table 7 shows the best true rho mean and rho spread estimates under the four
[Table 7 here]

processes if we try to reconcile only the FE, LD, and BB estimates. Allowing for hetero-

geneity in adjustment speed does not alter the Process I estimates—it remains poor.

However, Processes II through IV all suggest substantial heterogeneity across firms: the

standard deviation of rho is around 11%. This suggests that a significant fraction of

firms may have adjustment speeds that are economically meaningfully positive. (Note

also that our heterogeneity is unspecific. With instruments for specific heterogeneity

in rho, one could probably improve the estimates.) The three latter processes now

offer virtually identical inference. Their best average rhos are between 0.95 and 0.99.

The standard errors (from the Hessians) are high enough that we cannot reject the

hypothesis that the average adjustment speed is zero. Finally, Process III fits best. Its

penalty is a remarkably low 2.07. (This magnitude can also be directly compared to

the penalty in Table 6.) This is better than we had hoped for, given the hundreds of

thousands of observations and the consequent high accuracy of the estimators.

Neither Table 6 nor Table 7 considered W in their penalty functions. It should be

more difficult to reconcile four estimators rather than three estimators, so the penalty

function at the optimum is not comparable. It should be higher. We also know that

the W estimator fit poorly in Table 7; that it is less susceptible to multiple optimums

than the other estimates (e.g., Figure 7); and that it requires the additional assumption

23This is not exactly correct, but meant to be illustrative. Our argument is analogous to one that
if half of all observations have an OLS slope of 1, and the other half also have an OLS slope of 1,
then the slope for all observations should be 1, too. Yet this is really the case only under additional
assumptions. In the example, if the observations are (x1 = 0, y1 = 0) and (x2 = 1, y2 = 1) in one half of
the sample, and (x3 = 10, y3 = −10) and (x4 = 11, x4 = −9), the slope with all observations included
is not 1, but negative.
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that the shocks are stock-return caused. Table 8 shows that Process III remains the [Table 8 here]

best process when we also care about the W estimate. The best fitting estimate of the

underlying true rho average is then about 1.06, with fairly low estimated heterogeneity.

With so little heterogeneity, and the good fit of W in Table 6, it is not surprising that the

estimate for the true rho mean is also similar to that in Table 6. Although this estimate

is uncomfortably above 1 (suggesting a negative speed of adjustment), the inverse

Hessian (pseudo standard error) of around 0.02 suggests that a speed of adjustment

estimate of just about 0 is reasonable.

In sum, Process III produces the best fit for all estimators. Under this process, the

best true rho estimate that reconciles the estimates reported in previous publications

is around or just above 1.

5 Alternatives and Robustness

The estimations so far have examined the estimators proposed in the papers referenced

above. We now briefly explore some variations of the underlying processes and the

estimators.

5.1 Time-Varying Slowly Moving Targets

Figure 9 assumes a process similar to Process II, but one in which firms’ own targets
[Figure 9 here]

are moving. We assume that the change in the target is normally distributed with mean

zero and 5% standard deviation. (The targets are not truncated.)

The figure shows that a randomly changing target makes little difference. After

all, a randomly changing target does not alter the inference when the true rho is very

high anyway. Given that the empirical estimates earlier suggested a high rho, having a

randomly changing target is not important. The only noteworthy finding is that the

W estimator performs best. This is also not surprising, because it takes the leverage

target to be the firm’s most recent own leverage ratio. This can handle time-changing

leverage ratios better than the fixed-effects intercepts.

In sum, our inference is robust to underlying targets that move randomly. We will

discuss on Page 38 the case in which time-varying targets would not be innocuous: if the

optimal leverage ratio target moves inversely with stock returns in a manner similar to

the functional ratio form of leverage under no-readjustment, then optimal adjustment

theories have implications that are practically the same as those of non-adjustment
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theories. In this case, SOA tests cannot—and may not need to—distinguish between

them.

Nevertheless, it is important to emphasize, however, that the W test is very sharp:

not reported, even just a little noise added to the IDC measure drastically changes

the estimated coefficient. Thus, the fact that the IDC coefficient is around 1 is very

informative. The W test suggests not only that the target moves in the same direction

as implied by the stock-return (for which one can easily create a tradeoff theory), but it

also suggests that this theory would have to predict that the target moves exactly in

the same amount as implied by a stock return movement.

5.2 Simple Lumpiness

A simple version of fixed adjustment costs can be tested by assuming that observed

leverage ratios would not change until actual leverage reaches a distance of at least, say,

5% from the observed leverage. For example, an actual leverage ratio sequence of (15%,

12%, 13%, 8%, 11%, 20%) would became an observed leverage ratio sequence of (15%, 15%,

15%, 8%, 8%, 20%). Recall from Figure 3 that under Process I, we inferred an estimate of

0.71 for the OLS estimator (with a very flat inference function), 0.80 for LD, 0.86 for

FD, and 0.89 for BB. The only inference change in our simulations when we impose

lumpiness is that the OLS estimate declines from 0.71 to 0.70. All other estimators

remain at the same point estimates. Such lumpiness does not affect the estimates, and

there is also no evidence that leverage ratio changes are lumpy in this simple form.

Firms are not only very active in their capital structure policy, but regularly active.24

24Leary and Roberts (2005, page 2601) define activity as a dummy that represents a leverage ratio
change greater than a 5% (or 3% or 7%) cutoff. They state that “perhaps the most striking result is that
in 72% of the quarters in our sample no adjustment occurs. That is, a majority of the time firms are
inactive with respect to their capital structures.” This is however not particularly unusual. If leverage
ratio changes are perfectly normally distributed with a standard deviation of 5% per quarter, then we
would see no adjustment activity in an even greater fraction (85%) of all quarters. The median time
between activity would be 5 quarters, the mean time would be 6.5 quarters, and the max time would
be 44 quarters. These are all similar to the numbers that Leary and Roberts report.

Their more important evidence is however about duration. Interestingly, they define optimal
adjustment with frictions as a positive auto-correlation of changes, not a negative one. Although such a
positive auto-correlation seems counterintuitive from the perspective of readjustment, they show that
this pattern can be consistent with high fixed costs and convex variable costs under certain parameters.
(DTTs are indeed flexible!) We do not examine their evidence further, because it relies on quarterly
book-value-based figures, and thus is twice removed from the main variable in our study.31



5.3 Extreme Shocks and Asymmetry

In their critique of some of the findings in Welch (2004), Leary and Roberts (2005)

look at the subset of firms that experience more extreme shocks. This is a natural

place to look for adjustment behavior, even if it is not the average firm that Welch

(2004) and our own paper are focusing on. They find that firms respond more to large

shock-caused leverage increases (large negative stock returns) than they respond to

large shock-caused leverage decreases.

Unfortunately, their test can only be easily done with the W estimator. First, the

common dynamic panel estimators are not designed to conditionally ignore firm-years

within a panel’s timeseries. Second, we need an a priori identification for the shock.

We do not know in advance whether a firm has a leverage ratio above its target or

below its target, and individual firm-specific target estimates are likely to be quite

noisy (unlike the single common adjustment parameter estimate). Fortunately, the W

estimator proved to be relatively accurate and robust, so having only this one estimator

is not a problem.

Figure 4 in Leary and Roberts (2005) suggests a fairly speedy SOA for firms experienc-

ing large shocks (visually roughly a half-life of around 2–3 years). We do not replicate

their exact method, but prefer to adapt the standard W method to their hypothesis.25

Each firm-year, we divide the sample into firms that have had a stock return less than

a cutoff C and firms that have had a stock return greater than C. The stock return

itself is the same that is used for calculation of IDC. Figure 11 shows the coefficient

estimates on IDC as a function of C. (We do not calibrate the estimated rhos to true

rhos.) The figure confirms the main directional finding of Leary and Roberts (2005):

Firms having experienced strong negative shocks indeed show more readjustment.

Firms with –66% rates of return (about the 5th percentile) had average rhos of about

85%, corresponding to half-lives of about 4.3 years—somewhere between active and

glacial. Firms with –35% rates of return (about the 20th percentile) had rhos of about

90%, corresponding to half-lives of 6.6 years. Firms having experienced strong positive

shocks show some readjustment, too. Firms with +88% rates of return (about the

90th percentile) had rhos of about 95%, corresponding to half-lives of 13.5 years—an

25The Leary and Roberts (2005) paper uses ex-post data rather liberally. Their sample is limited to
large firms that have experienced a 1-sd shock. First, they define the return shocks themselves based
on the ex-post rates of return distribution. That is, they compute each firm’s rate of return over the
entire sample, and then select firms which had a rate of return above or below one standard deviation.
Second, they require a firm to have five years of data after the shock has occurred in order to enter
their graphs. This leaves fewer than 25% of the sample. In contrast, our selection is ex-ante. We also
experimented with multi-period variations of our own method. The inference looks quite similar.
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economically glacial readjustment speed.26 In sum, our SOA estimates are considerably

lower, but qualitatively similar to their’s.

Our next question is how much of this (slower) readjustment rate could be due to

survivorship bias. A firm that experiences a –66% rate of return and fails to unlever

could be more likely to go bankrupt or delist, exit Compustat, not report an end-of-year

leverage ratio, and thus not enter the regression. The dashed red line shows that about

one third of firms that have had a –66% rate of return during their fiscal year (from

CRSP) disappear before they report an end-of-year leverage ratio. The lower the rate of

return, the more likely the firm is to disappear. This suggests that disappearance is

not benign.

One way to assess the potential significance of this bias is to assume that firms with

a negative rate of return during a fiscal year in which they disappeared went “bankrupt”

with a leverage ratio of 100% at the end of the year. This is an assumption. Within this

year of disappearance, we compute the stock return from CRSP including the delisting

rate of return. In the figure, the thinner red line includes these bankrupt observations.

This line shows that IDC coefficient is 5% to 10% higher than that of the survivors only.

Firms that have experienced a rate of return of –52% (about the 10th percentile) now

have half-lives of 13.5 years and not 6.2 years.

In sum, the data suggests that the market disproportionally weeds out firms that do

not lower their leverage ratios after extreme negative shocks. Although we can confirm

the Leary and Roberts (2005) finding that firms that experience a strong negative shock

readjust towards a less levered capital structure if they remain publicly traded, the

average such firm may have adjusted much less. It may thus have been the market and

not the manager that “readjusted” publicly traded firms’ leverage ratio. In any case,

the fraction of the sample that engages in active and quick readjustment remains very

small.

5.4 5-Year Leverage Ratio Changes

Finally, we examine estimators that examine multi-year leverage ratio changes. This can

also help inference if the adjustment processes have higher-order AR terms. Figure 10

repeats the estimations with overlapping 5-year intervals under Process II. Beyond a

5-year rho of 1, most econometric estimators decline. The fixed effects estimator is

now a weak test for true rhos below about 0.8, showing almost no slope. Interpreting

an empirical value of 0.0252 as evidence of a true 5-year rho of 0.88 is uncomforting,

even if it corresponds in our simulations to a best 1-year rho estimate of 0.88 (or 1.27).

26The figure also shows that our main findings are robust when we eliminate firm-years with extreme
stock-returns. For example, when the stock return is greater than –50%, the blue line estimate remains
above 1. When the stock return is less than 100%, the red line remains just a smidgen below 1.
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The BB, W, and LD estimators have better slopes. Their empirical estimates are quite

low, but their translations into true rhos suggests a different picture. Even their lower

estimates suggest one-year adjustment coefficients (rho) above 90%, 96%, and 99%,

respectively.

Not reported, we also considered some longer-memory processes driving the 1-year

leverage ratios. Our reported conclusions are robust with respect to some reasonable

alternative processes. For example, we increased the AR(1) parameter by 5% and

introduced an AR(2) parameter of –7%. The half-life of shocks under the AR(2) process

is similar to that of the AR(1) process.27 We then estimated the BB and LD methods on

these processes. There was no differential impact of the omitted second-order lag term

on the biases of the BB and LD estimators. Thus, a longer-term memory process is not

likely to be capable of explaining the discrepancy in estimates.

6 Interpretation and A Critical View of Dynamic Tradeoff

Theory

Replication and reconciliation of the empirical evidence from earlier papers suggests

that firms on average do not readjust—or are glacially slow to readjust—their capital

structures. This is not inconsistent with the view that some firms do adjust. Some

of our reconciliations even delivered estimates for the degree of heterogeneity across

firms. Specific heterogeneity has also been specifically identified in earlier papers. For

example, Kisgen (2006) finds that firms near a change in credit ratings issue less debt.

(Of course, leverage ratio increases and debt issuances are not one-to-one.) Roberts

and Sufi (2009) find that firms issue less debt when they violate a covenant. Leary and

Roberts (2005) find that firms that experience a dramatic leverage increase in one year

due to large negative stock returns are a little more inclined to readjust their leverage

ratios—even though our point estimates suggest much slower reversion than their’s

(and especially when we take survival bias into account). In sum, the evidence is not

that no firm adjusts, but that firms on average do not actively readjust.

27The BB and LD estimators are not designed for or easily adaptable to higher-order AR processes.
Fortunately, extending the FE estimator to include two lags is easy. A sample run suggested that the
AR(1) term was about 5% too low (rising from 0.68 to 0.73), and the AR(2) terms was negative (–7%)
and statistically significant.
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6.1 Dynamic Tradeoff Theories and Speed of Adjustment Evidence

The SOA evidence that our paper reexamined is often viewed as having the potential

to confirm or reject dynamic tradeoff theories (DTTs). It is correct that our evidence

can reject a subset of these theories, in which frictions are small, the benefits to an

optimal leverage ratio are large, and managers optimize firm value. However, it is not

correct that our evidence of extremely slow adjustment rejects these theories. In fact,

we cannot think of any SOA evidence that could by itself reject DTTs.

This is because DTTs are too flexible. The empirical tests to-date have not identified

the net benefit of capital structure activity a priori. Instead, they have in effect calibrated

the net benefit of capital structure change as free parameters. This has made the DTT so

flexible that it can explain speeds of adjustment from practically instant to practically

never. Consequently, DTT theories should be viewed as largely irrelevant to interpreting

SOA evidence. It is only in reverse—that the SOA evidence can impose certain restrictions

on the wide set of possible DTTs—that the empirical evidence is useful.

This critique also suggests that if one could obtain good a priori identification of

the net benefit of capital structure change—instead of allowing it to be a free parameter

that is calibrated to/inferred from capital structure change behavior itself—then the

DTT theories could become more meaningful to interpreting SOA evidence. Some

papers have argued that investment banking fees could proxy for the cost. This is a

step in the right direction, but these fees may also cover services beyond just the issue

itself and they may understate the cost to the firm itself. And most importantly, these

papers did not specify the net benefit a priori.

Some papers have adopted the DTT as their NULL hypothesis and declared victory

after showing that the SOA evidence can be consistent with their DTT. Although this is

reasonable, we would caution against it: The empirical evidence in our paper suggests

that a DTT works only when it explains the same SOA as one from a theory in which

"managers are random action generators." It is not clear that the DTTs deserve NULL

hypothesis status relative to such “random action” hypotheses.

In sum, it is difficult to think of feasible empirical tests that can broadly reject

the DTT. Of course, one can write down specific functional forms of the theory that

are rejectable. Such models essentially identify the relations through the structure

following from their functional assumptions. Unfortunately, they become very quickly

very complex and very specific. In the end, rejecting them may just be rejecting

their functional form identifications. Other DTT parameterizations with more free

parameters can then fairly quickly step into the breach. Absent quantitative a priori

identification of the costs and benefits, the challenge for DTTs is thus the question of

which broad stylized facts that can feasibly be empirically established would ultimately

be inconsistent with the theory? Otherwise, the DTT is not a theory, but just a conceptual
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framework (i.e., an optimization paradigm)—not testable, but assumed—that suggests

how firms should react.

6.2 A Potential Evidence Problem For Friction-Based DTTs

Despite the generality of the DTT, simple versions of the theory seem to fail if we

broaden the empirical dimensions on which we measure its success. We should judge a

DTT-based explanation not just by its ability to explain slow SOA, but also by its ability

to explain the variability of capital structure activity.28 This deserves elaboration.

A number of papers have shown that the DTT fits the data, because under certain

costs of issuing and repurchasing debt and equity, it can explain a slow speed of

adjustment. Intuitively, the role of these frictions is to make firms reluctant to change

their capital structures. Yet the data suggests that firms are actively changing their

capital structures and that this is not rare.

Of the 12.5% standard deviation in annual leverage ratio changes, only about 3.8% is

not caused by corporate activity. The remaining 8.7% year-to-year variability in leverage

ratio changes (DCi,t − IDCi,t−1,t) is due to active issuing and repurchasing. Although

occasional large debt or equity issues are a good part of this 8.7%, many firms that

do not readjust are almost constantly active. Managerial activity is zero in only about

7% of firm-years. It is small (less than 1% in absolute terms [0.1 standard deviations

in firm-normalized terms]) in about one-third of all firm-years; modest (between 1%

and 5%) in another one-third of all firm-years; and large (greater than 5%) in the final

third of all firm years. A capital structure change of 5% is economically meaningful by

any definition, and it happens on average every three years.29 Such evidence of active

corporate intervention is not new: Fama and French (2002) show that certain common

annual equity issuing activity is quite sizeable, and Welch (2004, Table 4) suggests

that year-to-year capital structure changes are disproportionally due to firms’ debt

refinancing activities.

The challenge is to understand this economically large variability in capital structure

activity and slow SOAs at the same time—and why the capital structure activity is largely

orthogonal to capital structure shocks. Why do managers not use the opportunity to

readjust if they are changing their capital structure anyway?

28The pecking order may also suggest more passivity than we see. Thus, our paper focuses on the
related question of speed of adjustment only, rather than on the broader test of this particular theory.

29Another way to see whether managerial activity is limited to rare and large issuing activity is to
remove the influence of large changes. If we winsorize active leverage ratio changes at –25% and +25%,
the year-to-year variation in active claims management drops from 8.7% only to 7.1% per year. If we
winsorize at –10% and +10,% the variation remains at 5% per year.
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In sum, our view is not that frictions are unimportant in the real world, or that the

DTT is wrong because it cannot explain the SOA empirical evidence, or that it is not

possible to build a DTT with more parameters that can explain the evidence. Instead,

we caution only that such a DTT may look quite different from current manifestations.

The high frictions employed to explain slow SOAs do not seem compatible with the

empirical evidence of active leverage ratio changes. If anything, in order to explain the

evidence of frequent active leverage ratio changes in a DTT context, lower frictions may

end up making it easier to fit the data than higher frictions.

From the perspective of the DTT—to explain both slow SOAs and much capital

structure activity—what is needed is an as-of-yet unknown factor that [a] greatly moves

target ratios from year to year and sufficiently so to induce firms to actually change

them frequently; and [b] on average tends to move the target ratio about one-to-one

with stock returns. As for [a], if the factor can be empirically measured, it would become

the key to a better understanding of capital structure. As for [b], it could be that stock

returns mostly reflect growth options that (must) disappear in financial distress, so that

when a firm experiences a positive stock return, its optimal debt ratio simultaneously

becomes lower. (Of course, this intuition is opposite to the more common intuition in

other DTTs, e.g., as in Chen (2008).)

Importantly, it is not enough for such a DTT theory to predict that optimal tar-

gets move in the same direction as those induced by stock returns. The optimality

theory must literally explain almost precisely the same one-to-one movement as the

no-readjustment theory. The reason is the sensitivity of the Welch (2004) test. Table 1

showed that IDC has an annual standard deviation of about 25%. Now add a normally

distributed noise term with standard deviation s to the target (IDC) as a standin for

the prediction of an optimality theory, and reestimate the Welch regression. Starting

with the benchmark case in Table 3, the estimated IDC regression coefficients change

as follows

s(noise) IDR ADR constant

0.00 1.003 –0.075 0.029

0.01 0.990 –0.062 0.029

0.02 0.952 –0.025 0.030

0.03 0.894 0.0310 0.030

s(noise) IDR ADR constant

0.04 0.823 0.100 0.031

0.05 0.744 0.175 0.032

0.10 0.421 0.489 0.035

0.20 0.154 0.748 0.038

(Recall that the IDC estimation standard errors are negligable.) This shows that if a

DTT theory predicts an optimized target that is just 3-5% off from the “pseudo-target”

implied by stock-return changes, this test will not provide estimates that are as high as

those observed in the data.

Of course, a successful “active optimization DTT” that suggests such similar behavior

as the “no-readjustment” theory would itself raise not only the question of how one
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would distinguish the two, but also raise the question of why it was useful above and

beyond the more simple theory.

Similar to looking for a novel factor that drives changes in the optimal capital

structure, one could define alternative theories which have specific predictions linked

to variables that are not claimed by common tradeoff theories. Good potential candidate

would be theories in which managerial identity (e.g., as in Bertrand and Schoar (2003))

or uncontrolled managerial preferences matter. (For example, ceteris paribus, many

managers may like an equity-heavy capital structure more than a debt-heavy capital

structure, even if the latter maximizes firm value.)

7 Conclusion

Our paper has pointed out that discrepancies in SOA estimates in the literature, given

the almost asymptotic sample, point to violations of these papers’ underlying process

assumptions. It has identified the relative unimportance of knowing the firm-specific

leverage ratio target (provided that it does not covary strongly with stock returns). It

has identified the importance of the fact that leverage ratios have a limited domain.

It has pointed out the potential importance of concavity in the inference mapping

and of firm-specific heterogeneity in SOAs. It has quantified how important it is to

specify what the leverage ratio under the hypothesis of no readjustment is presumed

to be—whether it requires firms to issue and repurchase debt and equity in specific

proportions or whether it allows passivity.

Methodologically, our paper has introduced and compared different process assump-

tions for leverage ratio changes, and it has shown how one should reconcile different

estimators and processes.

Our paper has found that a novel process can describe the data better than those

used to derive existing estimators. In this process, one models joint debt and equity

processes, rather than a process on leverage ratios themselves. In fact, this dual

variable process seems good enough that it can (almost) reconcile the different estimates

provided by the methods in the literature—a very challenging task. To reconcile the FE,

LD, and BB estimators, our best estimate of rho has a mean of about 96% (an average

half-life of greater than 15 years), with about 10% heterogeneity. To reconcile the

FE, LD, BB, and W estimators requires a negative speed of adjustment, as suggested

by the theory of Baker and Wurgler (2002). We could confirm the Leary and Roberts

(2005) finding that firms experiencing extreme negative shocks (say, –75% or worse) do

lower their leverage ratios—but the magnitude is lower than they suggest. Much of this

readjustment can simply be due to the fact that firms that do not lower their leverage

ratios after a large negative stock return disappear from the sample (probably because
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they went bankrupt). Randomly moving capital structure targets and lumpiness in

capital structure adjustments do not create inference problems.

The natural next steps will be more difficult. First, one could model heterogeneity in

SOAs better. In an IV approach, extreme stock returns, other variables in particular years,

or firm characteristics could help identify rho. This would require the development

of novel econometric techniques. Second, one could try to derive the exact algebraic

conditions under which the estimators diverge. This would aid in understanding

the class of true processes that can potentially reconcile the observed differences in

process estimates better than we have. (This is not an easy task. Even the papers

in the econometrics literature itself struggle with understanding the differences in

estimators—and this is under the assumption of normally distributed errors and only

one simple AR(1) term!) Third, we could benefit from a better understanding of exactly

what we should consider as “shocks.” It would be especially helpful if we could identify

specifically what kind of random shocks one would expect under the no-readjustment

hypothesis for firms with very low leverage ratios. About one in five such firms departs

the zero-leverage state in any given year—should this be viewed as adjustment (mean

reversion) or can this be viewed as random? Fourth, we could improve on the statistical

models of the evolution of debt and equity. For example, firms may choose to smooth

short-term needs with debt and long-term needs with equity.

But the most interesting empirical regularity that begs for an explanation is also

the simplest: what theory and factors consistent with almost no readjustment can also

explain the dramatic year-to-year changes in firms’ leverage ratios?
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Table 1: Measures of Leverage Ratios and Sample Characteristics (continued)

where Compustat defines variables as

Variable Explanation Mean(i,t) Sdv(i,t) Sdv(t)

DLTT Long-Term Debt, Total $352 $2,629 $1,655

DLC Debt in Current Liabilities, Total $122 $1,847 $1,122

CSHO Common Shares Outstanding $50 $244 $136

PRCC_F Price Annual Close, Fiscal Year End $25 $748 $357

LT Liabilities, Total $1,011 $7,582 $4,736

PSTKL Preferred Stock, Liquidating Value $13 $329 $159

TXDITC Deferred Taxes and Investment Tax
Credit

$72 $591 $406

DCVT Debt, Convertible $19 $208 $128

AT Assets, Total $1,632 $10,239 $6,677

and

Mean Sdv Min Median Max

Number of Firms Per Year 3,299 1,436 453 3,307 5,804

Number of Years Per Firm 19 12 1 16 45

Explanation: In addition to the data from Compustat, we use the rate of return ri,t
without dividends from CRSP. We confirmed that using the CRSP market value of equity
instead of CSHO·PRCC changes empirical alpha estimates by no more than by 1%. Mean
and Sdv are pooled statistics. Sdv(t) is the average cross-sectional standard deviation per
year. The observation count includes firm-years from 1963 to 2007 with non-missing
DC, excluding financial firms and utilities (SIC codes 6000–6999 and 4900–4949), and
prior year total assets of more than $10 million. This leaves a total of 14,615 firms
with 148,464 firm years. The change in IDC is an exception, in that it subtracts lagged
DC. (It is the non-stock return caused change in capital structure.)



Table 2: Estimation Procedures

Procedure Explanation

OLS, Auto (OLS)
Lemmon, Roberts, and Zender
(2008), Fama and French (2002),
etc.

DCi,t = c + ρ ·DCi,t−1
[
+(1− ρ) · γ · Ti,t−1

]
+ εi,t

(Note that estimations in which the dependent variable is measured
in differences come to virtually identical inferences.)

Firm Fixed Effects (FE)
Flannery and Rangan (2006)

DCi,t = ci + (1− ρ) ·DCi,t−1
[
+ρ · γ · Ti,t−1

]
+ ηi + εi,t

Similar to “OLS, Auto,” but each firm receives its own intercept.
Blundell Bond GMM (BB)
Lemmon, Roberts, and Zender
(2008)

Stata: xtabond2 dc L.dc [T], gmm(L.(dc), lag(1 3)) [iv(T)] robust

System GMM estimation (Blundell and Bond (1998)), for estimating
dynamic panel data models in the presence of firm fixed effects.
Includes variable levels, as well as differences, in the instrument
set to address the problem of persistent regressors. (Uses book
values and exact GMM stata specification, as noted.)

Long Difference Estimator (LD)
Huang and Ritter (2009)

LAi,t − LAi,t−8 = ρ · (LAi,t−1 − LAi,t−9)
[
+δ · (Ti,t−1 − Ti,t−9)

]
+ εi,t − εi,t−8

Uses iterative two-stage least squares instruments (LAi,t−1 −
LAi,t−9) with LAi,t−9. Obtains initial values for ρ̃ and δ̃. Uses the

residuals LAi,t−1−ρ̃ ·LAi,t−2−δ̃·Ti,t−2, . . . , LAi,t−7−ρ̃ ·LAi,t−8−δ̃·
Ti,t−8 as additional instruments. (HR perform 3 iterations overall.)
This estimator was suggested by Hahn, Hausman, and Kuersteiner
(2007).

Implied Target (W)
Welch (2004)

DCi,t = c + ρ · IDCi,t + (1− ρ) ·DCi,t−1
[
+γ · Ti,t−1

]
+ εi,t

where IDCi,t is the implied financial debt to capital ratio (lever-
age), which is the past leverage adjusted for the change in the
stock price. One can also extend this method to use fixed effects,
DCi,t = ci + ρ · IDCi,t + (1− ρ) ·DCi,t−1

[
+γ · Ti,t−1

]
+ εi,t

Explanation: Variables are described in Table 1. (DCi,t is financial debt to capital ratio, our
main measure for leverage.) Ti,t−1 is a proxy for the firm target, usually instrumented by
observable variables. εi,t is a random disturbance term. ρ is the autocoefficient, our main
parameter of interest, which is also 1- SOA.



Table 3: Estimates With Full Sample

Measure ↓ Method → OLS FE BB LD W WFE

Market DC

Lagged Leverage (DC) 0.895 0.681 0.847 0.772 –0.075 –0.191

(0.002) (0.004) (0.005) (0.004) (0.004) (0.004)

Implied Debt Ratio (IDC) 1.003 0.971
(0.004) (0.004)

Constant 0.040 many 0.053 0.029 many

(0.001) (0.001)

Observations 132,412 132,412 132,412 55,967 128,943 128,943

R-Squared 0.76 0.81 . . 0.88 0.90

Market LA

Lagged Leverage (LA) 0.886 0.660 0.828 0.779 –0.026 –0.122

(0.002) (0.004) (0.005) (0.004) (0.003) (0.003)

Implied Debt Ratio (ILA) 0.969 0.942
(0.003) (0.003)

Constant 0.147 0.147 0.082 0.035 0.082

(0.002) (0.002) (0.002) (0.001) (0.001)

Observations 120,827 120,827 120,827 44,783 117,626 117,626

R-Squared 0.77 0.82 . . 0.92 0.93

Book dc

Lagged Leverage (dc) 0.893 0.677 0.829 0.772
(0.002) (0.005) (0.008) (0.004)

Constant 0.032 many 0.047

(0.001) (0.002)

Observations 136,450 136,450 136,450 58,345

R-Squared 0.77 0.81 . .

Book la

Lagged Leverage (la) 0.888 0.683 0.864 0.789
(0.002) (0.005) (0.009) (0.004)

Constant 0.0582 many 0.0688

(0.0009) (0.0040)

Observations 119,919 119,919 119,919 43,694

R-Squared 0.77 0.82 . .

Explanation: The variables are defined in Table 1. The estimation techniques are defined in
Table 2. The dependent variable is always the same as the first independent variable (lagged)
(except in the LD column, where it is a change.) The table reports results for two measures of
market leverage and two measures of book leverage. Standard errors are reported in brackets,
and adjusted to be robust to heteroscedasticity and clustered within firms.

Interpretation: The estimates seem uncomfortably far from one another.



Table 4: Estimates With Constant Sample (40,708 Firm-Years)

Measure ↓ Method → OLS FE BB LD W

Market DC

Lagged Leverage (DC) 0.894 0.665 0.857 0.768 -0.081

(0.0027) (0.0066) (0.0070) (0.0039) (0.0075)

Implied Debt Ratio (IDC) 1.015
(0.0076)

Constant 0.027 many 0.037 0.025

(0.0008) (0.0019) (0.0006)

R-Squared 0.79 0.83 . . 0.88

Market LA

Lagged Leverage (LA) 0.902 0.673 0.851 0.775 -0.020

(0.0023) (0.0063) (0.0072) (0.0035) (0.0052)

Implied Debt Ratio (IDC) 0.969
(0.0050)

Constant 0.129 many 0.059 0.032

(0.0025) (0.0029) (0.0007)

R-Squared 0.80 0.84 . . 0.92

Book dc

Lagged Leverage (dc) 0.903 0.677 0.850 0.771
(0.0029) (0.0077) (0.0095) (0.0043)

Constant 0.024 many 0.035

(0.0007) (0.0022)

R-Squared 0.79 0.83 . .

Book la

Lagged Leverage (la) 0.921 0.730 0.908 0.787
(0.0026) (0.0072) (0.0097) (0.0040)

Constant 0.041 many 0.046

(0.0012) (0.0044)

R-Squared 0.81 0.85 . .

Explanation: This table repeats Table 3 but restricts the sample to observations that are used
in all methods. The principal reason why the number of firm-years is so low is that the LD
estimator requires long sample time-series.

Interpretation: The estimates remain uncomfortably far from one another. Sample differences
are not the reason.



Figure 1: Histogram of Debt-to-Capital Ratios (DC)
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Explanation: This figure plots a histogram of (lagged) leverage ratios. This is typically an independent
variable in our regressions predicting its own future value. The figure shows that the distribution is
skewed to the right, and there is a large number of firms with leverage ratios less than 10%. With a
mean of 27% and a standard deviation of 25%, the truncation is about one standard deviation from the
mean. Moreover, not shown in this figure, the year-to-year standard deviation of changes in DC in the
sample is 12.5%.

Interpretation: With an additive error process, firms are likely to run especially into the lower domain
limit quite frequently.



Figure 2: Percentage of Leverage Ratios Below 0% and Above 100%
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Explanation: This figure shows the percentage of firm-years in which an unconstrained AR(1)

process produce infeasible leverage ratios. The simulated true leverage processes are Process I,

i.e., DCi,t+1 = ρ ·DCi,t + ti +ui,t+1 or Process II, i.e., DCi,t+1 = ρ · IDCi,t,t+1 + ti +ui,t+1.

Interpretation: When rho is high, firms would run into the domain limit imposed by additive

error processes much more frequently.



Table 5: Summary of Simulation Protocol

• The dimension of the firm-year matrix is the same in the simulations as in the
actual data. That is, the sample is equivalent in dimension to that in Table 3.
In the typical run, this means that we have 132,412 firm-years with at least one
lagged leverage ratio. A few firm-years do not have the necessary stock return
data to simulate the process in the additive and feasible shocks process.

• Each firm is assumed to start out with its actually observed first target leverage
ratio.

• The target leverage ratio is presumed to be one random draw away from the firm’s
actual first leverage ratio. (Thus, targets are heterogeneous.)

• Each simulation is a set of draws from the error distribution, one for each firm-year.
Each error draw (simulation) is combined with the full range of underlying rho
parameters that we plot. (Each method is then estimated on these data.)

• In the additive shock specifications, we assume that its true leverage ratio is
unobserved and only the (possibly truncated at the feasible border) leverage ratio
is observed. We continue adding shocks to the true leverage ratio.

• Simulated Shocks (Errors):

Additive Shock: In the additive shock specification, D̃Ci,t+1 = (1 − ρ) · Ti + ρ ·
DCi,t + ũi,t+1, errors are drawn from a normal distribution with a standard
deviation of 12.5%.30

Additive Shocks Plus Stock Return Shocks: In the additive shock specification
with stock-return induced changes in equity values, D̃Ci,t+1 = (1− ρ) · Ti +
ρ · IDCi,t,t+1+ ũi,t+1, where IDCi,t,t+1 = DCi,t/[1+ ri,t,t+1 · (1−DCi,t)], where
r is without dividends. Errors are drawn from a normal distribution with a
standard deviation of 8.7%. Stock returns are as observed in the data, and
also change the equity market-capitalization.

Feasible Shocks: In the feasible shock specification, D̃Ci,t+1 = ρ ·
SDCi,t,t+1 + (1 − ρ) · Ti, where SDCi,tt+1 = [DCi,t · (1+ ν̃i,t,t+1)]/
[DCi,t · (1+ ν̃i,t,t+1)+ (1+ η̃i,t,t+1) · (1+ rt,t+1) · (1−DCi,t)] and ν̃i,t,t+1

is the percent change in the value of debt, ri,t,t+1 is the realized firm stock
return returns from CRSP, and η̃i,t,t+1 is the percent change in the value of
equity that is not due to stock returns. Stock returns are retained from the
firm’s actual history in the data. The two shocks, η̃ and ν̃ , are drawn as pairs
from the actual empirical distribution (i.e., a randomly sampled different
firm-year). This preserves the correlation structure of non-stock related debt
and equity changes. Thus, the hypotheses tested is that these changes are
dependent or independent of the firm’s current leverage ratio.

In this simulation, the target is again one-shock away from the firm’s ini-
tial leverage. However, here it is not additive/reversible. Instead Ti =

DCi,0·(1+η̃i,t−1,t)·(1+ri,t−1,t)
DCi,0·(1+η̃i,t−1,t)·(1+ri,t−1,t)+(1+ν̃i,t−1,t)·(1−DCi,0)

, where ν̃i,t−1,t, r̃i,t−1,t and η̃i,t−1,t are

drawn as a vector from the complete sample distributions of observed triplets.
(Note: this is the only place where a stock return is drawn rather than re-
tained.)



Figure 3: Process I with Unknown (Firm-Specific) Target
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Explanation: Variables are described in Table 1. Estimators are described in Table 2. The

simulation process is described in Table 5. In brief, the simulated process is D̃Ci,t = ρ ·
DCi,t−1 + (1− ρ) · Ti + ε̃i,t .
The graph plots the mean estimates for four estimators (OLS, FE, LD, BB) from 500 simulations.

The graph also shows their two-sigma ranges, except they are so tight here that they are not

visible.

Interpretation: The OLS method is so uninformative that it should be ignored. All inference

functions are concave. The FE method has a strong bias, while the BB and LD methods have

only a modest bias. At LD’s empirical sample estimated rho of 0.77, the best true estimate of

0.85 has a bias of around 8%. The BB estimate has a bias of around 4%.

These estimates seem too far apart to be reconcilable.



Figure 4: Process I with Known (Firm-Specific) Target
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Explanation: This is equivalent to Figure 3, except that the estimators have access to the

firm-specific target Ti, which is included as an additional exogenous covariate.

Interpretation: Except in the case of the OLS estimator, knowing the target makes no difference

when it comes to estimating an accurate rho coefficient. After all, with 132,412 observations,

the estimation accuracy for rho is already almost perfect even if the target is unknown.



Figure 5: Process II with Unknown (Firm-Specific) Target
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Explanation: Variables are described in Table 1. Estimators are described in Table 2. The
simulation process is described in Table 5. In brief, the simulated process is D̃Ci,t = ρ ·
IDCi,t−1,t + (1− ρ) · Ti + ε̃i,t . Thus, in contrast to Figure 3, the hypothesis of no-adjustment
here is not a constant leverage ratio, but one that changes with the firm’s stock return (without
dividends).
The graph plots the mean estimates for five estimators (OLS, FE, LD, BB, W) from 500 simulations.
The graph also shows their two-sigma ranges, except they are so tight here that they are barely
visible.

Interpretation: The OLS method is so uninformative that it should be ignored. All inference
functions are concave, even to the point where they lose their monotonicity over the graphed
domain. The FE method has a strong bias, while the BB and LD methods have only a modest
bias for rhos below around 0.8 to 0.9. The W method has less bias and concavity.
These estimates seem too far apart to be reconcilable.



Figure 6: Process II with Known (Firm-Specific) Target
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Explanation: This is equivalent to Figure 5, except that the estimations have access to the

firm-specific target Ti, which is included as an additional exogenous covariate.

Interpretation: Except in the case of the OLS estimator, knowing the target makes no difference

when it comes to estimating an accurate rho coefficient. After all, with 127,556 observations,

the estimation accuracy for rho is already almost perfect even if the target is unknown.



Figure 7: Process III with Unknown (Firm-Specific) Target (-DA)
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Explanation: Variables are described in Table 1. Estimators are described in
Table 2. The simulation process is described in Table 5. In brief, the
simulated process is DCi,t = ρ · SDCi,t−1(νi,t, ηi,t, ri,t) + (1 − ρ) · Ti, where
SDCi,t−1(·) ≡ Di,t−1 · (1+ νt−1,t)/[Di,t−1 · (1+ νt−1,t)+ (1+ ηt−1,t) · (1+ rt−1,t) · (Ei,t−1)] ≡
DCi,t−1 · (1+ νt−1,t)/[DCi,t−1 · (1+ νt−1,t)+ (1+ ηt−1,t) · (1+ rt−1,t) · (1−DCi,t−1)]. In con-
trast to earlier figures, Process III models debt and equity to be joint random draws (from a
randomly chosen firm) and only then computes the leverage ratio. If rho is between 0 and 1,
leverage ratios are guaranteed to be between 0 and 1, too.

Interpretation: The OLS method is so uninformative that it should be ignored. The BB method
is uninformative for low rhos. (This is because it becomes indeterminate when the underlying
uncertainty becomes zero.) All inference functions except for the W method are non-monotonic.
The FE method has a strong bias, while the BB and LD methods have only a modest bias for
rhos below around 0.8 to 0.9. The W method retains monotonicity beyond a rho of 1.
These estimates still seem too far apart to be reconcilable, but do seem closer than those in
earlier figures.



Figure 8: Process IV with Unknown (Firm-Specific Partly Noisy) Target
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Explanation: This is like Process III, except that the target T̃i is random, experiencing iid
normal noise of 9.5% per year. This allows rhos between about 0 and 1 to induce similar
year-to-year variability in leverage ratios.

Interpretation: The same as Process III: The OLS method is so uninformative that it should be
ignored. All inference functions except for the W method are non-monotonic. The FE method
has a strong bias, while the BB and LD methods have only a modest bias for rhos below around
0.8 to 1.0. The W method retains monotonicity beyond a rho of 1.
These estimates still seem too far apart to be reconcilable, but do seem closer than those in
earlier figures.



Table 6: Multiple Estimators’ Best Fitting Homogeneous True Rho:
Reconciling OLS, FE, LD, BB

Best Fitting Penalty
Process True Rho Function

I Best Estimate 0.830 12.04
Inverse Hessian (0.016)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.917 0.0012 +18.82
FE 0.681 0.658 0.0032 –7.26
LD 0.772 0.800 0.0048 +5.88
BB 0.847 0.792 0.0047 –11.74

II Best Estimate 0.937 5.26
Inverse Hessian (0.023)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.903 0.0021 +4.11
FE 0.681 0.681 0.0047 –0.03
LD 0.772 0.835 0.0082 +7.68
BB 0.847 0.794 0.0089 –5.93
W 1.003 0.916 0.0029 –29.66

III Best Estimate 1.066 3.43
Inverse Hessian (0.010)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.893 0.0024 –0.68
FE 0.681 0.700 0.0043 +4.43
LD 0.772 0.785 0.0063 +2.03
BB 0.847 0.813 0.0072 –4.77
W 1.003 0.983 0.0070 –2.89

IV Best Estimate 1.060 4.49
Inverse Hessian (0.010)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.891 0.0023 –1.92
FE 0.681 0.709 0.0043 +6.44
LD 0.772 0.794 0.0063 +3.53
BB 0.847 0.813 0.0071 –4.78
W 1.003 0.976 0.0070 –3.81

(Explanations on the next page.)



Table 6 continued.
(Multiple Estimators’ Best Fitting True Rho: Reconciling FE, LD, BB)

Explanation: Under a given process, any (true) rho produces a measure of fit to its
empirical value for each estimator. This measure of fit is the T-statistic which tests for
equality of the empirically observed estimate and the average simulated estimate under
the given process with the given true rho. We then find the (true) rho that minimizes
an objective function that is the square-root of the average squared T-statistic. This
is the best reconciliation. The three estimators which are reconciled in this table are
FE, LD, and BB. The fit of the W estimator is reported, too, but it is not part of the
objective function. Thus, it is struck out. (Note that the minimized penalties [T-stats]
do not average to zero, because the penalty function does not have a constant.) The
inverse Hessians are a measure of fit of the penalty function around the optimum. For
numerical stability, these are calculated from a distance of 0.02 off the maximum. In a
normally distributed context, they could be interpreted as pseudo standard errors.

Interpretation: Process I fits very poorly. Process II suggests a rather different estimate
than Process III and Process IV. Process III and a rho estimate of 1.066 fit the data best.
Process III struggles with BB and FE, although in opposite directions.



Table 7: Multiple Estimators’ Best Fitting Heterogeneous True Rho:
Reconciling OLS, FE, LD, BB

Distrib of Rho Penalty
Process Mean Sdv Function

I Best Estimates 0.830 0.006 12.03

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.917 0.001 –18.83
FE 0.681 0.658 0.003 +7.25
LD 0.772 0.800 0.005 –5.88
BB 0.847 0.792 0.005 +11.74

II Best Estimates 0.986 0.110 4.12
Inverse Hessian (0.023) (0.020)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.897 0.003 –0.69
FE 0.681 0.688 0.005 –1.34
LD 0.772 0.790 0.008 –2.23
BB 0.847 0.768 0.010 +7.80
W 1.003 0.941 0.003 +18.29

III Best Estimates 0.986 0.109 2.09
Inverse Hessian (0.022) (0.014)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.897 0.003 –0.92
FE 0.681 0.682 0.005 –0.11
LD 0.772 0.783 0.008 –1.36
BB 0.847 0.814 0.009 +3.85
W 1.003 0.900 0.006 +17.14

IV Best Estimates 0.950 0.110 2.63
Inverse Hessian (0.035) (0.015)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.899 0.002 –1.91
FE 0.681 0.688 0.005 –1.57
LD 0.772 0.802 0.007 –4.08
BB 0.847 0.822 0.007 +3.38
W 1.003 0.876 0.006 +22.18

(Explanations on the next page.)



Table 7 continued:
(Multiple Estimators’ Best Fitting Heterogeneous True Rho: Reconciling FE, LD, BB)

Explanation: This table is like Table 6, except that the true rho is allowed to be normally
distributed. Thus, its standard deviation is a second parameter to be optimized
over. This rho standard deviation is a measure of firm heterogeneity. (Because the
heterogeneity estimate is so close to 0 in Process I, we could not compute a reliable
Hessian for Process I.)

Interpretation: Process I fits very poorly. The other three processes agree that the best
adjustment coefficient is about 0.95 to 0.98 with a heterogeneity of about 0.11. The
three processes II through IV fit quite well. However, looking at the unused (and struck
out) W estimates suggests that these three processes are far from being able to explain
the W estimate. The best process is Process III, although it struggles (modestly) with
the BB estimate.



Table 8: Multiple Estimators’ Best Fitting Heterogeneous True Rho:
Reconciling OLS, FE, LD, BB, and W

Dist of Rho Penalty
Process Mean Sdv Function

II Estimate 1.056 0.08 4.38
Inverse Hessian (0.019) (0.022)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.893 0.003 +0.64
FE 0.681 0.698 0.005 –3.61
LD 0.772 0.784 0.007 –1.80
BB 0.847 0.767 0.009 +8.90
W 1.003 1.002 0.003 +0.27

III Estimate 1.066 0.039 3.30
Inverse Hessian (0.022) (0.014)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.891 0.002 +1.58
FE 0.681 0.695 0.004 –3.18
LD 0.772 0.780 0.007 –1.19
BB 0.847 0.809 0.007 +5.35
W 1.003 0.979 0.007 +3.42

IV Estimate 1.059 0.030 4.22
Inverse Hessian (0.012-0.039) (0.025-0.084)

Method Empirical Fitted S.E. Penalty
OLS 0.895 0.890 0.003 +1.90
FE 0.681 0.705 0.005 –5.34
LD 0.772 0.792 0.007 –2.83
BB 0.847 0.812 0.008 +4.58
W 1.003 0.974 0.007 +4.16

(Explanations on the next page.)



Table 8 continued:
(Multiple Estimators’ Best Fitting Heterogeneous True Rho: Reconciling FE, LD, BB)

Explanation: This table is like Table 7, except that the W estimator also enters the
objective function. Thus, Process I cannot be fit, because it has no stock return
information. For Process IV, the cross-derivative in different directions from the
optimum is too variable, which makes it difficult to obtain much precision in the inverse
Hessian. Thus, we indicate the range of plausible estimates that our calculations
suggested instead of exact amounts.

Interpretation: The three processes agree that the best adjustment coefficient is about
1.06 with a heterogeneity of about 0.02. The best process is III.



Figure 9: Process II with Changing Unknown (Firm-Specific) Target
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Explanation: This figure is the same as Figure 5, except that the unknown firm-specific target

changes each period according to the process Ti,t = Ti,t−1 + µi,t , where µi,t are drawn from a

normal distribution with a standard deviation of 5%. The graph plots the means of the 100

rho estimates from the four estimators (OLS, FE, LD, BB) that were explained in Table 3. The

graph also shows their two-sigma ranges.

Interpretation: Because the W process picks the recent DC as a target control, it works best.



Figure 10: Process II with Unknown (Firm-Specific) Target and 5-Year Estimation
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Explanation: This is the equivalent of Figure 5, except that estimations and simulations are

carried out with 5-year overlapping intervals. (The dip beyond a true rho of 1 is now due to

both super-convergence and truncation.) Note that the units on the x-axis are the 1-year true

rhos, not the 5-year rhos.

Interpretation: OLS is useless. FE is uncomfortable—it would require interpreting an empirical

coefficient of 2.5% as a true coefficient of 88%. BB, W, and LD offer more reasonable estimates,

with the smallest being BB at 0.9, W being 0.96, and LD being 0.99.



Figure 11: Empirical Coefficient Estimates Under Asymmetric and Extreme Stock Return
Shocks
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Explanation: Observations (firm-years) are first divided into two groups based on their stock

return shock that goes into the computation of IDC. The cut-off level that decides on the group

membership is on the x-axis. The Welch rho estimate is then computed for both sets, and

the uncalibrated coefficient estimate for IDC of each group is graphed. The thinner solid red

function assumes that firms that disappear from Compustat after a negative rate of return

went “bankrupt” with a leverage ratio of 1.

Interpretation: The figure shows that firms with very negative stock returns shock did readjust.

For example, in the 25% of firm-years in which firms experienced a stock return of –35% or

lower, the average adjustment coefficient was 0.9. This is weaker but broadly consistent

with the finding of Leary and Roberts (2005). However, in about 10% of these firm-years, no

end-of-year leverage ratio was observed. If the end-of-year leverage ratio is imputed to be 100%

for disappearing firms, the average adjustment coefficient rises to 0.98.

The figure also shows that firms with strong positive stock return shocks readjusted, although

their readjustment speed was slower than that of firms with strong negative shocks, again

confirming the Leary and Roberts (2005) evidence.



A Other Mechanical Biases

There may also be other violations of the SDPP that could be caused by the assumption of additivity of
shocks:

Homogeneity of Errors: Consider the effect of a small ε shock to equity on the leverage ratio. (Leverage
ratios are symmetric, so all arguments that follow also work with shocks to the amount of debt.)

L(ε) = D
D + (1+ ε) · E =⇒ ∂L

∂ε
= D · E
(D + E + ε · E)2 .

Normalizing the total value of the firm to 1, the denominator is 1. Thus, a shock to equity has a
marginal influence of 0 if the firm is financed fully with equity, a marginal influence of 0.25 if the firm
is financed equally with both debt and equity, and a marginal influence of 0.1875 if the firm is financed
with 75% debt and 25% equity. Therefore, when firms of different initial leverage ratios experience
same-sized shocks (changes to equity), their debt ratio changes will be of different magnitudes. This
violates the orthogonality (and homogeneity) of the error assumption. The variance of the error is
predictably correlated with initial leverage. These biases are worse when firms are more heterogeneous
in their debt ratios

Curvature: There is also a directional second derivative effect. The average over two equal-sized
shocks to equity, one positive and the other negative, is

0.5 · D · E
(D + E + ε · E)2 + 0.5 · D · E

(D + E − ε · E)2
For example, if a firm starts out with $25 in debt and $75 in equity, then a +$25 shock to equity
reduces the leverage ratio to $25/$125=20%, while a –$25 shock to equity increases its leverage ratio
to $25/$75=33%. The average ratio of 26.67% is above the initial ratio of 25%. It is easy to show that
this bias is positive when the debt ratio is below 50% and negative when the debt ratio is above 50%.
Thus, this bias works in favor of concluding that there is mean reversion when there is none.

Our process estimations ignore the non-linearity and curvature violations. We are only tackling
the limited domain issue in the paper.

B Biases in OLS and FE Estimations

This appendix will not go into the published paper.

The proofs in this appendix relate to the SDPP
Li,t = ρ · Li,t−1 + (1− ρ) · Ti + ε̃i,t , for i = 1,2, . . . ,N & t = 1,2, . . . , T ;

where ε̃i,t ∼N (0, σ 2
ε ), Ti ∼N (µ,σ 2

T ), Li,0 = Ti + ε̃i,0, and ρ < 1.

B.1 OLS Estimator Bias

A simple OLS estimator is biased, because of an omitted variables problem. Lagged leverage (Li,t−1) is
not orthogonal to the error term ((1−ρ) ·Ti+ ε̃i,t). Instead, the lagged dependent variable is positively
correlated with the unobserved and not included firm-specific target. It therefore overestimates the
true correlation coefficient ρ. We now calculate the magnitude of this bias. We can derive this bias.

The fully pooled OLS estimator for rho is

ρ̂OLS =
∑N
i=1

∑T
t=1 Li,t · Li,t−1∑N

i=1

∑T
t=1 L2

i,t−1

= ρ +
∑N
i=1

∑T
t=1[(1− ρ) · Ti + ε̃i,t] · Li,t−1∑N

i=1

∑T
t=1 L2

i,t−1

(1)



The numerator in this equation is

Numerator ≡ lim
N→∞

1
N·T

N∑
i=1

T∑
t=1

[(1− ρ) · Ti + ε̃i,t] · Li,t−1

= lim
N→∞

1
N·T

N∑
i=1

T∑
t=1

ε̃i,t · Li,t−1 + lim
N→∞

1
N·T

N∑
i=1

(1− ρ) · Ti,t ·
T∑
t=1

Li,t−1

The first part is zero. The second part requires expansion of Li,t−1. Using 1 + ρ + · · · + ρT−1 =
(1− ρT )/(1− ρ), leverage Li,t can be rewritten as

Li,t = ε̃i,t + ρ · ε̃i,t−1 + · · · + ρt−1 · ε̃i,1 + ρt · ε̃i,o + Ti (2)

Sum equivalent terms in this equation over t to obtain
T∑
t=1

Li,t−1 = T · Ti +
(

1− ρT
1− ρ

)
· ε̃i,0 +

(
1− ρT−1

1− ρ

)
· ε̃i,1 + · · · +

(
1− ρ2

1− ρ

)
· ε̃i,T−2 + ε̃i,T−1 . (3)

Thus, as N goes to infinity,

Numerator = lim
N→∞

1
N·T

N∑
i=1

(1− ρ) · Ti,t ·
T∑
t=1

Li,t−1

= lim
N→∞

1
N·T

N∑
i=1

(1− ρ) · Ti,t ·
[
T · Ti +

(
1− ρT
1− ρ

)
· ε̃i,0 +

(
1− ρT−1

1− ρ

)
· ε̃i,1 + · · · +

(
1− ρ2

1− ρ

)
· ε̃i,T−2 + ε̃i,T−1

]
= (1− ρ) · σ 2

T .

The denominator in (1) can be similarly derived. Squared leverage can be expanded into
L2
i,t = ε̃2

i,t + ρ2 · ε̃2
i,t−1 + · · · + ρ2·t−2 · ε̃2

i,1 + ρ2·t · ε̃2
i,o + T2

i + cross terms ,

The cross-terms have probability limits of zero as N →∞. Thus, the sum over T such squares is
T∑
t=1

L2
i,t−1 = T · T2

i +
(

1− ρ2·T

1− ρ2

)
· ε̃2
i,0 +

(
1− ρ(2·T−2)

1− ρ2

)
· ε̃2
i,1 + · · · +

(
1− ρ4

1− ρ2

)
· ε̃2
i,T−2 + ε̃2

i,T−1 + cross terms .

(4)
The series can be expanded into(

1− ρ2

1− ρ2

)
+
(

1− ρ4

1− ρ2

)
+ · · · +

(
1− ρ2·T

1− ρ2

)
= T − (ρ2 + ρ4 + · · · + ρ2·T )

1− ρ2

=
T − ρ2

(
1

1−ρ2 − ρ2·T

1−ρ2

)
1− ρ2

= T − T ·ρ2 − ρ2 + ρ2·T+2

(1− ρ2)2
,

Substitute to find that the probability limit of the denominator becomes

lim
N→∞

1
N·T

N∑
i=1

T∑
t=1

L2
i,t−1 = σ 2

T +
[
T − T ·ρ2 − ρ2 + ρ2·T+2

T ·(1− ρ2)2

]
· σ 2

ε . (5)

And the OLS estimator is

lim
N→∞

ρ̂OLS =
Numerator

Denominator
= ρ + (1− ρ) · σ 2

T

σ 2
T +

[
T−T ·ρ2−ρ2+ρ2·T+2

T ·(1−ρ2)2

]
·σ 2
ε

= ρ + (1− ρ)

1+
[
T−T ·ρ2−ρ2+ρ2·T+2

T ·(1−ρ2)2

]
·
(
σ2
ε
σ2

T

) (6)

as the number of firms tends to infinity.

When ρ = 0, limN→∞ ρ̂ = σ2
T

σ2
T+σ2

ε
. The intuition is that when the true model is Li,t = Ti + ε̃i,t , the

lagged dependent variable Li,t−1 = Ti + ε̃i,t−1 becomes a noisy proxy for the omitted target Ti.

When ρ = 1, the probability limit of ρ is 1, because the numerator of the bias is zero and
the denominator is finite. The intuition is that we no longer have an omitted target error term.
Li,t = Li,t−1 + ε̃i,t , and the lagged dependent variable is orthogonal to the current error term.



B.2 Fixed Effects Estimator Bias

The fixed effect estimator is obtained by estimating the model in deviations from firm-specific means.31

Thus,
ρ̂FE =

1
N·T

∑N
i=1

∑T
t=1(Li,t − Li) · (Li,t−1 − Li,−1)

1
N·T

∑N
i=1

∑T
t=1(Li,t−1 − Li,−1)2

= ρ +
1
N·T

∑N
i=1

∑T
t=1(ε̃i,t − εi) · (Li,t−1 − Li,−1)

1
N·T

∑N
i=1

∑T
t=1(Li,t−1 − Li,−1)2

(7)

where Li = 1
T
∑T
t=1 Li,t and Li,−1 = 1

T
∑T
t=1 Li,t−1.

When N goes to infinity, the numerator of the second term for the bias in (7) becomes

Numerator = lim
N→∞

1
N·T

N∑
i=1

T∑
t=1

(
Li,t−1 − Li,−1

)
(ε̃i,t − ε̃i)

= lim
N→∞

− 1
N

N∑
i=1

Li,−1 · ε̃i = −
[
T − 1− T ·ρ + ρT
T 2 · (1− ρ)2

]
· σ 2

ε .

When N goes to infinity, the denominator of (7) is

Denominator = lim
N→∞

1
N·T

N∑
i=1

T∑
t=1

(
Li,t−1 − Li,−1

)2

= lim
N→∞

1
N

N∑
i=1

 1
T

T∑
t=1

L2
i,t−1 − L

2
i,−1


= lim

N→∞
1
N

N∑
i=1

 1
T

T∑
t=1

L2
i,t−1 −

1
T 2

 T∑
t=1

Li,t−1

2
 .

We already derived the expressions for
∑
Li,t in (3) and for

∑
L2
i,t−1 in (4). Collect the terms, and obtain

the probability limit of[
T − T ·ρ2 − ρ2 + ρ2·T+2

T ·(1− ρ2)2

]
· σ2
ε −

1
T ·(1− ρ)2 σ

2
ε +

2ρ·(1− ρT )
T2·(1− ρ)·(1− ρ)2 · σ

2
ε −

ρ2·(1− ρ2·T )
T2·(1− ρ2)·(1− ρ)2 · σ

2
ε .

Putting numerator and denominator together and simplifying yields

lim
N→∞

ρ̂FE = ρ − T − 1− T ·ρ + ρT
T 2−T ·(T+1)·ρ2+T ·ρ2·T+2

(1+ρ)2 + 2·ρ·(1−ρT )
(1−ρ) − ρ2·(1−ρ2·T )

(1−ρ2) − T (8)

This does not simplify further. When ρ = 0 the bias ρFE − 0 becomes − 1
T . The bias does not depend

on the variance of the error terms or the variance in the target leverage. The bias comes from having
to eliminate the individual fixed effect, which creates a correlation between the demeaned explanatory
variable and the demeaned residual.

When ρ = 1, the numerator probability limit becomesσ 2
T+ T−1

2·T ·σ 2
ε , and the denominator probability

limit becomes σ 2
T + T+1

2 · σ 2
ε − (T+1)·(2·T+1)

6·T · σ 2
ε . Therefore, the bias becomes − 3

T+1 .

31The results here differs slightly from Nickell (1981) because in our case the fixed effects depends
on the AR1 coefficient ρ.



Figure A-1: Bias in the OLS and Fixed Effects Estimations.
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Explanation: The graph plots the bias in the OLS and Fixed Effects estimators derived
in equation 6 and 8. t = 16, σ 2

ε = 0.1252, and σ 2
T = 0.252.


