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Abstract

This paper develops an equilibrium model of a subprime mortgage market.

The model is analytically tractable and delivers plausible orders of magnitude

for borrowing capacities, loan-to-income ratios, home prices, and default and

trading intensities. We offer simple explanations for several phenomena in the

subprime market, such as the prevalence of “teaser rates” and the clustering of

defaults. In our model, the degree of income co-movement among households

plays an important role. We find that both systematic and idiosyncratic income

risks reduce debt capacities, although through quite distinct channels, and that

debt capacities and home prices need not be higher when a larger fraction of

income risk is idiosyncratic.
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Introduction

The U.S. subprime mortgage market has come under close scrutiny after a surge in

subprime delinquencies sparked a severe financial crisis. An already sizeable empirical

literature investigates the extent to which the evolution of subprime lending practices

over the last decade explains this default crisis.1 Many observers share the view that

banks supplied more credit than individuals could afford to repay. This leads to impor-

tant questions: what is the right amount of credit and what factors affect household

borrowing capacities? To investigate these questions this paper develops an equilibrium

model of a subprime mortgage market. The model is analytically tractable, and thus

offers clear insights. It also delivers plausible orders of magnitude for many variables of

interest such as loan-to-income ratios, home prices, and default and trading intensities.

We study an economy in which banks competitively grant mortgages to households

so as to finance a fixed supply of homes. Several features of our model are worth

noting. Households have two defining features of subprime borrowers. First, consistent

with the findings of Mian and Sufi (2009), they face severe liquidity constraints. They

always exhaust their mortgage capacities. Second, they have low financial planning

skills, which we capture with a high discount rate. Banks try to accommodate their

needs by offering them financial contracts that maximize their borrowing capacities.

We incorporate two frictions that make the contracting problem between banks and

households non-trivial. First, households privately observe and consume their income.

The second friction is that households cannot commit to a contract and are free to

terminate at any time. These two frictions imply that the optimal contract is non-

recourse secured debt and force banks to commit to foreclosures in order to provide

an incentive for households to repay their loans. This foreclosure process, however,

is costly and takes a fraction of the house market value. In addition to foreclosures,

home supply at a given date stems from sales motivated by the acquisition of a larger

home, and sales that follow exogenous moving decisions. Households’ aggregate debt

capacity drives the aggregate demand for homes. At the same time, market-clearing

home prices affect aggregate debt capacity. Thus, household borrowing capacities and

home prices are jointly determined in the equilibrium.

Given the equilibrium nature of our model, the degree of income co-movement

among households plays an important role. Systematic income risk has a negative

impact on borrowing capacity because it implies that foreclosures are more likely to

take place when home demand is low. This lowers the endogenous collateral value

of homes, which in turn generates low current debt capacities and home prices. This

1Recent contributions include Foote et al. (2008, 2009), Gerardi et al. (2009), Gorton (2008), Keys
et al. (2010), Mian and Sufi (2009, 2010), Piskorski et al. (2008), and Rajan et al. (2009).
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mechanism is different from one of financial amplification in which a low collateral

value of assets generates productive or allocative inefficiencies (see, e.g., Bernanke and

Gertler (1989), or Kiyotaki and Moore (1997)). In our economy, agents do not create

real externalities for each other through the balance-sheet channel and the competitive

equilibrium is allocationally efficient.

Perhaps more surprisingly, all else being equal, when a larger fraction of individ-

ual income risk is idiosyncratic, then equilibrium debt capacities and home prices are

not necessarily higher. If income risk is idiosyncratic, then the income of a particular

household is less correlated with home prices. On one hand, this raises banks’ pro-

ceeds from foreclosures, which mitigates the aforementioned problem of endogenous

low liquidation values. On the other hand, diversification of income risk makes house-

holds’ lack of commitment power more costly. Households with positive idiosyncratic

income shocks have a low probability of default. But they eventually seek to move

for exogenous reasons, or to climb up the property ladder since they moved up in the

cross-section of incomes. As a result, they exit the contractual relationship when the

net present value of continuation is the highest to the incumbent bank. Households’

lack of commitment is less costly in the presence of more systematic income risk. In

this case, a household which experiences positive income shocks competes in mortgage

and housing markets with households with similarly high income realizations. Thus,

termination is less valuable to the household, and less costly to its bank.

Another somewhat unexpected finding is that contracts with initial “teaser rates”

that gradually increase over time are optimal for a wide range of parameters. These

types of contracts were very common in the design of subprime mortgages and are often

linked to the roots of the crisis. Indeed, banks have been portrayed as villains who

misled naive households into taking too much debt using “teaser rates”. Leaving aside

any normative issues, we show that these contracts do maximize household borrowing

capacities. The intuition is quite simple: even though the income process has no

drift and there is no inflation risk in our model, then conditional on the household

continuing to make payments, its expected income increases over time. This lowers the

conditional probability of default, which in turn makes it optimal for banks to ask for

higher payments over time.

We obtain a number of additional insights from the case in which household income

risk is purely idiosyncratic. First, despite the fact that our model is a rather stylized

description of the housing market we obtain plausible orders of magnitude of loan-to-

income ratios, house prices, and default and trading intensities, which suggest it can be

useful in empirical application as well. Second, we demonstrate that partial equilibrium

arguments may often lead to incorrect conclusions. For example, we show that a
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reduction in pre-payment penalties reduces both the size and the ex ante probability

of delinquency of a given mortgage. It is tempting to conclude that it would lead to

a smaller number defaults and smaller aggregate debt levels. The model, however,

predicts the opposite effects. As it becomes easier to refinance, households optimize

their leverage ratio more frequently. As a result, the economy becomes more leveraged

with a higher number of defaults.

Third, we also solve for the dynamics of home prices and default intensities along

the path to the steady-state after an initial exogenous loan supply shock, which can be,

for example, an exogenous shift in securitization practice. We show that convergence

may take quite a long time and is generally non-monotonic, creating “boom and bust”

dynamics. This happens because of the “term structure of defaults”: defaults on the

initial loans cluster around the same dates, leading to depressed home prices.

Finally, we study equilibria in which income shocks are systematic and home prices

do not satisfy the transversality condition. We show that such “bubbly” equilibrium

price paths imply countercyclical equilibrium repayment-to-income ratio and lower

equilibrium mortgage payments than those with non-bubbly prices. Being unable to

invest directly in the housing market, banks try to ride the bubble and this incentive

becomes stronger the more severe the bubble is. As a result, aggregate income shocks

have much more persistent impact on the default rates.

This paper brings together two strands of literature - the literature on the microe-

conomics of mortgages and the literature on endogenous incomplete markets.

Mayer, Piskorski, and Tchistyi (2008) and Piskorski and Tchistyi (2008) also study

optimal mortgage design in the presence of ex post informational asymmetry. Our

papers are complementary. They solve for the optimal recursive contract between

a lender and a long-sighted borrower in an exogenous environment. We focus on the

aggregate implications of contracting frictions between many pairs of lenders and short-

sighted borrowers.

Stein (1995) and Ortalo-Magné and Rady (2006) study the impact of credit con-

straints on prices and trading volume in housing markets. Both papers assume realistic

but exogenous credit constraints, and write a detailed model of households’ decision-

making under such constraints. Our broad-brush approach is more stylized. We ab-

stract from important features of housing markets such as interest rate risk and the role

of downpayments. However, constraints and contracts are equilibrium consequences of

primitive frictions in our environment.

A second body of work seeks to endogenize market incompleteness with commitment

problems.2 Closest to our approach, Krueger and Uhlig (2005) introduce the idea that

2See, e.g., Alvarez and Jermann (2000), Kehoe and Levine (2001), Krueger et al. (2008), and
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households’ outside options after terminating a contract are competitively supplied

by a financial sector, which is an important ingredient of our model. We have a

more applied focus than these papers, but share a broader goal of characterizing the

equilibrium interaction between individual contracting problems and asset prices. Our

main departure from these papers is that our primitive contracting friction is private

information. This friction assumes that contractual repayments are noncontingent,

and that borrowers with bad outside options unwittingly default in equilibrium. Thus,

our setup offers a more realistic picture of actual debt markets than the ones in which

borrowers default only voluntarily in order to exercise desirable outside options.

The paper is organized as follows. Section 1 studies a baseline model without

aggregate uncertainty. Income risk is perfectly diversifiable across households. This

enables us to identify the impact of purely idiosyncratic income shocks on steady-

state debt capacities, default rates, and trading volume. Section 2 studies the effect

of aggregate income shocks on this economy. We outline our conlusions in Section 3

concludes. The majority of our proofs are relegated to an appendix.

1 Baseline Model

Time is continuous and is indexed by t ∈ [0,+∞). There is a single perishable consump-

tion good which serves as the numéraire. There is a unit mass of assets - housing units.

There are two types of agents: a unit mass of households and several non-atomistic

banks.

Households

Households derive utility from occupying homes and consuming. They are myopic,

and their primary objective is to maximize the size of the homes that they currently

occupy. More precisely, the preferences of household j at date t are defined over

bundles (qj,t, nj,t) ∈ [0,+∞)× [0,+∞) , where qj,t is the number of housing units that

the household occupies, and nj,tdt its consumption for the period [t, t+ dt). Household

j ranks such bundles as follows.

1. If q > q′, then household j prefers (q, n) to (q′, n′) for all n, n′ ≥ 0.

2. If n > n′, then household j prefers (q, n) to (q, n′) for all q ≥ 0.

That is, households prefer to occupy the largest possible home, and maximize con-

sumption when indifferent.

Hellwig and Lorenzoni (2008) for recent contributions.
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Two remarks on these non standard preferences are in order. First, similar to

Becker and Mulligan (1997), we interpret a high discount rate as the inability to think

through future implications of current actions. This way we hope to capture low

financial-planning abilities and limited access to financial experts of households in

subprime markets. The limiting case of an infinite rate considerably simplifies the

analysis of optimal contracts. This in turn enables us to study the equilibrium impact of

contracting frictions in a tractable framework. In any case, optimal recursive contracts

obtained in the presence of dynamically rational borrowers would converge to the ones

that we obtain here when the discount rate of the borrowers become large. Second,

we are not wedded to these particular lexicographic preferences. Their sole role is to

ensure that binding liquidity constraints drive mortgage and housing demand. We

consider this to be a natural feature of subprime lending markets. Any set of myopic

preferences for which mortgage constraints bind in equilibrium would yield equivalent

results.

For all j ∈ [0, 1], there exists a Poisson process (Nj,t)t≥0 with intensity δ > 0 such

that at each jump date, household j vacates its current home, and re-enters the housing

market for unmodelled reasons. These dates capture trades in the housing market that

are not primarily driven by the evolution of the real estate market, but rather by

occupational changes, changes in household size, etc. In the remainder of the paper,

we refer to these dates as exogenous termination dates, or ET dates. We denote ℵj the

set of jump dates of (Nj,t)t≥0 for all j ∈ [0, 1]. Each household j ∈ [0, 1] is endowed

with an income stream (Ij, t)t≥0 such that{
∀t ∈ ℵj, Ij,t = 1

dIj, t
Ij, t

= σdWj, t, for t /∈ ℵj
, (1.1)

where Wj,t is a standard Brownian motion, and σ > 0. This exponential re-setting of

idiosyncratic income processes implies that the cross-section of incomes has a constant

distribution. That exogenous termination decisions and re-setting of idiosyncratic in-

comes are contemporaneous simplifies the analysis but is not crucial to our results. All

stochastic processes
(

(Wj,t)t≥0 , (Nj,t)t≥0

)
are pairwise independent.3 Thus there is no

aggregate uncertainty in this baseline model.

3We will apply the exact law of large numbers to this continuum of independent processes. As is
well known, doing so in a mathematically correct fashion requires the construction of an extension
of the product of the Lebesgue unit interval and the state space such that the continuum of random
variables be measurable with respect to this extension. Sun and Zhang (2008) show the existence of
such extensions in which the exact law of large numbers applies for any variety of distributions. For
expositional simplicity, we will informally invoke the exact law of large numbers throughout without
explicitly constructing such complex mathematical objects.
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Banks

Banks care only for consumption. They are infinitely lived, risk-neutral, and dis-

count the future at the rate r > 0. Banks are not financially constrained: We assume

that their aggregate endowment is always larger than households’ aggregate debt ca-

pacity.

Banks own an eviction technology. This means that a bank can transform an

occupied home that it has financed into a vacant home. Eviction comes at a cost equal

to a fraction λ of the home market value, where λ ∈ (0, 1]. This captures the value loss

implied by foreclosures.

Market for vacant homes

Vacant housing units are perfectly divisible. However, in order to modify its home

size from q to q′ 6= q, a household needs to move into q′ new units. Households face

relocation costs. If a household moves into q new units at date t, only a fraction

χq of these units enters its date-t preferences. The relocation cost implied by χ ∈
[0, 1] captures all the costs associated with search in housing and mortgage markets,

moving, etc. If household j does not move at date t, its entire real estate qj,t enters its

preferences. Banks and households are home-price takers.

Contracts

Banks enter into individual financing contracts with households. There are two

contracting frictions. First, households privately observe the realization of their income

paths. They consume secretly, and can falsify public income reports at no cost.4 Second,

households cannot commit to a contract. Households are free to terminate a contractual

relationship and re-trade in housing and mortgage markets as they see fit. How much

borrowing can take place under such pure one-sided commitment is an interesting

benchmark. Extensions could endow lenders with some recourse possibilities, and

measure their impact on equilibrium debt capacities. Other than households’ income

realizations and consumption decisions, everything else in this economy is publicly

observable.

Banks can commit to a contract with a household. If, however, a bank makes a

strictly positive cash transfer to a household after the initial date of the contract, or

trades its current eviction rights with other banks, then this qualifies as terminating

the existing contract, and originating a new one. In this case, the borrower is entitled

to auction off the eviction rights attached to his home and re-contract with the winning

bank.5

4Lacker and Weinberg (1989) study optimal contracts when falsification comes at a cost.
5This ex post customer protection prevents banks from offering arbitrarily small additional loans

to their captive (myopic) borrowers against the revelation of their entire current income.
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Contracts map public history into paths of contractual payments, trades, and evic-

tion decisions. We consider only eviction decisions that are a deterministic function of

history. This restriction is commonly used in applications of costly state verification

models to obtain realistic contracts. (see, e.g., Gale and Hellwig (1985)).6

Competition for contracts

At each date, banks simultaneously post contract menus. If several banks make

competitive offers, they obtain equal market shares. We solve for steady-states in

which there is no aggregate uncertainty. More precisely, a steady-state is characterized

by a contract menu, a price per housing unit, and a distribution of housing units across

households such that at each date:

1. A bank cannot make a strictly positive profit by offering a different menu of

contracts.

2. The market for vacant units clears.

3. Each household has an optimal housing and consumption allocation given its

contractual obligations, contract menus, and the housing price.

Solving for the Steady-States

Structure of optimal contracts. First, contracts are exclusive. A household uses

its entire initial loan to acquire vacant units that it occupies until the contract is

terminated by either party. The size of the loan is a strictly increasing function of the

initial payment made by the household. This induces the household to pay its total

income to the bank at this initial date. The household must then meet a deterministic

repayment schedule. The bank commits to evict the household if it fails to meet the

schedule. The bank retains the rights to sell the home once it is vacant, which is either

due to an eviction, or to voluntary termination by the household.

To see why this contract is optimal, consider a deviation in which the bank writes a

new and different covenant if the household reports an income strictly higher than the

scheduled deterministic one at some future date. In order to be incentive-compatible,

this new covenant must be such that the household consumes strictly more, and/or oc-

cupies a strictly larger place than when it reports the minimal repayment, or terminates

the contract. This requires either a strictly lower repayment, and/or additional lending.

A strictly lower repayment without additional lending violates incentive-compatibility:

6A key factor in the design of contracts that would allow for randomized eviction would be house-
holds’ rates of substitution of consumption for housing services. Our model in which this rate is
infinite is not appropriate for the analysis of such contracts.
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The household would always issue a falsified large report. Additional lending from

the incumbent bank or any other bank (possibly associated with a rescheduling of the

future repayments) entitles the household to auction off the bank’s eviction rights.

Thus, it must have zero value to the incumbent bank and such a deviation can only

strictly decrease the initial loan size. In equilibrium, households initially pay their

whole income at the outset of a contract, and then meet the deterministic schedule

until voluntary termination, an ET date, or eviction.

Second, loan size and contractual repayments are a linear function of the initial

payment made by the household. This follows from the fact that income risk is multi-

plicative, households have linear preferences over housing, and over consumption given

a housing allocation and pricing of housing units is linear (Walrasian housing market).

Thus contract menus in the steady-state are proportional to the loan and the de-

terministic repayment schedule offered to a household, which enters in the market with

a unit income. Section 1.1 characterizes the steady-state under the additional restric-

tion that banks quote constant repayment schedules. This particular case is simpler to

analyze because two parameters - the loan-to-income ratio and the repayment ratio -

are sufficient to characterize constrained-optimal contracts. It yields plausible orders

of magnitude and interesting insights into the behavior of aggregate quantities that we

discuss in Section 1.2. Subsection 1.3 studies price and default dynamics along paths

to the steady-state. Subsection 1.4 then discusses steady-state optimal repayment

schedules.

1.1 Steady-State With Fixed Repayment Contracts

Let L ≥ 0 and κ ∈ [0, 1] denote the loan-to-income and the repayment ratios respec-

tively. A household that makes an initial payment of i receives a loan equal to Li,

and is asked to repay κi per unit of time from then on. Let I > 0 denote the average

income of households in the market at a given date. Let

α = −1

2
+

√
2(r + δ)

σ2
+

1

4
, ρ = 1− λ

(
1 +

δ

r

)
, ω =

√
2δ

σ2
+

1

4
.

The following proposition shows that we can analytically solve for the steady-state up

to the repayment ratio κ, which is the solution of an algebraic equation.

Proposition 1 If banks quote a repayment ratio κ ∈ [0, 1] then

I =
1− pκ − pχ

1− κpκ − pχ
χ

,
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where

pχ =

√
χ (κω − κ−ω)(

(κχ)ω − (κχ)−ω
) , (1.2)

pκ =
(χω − χ−ω)

√
κ
(
(κχ)ω − (κχ)−ω

) . (1.3)

The arrival intensity of households in the market is δ
1−pκ−pχ . This arrival intensity is

the sum of the arrival intensities of households i) who unwittingly default, ii) who vol-

untarily terminate their contract in order to relocate, and iii) who move for exogenous

reasons at an ET date. These three intensities are respectively equal to δpκ
1−pκ−pχ , δpχ

1−pκ−pχ ,

and δ. Further,

L = l (κ) =
κ

r
×

[
1− 1− ρ

κα+1(1−χα)+κ−α(χ−α−1−1)
(χ−α−1−χα)

− ρ

]
. (1.4)

The equilibrium repayment ratio is arg max l(κ) and the price of a housing unit P = LI.

Proof. A contract initiated by household j at date t is terminated at the date

t+ T j,t, where

T j,t = min
(
T j,tδ , T j,tκ , T j,tχ

)
. (1.5)

The three stopping times T j,tδ , T j,tκ , T j,tχ are defined as follows. First,

T j,tδ = minℵj ∩ (t,+∞)

is the time elapsed until the first ET date after the contract is initiated. Second

T j,tκ = min {τ ≥ 0 : Ij, t+τ = κIj, t}

= min

{
τ ≥ 0 : W j

t+τ −W
j
t =

lnκ

σ
+
στ

2

}
is the time elapsed until the income of household j hits the value κIj,t for the first time

after t. Finally,

T j,tχ = min {τ ≥ 0 : χIj, t+τ = Ij, t}

= min

{
τ ≥ 0 : W j

t+τ −W
j
t = − lnχ

σ
+
στ

2

}
is the time elapsed until the income of household j hits the value

Ij,t
χ

for the first time

after t. Equation (1.5) states that a contract is terminated for one of the following

reasons: i) occurrence of an ET date, ii) the household cannot meet a repayment, iii)

9



the household voluntarily terminates the contract and vacates its place to acquire a

larger one. Note that the distributions of T j,tδ , T j,tκ , T j,tχ do not depend on j, t. Therefore,

we will omit the superscripts j, t for notational simplicity. Now, let

pχ = Prob (Tχ < Tκ;Tχ < Tδ) ,

pκ = Prob (Tκ < Tχ;Tκ < Tδ) .

The proofs of (1.2) and (1.3) are in the Appendix. The income of a household which is

in the market is reset to 1 if it is in the market because of an exogenous termination. If

not, its income can be characterized with two integers m and n that count the respective

numbers of times the household has defaulted and voluntarily relocated since the last

time its income was reset to 1. Its income is then equal to κmχ−n. Thus,

I = (1− pκ − pχ) +
∑
m,n

m+n>0

(
m

m+ n

)
(1− pκ − pχ) (pκκ)m

(
pχ
χ

)n
=

1− pκ − pχ
1− κpκ − pχ

χ

.

Furthermore, let Mdt denote the steady-state measure of households in the market

between t and t + dt. A fraction 1− pκ − pχ of these households trade because of the

realization an ET date. Since such dates occur with intensity δ,

(1− pκ − pχ)Mdt = δdt,

and the arrival intensity of households in the market M is δ
1−pκ−pχ . Thus the respective

arrival intensities of households who default and voluntarily relocate are δpκ
1−pκ−pχ and

δpχ
1−pκ−pχ respectively.

Let us finally compute L and P . Let S denote the quantity of vacant units per

household in the market. If household j purchases qj,t units at date t, then it must be

that it receives a loan that satisfies

LIj,t = Et

(∫ T

0

e−rsκIj,tds+ P × qj,te−rT (1− λ1{Tκ<Tc,Tκ<Tδ})

)
.

Integrating over the set of agents in the market at date t yields

LI =
κI

r

(
1− Ee−rT

)
+ PS × E

[
e−rT

(
1− λ1{Tκ<Tc,Tκ<Tδ}

)]
.

Market clearing implies PS = LI, so that

L =
κ

r
× 1− Ee−rT

1− Ee−rT + λE
(
e−rT1{Tκ<Tχ,Tκ<Tδ}

) . (1.6)
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The computations of Ee−rT and E
(
e−rTκ1{Tκ<Tχ,Tκ<Tδ}

)
that lead to expression

(1.4) are relegated to the Appendix. The equilibrium repayment ratio must maximize

the loan-to-income ratio given P and S. It is easy to see that it must also maximize

the above expression for L. Finally, we show in subsection 1.3 that S = 1.�

Proposition 1 maps the five primitive parameters σ, δ, λ, r, and χ into a full charac-

terization of the steady-state. Notice that as λ→ 0, the loan-to-income ratio L tends

to the level 1/r that would prevail without contracting frictions. Absent eviction costs,

committing to eviction upon default comes at no cost.

1.2 Orders of Magnitude

The orders of magnitude associated with the steady-state are quite plausible. Assume

a (real) rate of r = 2%, a volatility of households’ income σ = 20% (see Dynan et al.,

2008), and foreclosure costs λ = 15%.7 Consider a typical contractual mortgage dura-

tion of 20 years, which corresponds to δ = 5%. The only primitive parameter that is

hard to pin down with a simple empirical counterpart is the relocation cost χ. Assume

a relocation threshold 1/χ = 1.5. These parameter values yield a steady-state repay-

ment ratio κ of 55%, an arrival intensity in the market δ
1−pκ−pχ of 20%, and a default

intensity of 7.7%. Fabozzi (2006) reports average front-end debt-to-income ratios of

40% for subprime borrowers, and back-end ratios averaging above 50%.8 Considering

that we do not explicitly model a fixed subsistence level of consumption, a 55% loan-

to-income ratio is a reasonable first pass. The trading intensity of 20% corresponds to

an effective (as opposed to contractual) mortgage lifespan of 5 years. This is below an

average 7 year effective duration of U.S. mortgages but is plausible for subprime mort-

gages. Finally, the default intensity of 7.7% is in line with the default rates observed

by Keys et al. (2006) for borrowers with low FICO scores over 2001-2006.

Comparative Statics. Figure 1 shows the evolution of the loan-to-income ratio

as a function of δ and χ.

[Figure 1 About Here]

Debt capacity is not too sensitive to δ for low values of χ. Conversely, as the cost at

which households climb the property ladder decreases (χ close to 1), the commitment

problem becomes quickly very costly and hurts debt capacity. Notice that an increase

in the ET intensity δ actually reduces debt capacity provided δ and χ are small. The

broad intuition for this result is the following. An increase in δ makes both tails of

7Any λ in the 10% to 25% range yields very similar results.
8The front-end ratio divides mortgage payments, real estate taxes, and home insurance premia by

gross income. The back-end ratio adds other obligations such as credit card and automobile debt to
the numerator.
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the cross-section of income thinner. A thinner left tail reduces expected eviction costs.

On the other hand, a thinner right-tail implies that conditional on trading after an ET

date, a household has a lower income. The positive effect overcomes this negative one

only if δ is sufficiently large.

Figure 2 shows the equilibrium value of the steady-state default intensity δpκ
1−pκ−pχ .

[Figure 2 About Here]

Interestingly, equilibrium defaults increase w.r.t. χ and w.r.t. δ when δ is small. This

is so even though one can check that the equilibrium repayment ratio κ decreases w.r.t.

χ and w.r.t. δ for small values of δ. Thus an individual loan is ex ante less likely to

default.9 The intuition is the following. If δ is large, the dominant effect of an increase

in δ is that it “completes contracts”, or reduces the needs for enforcement through

evictions. All else being equal, when δ is small, the dominant effect of an increase in χ

or δ is a negative equilibrium effect on the distribution of households’ solvency. As χ

or δ increases, households enter new contracts and thus maximize their debt capacity

more often. As a result, there is a higher fraction of households close to their default

boundary in the steady-state. Otherwise stated, the dominant effect in this case is that

an increase of δ or χ reduces the steady-state fraction of households that have become

very safe borrowers over time. To see this, Figure 3 illustrates how the steady-state

density of
Ij,t+s − κIj,t
Ij,t − κIj,t

, (1.7)

where t is the date at which the loan was originated, varies as a function of δ for

χ = 0.10

[Figure 3 About Here]

Figure 3 shows the density for values of (1.7) ranging from 0 (default) to 25%. This

confirms that the dominant impact of an increase in δ for small δ is an increase in the

number of risky borrowers.

Figure 4 shows comparative statics for the average income I of households in the

market.

[Figure 4 About Here]

The average income of households in the market reflects the weights of each motive to

trade. For small χ and δ, many trades follow from foreclosures, and thus there is a

9This contrasts with Mayer et al. (2008), where lower prepayment penalties lead to higher interest
rates and defaults in partial equilibrium because the loan size is fixed.

10The derivation of a closed-form expression for this steady-state density is available upon request.
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large majority of households whose income has done poorly in the market. Conversely,

I becomes nearly 20% higher than unconditional average income 1 as the fraction of

households which trade to climb up the property ladder rises. Finally, Figure 5 shows

that the price increases with δ and χ. Here we have again the equilibrium effect: even

though the individual debt capacity decreases, the aggregate income of households in

the market increases, and the later effect is stronger.

[Figure 5 About Here]

1.3 Transition Dynamics

This subsection studies the dynamics of convergence to the steady state holding loan

contracts constant. For simplicity, we set χ = 0, so that loan termination occurs only

at default and ET dates. We assume that banks start offering the steady-state contract

(L, κ) defined in Proposition 1 at date 0. A possible interpretation is that a sudden

regime shift in the securitization market boosts subprime loan supply at date 0. Before

this date, all housing units are vacant and all households homeless. We solve for the

dynamics of average income of households in the market, housing price, and default

intensities along the path to the steady-state. Let It denote the average income of

households which are in the market at date t, Pt the date-t price of one housing unit,

and St the date-t vacant home supply per household. We have

Proposition 2 For all t > 0, St = S0 = 1 and Pt = LIt.

Proof. Market clearing implies that for all t

PtSt = LIt.

Thus we only need to show that St = 1 for all t > 0. For t > 0, τ ∈ [0, t), let πτ, t be

the fraction of households in the market at date t whose previous market participation

took place at date τ . Note that the probability to be in the market at date t, given

that the previous participation occurred at date τ, does not depend on income at date

τ . This is because both ET and default dates on a given loan are independent from

income level at the loan origination. The average income of the above fraction at time

τ therefore equals Iτ , and hence, the average supply of housing units of the above

fraction is Sτ . Thus, St solves

St =

∫ t

0

πτ, tSτdτ, S0 = 1, t ∈ (0,∞). (1.8)
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We show in the Appendix that the only continuous solution to (1.8) is St = 1.�

We can now characterize the average income It, or equivalently the unit price Pt = LIt.

Proposition 3 Let F (·) and Fκ(·) denote the respective c.d.f. of T and Tκ. The

average income of households in the market at date t, It, is the unique solution to the

following Volterra integral equation of the second kind

It = κ

∫ t

0

It−τe
−δτ

F (t)
dFκ(τ) + δ

∫ t

0

(1− Fκ(τ)) e−δτ

F (t)
dτ, I0 = 1 t ∈ (0,∞), (1.9)

where

Fκ(t) =
1

2

(
Erfc

(
lnκ

σ
+
σt

2

))
+ κ−1Erfc

(
− 1√

2t

(
lnκ

σ
− σt

2

))
, (1.10)

F (t) = 1− e−δt(1− Fκ(t)), Erfc(z) = 1− 2√
π

∫ z

0

e−t
2

dz. (1.11)

Proof. See the Appendix.�

Figure 6 depicts the evolution over time of the price of a housing unit.

[Figure 6 About Here]

Recall that the price of a housing unit is proportional to the average income of market

participants. Average income starts at a maximal level, when most trades are due

to ET dates. Then an increasing fraction of households default and re-trade. This

lowers average income in the market. Interestingly, there is overshooting. The average

income reaches a minimum that is strictly below the steady-state value, and then

increases slowly towards this long-term value. Thus, absent any aggregate shock on

unconditional income, positive loan supply shocks lead to “boom and bust” dynamics.

This happens because of the “term structure of defaults”: defaults on the initial loans

cluster around the same dates, leading to depressed home prices. This result suggests

that even absent any housing “bubble” or inefficient lending, a sudden and efficient

increase in the supply of well-priced subprime mortgages in the early 2000s would have

mechanically created a decrease in home prices a few years later.

1.4 Towards Optimal Contracts

We restricted the analysis to constant repayment schedules because characterizing equi-

librium contracts with two parameters simplifies the analysis. This section studies the

impact of this restriction by allowing for repayment schedules that depend on time
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elapsed since the origination of the loan. We focus on the case χ = 0 for simplicity.

The optimal repayment schedule is a continuous function of the time elapsed since

origination g(·) such that if the contract has been originated at date t, then the t + s

contractual repayment is e−g(s). We have the following compact characterization of the

optimal contract.

Proposition 4 Let

Tg = min

{
τ ≥ 0 : Wj, t+τ −Wj, t =

στ

2
− g(τ)

σ

}
,

and

Qg(τ) = Prob(Tg ≥ τ),

the optimal contract g (·) solves

sup
g(·)

∫∞
0
Qg(s)e

−g(s)−(r+δ)sds

λ+ ρr
∫∞

0
Qg(s)e−(r+δ)sds

. (1.12)

Proof. See Appendix.�

Problem (1.12) does not seem to be analytically solvable. Solving it numerically is

also challenging.11 We take the first steps in this direction by studying the equilibrium

when the contract space is expanded to contracts with repayments that are log-linear,

and log-linear with one kink. Namely we consider a space of contracts such that

g(s) = a+ bs,

where constants a and b can take two different values on two intervals partitioning

[0,+∞). The analytical expression of the loan-to-income ratio given such a contract

is available upon request. Solving for the equilibrium contract is then a standard nu-

merical search for extrema using this analytical expression. Figure 7 compares optimal

repayment schedules for the cases in which repayments are constant, log-linear, and

piecewise log-linear with one kink.12

[Figure 7 About Here]

11A numerical solution involves computing the distribution of the first hitting time Qg (·) for a
smooth boundary g(·), which is a notoriously difficult problem (see, e.g., Durbin and Williams (1992),
and Wang and Pötzelberger (1997) for some advances).

12Closed-form solutions for the loan-to-income ratio with the piecewise linear contract are available
upon request.
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It is interesting to notice that for these parameter values, repayment ratios become

optimally larger than 1 in the long run even though the income process has no drift

and there is no inflation risk in our environment.13 The log-linear contract features

increasing repayments. So does the one with a kink after a short series of high and

then decreasing initial repayments that can be interpreted as an initial downpayment.

These repayment patterns are reminiscent of the “teaser rates” that often apply in

practice. Such schedules are optimal because households’ expected income at remote

dates conditional on still honoring repayments increases over time.

Figure 8 illustrates equilibrium loan-to-income ratios with these three types of con-

tracts as a function of δ.

[Figure 8 About Here]

As δ becomes small, the fixed-repayment contract does quite poorly. This is because

suboptimal repayment schedules become more costly when contracting relationships

become longer-lived. For δ around 5%, loan-to-income ratios increase by less than 5%

when adding a drift, and less than 1% by allowing for a kink. This suggests that the

restriction to fixed-repayment contracts is not a critical driver of our findings.

2 Systematic Income Risk

This section introduces systematic income shocks. The main goal is to show that

idiosyncratic and systematic income risks dent equilibrium debt capacities through

quite different channels in this economy. Consider a modification of the baseline model

in which we replace the income process described in (1.1) with the following one. Each

household j ∈ [0, 1] is now endowed with an income stream (Ij, t)t≥0 such that

Ij, t = It × ij, t.

The systematic component of income obeys

dIt
It

= φσdWt,

13Optimal repayment schedules are decreasing for larger values of δ.
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where Wt is a standard Brownian motion14, φ ∈ [0, 1], and σ > 0. We set I0 = 1.

Idiosyncratic income follows:{
∀t ∈ ℵj, ij,t = 1

dij, t
ij, t

=
√

1− φ2σdWj, t, for t /∈ ℵj
,

where Wj,t is a standard Brownian motion. All stochastic processes (Wt)t≥0 , (Wj,t)t≥0 ,

and (Nj,t)t≥0 are pairwise independent. The baseline model is the particular case in

which φ = 0.

The addition of systematic risk is clearly irrelevant absent any additional contract-

ing restrictions. Since the mortgage market is active over all dates, banks observe the

systematic component of income shocks. Equilibrium loans and repayment schedules

are equal to those of the baseline model multiplied by the common component of in-

come risk. Thus, equilibrium defaults and trading intensities are unchanged because

idiosyncratic shocks remain their sole causes. Systematic income risk plays an impor-

tant role only if it is not possible to index contracts on aggregate risk, as is the case in

practice.15 This is what we assume going forward.

Assumption The housing unit price and aggregate income are not contractible.

This assumption is strong given our environment, but is arguably realistic. Aspects

of the housing market that are absent from our model limit mortgage indexation in

practice. For instance, the cross-sectional variation in the structure of income risk is

likely to be quite large, even in small areas. So is the cross-sectional variation in housing

quality. Thus, defining and measuring the relevant index for subprime borrowers in a

given local housing market seems practically difficult because model risk is quite large.

Under this assumption, the general case φ > 0 is not analytically tractable because

the average income in the market depends on history in an overly complex fashion

in this case. A companion note (available upon request) tackles this general case in

the limiting situation in which idiosyncratic incomes and housing allocations have an

initially degenerate (diffuse) distribution. In what follows, we will focus instead on the

case φ = 1. This case is simple to analyze. It contains the same qualitative insights on

the impact of systematic income shocks as our more general note does.

When φ = 1, trades in the housing market happen because of only two motives:

the occurrence of an ET date and default. Absent cross-sectional heterogeneity, there

is no other reason for entering the market since there is no possibility to move along

the property ladder. As in the idiosyncratic case, we will focus on contracts with

14It is easy to extend the whole analysis to the case of a Brownian motion with a constant drift.
15With the obvious exception of indexation to nominal short-term rates.
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fixed repayment schedules. The next proposition characterizes the equilibrium with

a linear housing unit price. Subsection 2.1 shows that this linear equilibrium is the

only one in which the price satisfies the transversality condition. Recall the notations

α =
√

2(r+δ)
σ2 + 1

4
− 1

2
, ρ = 1− λ

(
1 + δ

r

)
.

Proposition 5 There is a unique equilibrium with fixed-repayment contracts and linear

price paths. The repayment associated with a contract initiated at date t is κ×It, where

the constant κ is the unique solution within [0, 1] of:

(α + 1)κα = 1 + ρακα+1. (2.1)

The price of a home unit is:

Pt =
1− κα

1− ρκα+1
× κIt

r
=

α

α + 1
× κIt

r
, (2.2)

where κα
α+1
× 1

r
is also the loan-to-income ratio offered in the loan market.

Proof. See the Appendix.�

Equation (2.2) shows that when banks quote a repayment ratio κ, they discount

promised repayments κIt at a rate r+ ∆r, where the equilibrium spread ∆r is equal to
rκα(1−ρκ)

1−κα . The spread ∆r increases with respect to κ because default risk is increasing

in κ. This increasing spread implies that the loan size as a function of κ has an inverted-

U shape, and is maximal for the equilibrium value of κ defined by (2.1). The rising

probability of default more than offsets the increase in promised repayments when κ

increases beyond this equilibrium value. This model may be viewed as a dynamic

equilibrium version of the model of credit rationing developed by Williamson (1987).

The spread corresponding to the equilibrium value of κ is equal to r/α.

Assuming away eviction costs is instructive. From expressions (2.1) and (2.2), ρ

tends to 1 when λ→ 0, so that

lim
λ→0

κ = 1, lim
λ→0

Pt =
α

α + 1
× It
r
.

As in the baseline model, the repayment ratio tends to 1 when eviction costs vanish.

Unlike in the baseline model, however, the equilibrium loan-to-income ratio is still

strictly smaller than 1/r in the limit. This reflects the fact that negative realizations

of systematic income risk imply a contemporaneous large supply of vacant units (due

to foreclosures) and small demand (due to the low borrowing capacity of potential

buyers).16 Of course, this effect becomes marginal as δ → +∞, in which case α→ +∞.
16Thus, trading volumes goes down when home prices go up in our model, which is counterfactual.
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In this case most trades are for exogenous reasons, and supply and demand in the home

market become therefore independent in the limit.

It is worthwhile noticing that the fact that banks do not internalize the impact of

their choice of a repayment ratio κ on the value of collateral does not reduce their supply

of funds. In other words, a social planner internalizing the impact of κ on home prices -

namely, taking into account that P depends on κ - cannot impose a value of κ for which

debt capacities or home prices are higher than in the competitive setting.17 This is

because our economy is always allocationally efficient: households collectively occupy

the fixed supply of homes, and banks make no profits. This contrasts with models

that mix financing constraints and investment decisions, such as Bernanke and Gertler

(1989), or Kiyotaki and Moore (1997). In these models, systematic risk lowers debt

capacities because lenders fail to internalize the negative balance-sheet externalities

that they create for each other. This leads to suboptimal investment and possibly

multiple equilibria. In our setup, systematic risk affects prices through contracting

frictions without distorting allocations. Endogenizing the quantity of homes could

lead to financial amplification in our setup as well.

2.1 Costs and Benefits of Diversification

It is interesting to compare loan-to-income ratios in the idiosyncratic and systematic

cases when relocation costs become large.18 In this case, contracts are terminated for

two reasons only - ET dates or default - in both cases. As χ→ 0, the limiting value of

(1.4) is

lim
χ→0

L =
κ

r
× 1− κα

1− ρκα
, (2.3)

and the optimal repayment ratio - the one that maximizes L - is the root within (0, 1)

of:

ρακ2α − (1 + α)κα + 1 = 0.

From (2.2), the loan-to-income ratio for a given repayment ratio κ if income risk is

This is because there is no rationale for downpayment constraints in our environment. If we introduced
the exogenous constraint that households can voluntarily move at an ET date only if they have built-
up a minimal amount of home equity at this date, then positive income realizations could entail a
larger trading volume.

17To see this, note that solving for P as a function of κ in (A17), plugging the expression in
(A16), and then maximizing over κ yields the same loan-to-income ratios and home prices as in the
competitive case in which banks maximize over κ taking P constant.

18A higher debt capacity is not desirable per se in this simple environment. We find it relevant
to compare debt capacities because a greater ability to borrow would be Pareto improving in simple
extensions of the model. For instance it would be the case if banks made profits increasing in total
lending, if housing supply was not inelastic, or if indivisibilities were restricting participation in the
mortgage market.
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fully systematic is κ(1−κα)
1−ρκα+1 . Comparing with (2.3) yields the following result:

Proposition 6 Assume χ = 0. Equilibrium loan-to-income ratios are larger when

φ = 0 (diversifiable income risk) than when φ = 1 (systematic income risk) if and only

if

ρ ≥ 0⇐⇒ λ ≤ r

r + δ
. (2.4)

Proof. Let κS and κI denote the respective equilibrium repayment ratios when

φ = 1 and φ = 0 respectively. If ρ ≥ 0, then

κI (1− καI )

1− ρκαI
≥ κS (1− καS)

1− ρκαS
≥ κS (1− καS)

1− ρκα+1
S

.

If ρ ≤ 0, then
κS (1− καS)

1− ρκα+1
S

≥ κI (1− καI )

1− ρκα+1
I

≥ κI (1− καI )

1− ρκαI
.�

The intuition for this result is as follows. The expected proceeds from a loan are the

sum of three components: i) the promised repayments until default or an exogenous

move, (ii) sale proceeds net of eviction costs in case of default, (iii) proceeds from selling

the vacant home if the household moves for exogenous reasons. Whether income risk

is diversifiable or not has no impact on the value of component (i). That income risk is

idiosyncratic implies that the income of a given household is uncorrelated with home

market values at default and ET dates. This has positive effect on component (ii),

which represents situations in which individual income has done poorly, but negative

one on component (iii) in which individual income has done rather well. As δ and λ

increase, a larger fraction of total loan value stems from component (iii) than from

component (ii). Thus, diversification has an adverse impact in this case. In sum,

diversifiability of income risk implies that the home price that a bank receives upon

termination of a given mortgage is not tied to the income of the borrower at the date

of termination. This is beneficial to the bank when the borrower is unable to repay

and is evicted because its income is low. This is detrimental to the bank when the

borrower with high income voluntarily exits the contract.19

19Consistent with the one-sided commitment assumed here, households just vacate their current
home when they seek to move. Thus, the bank’s expected prepayment is the home market value, and
this drives the negative impact of diversification shown in Proposition 6. In practice, upon moving,
borrowers typically sell their house to prepay their mortgage according to pre-agreed terms. We believe
that this departure from our model cannot fundamentally reduce the negative impact of diversification
that we established. Banks can still not fully capture idiosyncratic income appreciation through high
pre-agreed repayments. High repayments that exceed home values would create high incentives for
strategic default, particularly so for non-recourse loans.
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In the presence of a finite relocation cost, it is no longer clear that equilibrium

loan-to-income ratios are larger with φ = 0 than with φ = 1, even for values of δ

and λ that satisfy (2.4). In this case, the costs of diversification are more important

because the cross-sectional mobility of incomes implies that good borrowers exercise

their option to climb up the property ladder more often. Table 1 reports the values of

χ above which equilibrium debt capacity with diversifiable income risk is lower than

that of with systematic income risk for different values of δ.

δ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
χ 0.97 0.88 0.83 0.76 0.71 0.68 0.65 0.62 0.59

Table 1: r = 2%, σ = 20%, λ = 15%.

The values of χ below which diversifiable income risk yields lower debt capacities

become quickly very low as δ increases. Thus the costs of diversification become quickly

as important as the benefits from higher collateral values.

In sum, this shows that in the presence of one-sided commitment, diversifiability

of borrowers’ income risk does not necessarily ease collateralized lending. The larger

ex post heterogeneity of borrowers is a double-edged sword. On one hand, the assets

seized from unlucky borrowers can always be sold to luckier borrowers standing ready

to snap them up. But the flip side of these higher liquidation proceeds is that these

same lucky borrowers receive more outside options in equilibrium. The exercise of these

options also imposes more costs on lenders. The possible benefits from diversification

of borrowers’ risks on collateral liquidity have been well identified in the literature

on endogenous debt capacities (see, e.g., Shleifer and Vishny (1992)). That the costs

induced by ex post heterogeneity may more than offset these benefits when borrowers’

outside options are an equilibrium outcome is a novel finding, to our knowledge.

2.2 Rational Bubbles and Contracting Terms

Proposition 7 The linear equilibrium in Proposition 5 is the only symmetric equilib-

rium that satisfies the transversality condition:

lim
s→+∞

Et
(
e−rsPt+s

)
= 0. (2.5)

Proof. See the Appendix.�

We now investigate whether rational housing bubbles can develop absent this transver-

sality restriction. We assume that a large number of new banks enter the economy at

each date, so that there are always sufficient resources in the economy to sustain a
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bubbly equilibrium price path. We first look for simple deterministic bubbles of the

form

Pt = PIt +Bebt, (2.6)

where (P,B, b) ∈ R3
+. Absent any contracting friction, any price of the form Pt =

It
r

+ constant × ert is an equilibrium. In the presence of noncontingent contracts, we

have the following proposition.

Proposition 8 Equilibria in which the price is of the form (2.6) are such that B = 0.

Proof. See the Appendix.�

It is possible to show similarly that bubbles that burst with a fixed intensity as

in Blanchard and Watson (1982) cannot be sustained in this environment. Following

Froot and Obstfeld (1991), we now look at ”intrinsic” bubbles of the form

Pt = PIt + F (It), (2.7)

where P = 1−κα
1−ρκα+1 × κ

r
, and F : R+ → R+ is differentiable. The following proposition

characterizes equilibria with a price of the form (2.7).

Proposition 9 If an equilibrium features a repayment ratio κ (depending on It) and

a price of the form (2.7), then for all It

F (It) = (1− λ)καF (κIt) +
2δ

(2α + 1)σ2

(
(1− κ2α+1)

∫∞
1
F (Ity)y−(2+α)dy

+
∫ 1

κ
F (Ity)

(
yα−1 − y−(2+α)κ2α+1

)
dy

)
,

(2.8)

and

1− (1 + α)κα + ρακ1+α

(1− ρκ1+α)2
× It
r

+(1− λ)
∂

∂κ
(καF (κIt))−

2δ

σ2
κ2α

∫ ∞
κ

F (Ity)y−(2+α)dy = 0.

(2.9)

Proof. See the Appendix.�

Equation (2.8) is the market-clearing condition. Equation (2.9) is the first-order

condition associated with the banks’ choice of an optimal κ. In an unconstrained

economy with Brownian dividends similar to our income process, Froot and Obstfeld

(1991) exhibit such “intrinsic” bubbles of the form F (It) = CIγt with γ > 1. Again,

such functional forms for “intrinsic” bubbles do not correspond to equilibrium price

paths in our model with contracting frictions.20

20To see this, note that with F (It) = CIγt , equation (2.8) implies that an equilibrium κ should be
a constant, while it is easy to see from (2.9) that κ must depend nontrivially on Iγ−1

t .
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It is not clear whether or not there is a function F (I) different from zero and a

repayment ratio κ (I) which solve the system of functional equations (2.8) and (2.9).

Notwithstanding this open question, it is interesting to study the characteristics of

such hypothetical equilibria. These equilibra display relationships between home price

paths and contracting terms that are reminiscent of what has been recently observed

in subprime markets. Consider the simple case in which the total value of a home is

lost in the foreclosure process (λ = 1). We have the following result:

Proposition 10 Consider a positive function F (·) and an associated repayment ratio

κF (.) that satisfy (2.8) and (2.9) for λ = 1. Then

1. If F 6= 0, then κF (I) < κ0 for all I > 0, where κ0 is the (constant) equilibrium

repayment ratio in the linear equilibrium in which F = 0. Furthermore, 0 is an

accumulation point of κF (I) as I → +∞, and +∞ is an accumulation point of

the loan-to-income ratio as I → +∞.

2. If F (I) is increasing and α ≥ 1, or if F (I)
I

is increasing, then κF (.) decreases

from κ0 to 0 as It increases from 0 to +∞.

Proof. See the Appendix.�

Thus, the self-justified belief that the price path is explosive implies that banks set

lower repayment ratios despite quoting larger loan-to-income ratios. The intuition is

that defaults become quite costly in the presence of a bubble because they limit banks’

ability to ride it. Future home value is a more important component of the loan than

the current borrower’s ability to repay. Interestingly, time variations in repayment

ratios amplify the sensitivity of default intensities to income paths in the bubbly case

(if such a case exists) compared with the linear equilibrium. After a negative shock

to It, not only do some borrowers default on their current loans, but newly issued

loans also feature higher repayment ratios and thus lower distances to default. This

will generate more future defaults after a lag. The impact of income shocks on default

intensities is therefore more persistent with bubbly equilibria than with the linear one.

Nonlinear dynamics are generated by the procyclicality of loan-to-income ratios

that become very large when income is high. Almeida et al. (2006) and Lamont and

Stein (1999) find evidence consistent with such an amplification through procyclical

leverage in housing markets.

3 Concluding Remarks

We have developed an analytically tractable model of secured lending to tightly con-

strained borrowers. Primitive assumptions about contracting frictions drive debt ca-
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pacities, asset prices, and equilibrium default and refinancing intensities. Our findings

help us analyze the recent U.S. subprime crisis. First, trading volume, default rates,

and repayment ratios in the steady-state give some sense of what should prevail in a

stable subprime market. It is interesting to relate this stable benchmark to the behavior

of these variables in the recent “boom and bust” episode. Second, comparative statics

show that structural changes have interesting equilibrium effects. For instance, lower

transaction costs imply a lower default risk per mortgage. Yet the higher equilibrium

turnover may possibly lead to a higher equilibrium default intensity. Third, we have

offered two ways to model and analyze unstable subprime markets. First, the transi-

tion dynamics in the baseline model illustrate how the propagation of a loan supply

shock can significantly and durably affect price and then defaults. Second, nonlinear

price paths in the presence of systematic risk offer novel insights into the relationship

between bubbles and default cycles.

Our model can be estimated in principle, and its predictions can be tested using

household-level data. A number of our simplifying assumptions were made for analyt-

ical tractability. They can be relaxed for the purpose of estimation. For example, we

have assumed that households always exhaust their debt capacities, which results in

a uniform repayment ratio for all households. We could instead indirectly specify the

cross-section of household preferences by using a distribution of repayment ratios ob-

served in the data, or any other distribution. Similarly, we could allow for heterogeneity

in refinancing costs and in idiosyncratic income volatility.

Finally, our approach to equilibrium secured lending to difficult borrowers could be

applied to situations other than mortgage markets, for example, to small businesses

and entrepreneurs.

Appendix

We first state a number of auxiliary results that we use repeatedly throughout the

proofs and that can be skipped at first reading.

Auxiliary results

Auxiliary result 1 The density of Tκ is

ϕκ(t) = − lnκ

σ
√

2πt3
e
−(−σ2 t− lnκ

σ )
2

2t . (A1)
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Its Laplace transform is

Lκ(s) = e
lnκ
σ

(
−σ

2
+

√
2s+σ2

4

)
= κ

− 1
2
+
√

2s
σ2 + 1

4 . (A2)

Proof. See, e.g., Borodin and Salminen (2002).�

Auxiliary result 2 Let X be a random variable independent from Tδ taking values in

[0,+∞)∪{+∞} whose density has Laplace transform L(·). Define Tmin = min(X,Tδ).

Then the Laplace transform of the density of Tmin is given by

sL(s+ δ) + δ

s+ δ
.

Proof. Straightforward computations.�

Auxiliary result 3

Ld(s) =

∫ +∞

0

e−stϕ (t) dt =
sκ−

1
2
+
√

2(s+δ)

σ2 + 1
4 + δ

s+ δ
. (A3)

Proof. From 1. and 2.�

Auxiliary result 4 Let Bt be a standard Wiener process. Define the running mini-

mum as

Mt = min
0≤s≤t

Bs.

For t > 0 and x ≥ y, y ≤ 0,

Prob[Bt ∈ dx,Mt ∈ dy] =
2(x− 2y)√

2πt3
e−

(x−2y)2

2t . (A4)

Proof. See Borodin and Salminen (2002).�

3.1 Proof of Formulae in Proposition 1

We use the following mathematical results, which can be in Borodin and Salminen

(2002) p. 627. Let ω(s) =
√

2s
σ2 + 1

4
. For all s > 0,

E
(
e−sTχ1{Tχ<Tκ}

)
=

√
χ
(
κω(s) − κ−ω(s)

)
(χκ)ω(s) − (χκ)−ω(s)

, (A5)

E
(
e−sTκ1{Tκ<Tχ}

)
=

χω(s) − χ−ω(s)

√
κ
(

(χκ)ω(s) − (χκ)−ω(s)
) . (A6)
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Formulae (1.2) and (1.3) follow from (A5) and (A6) by putting s = δ.

Computation of E
(
e−rTκ1{Tκ<Tχ ,Tκ<Tδ}

)
and 1− Ee−rT in (1.6):

Let ϕκ(·) denote the density of Tκ. Note that

E
(
e−rTκ1{Tκ<Tχ,Tκ<Tδ}

)
=

∫ ∞
0

e−(δ+r)tE
(
1{Tχ>t}

)
ϕκ(t)dt = E

(
e−(r+δ)Tκ1{Tκ<Tχ}

)
,

(A7)

which can be computed using (A6) and putting s = r+δ. Next, using Auxiliary result 2

we have that

1−Ee−rT =
r

r + δ

1−
√
χ
(
κω(r+δ) − κ−ω(r+δ)

)
(χκ)ω(r+δ) − (χκ)−ω(r+δ)

− χω(r+δ) − χ−ω(r+δ)

√
κ
(

(χκ)ω(r+δ) − (χκ)−ω(r+δ)
)
 .

(A8)

3.2 Proof of Proposition 2

Equation (1.8) is a Volterra integral equation of the second kind. Notice that,

πτ, tdτ = dF (t− τ)/F (t), (A9)

where F (·) is the c.d.f. of the stopping time T that describes the realized duration of

a loan. Define an operator At : C[0, t]→ C[0, t] as

Atf(s) =

∫ s

0

πτ, sf(τ)dτ (A10)

Since

∀ t
∫ t

0

πτ, tdτ = 1

the operator At has a unit norm. To complete the proof, it suffices to show that there

exists no eigenfunction which takes zero value at zero and has eigenvalue 1. Suppose

conversely that there exists such a function f(s). Let tmax = argmaxs∈[0,t] |f(s)|. Since

f(0) = 0 and f 6= 0, it must be that tmax > 0. However,

Af(tmax) =

∫ tmax

0

πτ, tmaxf(τ)dτ < f(tmax),

a contradiction.�

26



3.3 Proof of Proposition 3

Let ϕκ (.) and Fκ (.) denote the p.d.f. and c.d.f. of Tκ. Let ϕ(.) denote the p.d.f. of T .

Consider again the set of households which had two consecutive market participations

at dates τ and t, where 0 ≤ τ < t. Among them those who participated at time

τ because of default and because of an ET date constitute the respective fractions

ϕκ(t−τ)e−δ(t−τ)/ϕ(t−τ) and δe−δ(t−τ) (1− Fκ(t− τ)) /ϕ(t−τ). Therefore, the average

income of the market participants at time t whose previous trade took place at τ is

κϕκ(t− τ)e−δ(t−τ)Iτ + δe−δ(t−τ) (1− Fκ(t− τ))

ϕ(t− τ)
.

Integrating over [0, t] yields (1.9). That this equation has a unique continuous solu-

tion is a general result from the theory of Volterra integral equations with continuous

kernels. �

3.4 Proof of Proposition 4

Clearing the market for vacant homes in the presence of such contracts yields:

L = E

(∫ min(Tδ,Tg)

0

e−rs−g(s)ds

)
+(1− λ)L×Et

(
e−rTg1{Tδ>Tg}

)
+L×Et

(
e−rTδ1{Tδ≤Tg}

)
.

We have

E

(∫ min(Tδ,Tg)

0

e−rs−g(s)ds

)
=

∫ ∞
0

− d

dt

(
e−δtQg (t)

) ∫ t

0

e−rs−g(s)ds

=

∫ ∞
0

Qg (s) e−(r+δ)s−g(s)ds,

Et
(
e−rTδ1{Tδ≤Tg}

)
=

∫ ∞
0

δe−(r+δ)tQg (t) dt,

E
(
e−rTg1{Tδ>Tg}

)
=

∫ ∞
0

d

dt
[1−Qg (t)] e−(r+δ)tdt = (r + δ)

∫ ∞
0

(1−Qg (t)) e−(r+δ)tdt

Solving for L yields the proposition.�
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3.5 Proof of Proposition 5

We need to solve for the loan-to-income ratio and for the repayment ratio κ that a bank

chooses to offer at date t under the expectation that future home prices will satisfy

∀u ≥ 0, Pt+u = PIt+u (A11)

for some constant P > 0. With the notations introduced in the proof of Proposition 1,

a loan taken at date t is terminated at the random date t+ T, where

T = min (Tδ, Tκ) ,

If a household j accepts the offer from a bank that quotes a repayment ratio κ at date

t, the bank expects the future flows from lending to household j to be equal to

Lj,t = Et

(∫ t+T

t

e−rsκIj,tds+ (1− λ) 1{Tδ>Tκ}e
−rTκPt+Tκ + 1{Tδ≤Tκ}e

−rTδPt+Tδ

)
.

(A12)

Applying (A8) with χ = 0 we have

Et

(∫ t+T

t

e−rsds

)
= Et

(
1− e−rT

r

)
=

1− κα

r + δ
. (A13)

Using Auxiliary result 1 we can see that

Et
(
e−rT1{Tδ>Tκ}It+T

)
= κIt

∫ ∞
0

e−(r+δ)τϕκ(τ)dτ = κα+1It. (A14)

Finally, we use the following lemma, which we prove a bit later:

Lemma 1

Et
(
e−rT1{Tδ≤Tκ}It+T

)
=
δ (1− κα+1)

r + δ
It. (A15)

Market clearing and (A13), (A14), and (A15) imply that

P =

(
κ (1− κα)

r + δ
+

(
(1− λ)κα+1 +

δ (1− κα+1)

r + δ

)
P

)
It, (A16)

or

PIt =
κ (1− κα)

r + δ
It + PIt ×

(
δ

r + δ
+
ρrκα+1

r + δ

)
. (A17)

Solving for P we obtain (2.2). The equilibrium repayment ratio κ must maximize Lj,t

or in this case P . The equilibrium loan-to-income ratio yields zero profit to banks for
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such a κ. From (A16) it is easy to see that the optimal κ is a constant such that

(1 + α) (1− rρP )κα = 1. (A18)

Proposition 5 is then obtained by plugging (2.2) into (A18). That (2.1) has a unique

solution over [0, 1] is easy to see with a monotonicity argument.

Proof of Lemma 1: Let us introduce the family of stopping times (Tκ,τ )τ≥0 =

(min(Tκ, τ))τ≥0 . We have

Et
(
e−rT1{Tκ≥Tδ}It+T

)
=

∫ ∞
0

δe−δτe−rτEt[It+τ1{Tκ,τ=τ}]dτ.

Note that

{Tκ,τ = τ} = { min
0≤s≤τ

Wt+s −Wt −
σs

2
>

ln(κ)

σ
} a.s.

By Girsanov Theorem,
(
Ws − σs

2

)
0≤s≤τ is a standard Brownian motion under the mea-

sure Qτ defined as

∀A ∈ Ft+τ , Qτ (A) = Et

(
1A × e

σ
2
Wτ−σ

2τ
8

)
,

and

EQτ
t

[
It+τ |Wτ −

στ

2
= y;σ(It+ s, 0 ≤ s ≤ τ)

]
= eσy. (A19)

By (A4) and (A19) we have

Et
(
It+τ1{Tκ,τ=τ}

)
= It

∫ 0

ln(κ)
σ

∫ ∞
y

2(x− 2y)√
2πτ 3

e−
(x−2y)2

2τ eσxe−
σ2x
2
−σ

6τ
8 dxdy

= It

∫ 0

ln(κ)
σ

∫ ∞
0

2(x− y)√
2πτ 3

e−
(x−y)2

2τ eσ(x+y)e−
σ2(x+y)

2
−σ

6τ
8 dxdy.

Using (A2) we have∫ ∞
0

δe−(δ+r+σ6

8
)τ 2(x− y)√

2πτ 3
e−

(x−y)2
2τ dτ = 2δe−

√
2(r+δ)+σ2

4
(x−y), x ≥ y.

By Fubini’s theorem

Et
(
e−rT1{Tκ≥Tδ}It+T

)
= δIt

∫ 0

ln(κ)
σ

∫ ∞
0

e−
√

2(r+δ)+σ2

4
(x−y)e

σ
2
(y+x)dxdy (A20)

=
δIt
r + δ

(
1− κ

1
2
+
√

2(r+δ)

σ2 + 1
4

)
.� (A21)
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3.6 Proof of Proposition 7

Assume that the equilibrium price (Pt)t≥0 is a positive process that satisfies the transver-

sality condition (2.5). Let κ denote the equilibrium repayment ratio. Market clearing

implies

Pt =
κ (1− κα)

r + δ
It + Et

[
e−rT

(
1− λ1{Tδ>Tκ}

)
Pt+T

]
,

where T, Tδ, Tκ are the stopping times introduced in the proof of Proposition 5. Further,

we have seen in the proof of Proposition 5 that

Et
[
e−rT

(
1− λ1{Tδ>Tκ}

)
It+T

]
=
rρκ1+α + δ

r + δ
It,

so that

Pt =
κ (1− κα)

r + δ

(
1 +

rρκ1+α + δ

r + δ

)
It +

Et

[
e−r(T+T ′)

(
1− λ1{Tδ>Tκ}

) (
1− λ1{T ′δ>T ′κ}

)
Pt+T+T ′

]
where T ′, T ′δ, T

′
κ are the stopping times associated with the contractual relationship after

T , independent from (T, Tδ, Tκ). Clearly, iterating further and applying the transver-

sality condition yields that the price must be linear with respect to It. Moreover,

Proposition 5 establishes that there is a unique linear equilibrium.�

3.7 Proof of Proposition 8

We introduce the variable s = r − b and stress the dependence of the coefficient α on

r with the notation α (r) =
√

2(r+δ)
σ2 + 1

4
− 1

2
. Let κ denote the equilibrium repayment

ratio. With a price of the form (2.6), the market-clearing condition in the linear case

(A17) becomes

PIt +B =

[
κ
(
1− κα(r)

)
r + δ

+ P × rρκα(r)+1 + δ

r + δ

]
It +B

(
sκα(s) + δ

s+ δ
− λκα(s)

)
. (A22)

This is a straightforward consequence from Lemma A15 and equation (A3). Note that

the right-hand side of (A22) is finite only for b < r + δ. An equilibrium price with

B > 0 requires that κ is such that

sκα(s) + δ

s+ δ
= 1 + λκα(s), (A23)
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and also that κ maximizes the right-hand side of (A22) taking all other parameters

fixed. It is easy to see that such a κ cannot exist: solutions to equation (A23) do not

depend on It while a κ that maximizes the right-hand side of (A22) does.�

3.8 Proof of Proposition 9

Proof of Equation (2.8). A price of the form (2.7) clears the market in the presence

of such loan contracts if and only if:

F (It) = Et
[
1{Tκ≥Tδ}e

−rTδF (It+Tδ) + λ1{Tκ<Tδ}e
−rTκF (It+Tκ)

]
.

A straightforward modification of (A14) yields:

Et
[
1{Tκ<Tδ}e

−rTδF (It+Tδ)
]

= F (κIt)κ
α. (A24)

Next, we compute Et
[
1{Tκ≥Tδ}e

−rTδF (It+Tδ)
]
. A straightforward modification of (A20)

yields:

Et
[
1{Tκ≥Tδ}e

−rTδF (It+Tδ)
]

= 2δ

∫ 0

ln(κ)
σ

∫ ∞
0

e−
√

2(r+δ)+ 1
4
σ2(x−y)F (Ite

σ(x+y))e−
1
2
σ(x+y)dxdy.

(A25)

Changing variables w = x+ y and u = x− y, we can rewrite (A25) as

Et
[
1{Tκ≥Tδ}e

−rTδF (It+Tδ)
]

= δ

 ∫ 0
ln(κ)
σ

∫ w−2
ln(κ)
σ

−w

+
∫∞

0

∫ w−2
ln(κ)
σ

w

F (Ite
σw)e−

1
2
σwe−

√
2(r+δ)+ 1

4
σ2ududw.

And

δ

∫ ∞
0

∫ w−2
ln(κ)
σ

w

F (Ite
σw)e−

1
2
σwe−

√
2(r+δ)+ 1

4
σ2ududw

=
2δ (1− κ2α+1)

σ (2α + 1)

∫ ∞
0

F (Ite
σw)e−σ(1+α)wdw =

2δ

(2α + 1)σ2

∫ ∞
1

F (Ity)y−(2+α)dy.

(A26)

Finally,

δ

∫ 0

ln(κ)
σ

∫ w−2
ln(κ)
σ

−w
F (Ite

σw)e−
1
2
σwe−

√
2(r+δ)+ 1

4
σ2ududw =

=
2δ

(2α + 1)σ2

∫ 1

κ

F (Ity)
(
yα−1 − y−(2+α)κ2α+1

)
dy. (A27)

Summing up (A24), (A26), and (A27) yields (2.8).�

Proof of Equation (2.9). A repayment ratio κ maximizes the right-hand side of
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(2.8) and thus expected loan repayments κ if and only if

κ (x) = Arg max
κ


1−κα

1−ρκα+1 × κx
r

+ (1− λ)καF (κx)

+ 2δ
(2α+1)σ2

(
(1− κ2α+1)

∫∞
1
F (xy)y−(2+α)dy

+
∫ 1

κ
F (xy)

(
yα−1 − y−(2+α)κ2α+1

)
dy

)  for all x > 0.

The first-order condition associated with this maximization problem is (2.9).�

3.9 Proof of Proposition 10

Assume λ = 1 and let Φ (I) = F (I)
I

for a candidate solution F . Equation (2.9) is then

1− (1 + α)καF (It)−
δακ1+α

F (It)

r(
1 +

δκ1+α
F (It)

r

)2 =
2δr

σ2
κ2α
F (It)

∫ ∞
κF (It)

Φ(Ity)y−(1+α)dy. (A28)

The left-hand side of (A28) is the derivative with respect to κ of the loan-to-income ratio
κ(1−κα)
1−ρκα+1 that would prevail were the equilibrium linear. The numerator is a decreasing

function of κ with one zero. Thus, in the presence of a bubble, it must be that the

repayments are smaller than the ones that are optimal with a linear price in order to

satisfy (A28). If F 6= 0, then Φ (I) cannot be bounded. Otherwise it would imply that

the price satisfies the transversality condition. From (A28), this implies that 0 must be

an accumulation point of κF (·) in +∞. Also, the loan-to-income ratio κ(It)(1−κα(It))

1+
δκα+1(It)

r

+

rΦ (It) is unbounded.

To establish that if F (·) is increasing and α ≥ 1, then the repayment ratio κF (It)

is decreasing from κ0 to 0 when It goes from zero to infinity, it suffices to notice that

the right-hand side of (A28) increases w.r.t. κF (It) for F (·) increasing and α ≥ 1. To

see this, note that

∂

∂κ

(
κ2α

∫ ∞
κ

Φ(Ity)y−(1+α)dy

)
= κα−1

(
2ακα

∫ ∞
κ

F (Ity)

It
y−(2+α)dy − Φ (Itκ)

)
> κα−1Φ(Itκ)

(
2α

1 + α
κ−1 − 1

)
≥ 0.

That this result also holds when Φ(·) is increasing is established similarly.�
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Figure 1: Equilibrium loan-to-income ratio for r = 2%, σ = 20%, λ = 15%.
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Figure 2: Equilibrium default intensity for r = 2%, σ = 20%, λ = 15%.
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Figure 3: Density of the distance to default for r = 2%, σ = 20%, λ = 15%.
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Figure 4: Average income of households in the market for r = 2%, σ = 20%, λ = 15%.
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Figure 5: Equilibrium house price for r = 2%, σ = 20%, λ = 15%.
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Figure 6: Price dynamics for r = 2%, σ = 20%, λ = 15%, χ = 0.
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Figure 7: Optimal repayment schedules for r = 2%, σ = 20%, λ = 15%.
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Figure 8: Loan-to-income ration for fixed, log-linear, and piecewise log-linear repayment
schedules for r = 2%, σ = 20%, λ = 15%.
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