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Outline 

 

1. Break Models (Break Dates) 

2. Markov Switching Models 

3. Martingale TVP 

 a. MLEs and alternatives 

 b. Data Augmentation (EM) 

 c. TVPs as nuisance parameters 
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1. Break Models  
 

Inference about Break Dates (Bai (1997), Hansen (2001)) 
 
Example (a special case of the linear regression):  
 
 

 yt = βt + εt       
 for 

 for t

t
t

β τ
β

β δ τ
≤⎧

= ⎨ + >⎩
 

 
 

π = τ/T = Break “Fraction” 
 

τo = true break date 
 

πo = true break fraction  
 
τ̂  = Least squares estimator of τ , π̂  = τ̂ /T 
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Some results that are useful for inference:  
 
Bai(1997)  shows π̂ −πo ~ Op(T−1δ−2),  so that  
 
       Tδ2(π̂ −πo) ~ Op(1) 
 
        δ2(τ̂ − τo) ~ Op(1) 
 
Thus, π̂  is consistent for πo,  but τ̂  is not consistent for τo.  
 
The speed at which π̂  converges to πo depends on δ. 
 
In general, the distribution of π̂  and τ̂  depends on the distribution of the 
errrors εt. This is true even when T is large. Thus, robust inference is 
problematic.  
 
There are approximations that can be used when δ is appropriately small.  
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An asymptotic approximation:  Recall Tδ2(π̂ −πo)  ~ Op(1), so assume Tδ2 
→∞. Also, δ is small, so assume δ → 0. (More formally, δ = δT which 
approaches zero as T grows large.).  (Example, both of these are satisfied 
if δT = aT−0.49) 
 
The challenge is to compute a convenient expression π̂ . The trick is to use 
empirical process methods like those used for the FCLT.  The main ideas 
can be understood in a situation in which β and δ are known, so that 
estimating τ  (equivalently π ) is the only problem. 
 
The least squares objective function is  
 

SSR(τ) = 2 2
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and the trick is to study the behavior of this function as T gets large. 
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Suppose τ  > τo.  Then we can write  
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Where the last expression substitures π = τ/T . The first term does depend 
on τ; ignore it when thinking about the function that is being maximizing.   
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Thus, we can think about choosing τ or π to minimize  
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Let υ = (π − πo)Tδ2/ 2

εσ . 
 
Then  minimizing SSR over τ is the same as minimizing gT over υ, where 
 

  gT(υ) = υ  + 2(δ/σε) 
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and the division by σε is for later convenience.
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Recall δ → 0, so δ−2 → ∞, so that 
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(For analogy with the standard formula, think of (δ/σε)−2 = sample size, so 
that  (δ/σε) = 1

 sample size
). 

 
 

Thus  gT(υ) = υ  + 2(δ/σε) 
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and from arguments like those used for the FCLT, gT( . ) ⇒ g( . ). 
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The argument for τ < τo is similar.  Putting these together, the least squares 
problem for estimating τ  (or π=τ/T) is approximately the same as 
 

   minυ G(υ) where 1

2

| | 2 ( ) for 0
( )

| | 2 ( ) for <0
W

G
W

υ υ υ
υ

υ υ υ
+ ≥⎧

= ⎨ + −⎩
 

 
where W1 and W2 are independent Wiener processes. 

 
The value of υ that minimizes this random function has a very non-

gaussian shape.   
 
Here are some values 
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 c 

Probability ˆPr( )cυ| |< Standard Normal 
Prob(|z| < c)  

50% 2.8  
67% 4.4 1.0 
80% 6.7  
90% 10.0 1.64 
95% 13.8 1.96 
99% 23.5 2.56 
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Constructing a confidence interval for τ : Ingredients, (T, ˆεσ , δ̂ , π̂  (or τ̂ )): 
 
We know (from the table on the last page)  Pr(|υ̂ | < 4.4) = 0.67.  Using 

2
2
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ˆ oT
ε

υ δ π π
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= −  , a 67% confidence interval for π satisfies  
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so that a 67% CI for τ is:   
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(Programs: Bruce Hansen’s webpage )
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Empirical Example … Great Moderation  

 
φt(L)Δyt = μt + εt    (Y = ln(GDP)) 
 

2 2 2 2( )t t t tε σ ε σ= + −  
 
(Numbers from SW(2002)) 
p-value for break in φt(L) and μt = 0.98 
p-value for break in 2

tσ  = 0.00 ( ˆ 1983: 2τ = ) 
 
 
67% CI for Break in 2

tσ :   1982:4 – 1985:3 
 
(What do you think about this confidence interval, given derivation of 
“Bai” confidence intervals for break dates?) 
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Multiple Deterministic Breaks:  Bai and Perron (1998) 

  

Single Joint Deterministic Breaks in Multiple Processes: Bai, Lumsdaine, 
Stock (1998) 

 

Multiple Joint Deterministic Breaks in Multiple Processes; Qu and Perron 
(2007) 

 

Using “Breaks”: Historical Analysis vs. Forecasting 
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Stochastic Breaks: Markov Switching 

(a) A 2-state version of Hamilton’s Markov-Switching Model:  
 

yt = μ(st) + σ(st)εt,  st = 0 or 1 with P(st = i | st–1 = j) = pij 
 

  Rewrite as yt = μ0(1–st) + μ1st + {σ0(1–st) + σ1st}εt 
   
            Issues:  

(i) Filtering and Smoothing given parameters 
(ii) Testing for Markov Switching:  

Ho: μ1 = μ0 and σ1 = σ0 
pij’s are unidentified (Andrews-Ploberger (1994), Hansen 
(1992)) 

(iii) Estimation: MLE (easy via data augmentation/EM, 
discussed below) 
(v) Lots of extensions (use your imagination) 
(iv) Changes are “recurrent”  
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(b) A non-recurrent model (inspired by Pesaran, Pettenuzzo, and 
Timmerman (2006)) 
 
Motivation: (i) Non-recurrent model; (ii) Deterministic break model is not 
useful for forecasting (it says nothing about post-sample breaks). 
 
   yt = μ(st) + σ(st)εt 
 
K states:  st = 1,2,…, K 
 
State Dynamics:  
      Initial condition: s1 = 1.                   

      At other dates there are two possibilities:  st = 1

1

 with prob 
1 with prob 1

t

t

s p
s p

−

−

⎧
⎨ + −⎩

 

      μ(st) = μ + η(st)  where η(st) ~ N(0, 2
ησ ) (similar for σ(st)) 

      
     Or, perhaps μ(st) = μ(st – 1) + η(st)   
     (PTT use hierarchical Bayes method for estimation) 
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Other ways of incorporating instability into forecasting models: 
 
Add factors and intercept shifts: 
 
(i) Subjective/Judgment 
 
(ii) Differencing (e.g., Clements and Hendry (1999)) 
 
(iii) Martingale variation in intercept: Cooley and Prescott (1973a, 1973b, 
1976) 
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Martingale Variation: Linear Models, say yt = βt′xt + εt  with βt = βt−1 + ηt. 
(Textbook References:  Hamilton (1994), Harvey (1989).) 
 
Running example:  yt = βt  + εt 
                                βt = βt−1 + ηt 
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Estimation Issues:  Parameters (β0, σε, and ση) 
 
β0: Initialize Kalman Filter with “Vague” prior β0/0 ~ N(0, κ), where κ ≈ 

∞. Then β0/T is the GLS (Gaussian MLE) estimator of β0 (give σε and 
ση). 

 

σε and ση: Nonlinear maximization of log-likelihood (which can be 
computed using Kalman Filter as described in Lecture 5). 
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2 issues:  Problems with MLE when ση / σε is small.  Computational 
problems in large models. 
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Problems with MLE when ση / σε is small: 
 
Δyt = Δβt  + Δεt  = ηt + εt − εt−1 = et − θet−1. 
 
θ  = θ(ση/σε), with θ(0) = 1. 
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Digression:  Invertibility “problem” in MA models 
Suppose  
   xt = at − θat−1 
 
Then, the autocovariances of x are  2 2 2

0 1(1 ) and a aλ σ θ λ σ θ= + = −  
 

 
But, 2 2 2 2(1 ) (1 (1/ ) )a aσ θ σ θ+ = +  and 2 2 (1/ )a aσ θ σ θ− = − , 
 
with 2 2 2 1 2(1 (1/ ) ) (1 )a aσ σ θ θ−= + + .  
 
Thus, an alternative representation for x with exactly the same 
autocovariances (and Gaussian likelihood) is  
 

xt = 1(1/ )t ta aθ −− . 
 
These two representations are observationally equivalent. This means that 
the likelihoods (with σ2 concentrated out) evaluated at θ and at (1/θ) are 
equal. 
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Returning to our problem:   
 
Δyt = Δβt  + Δεt  = ηt + εt − εt−1 = et − θet−1. 
 
θ  = θ(ση/σε), with θ(0) = 1. 
 
Because L(θ) = L(θ−1), the derivative of L is zero at θ = 1. Thus, the 
likelihood will have a local min or max at θ = 1. When the true value of θ  
is close to 1, the global max of the likelihood is often at θ = 1.  Thus, ˆMLEθ  
has probability mass at θ = 1. In the TVP problem this translates into 
ˆ MLE
ησ = 0 with non-negligible probability if ση/σε is close to zero. 

 
(Refs: Sargan and Bhargava (1983), Shephard and Harvey (1990), 
Shephard (1993).)  
 
 Because of problems with the MLE, it is interesting to consider other 
estimators.   
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A Median Unbiased Estimator (SW 1998). (I will talk through this 
estimator because it is useful in the narrow context of the TVP model, but 
also because the general method is used to construct confidence intervals 
in other many “non-standard” problems such as weak instruments, near-
unit root AR models, and so forth.). 

 

Here is the idea:  Write yt = βt + εt, where βt = βt−1 + ηt, and let α = 
(ση/σε). We are interested in situations in which α is very close to zero. 
The appropriate “asymptotic nesting” is α = γ/T, and we will use some 
asymptotic approximations where γ is held fixed as T → ∞ (thus α gets 
closer to 0).  Using this notation, we can write the model as  

  

yt = βt + εt   and βt = βt−1 + (γ/T)et  

 
where Var(et) = Var(εt) = 2

εσ .  
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Now, think back to the TVP tests (Chow, QLR, AP) tests dicussed in 
lecture 2.  All of the test statistics were functions of the partical sums of y. 
For example, in our example with β0 = 0, the Nyblom test statistic was 
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and we derived the distribution of this statistic under the null that γ = 0  
(βt does not vary through time).  Now, suppose we work out the 
distribution under the alternative (again, assuming β0 = 0): 
 

    yt = βt + εt = 
1
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(repeating)  
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The new term is 
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were W and W  are independent Wiener processes. 
 
The key thing is that now we can derive the limiting distribution of the test 
statistic under both the null and the alternative.  That is, as T grows large 
we know the distribution for γ = 0 (the null) and other values of γ as well. 
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Let Aγ(x) denote the CDF of ξ. That is Pγ(ξ ≤ x) = Aγ(x).  
 
Let γ̂  solve ˆ ( )Aγ ξ  = 0.5. Then Pr(γ̂  ≤ γ) = 0.5, so that γ̂  is a “median 
unbiased estimator” of  γ.  
 
Also ( 95 ( ) 05)Aγγ ξ| . ≤ ≤ .  is a 90% confidence interval for γ. 



 Lecture 6 - 26,  July 21, 2008 

An example calculation (old data set): 
 

GDP Growth Rates and estimated time varying “Mean” 
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yt = βt + vt    (yt = 400×ln(GDPt/GDPt−1) 

βt =  βt −1 + ηt = βt −1 +  (γ/T)et 

vt ~ AR(1) 

σe =  “long-run” standard deviation of v 

 

Data 1947 -1995 

ˆ MLE
ησ  = 0 

ˆMUBγ  = 4, ˆ 6.11eσ =  ( ˆ 4 6.11/196 0.12%ησ = × = , 
1995 1947

ˆ 1.7βσ −
= %) 
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2 issues:  Problems with MLE when ση / σε is small.  Computational 
problems in large models. 
 
An example of a Model from Lecture 11  
 
  Yt = Λft + εt 
 
  ft = φft−1 + ηt 
 
Yt is N×1, ft  is a scalar unobserved variable, Σε = diag( 2

iσ ), and Λ = (λ1 λ2 
… λn)′. 
 
Unknown Parameters:  2 2{ },{ }, ,i i ησ λ σ φ  (many if N is large). 
 
Brute force MLE using nonlinear optimizer: Difficult 
Data Augmentation-EM (“Suppose I had data on ft) : Easy 
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Data Augmentation-EM 
Refs: McLachlan and Krishnan (2008), Ruud (1991) 

Basics:  
Y: Observed data 
X: Unobserved data 
f(θ, y): Y density (or likelihood) 
f(θ, x, y): Complete data density (or likelihood) 
 

( , ) ( , , )
x

f y f x y dxθ θ
∈

= ∫
X

  

f(x|y,θ) = ( , , )
( , )

f x y
f y
θ
θ

 (Conditional density of x given y evaluated at θ). 

 
L(θ, x, y) = ln[f(θ, x,y)]    (Complete data log-likelihood) 
 
L(θ, y) = ln[f(θ, y)]  (Incomplete data log-likelihood) 
 
Q(θ, θo, y) = { }( , , ) ( | , ) ( , , ) |

oo
x

L x y f x y dx E L x y yθθ θ θ
∈

=∫
X
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EM Iteration:  θ1 = argmaxθ Q(θ, θ0, y) 
 
Two Results: 
 
Result 1: L(θ1, y) ≥ L(θ0, y) 
 
Result 2: 1

ˆ ˆ( , , ) 0Q yθ θ =  if and only if 1
ˆ( , ) 0L yθ = , where Q1 and L1 are 

partial derivatives with respect to the first argument. 
 
In Exponential families (normal, binomial, Bernouli, Poission, 
multinomial, gamma, chi-squared… ), the EM iteration is easy.  Let 
ˆ ( ( , ))MLE CD h t X Yθ − = , where t(X,Y) are sufficient statistics. Then  

 
EM Iteration:  ( )01 ( ( , ) | )h E t X Y Yθθ =  
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In our problem : Yt = Λft + εt,  ft = φft−1 + ηt 
 
Complete data are {Yt, ft}, t = 1, …, T.  The complete data Gaussian MLEs 
are given by the usual regression formulae: 
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and the the expected value of these second moments conditional on the 
observed data, Y1, … , YT can be computed using the Kalman Smoother.  
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Thus, an EM iteration is:  With Λ0, φ0, Σε,0 and 2
,0ησ  

(1) Run the Kalman Smoother 
 
(2) Compute moments as follows 

(i) 
0 /( )it t it t TE Y f Y fθ =  

(ii) 
0

2 2
/ /( )t t T t TE f f Pθ = +    

(iii) 
0 1 / 1/ , 1/( )t t t T t T t t TE f f f f Cθ − − −= +  

where Pt/T = 
0

var ( | )tf Yθ  and , 1/t t TC − =
0 1cov ( | )t tf f Yθ − , which can be 

computed by the Kalman Smoother 
 
(3) Plug the results in (2) in to the usual formula for the complete data 
MLE to find Λ1, φ1, Σε,1 and 2

,1ησ . 
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Martingale Variation: Non-Linear Models 
 
Bag of tricks:  General filtering formulae, MCMC methods for state 
estimation, particle filters for likelihood evaluation, Data Augmentation 
for simulated EM (e.g., Ruud (1991)). 
 
Example:  UC-SV  
 
                Yt = τt + εt,                            τt = τt−1 + ηt  

7
2

, , , , ,
1

ln( ) 2ln( )t t i t i t
i

q vε ε εε σ
=

= +∑ ,   
7

2
, , , , ,

1
ln( ) 2ln( )t t i t i t

i
q vη η ηη σ

=

= +∑  

ln(σε,t) = ln(σε,t−1) + υε,t,          ln(ση,t) = ln(ση,t−1) + υη,t,  
 
a = { } { } { }( ), , , , , ,, , , ,t t t i t i tq qε η ε ητ σ σ  = (a1, a2, a3) 
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Martingale Variation: Non-Linear Models with “Small TVP” 
 
Müller and Patelis (2007) 
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When “Nuisance” parameters are TVPs: 
 
θ  = (θ1, θ2), where θ1 is the parameter of interest and θ2 is possibly TVP. 
 
Question: When can you ignore possible TVP in θ2 when conducting 
inference about θ1 ?  
 
Answer:  When TVP in θ2 is sufficiently small.  But how small is small? 
 Müller and Li (2008) (general nonlinear GMM) , Li (2008) (linear model 
and NKPC). 
 
Basic idea:  yt = α + xtβ  + εt 
 
β  is the parameter of interest 
 
α  is a nuissance parameter with αt = αt−1 + ηt 
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Rewrite as    yt = (αt + xβ) + (xt − x )β  + εt 
 
or                  t t t ty xα β ε= + +  
 
where            tα  = 1tα −  + ηt 

 

And the OLS estimator of β is  2 2 2
ˆ t t t t t t

t t t

x y x x
x x x
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The second term on the rhs is the usual source of sampling variability in 
the OLS estimator.  Thus, the key new term is the first term on the rhs. 
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Term of interest:  1

t tx
T

α∑  

 
Process for tα :     tα  = 1tα −  + ηt 
 
Recall MUB discussion:  Power of TVP is non-trivial (not equal to 1.0) if 
ση ~ O(T).   
 
In this case 1

tT
α∑

d
Normal→      

 
but  (because x has mean zero), if x process is “nice” 
 

1
t tx

T
α∑  

p
→ 0,  
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So that 
2

1
ˆ( ) (1)1

t t

p

t

x
TT o

x
T

ε
β β− = +

∑

∑
 

 
Thus, if TVP in α is not so large that you would detect it with very high 
probability, it doesn’t matter for inference about β . 
 


