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Abstract

We develop a search-based monetary dynamic stochastic equilibrium (DSGE) model with nominal

rigidities by introducing the fundamental frictions that generate money demand in an otherwise standard

New-Keynesian DSGE model. We use Bayesian methods to estimate two versions of the model based on

post 1983 quarterly U.S. data and compare it to a money-in-the-utility (MIU) specification. While the

decentralized market mechanism of the search-based models creates a stronger linkage between technology

shocks and fluctuations in the stock of money, this linkage comes at a cost in terms of overall time series

fit. On the other hand, if one uses the steady state relationships of the estimated DSGE models to predict

velocity in periods of high target inflation rates as observed in the 1970s the search-based models deliver

much more realistic predictions than the MIU model. In terms of welfare implications the estimated MIU

model behaves very much like a New Keynesian DSGE model and a near-zero inflation rate is optimal.

According to the search-based model, which also has embodied the same New Keynesian feature, the

Friedman motive for keeping the nominal interest rate near zero dominates and negative inflation rates

are optimal.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models with nominal rigidities and a monetary policy

represented by interest rate feedback rules are emerging as the workhorse of applied policy analysis in

many central banks. Much of the empirical work with DSGE models, e.g. Smets and Wouters (2003),

Christiano, Eichenbaum, and Evans (2005), Del Negro, Schorfheide, Smets, and Wouters (2007), Levin,

Onatski, Williams, and Williams (2005), as well as the theoretical work summarized in Woodford (2003) is

based on models in which real money balances directly enter the households’ utility function. Such money-

in-the-utility-function (MIU) specifications are informally motivated by the insight that money balances

reduce transaction costs and therefore increase utility. Once monetary policy is represented by an interest-

rate-feedback rule and real money balances enter the utility function in an additively separable fashion, the

model becomes block triangular and aggregate outcomes are not affected by the money stock. In fact, it

has become common practice to consider cash-less models, which are obtained by letting the weight on real

money balances in the utility function converge to zero (see Woodford, 2003). Econometric work typically

excludes a measure of the money stock from the list of observables and ignores the model implied money

demand equation. While the cashless approach appears reasonable if the estimated model is used to study the

propagation of structural shocks other than money demand shocks, it is not innocuous for welfare analysis.

To the extent that real money balances indeed affect households’ utility, they are relevant for assessing

the welfare consequences of changes in monetary policy, in particular at low levels of the nominal interest

rate. In fact, when one includes a money demand motive in an otherwise standard New Keynesian model,

the welfare consequences are not clear-cut. For example, in various contexts the standard result optimality

of price stability emerge (e.g. Levin, Onatski, Williams, and Williams, 2005 in an MIU environment) in

others Friedman rule of zero nominal net nominal interest rate is optimal (e.g. King and Wolman, 1996 in

a shopping-time environment) and yet in some others the optimal inflation rate is somewhere in between

these two extremems (e.g. Schmitt-Grohe and Uribe, 2007 in a transaction-cost environment).

The contribution of our paper is threefold. First, as an alternative to the commonly used MIU model,

we develop an estimable DSGE model where money demand arises due to the micro-foundations laid out in

the search-based monetary theory stemming from the work of Kiyotaki and Wright (1989). In our model,

following the basic structure of in Lagos and Wright (2005, henceforth LW) and Aruoba, Waller, and Wright

(2007, henceforth AWW), in every period economic activity takes place in two markets. In a decentralized

market (DM), households engage in bilateral trade with a fraction of households producing and a fraction

of households consuming. The centralized market (CM) resembles a standard DSGE model with nominal

rigidities where production is carried out by firms. Physical capital is a factor of production in both markets.

Demand for money arises because the transactions in the decentralized markets are facilitated by a medium of
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exchange. Our specification adds nominal rigidities in the centralized market, represents monetary policy by

an interest rate feedback rule, and introduces stochastic disturbances to technology, preferences, government

spending, and monetary policy to make the model amenable to econometric estimation methods. While the

structure of our model to a large extent resembles that of a canonical New Keynesian model with capital,

the presence of the decentralized market provides a micro-founded motive for holding money and creates

a non-separability between consumption and the value of real money balances. Hence, our model differs

from an MIU specification both in terms of the resulting money demand equation as well as its welfare

implications.

Second, using post 1983 U.S. data on output, inflation, interest rates, and the money stock we use

Bayesian techniques surveyed in An and Schorfheide (2007) to estimate our search-based DSGE model. We

also fit a standard MIU model with nominal rigidities to the same set of observations. While most of the

work on search-based monetary model has been theoretical, our analysis produces formal estimates of the

taste and technology parameters that determine the exchange in the decentralized market. We compare the

fit of the money demand equations obtained from the two estimated models. We also discuss dynamics by

looking at variance decompositions and impulse-response functions.

Finally, we compare the effects of changes in the central bank’s target inflation rate on steady state

welfare using the two estimated DSGE models. Our choice of estimation objective function requires the

models to fit both the post 1983 average velocity in U.S. data as well as the fluctuations in M2. We

find that in the MIU model, New-Keynesian forces dominate the frictions created the opportunity cost of

holding money and the optimal inflation target is near 0% inflation. In contrast, the optimal policy in the

search-based model is to follow the Friedman rule of zero net nominal interest rate.

The remainder of the paper is organized as follows. We provide a detailed derivation and discussion of

the search-based DSGE model in Section 2. A canonical MIU model with nominal rigidities and capital can

be obtained by shutting down the decentralized market in the search-based model and adding a real-money-

balance term to the households’ utility function. This MIU model is described in Section 3. The Bayesian

estimation results are presented in Section 4 and the welfare analysis is summarized in Section 5. Finally,

Section 6 concludes. Detailed derivations for the two DSGE models are provided in the Appendix.

2 The Search-Based Model

The model is an extension of the two-sector model developed in LW. In every period, there is economic

activity in two markets, which we label the decentralized market (DM) and the centralized market (CM). In

the DM, households engage in decentralized bilateral trade with other households with one party producing
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and the other consuming, while the CM resembles a standard macro model where production is carried out

by firms.

We extend the LW model in two dimensions. First, we include physical capital as a factor of production,

following AWW. The only deviation we have from AWW in this regard is that we introduce an adjustment

cost for investment to improve the empirical fit. Second, we replace the neoclassical structure on the firm

side with a New Keynesian one. Intermediate goods producing firms sell their differentiated output to final

good producers. The intermediate good producers face a downward sloping demand curve for their product

and choose prices to maximize their profits. However, in any period only a fraction of these firms is able to

re-optimize their prices. The remaining firms either adjust their prices by the lagged inflation rate or not at

all. This mechanism of generating nominal rigidity is due to Calvo (1983) and widely used in the literature

on New Keynesian DSGE models. Unlike in more elaborate empirical version in Smets and Wouters (2003)

and Christiano, Eichenbaum, and Evans (2005), we exclude habit formation, wage stickiness, and variable

capital utilization from our model specification. In turn we will describe the households’ decision problems

in both the centralized and the decentralized market (Section 2.1) and the firms’ problem in the centralized

market (Section 2.2). We then characterize the behavior of fiscal policy (Section 2.3), derive an aggregate

resource constraint (Section 2.4) and characterize monetary policy (Section 2.5). Our model economy is

subject to aggregate disturbances as we show in Section 2.6. A summary of all the equilibrium conditions is

provided in the Appendix.

2.1 Households

There is a continuum of ex-ante identical households in the economy. These households derive utility from

their activities in the two markets. A household that consumes qt units of consumption good in the DM

gets utility χtu(qt) while it gets utility U(xt) by consuming xt units in the CM. The disutility of effort in

the DM for a seller and disutility of labor for a worker in the CM is linear:1

Ut = U(x)−Aht

 +χtu(qt) if buyer in DM

−et if seller in DM
(1)

Instead of using the disutility of effort et in the DM, we express the disutility as a function of output produced

by the seller. To see this, we assume the following structure. For a seller, the output qt is obtained using the

production function qt = Ztf(et, kt) where Zt is a technology shock which is common across the two markets.

This production function can be inverted to get et = ξ(qt, kt, Zt). Using the linear disutility in effort, we can

1This assumption, in particular the linearity of disutility of labor in the CM is a critical assumption that prevents a

non-degenerate distribution of money holdings.
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define c(qt, kt, Zt) = ξ(qt, kt, Zt) as the utility cost of production for the sellers. We have cq > 0, ck < 0, and

cZ < 0.

In a given period, the households participate in the DM followed by the CM. To characterize the

household’s behavior in this economy, we start from the problem of the household in the CM, followed

by the DM problem.

2.1.1 Household Activity in the Centralized Market

The households take as given the aggregate price level in the CM, Pt, the nominal interest rate Rt, and the

factor prices Wt and Rkt . Using Wt(m̂t, kt, it−1, bt, St) and Vt(mt, kt, it−1, bt, St) to denote the value functions

in the CM and DM of period t where m̂t is the money balances of the household entering the CM, the CM

problem2 is

Wt(m̂t, kt, it−1, bt, St)

= max
xt,ht,mt+1,it,kt+1,bt+1

{U(xt)−Aht + βEt[Vt+1(mt+1, kt+1, it, bt+1, St+1)]}

s.t. Ptxt + Ptit + bt+1 +mt+1 ≤ PtWtht + PtR
k
t kt + Πt +Rt−1bt + m̂t − Tt (2)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (3)

given the laws of motion for the aggregate shocks, St. Here A is the disutility of one unit of labor, Rt−1 is

the gross nominal return on a government bond purchased in period t − 1, Tt is a nominal lump-sum tax

and Πt denotes the total profits the household receives from intermediate good producers. (3) shows how

capital is accumulated where the adjustment cost function S(.) satisfies properties S(1) = 0, S′(1) = 0 and

S′′(1) > 0. Using Υt to denote the Lagrange multiplier for (3) and after eliminating h using (2), the FOC

are

xt : U ′(xt) =
A

Wt
(4)

mt+1 :
U ′(xt)
Pt

= βEVt+1,m(mt+1, kt+1, it, bt+1, St+1) (5)

it : U ′(xt) = Υt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEVt+1,i(mt+1, kt+1, it, bt+1, St+1) (6)

kt+1 : Υt = βEVt+1,k(mt+1, kt+1, it, bt+1, St+1) (7)

bt+1 :
U ′(xt)
Pt

= βEVt+1,b(mt+1, kt+1, it, bt+1, St+1) (8)

assuming that an interior solution exists. This leads to two key results. First, since the individual state

variables, (m̂t, kt, it−1, bt) do not appear in (5)-(8), household’s decisions in the CM do not depend on its
2We could index households with j, but we will see that the assumption of complete markets implies that the index will

drop out of most of these variables. In equilibrium households will make the same choice of consumption, money demand, and

investment. So, we drop this index from the outset.
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state variables. More specifically, for any distribution of assets (m̂t, kt, bt) across agents entering the CM,

the distribution of (mt+1, kt+1, bt+1) is degenerate.3 Second, we have the following envelope conditions,

Wt,m(m̂t, kt, it−1, bt, St) =
A

PtWt

Wt,k(m̂t, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt

Wt,i(m̂t, kt, it−1, bt, St) = Υt

(
it
it−1

)2

S′
(

it
it−1

)
Wt,b(m̂t, kt, it−1, bt, St) =

ARt−1

Wt

which show that Wt(.) is linear in m̂t which will be important in the DM problem below. Finally, the

Lagrange multiplier associated with the households’ nominal budget constraint (2) is U ′(xt)/Pt. Under the

assumption that households have access to a complete set of state-contingent claims we obtain that

Ξpt+1|t =
U ′(xt+1)/Pt+1

U ′(xt)/Pt
. (9)

which the firms use to discount the future. We need to specify the details of the DM to characterize the

equilibrium next. Specifically we will find Vm, Vk, Vi and Vb to obtain the equilibrium conditions.

2.1.2 Household Activity in the Decentralized Market

As we said, the centralized market in this model resembles a standard New Keynesian DSGE model. It

is important to recognize that transactions in the CM take place without requiring a medium of exchange.

Unlike a standard monetary model where money demand is generated by constructs such as cash-in-advance,

money-in-the-utility-function or transaction costs, we follow a search-based approach. The DM is critical in

generating the money demand. All trades take place in bilateral meetings. The agents are anonymous in

the DM which means no household would accept an IOU from another household and any trade must be

quid pro quo. Following AWW, at the start of each DM a measure σ of households receive a taste shock that

make them buyers and another σ measure of households become sellers. Alternatively, we can consider the

setup in LW where each household can produce a measure σ of goods out of a measure one of all possible

goods, and they like consuming another σ measure of goods. When two households meet at random, with

σ probability there is a single coincidence where one party likes the good the other party can produce but
3This result requires a small qualification for bond holdings. There are two parts of the argument that guarantees the

degeneracy. The first part relies on the observation that (m̂t, kt, bt) does not appear in (8). The second part relies on the strict

concavity of V (.) or, more specifically, the strict monotonicity of Vb (.) which means the choice of bt+1 is unique. Both parts

of the argument go through for money and capital in our environment, but only the first part goes through for bonds since

Vb (.) is constant as we show below. This means that in principle there could be multiple values of bt+1 that households choose,

which can create a distribution of bond holdings. Fortunately, such a distribution of bonds holdings is not important for any

of our results because bond-holdings will not affect the DM problem, as we show below.
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not vice versa.4 The literature started by Kiyotaki and Wright (1989) show that a medium of exchange

will emerge in an environment where the agents are anonymous and there is a double-coincidence problem

such as the one above. In a monetary equilibrium, in such single-coincidence meetings, the party who likes

what the other party has (the buyer), uses money to purchase the good from the seller.5 The possibility to

consume in the DM generate a demand for money in this model.

The value of starting the DM for a household whose taste shock has not been realized yet is given by

Vt(mt, kt, it−1, bt, St) = σV bt (mt, kt, it−1, bt, St) + σV st (mt, kt, it−1, bt, St) (10)

+(1− 2σ)Wt(mt, kt, it−1, bt, St),

where the values of being a buyer and a seller are

V bt (mt, kt, it−1, bt, St) = χtu(qbt ) +Wt

(
mt − dbt , kt, it−1, bt, St

)
(11)

V st (mt, kt, it−1, bt, St) = −c(qst , kt, Zt) +Wt (mt + dst , kt, it−1, bt, St) (12)

with qbt and dbt (qst and dst ) denoting output and money exchanged when buying (selling) which are determined

via bilateral bargaining as describe below. We interpret χt as a money demand shock as it affects the utility

from consuming in the DM and money serves as a medium of exchange. Using (9) we have

Vt(mt, kt, it−1, bt, St) = Wt(mt, kt, it−1, bt, St) + σ

[
χtu(qbt )−

dbtA

PtWt

]
+ σ

[
dstA

PtWt
− c(qst , kt, Zt)

]
. (13)

To solve (5)-(8), we need:

Vt,m(mt, kt, it−1, bt, St) =
A

PtWt
+ σ

[
χtu

′ (qbt) ∂qbt∂mt
− A

PtWt

∂dbt
∂mt

]
+σ
[

A

PtWt

∂dst
∂mt

− cq(qst , kt, Zt)
∂qst
∂mt

]
(14)

Vt,k(mt, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt + σ

[
χtu

′ (qbt) ∂qbt∂kt
− A

PtWt

∂dbt
∂kt

]
+σ
[

A

PtWt

∂dst
∂kt

− cq(qst , kt, Zt)
∂qst
∂kt

− ck(qst , kt, Zt)
]

(15)

Vt,i(mt, kt, it−1, bt, St) = Wt,i(mt, kt, it−1, bt, St) (16)

Vt,b(mt, kt, it−1, bt, St) =
A

PtWt
Rt−1 (17)

It remains to specify how the terms of trade (q, d) are determined, so that we can substitute for their

derivatives in (14) and (15) which we turn to next. We consider two alternatives: bilateral bargaining via

4As AWW argue, the setup with idiosyncratic taste shocks and the setup with search leads to the same mathematical

construct which we describe below.
5As with any deep model of money, there is a nonmonetary equilibrium in this model which is dominated by the monetary

equilibrium in terms of welfare. We focus on the monetary equilibrium.
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generalized Nash bargaining, which is one of the most common schemes in the search literature and price-

taking (or Walrasian pricing) which is first considered by Rocheteau and Wright (2005). Apart from the

mechanics, an important difference between these two schemes is the absence of the holdup problems in the

price-taking version which are present in the bargaining version.

2.1.2.1 Bargaining in the Decentralized Market We drop the time subscripts since everything is

period t. Our bargaining problem is

max
q,d

[
χu(q)− Ad

PW

]θ [
Ad

PW
− c(q, ks, Z)

]1−θ
s.t. d ≤ mb.

where θ is the bargaining power of the buyer, the first term is the buyer’s surplus and the second term is

the seller’s surplus.

Using the insights of LW and AWW, in any monetary equilibrium d = mb, that is the buyer spends all

his money in exchange for some q that the seller produces using his capital and effort. Inserting d = mb and

taking the FOC with respect to q, we get

mb

P
=
g(q, ks, χ, Z)W

A
(18)

where

g(q, k, χ, Z) ≡ θc(q, k, Z)χu′(q) + (1− θ)χu(q)cq(q, k, Z)
θχu′(q) + (1− θ)cq(q, k, Z)

. (19)

and the quantity produced will be q = q(mb, ks, χ, Z), where q(·) is given by solving (18) for q as a function

of (mb, ks, χ, Z). Turning to the partial derivatives we need, we get

∂d

∂mb
= 1,

∂q

∂mb
=

A

PWgq(q, k, χ, Z)
> 0, and

∂q

∂ks
= −gk(q, k, χ, Z)

gq(q, k, χ, Z)
> 0

while the other derivatives in (14) and (15) are 0.

Now reintroducing the time subscripts and inserting these results, (14) and (15) reduce to

Vt,m(mt, kt, it−1, bt, St) =
(1− σ)A
PtWt

+
σAχtu

′(qt)
PtWtgq(qt, kt, χt, Zt)

(20)

Vt,k(mt, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt − σγ(qt, kt, χt, Zt) (21)

where

γ(q, k, χ, Z) ≡ ck + cq
∂q

∂k
=
ck(q, k, Z)gq(q, k, χ, Z)− cq (q, k, Z) gk(q, k, χ, Z)

gq(q, k, χ, Z)
< 0. (22)

is the marginal return of having capital in the DM when the household is a seller. In particular, having

more capital will reduce the seller’s cost for a given quantity produced, which is captured by the ck term.

However, due to the non-competitive nature of DM, having more capital for the seller will also affect the

terms of trade by increasing the output produced and this will increase his cost. This second term will be

the source of one of the holdup problems we will discuss.
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2.1.2.2 Price-Taking in the Decentralized Market With price taking, the DM value function has

the same form as (10), but now

V bt (mt, kt, it−1, bt, St) = max
q
{χtu(q) +Wt (mt − p̃q, kt, it−1, bt, St)} s.t. p̃q ≤ m (23)

V st (mt, kt, it−1, bt, St) = max
q
{−c(qst , kt, Zt) +Wt (mt + p̃q, kt, it−1, bt, St)} (24)

where p̃ is the DM price level taken as given by the household. Market clearing will guarantee that buyers

and sellers choose the same q and buyers will choose to spend all of their money so that q = mb/p̃ will hold.

The FOC from (24) is

cq(q, ks, Z) = p̃Wm (25)

Inserting p̃ = mb/q and using (9) , we get the analog to (18) from the bargaining model

mb

P
=
qcq(q, ks, Z)w

A
(26)

and the quantity produced will be q = q(mb, ks, Z) using (26). The partial derivatives we need are

∂d

∂mb
= 1,

∂q

∂mb
=

1
p̃

=
A

PWcq(q, k, Z)
> 0,

∂q

∂ks
= −cqk(q, k, χ, Z)

cqq(q, k, χ, Z)
> 0 and

∂d

∂ks
= p̃

∂q

∂ks

while the other derivatives in (14) and (15) are 0.

Finally, introducing time subscripts and using these results we get the envelope conditions

Vt,m(mt, kt, it−1, bt, St) =
(1− σ)A
PtWt

+
σAχtu

′(qt)
PtWtqtcq(qt, kt, Zt)

(27)

Vt,k(mt, kt, it−1, bt, St) =
ARkt
Wt

+ (1− δ)Υt − σck(qt, kt, Zt) (28)

It is useful to note that in (28), ck is now the marginal return of having capital in the DM when the household

is a seller and the extra terms in (22) do not appear due to the competitive nature of pricing. This will be

key in understanding the (lack of) holdup problems with price-taking.

2.1.3 Household’s Optimality Conditions

We obtain the optimality conditions for the household under bargaining by simply substituting (16), (17),

(20) and (21) in to the household’s FOC to get the optimality conditions for the household. We also

define µt ≡ Υt/U
′(xt). Formally, taking as given

{
Pt, Rt,Wt, R

k
t ,Πt, Tt

}∞
t=0

and exogenous aggregate states
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{Zt, χt}∞t=0 , the household solves for {qt, xt,mt+1, kt+1, it, bt+1, µt}∞t=0 using the following equations:

Wt =
A

U ′(xt)
(29)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(30)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
µt+1

U ′(xt+1)
U ′(xt)

(
it+1

it

)2

S′
(
it+1

it

)}
(31)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (32)

µt = βEt

{
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(xt)
γ(qt+1, kt+1, χt+1, Zt+1)

}
(33)

mt

Pt
=

g(qt, kt, χt, Zt)Wt

A
(34)

1 = βEt

{
U ′(xt+1)
U ′(xt)πt+1

[
σχt+1u

′(qt+1)
gq(qt+1, kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(35)

where we used πt+1 ≡ Pt+1/Pt. Equations (29) to (32) resemble the optimality conditions that arise in a

standard DSGE model with capital. (29) is a labor supply equation that relates the wage to the marginal rate

of substitution between consumption and labor, (30) is the Euler equation for Bond holdings. (31) describes

the evolution of the shadow price of installed capital, µt, and (32) is the capital accumulation equation.

Equations (33), (34) and (35) reflect the presence of the decentralized market. (33) is the Euler equation for

capital stock holdings. The return to capital has two components, namely the return from renting capital to

intermediate good producing firms in the centralized market, Rkt , net of capital depreciation, and the return

to capital when producing in the decentralized market which we discussed above. (34) defines the output

produced in the DM. Finally, (35) is the Euler equation for holding money where the term in square brackets

reflects the additional consumption provided in the DM by holding money. Note that combining (29), (34)

and (35) we obtain the following equation that define money demand in this environment.

mt+1

Pt
=

β

U ′(xt)
Et

{
g(qt+1, kt+1, χt+1, Zt+1)

[
σχt+1u

′(qt+1)
gq(qt+1, kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(36)

Turning to the price-taking version, we need to replace (33), (34), (35) and (36) by

µt = βEt

{
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(xt)
ck(qt+1, kt+1, Zt+1)

}
(37)

mt

Pt
=

qtc(qt, kt, Zt)Wt

A
(38)

1 = βEt

{
U ′(xt+1)
U ′(xt)πt+1

[
σχt+1u

′(qt+1)
qt+1cq(qt+1, kt+1, Zt+1)

+ (1− σ)
]}

(39)

mt+1

Pt
=

β

U ′(xt)
Et

{
qt+1c(qt+1, kt+1, Zt+1)

[
σχt+1u

′(qt+1)
cq(qt+1, kt+1, , Zt+1)

+ (1− σ)
]}

(40)

The set of equations above determines the path of money balances, given m0 which is identical across

all households assuming an interior solution. As all households start period t with the same money balances,
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mt = Mt where Mt is the aggregate money stock, the buyers in the DM enter the CM with m̂ = 0, the

sellers with m̂ = 2M while the remaining 1− 2σ households carry m̂ = M . Looking at (2), this means that

individual labor supply depends on the status of the agent in the previous DM as the money holdings . In

particular, we have

ht =


Ht +

(Mt − 0)
PtWt

buyers

Ht +
(Mt − 2Mt)

PtWt
sellers

Ht others

(41)

where Ht is aggregate hours which we define below. This shows buyers in the DM work more than others

since they have to make up for the money they have spent and sellers work less than others. We only care

about total hours Ht in equilibrium and will not track individual ht.

2.2 Firms in the Centralized Market

The setup of the centralized market resembles that of a New Keynesian DSGE model. Production is carried

out by two types of firms in the CM: final good producers combine differentiated intermediate goods. In-

termediate goods producing firms hire labor and capital services from the households to produce the inputs

for the final good producers. To introduce nominal rigidity we follow Calvo (1983) by assuming that only a

constant fraction of the intermediate goods producers is able to re-optimize prices.

2.2.1 Final Good Producers

The final good Yt in the CM is a composite made of a continuum of intermediate goods Yt(i):

Yt =
[∫ 1

0

Yt(i)
1

1+λ di

]1+λ
. (42)

Note that the elasticity is (1 + λ)/λ. λ = 0 corresponds to the linear case and λ → ∞ corresponds to the

Cobb-Douglas case. We will constrain λ ∈ (0,∞). The final good producers buy the intermediate goods on

the market, package them into Yt units of the composite good, and resell them to consumers. These firms

maximize profits in a perfectly competitive environment. Their problem is:

max
Yt,Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di s.t. (42) (43)

taking Pt(i) as given. The first-order condition is:

Pt(i) = PtY
λ

1+λ

t Yt(i)−
λ

1+λ . (44)

Therefore,

Yt(i) =
(
Pt(i)
Pt

)− 1+λ
λ

Yt. (45)
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Combining this condition with the zero profit condition one obtains an expression for the price of the

composite good:

Pt =
[∫ 1

0

Pt(i)−
1
λ di

]−λ
. (46)

2.2.2 Intermediate Goods Producers

Intermediate goods producers, indexed by i, use the following technology:

Yt(i) = max
{
ZtKt(i)αHt(i)1−α −F , 0

}
. (47)

Firm i’s profit is given by:

Πt(i) = Pt(i)Yt(i)− PtWtHt(i)− PtR
k
tKt(i). (48)

All firms take factor prices Wt and Rkt , as well as the prices of the other firms and the aggregate price level

as given. We distinguish two types of firms: (i) firms are allowed to re-optimize their price Pt(i) and (ii)

firms that are not able to re-optimize their price. Firms that are not allowed to choose Pt(i) optimally,

satisfy the demand for their differentiated good (45) and choose capital and labor inputs to minimize costs.

Firms that are able to change their price in an optimal fashion maximize future expected profits. The profit

maximization problem can be solved in two steps. First, given a desired level of output Yt(i) we determine

the cost-minimizing choice of factor inputs. Second, we determine the profit maximizing price Pt(i) and

quantity Yt(i) that satisfies (45).

Cost minimization subject to (47) yields the conditions:

PtWt = µt(i)Pt(i)(1− α)ZtKt(i)αHt(i)−α (49)

PtR
k
t = µt(i)Pt(i)αZtKt(i)α−1Ht(i)1−α, (50)

where µt(i) is the Lagrange multiplier associated with (47). In turn, these conditions imply:

Kt(i) =
α

1− α

Wt

Rkt
Ht(i).

If we integrate both sides of the equation with respect to di and define Kt =
∫
Kt(i)di and Ht =

∫
Ht(i)di

we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α

Wt

Rkt
Ht. (51)

Thus, the aggregate capital labor ratio is a linear function of the ratio of factor prices.

Total variable cost (V Ct) is given by

V Ct(i) =
(
Wt +Rkt

Kt(i)
Ht(i)

)
Ht(i) =

(
Wt +Rkt

Kt(i)
Ht(i)

)
Z−1
t

(
Kt(i)
Ht(i)

)−α
Y vt (i),
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where Y vt (i) = ZtKt(i)αHt(i)1−α is the “variable” part of output Yt(i). The real marginal cost MCt is the

same for all firms and equal to:

MCt =
(
Wt +Rkt

Kt(i)
Ht(i)

)
Z−1
t

(
Kt(i)
Ht(i)

)−α
(52)

= α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t .

Conditional on the optimal choice of factor inputs, nominal profits as a function of output Yt(i) and prices

Pt(i) can then be expressed as

Πt(i) = [Pt(i)− PtMCt]Yt(i)− PtMCtF . (53)

Since the last part of this expression does not depend on the firm’s decision, it can be safely ignored

subsequently.

We assume that prices are sticky as in Calvo (1983). Specifically, each firm can re-adjust prices with

probability 1 − ζ in each period. We depart from the Calvo setup in assuming that for those firms that

cannot adjust prices, Pt(i) will increase at the geometric weighted average of the fixed rate π∗∗ and of last

period’s inflation πt−1 with weights 1− ι and ι, respectively. We define the price adjustment factor

πadjt+s|t =
s∏
l=1

πιt+l−1π
1−ι
∗∗

and adopt the convention that πadjt|t = 1. Firms that are unable to re-optimize their prices simply satisfy

the demand for their product according to (45). For those firms that are allowed to re-optimize prices, the

problem is to choose a price level P ot (i) that maximizes the expected present discounted value of profits in

all states of nature where the firm is stuck with that price in the future:

max
P o

t (i)
IEt

[ ∞∑
s=0

ζsβsΞpt+s|t
[
P ot (i)πadjt+s|t − Pt+sMCt+s

]
Yt+s(i)

]
(54)

s.t. Yt+s(i) =

[
P ot (i)πadjt+s|t

Pt+s

]− 1+λ
λ

Yt+s,

where βsΞpt+s|t is the time t value of a dollar in period t + s for the consumers. We assume that markets

are complete so that βsΞpt+s|t is the same for all consumers. It is shown in the Appendix that the first-order

conditions can be reduced to the following set of equations:

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(55)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(56)

F (1)
t = (1 + λ)F (2)

t (57)
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Here we are considering only the symmetric equilibrium in which all firms that can readjust prices will choose

the same P ot (i). In the above formula, we dropped the i index and used the definitions pot = P ot /Pt and

πt = Pt/Pt−1. Equations (55) to (57) essentially determine the optimal price pot as a function of marginal

costs.

2.2.3 Aggregate Price Dynamics in the CM

From (46) it follows that:

Pt =
[
(1− ζ)(P ot )−

1
λ + ζ(πιt−1π

1−ι
∗∗ Pt−1)−

1
λ

]−λ
. (58)

Hence,

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
. (59)

The system of equations (55) - (57) and (59) links inflation to real marginal costs and output and hence

defines a so-called New Keynesian Phillips curve.

2.3 Goverment Spending and Fiscal Policy

In period t, the government in this model collects a nominal lump-sum tax Tt, spends Gt on goods from the

centralized market, issues one-period nominal bonds Bt+1 that pay Rt gross interest tomorrow and supplies

the money to maintain the interest rate rule. It satisfies the following budget constraint every period

PtGt +Rt−1Bt +Mt = Tt +Bt+1 +Mt+1. (60)

We assume that government spending Gt evolves exogenously and will provide further details below.

2.4 Aggregate Resource Constraint and National Accounting

We begin by adding the households’ CM budget constraints (remember that there are three types of house-

holds as they enter the CM depending on their status in the previous DM) and the government budget

constraint to obtain

PtXt + PtIt + PtGt = PtWtHt + PtR
k
tKt + Πt. (61)

Now consider firms’ profits in the CM:

Πt =
∫
Pt(i)Yt(i)di− PtWt

∫
Ht(i)di− PtR

k
t

∫
Kt(i)di

=
∫
Pt(i)Yt(i)di− PtWtHt − PtR

k
tKt

= PtYt − PtWtHt − PtR
k
tKt.
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where the last equality follows from the zero profit conditions for the final goods producers. Combining the

expression for profits with (61) we get

Xt + It +Gt = Yt, (62)

which is the resource constraint in the CM. Since there is no savings in the DM (and goods are perishable),

there is a trivial resource constraint that sets consumption equal to output. The relationship between output

and the aggregate labor and capital inputs in the CM is given by

Ȳt = Zt

∫
Kα
t (i)H1−α

t (i)di−F = ZtK
α
t H

(1−α)
t −F .

where Ȳ is the output of the intermediate good producers and the second equality follows from the fact that

the optimal capital labor ratio Kt(i)/Ht(i) only depends on relative factor prices which are common to all

firms. The relationship between Ȳt and Yt is given by

Ȳt = Yt

∫ (
Pt(i)
Pt

)− 1+λ
λ

di. (63)

using (45) or

YtDt = ZtK
α
t L

(1−α)
t −F . (64)

where

Dt ≡
∫ (

Pt(i)
Pt

)− 1+λ
λ

di (65)

measures the extent of price dispersion across firms. Unless Pt(i) = Pt for all firms, Dt will be greater than

unity, which in turn implies the economy will produce inside its production possibilities frontier. We will

refer to this as the price-dispersion distortion in our welfare analysis.

In order to understand the evolution of Dt, we need to determine the distribution of prices Pt(i) in the

CM. A fraction 1− ζ of firms was allowed to re-optimize their prices in period t. For these firms Pt(i) = P ot .

A fraction ζ(1− ζ) of firms re-set their prices in period t− 1. Hence, for these firms Pt(i) = πιt−1π
1−ι
∗∗ P ot−1.

Overall, we obtain

Dt = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

. (66)

We verify in the Appendix that Dt follows the law of motion:

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (67)

To summarize, aggregate prices and quantities in the CM are given by Pt and Yt. As is standard in

New-Keynesian DSGE models, if we add an interest rate feedback rule to the system, we will only determine

period to period changes in the aggregate price level, that is, inflation πt, but not the level Pt.
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Real and nominal output in the DM are given by σqt and σMt, respectively. Hence, we can define the

price level in the DM as

PDMt = Mt/qt. (68)

Total nominal output in our model economy is given by

Y(n)
t = YtPt + σMt. (69)

Using the final good produced in the CM as numeraire, we can express real output as

Yt = Yt + σMt/Pt = Yt + σMt/πt, (70)

where Mt = Mt/Pt−1 are real money balances, in terms of the CM output.

To take the model to the data we will now construct a GDP deflator and a measure of real output that

is consistent with this GDP deflator. Following NIPA conventions, we use a Fisher price index. However,

to simplify the analysis we replace time-varying nominal shares by steady state shares. The DM share of

nominal output in the steady state is

s∗ =
σM∗

Y∗π∗ + σM∗
. (71)

Define πDMt = PDMt /PDMt−1 and let

πGDPt = ln
PGDPt

PGDPt−1

= (1− s∗) lnπt + s∗ lnπDMt . (72)

Thus,

PGDPt = PGDP0

t∏
τ=1

π1−s∗
τ (πDMτ )s∗ . (73)

We now define real GDP as

YGDPt =
Y(n)
t

PGDPt

= Yt
Pt

PGDPt

. (74)

It can be verified that up to a first-order approximation changes in real GDP evolve according to a

Fisher quantity index with fixed (steady state) weights. Let X∗ denote the steady state of a variable Xt and

X̃t = lnXt/X∗. Log-linearizing and differencing our expression for real output in terms of the CM good

yields

∆Ỹt = (1− s∗)∆Ỹt + s∗[∆M̃t −∆π̃t].

Here ∆ denotes the temporal difference operator. According to the definition of prices in the DM

π̃DMt = ∆M̃t −∆q̃t.

Combining the two previous equations leads to:

∆Ỹt = (1− s∗)∆Ỹt + s∗[∆q̃t + π̃DMt − π̃t].
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Thus,

∆ỸGDPt = ∆Ỹt + π̃t − (1− s∗)π̃t − s∗π̃
DM
t = (1− s∗)∆Ỹt + s∗∆q̃t. (75)

Hence, the level of GDP in period t is given by

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + [ỸGDP0 − (1− s∗)Ỹ0 − s∗q̃0].

Under the normalizations PGDP0 = 1 and P0 = 1 we obtain

ỸGDP0 = (1− s∗)Ỹ0 + s∗(M0 − π0).

We can therefore further simplify our expression for GDP to

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + s∗(M̃0 − π̃0 − q̃0). (76)

2.5 Monetary Policy

Monetary policy is represented by an interest-rate feedback rule

Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πGDPt

π∗

)ψ1 (Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) , (77)

where R∗ is the gross steady state nominal interest rate, Y∗ is the steady state of real GDP (in terms of the

CM good), and π∗ is the steady state (or target) inflation. It can be verified that steady state DM, CM, and

GDP inflation are equal. Finally, εrt is a monetary policy shock.

2.6 Aggregate Shocks

Government expenditures as a fraction of real GDP (both the DM and CM output, appropriately aggregated)

Yt, denoted by gt are assumed to be exogenous:

We consider four aggregate disturbances in our model economy. Zt is the random productivity term

that effects production in both markets and gt is a shock that shifts government spending according to

Gt = (1− 1/gt)Yt. (78)

We assume that although government consumption goods are purchased in the centralized market, the

overall amount is a stochastic fraction of total GDP. The shock εrt captures unanticipated deviations from

the systematic part of the monetary policy rule. Finally, we have a money demand shock, χt, which we

model as a taste shock in the DM. We define

Z̃t = ln (Zt/Z∗) , χ̃t = ln (χt/χ∗) , g̃t = ln (gt/g∗) ,
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where Z∗, χ∗ and g∗ are steady state values / means of the respective random variable. We assume that the

exogenous disturbances evolve according to AR(1) processes:

Z̃t = ρzZ̃t−1 + σzε
z
t , χ̃t = ρχχ̃t−1 + σχε

χ
t , g̃t = ρg g̃t−1 + σgε

g
t

and we collect all innovations in ε = [εzt , ε
χ
t , ε

g
t , ε

r
t ] which follows a multi-variate standard normal distribution.

The law of motion for the exogenous processes completes the specification of the search-based DSGE

model. The equilibrium conditions are summarized in the Appendix. We derive the deterministic steady

state for this model and use a log-linear approximation to its dynamics to form a state-space representation

that is used for the Bayesian estimation.

3 A Money-in-the-Utility-Function Model

The specification of the MIU model closely resembles search-theoretic model described in the previous section.

The production side of the MIU economy is identical to the production sector in the centralized market.

Moreover, fiscal and monetary policy are identical as well and the economy is subject to the same set of

stochastic shocks. We only discuss the modifications to the household’s problem.

Since there is no decentralized market, households’ consumption is restricted to xt. The instantaneous

utility function is of the form

Ut = U(xt)−Aht +
χt

1− νm

(
mt

Pt

A

Z
1/1−α
∗

)1−νm

, (79)

The third term on the right-hand-side of (79) captures the value of holding real money balances. The

scaling by A/Z
1/(1−α)
∗ can be interpreted as a re-parameterization of χt, which has the effect that steady

state velocity stays constant as we change A and Z. Here mt are the (pre-determined) money holdings at

the beginning of the period, and Pt is the price at which the final good is sold in period t. Using again

Wt(mt, kt, bt, St) to denote the value function of the household in the centralized market, the household’s

problem is given by

Wt(mt, kt, it−1, bt, St)

= max
xt,ht,mt+1,kt+1,it,bt+1

U(xt)−Aht +
χt

1− νm

(
mt

Pt

A

Z
1/1−α
t

)1−νm

+ βEWt+1(m+1, k+1, it, b+1, S+1)


s.t. Ptxt + Ptit + bt+1 +mt+1 ≤ PtWtht + PtR

k
t kt + Πt +Rt−1bt + m̂t − Tt (80)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (81)

To a large extent, the optimality conditions for the households resemble the ones derived for the cen-

tralized market in the search-based model. In fact, the labor supply function, the Euler equation for Bond
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holdings, the evolution of the shadow price of installed capital, and the capital accumulation equation are

identical to Equations (29) to (32). The Euler equation for capital stock holdings is given by

µt = βEt

{
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]}
, (82)

which is identical to (33) except that the term related to the DM does not appear. Similarly, the Euler

equation for money in (34) is replaced by

U ′(xt)
Pt

= βEt

U ′(xt+1)
Pt+1

+
χt+1

Pt+1

(
A

Z
1/1−α
t+1

)1−νm (
mt+1

Pt+1

)−νm

 (83)

which implies the money demand equation(
mt+1

Pt

)νm

=
βRt

U ′(xt)(Rt − 1)
Et

[(
A

Z
1/1−α
∗

)1−νm χt+1

π1−νm
t+1

]
. (84)

Equations (82) and (84) replace the optimality conditions (33) and (35) in the search-based model. Notice

that mt+1 has been chosen in period t based on the realization of time t shocks. Hence, we detrend it by Pt

and define Mt+1 = mt+1/Pt with the understanding that Mt+1 only depends on realizations of shocks dated

t and earlier. Since Mt+1 does neither enter in the firms’ problems nor is it included in the interest-rate

feedback rule of the central bank, the model has a block-diagonal structure: the determination of output,

inflation, and interest rates does not depend on the money stock. Since our MIU model is a one-sector model

without a decentralized market, aggregate output and prices are simply Yt = Yt and Pt = Pt.

The equilibrium conditions for the MIU model are summarized in the Appendix. As we did for the search-

based model, we derive the deterministic steady state for the MIU model and use a log-linear approximation

to its dynamics to form a state-space representation that is used for the Bayesian estimation.

4 Empirical Analysis

We now turn to the estimation of the search-based and the MIU model. We use a Bayesian approach discussed

in detail in An and Schorfheide (2007). We begin by describing the data set (Section 4.1). We then proceed

by specifying the functional forms we use (Section 4.2) and the specification of the prior distributions used

for the parameters of the two DSGE models (Section 4.3). Next, we present the parameter estimates as

well as implied steady states, (Section 4.4) and discuss dynamics via variance decompositions, and impulse

responses (Section 4.5). Finally we discuss the implications of both models for money demand in section

Section 4.6.
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4.1 Data

Our empirical analysis focuses on quarterly U.S. postwar data on aggregate output, inflation, interest rates,

and (inverse) velocity of money.6 Unless otherwise noted, the data are obtained from the FRED2 database

maintained by the Federal Reserve Bank of St. Louis. Our measure of per capita output is defined as

real GDP (GDPC96) divided by civilian noninstitutional population (CNP16OV). The population series

is provided at a monthly frequency and converted to quarterly frequency by simple averaging. Since the

quarterly flow statistics reported in the National Income and Product Accounts are annualized, we divide real

GDP by 4. The models presented in Sections 2 and 3 are specified to capture stationary fluctuations around

a deterministic steady state. Hence, we take the natural log of per capita output and extract a deterministic

trend by an OLS regression over the sample period 1959:I to 2006:IV. We then scale the deviations from

the linear trend by 100 to convert them into percentages and relate them to log deviations from the steady

state in the models. Inflation is defined as the log difference of the GDP deflator (GDPDEF) and multiplied

by 400 to obtain annualized percentages. Our measure of nominal interest rates corresponds to the Federal

Funds Rate (FEDFUNDS). The Fed Funds Rate is also provided at monthly frequency and we use simple

averaging to convert it to quarterly frequency.

We incorporate money as an observable by using inverse velocity. As a measure of money we use the

sweep-adjusted M2S series provided by Cynamon, Dutkowsky and Jones (2006). This series is provided at

monthly frequency without seasonal adjustment. We apply the EVIEWS default version of the X12 filter

to perform the seasonal adjustment and then use the observation for the last month of every quarter. We

divide the M2S series by quarterly nominal output to obtain inverse velocity. We take natural log of inverse

velocity, scale it by 100 to relate to the log deviations from 100 ∗ ln(M∗/Y∗) in the models. We plot M1 and

M2 inverse velocity (not scaled by 100, measured per quarter) from 1960 to 2005 in Figure 1. Notice that M1

is falling between 1960 and 1980 and increasing afterwards. The trends in M1 are presumably due to factors

such as payment technologies, which do not appear in our theoretical models. Trends in M2 inverse velocity,

on the other hand, are less pronounced. While we believe that the ideal measure of money supply for our

search-based models is M1,7 we opt for M2 velocity for our empirical analysis because, at least after 1984,

the series seems roughly consistent with a model that implies that velocity evolves like a stationary, albeit

fairly persistent, process around a constant mean. For the subsequent estimation we restrict the sample

period to 1984:I to 2005:IV.

6Instead of using real money balances directly, we use inverse velocity, i.e. nominal output divided by nominal money

balances as one of our observables.
7While not explicitly present in our model, checking accounts could be introduced.
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4.2 Functional Forms

We use the following functional forms in our estimation:

u (q) = ln (q + κ)− ln(κ), U (x) = B ln(xt), f (e, k) = e1−αkα

where κ > 0 is a small constant to make sure qt = 0 can be handled8 and B determines the relative weight of

the utility from consuming the CM and DM goods. We use a natural logarithm for both utility functions and

use the same Cobb-Douglas production function as the function used by the intermediate good producers in

the CM as these are necessary conditions for balanced-growth in this model. The functional form assumption

for f(e, k) implies that

c (q, k, Z) =
1

Z1/(1−α)
q1/(1−α)k−α/(1−α).

4.3 Restricted Parameters and Prior Distributions

A goal of our empirical analysis is to compare the propagation of shocks and the steady state welfare

implications of the search-based DSGE model and the MIU model. Hence, it is desirable to restrict a subset

of the model parameters prior to estimation. These restrictions, which apply to both models, are reported

in Table 1. We fix π∗ at the average inflation rate in our sample. Moreover, we let rA be equal to the

difference of the average Federal Funds Rate and the average inflation rate between 1984 and 2005 and let

β = 1/(1 + rA/400). Using these parameter values for both DSGE models implies that the steady state

inflation and nominal interest rates are equal to the post-1983 sample averages. We fix the depreciation

rate δ at 0.014. This value is obtained as the average ratio of fixed asset depreciation and the stock of fixed

assets between 1959 and 2005.9 We set g∗ = 1.2, which is computed from the average ratio of government

consumption plus investment and GDP. The deviations of output from a linear trend in our post-1983

sample are highly persistent. To capture this persistence we let ρz = 0.98, a value that is consistent with the

stationarity assumption embodied in our theoretical models as well as the observed persistence in the data.

We also impose that the estimated models agree on the conduct of post-1983 monetary policy. To this

end, we conduct a preliminary estimation of the MIU model with capital without the money series. The

mechanics of this estimation are identical to those of the subsequent estimation of the full model. This

preliminary analysis yields ψ̂1 = 1.82, ψ̂2 = 0.18, and ρ̂R = 0.78. We fix the policy rule coefficients at these

8We use κ = 0.0001 in our empirical implementation.
9We use NIPA-FAT11 (current cost net stock) and NIPA-FAT13 (current cost depreciation) for fixed assets and consumer

durables).
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estimates for the subsequent analysis with both models.10 Moreover, we let F = 0 (no fixed costs) and

π∗∗ = 1, meaning that there is no static indexation for the firms that cannot change their prices.

In order to have a fair comparison between the two models, especially in terms of welfare, we normalize

three parameters – two arbitrarily at unity and one at the value given by the data. We normalize steady

state real GDP in both models to be unity and we normalize the mean of the money demand shocks in both

models to be unity. Average inverse labor productivity in our sample is 0.03 (a worker produces about $33

of real GDP in one hour) and we use this value in both our models for H∗/Y∗. Given the two restrictions

that we impose on labor productivity, real GDP and the fact that we use inverse velocity in our estimation

means we endogenously determine the values of our model parameters A, B and Z∗.

The marginal prior distributions for the remaining parameters of the two models are summarized in

Table 2. The priors for parameters common to both models are identical except for λ as we explain below.

The prior for inverse velocity is based on pre-sample information. Similarly, the prior for α is chosen so that

the implied prior for the labor share is consistent with pre-sample evidence. We use a uniform prior on the

indexation parameter ι and our prior for ζ is broadly consistent with micro-evidence on the frequency of price

changes. The prior distributions for ρg and ρχ reflect the belief that the government spending (demand)

disturbance and the money demand shock are fairly persistent. The remaining priors were loosely chosen

such that the implied distribution of the variability of the endogenous variables is broadly in line with the

pre-sample variability of the observed series. We assume that all the parameters listed in Table 2 are a priori

independent. Since we fix the policy rule parameters at values that are far away from the boundary of the

determinacy region, no further adjustment of the prior is needed.

There are two additional parameters in the search-based model, probability of single-coincidence meeting

σ and in the bargaining version, the bargaining power of the buyer θ.11 While it is difficult to fully disentangle

the effect of these parameters, it is instructive to rewrite the steady state share of the decentralized market

as follows:

s∗ = σ
1
π∗

M∗

Y∗
.

Since σ relates velocity to the share of the decentralized market, a prior for σ is linked to prior beliefs about

the DM share. The parameter θ affects the bargaining power of the seller in the decentralized market and

hence the markup and we use a uniform prior over the full range (0, 1].

In addition to the normalizations we explained above, we want the two models to be similar in terms

of two more steady state implications: the investment-output ratio (or equivalently capital-output ratio)

10Ex ante, we do not want the parameters for the policy rule to be different across the two models as we want to be able

to compare them, holding monetary policy fixed. It turns out when we free policy rule parameters to be estimated in both

models, the parameter estimates we get are very similar.
11Since according to our model σ ∈ [0, 1/2] we introduce the transformed parameter σ̃, which lives on the unit interval.
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and the average economy-wide markup. To achieve this we follow the approach proposed in Del Negro and

Schorfheide (2008). Specifically, we combine the marginal prior distributions reported in Table 2 and denoted

as p̃(ϑ) with a function f(ϑ) that reflects beliefs about the investment output ratio and the economy-wide

markup. Here the vector ϑ stacks the parameters of the DSGE model. The overall prior is given by

p(ϑ) ∝ p̃(ϑ) exp
{
−1

2

[
(I∗(ϑ)/Y∗(ϑ)− 0.16)2

0.0052
− (mu(ϑ)− 0.15)2

0.012

]}
I{ϑ ∈ ΘD}, (85)

where ∝ signifies proportionality, I∗ and Y∗ denote the steady states of investment and output (as a function

of ϑ), mu(ϑ) is the economy-wide mark-up, and I{ϑ ∈ ΘD} is an indicator function that is one if ϑ

falls in the region of the parameter space in which the linearized search-based model has a unique stable

rational expectations solution.12 The adjustment function down-weights parameter combinations for which

the investment output ratio deviates from 0.16 and the economy-wide mark-up deviates from 15%. We use

p(ϑ) as the prior for both models.13

Turning to why we use different priors for λ across the two models, note that our goal is to use priors

in both models that imply that the economy-wide mark-up is 15%. We use the function f(·) to induce

this prior. In the MIU model the economy-wide mark-up equals λ. Hence, the f(·) function in conjunction

with a prior density for λ that is equal to one on the unit interval implements our a priori belief. In the

search-based model the economy-wide markup is a weighted average of the mark-ups in the centralized and

decentralized market. This weighted average enters the f(·) function. To incorporate the belief that the

mark-up in the centralized market is not too different from 15%, we combine f(·) with a Gamma density

function for λ with mean 15% and standard deviation of 0.5%.

4.4 Parameter Estimates and the Implied Steady States

We report prior and posterior means and 90% credible intervals for the parameters of the three models in

Tables 3, 4 and 5. The posterior is obtained by combining the prior distribution described in the previous

subsection with the likelihood function derived from the state-space representations of the linearized DSGE

models. We then use a random-walk Metropolis algorithm to generate draws from the posterior distribution

of the parameters. To make inference about steady states, impulse responses, and variance decompositions,

we convert the parameter draws into the statistics of interest. Further technical details are described in An

and Schorfheide (2007).

The parameters ζ and ι determine the shape of the Phillips curve. From the search-based model we

obtain a posterior mean estimate of the Calvo parameter, ζ̂ = 0.695 for the bargaining version and ζ̂ = 0.801
12For the MIU model, mu(ϑ) is simply equal to λ while in the search-based model it is a weighted average between λ and

the markup in the DM.
13Draws from this prior can be generated using the random-walk Metropolis algorithm described in An and Schorfheide

(2007). The normalization constant can be computed using Geweke’s (1999) harmonic mean estimator.
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for the price-taking version. In both versions there is some dynamic indexation, ι̂ = 0.268 in the bargaining

version and ι̂ = 0.117 in the price-taking version. Because of the nonzero markup in the DM in the bargaining

version, the CM markup needs to be smaller than 0.15 at λ̂ = 0.094 in order for the economy-wide markup

to be close to our target of 0.15 while since there is no markup in the DM for the price-taking version, λ is

substantially higher at λ̂ = 0.238 . Finally, the two parameters specific to the search-based model are in line

with our priors and independent calibration results in AWW.14

Comparing some of the common parameters of interest across the MIU and search-based models, we see

that price rigidities are strongest in the price-taking version, followed by the MIU model and the bargaining

version but all of them are in a reasonable range of estimates from past studies.15 The implied average

duration of price stickiness are 3.3 quarters, 5 quarters and 4.1 quarters for the search-based model with

bargaining and price-taking and the MIU model, respectively. Moreover, the dynamic indexation in the

MIU model is considerably lower than the search-based models at ι̂ = 0.05. In all models, we obtain a

similar estimate of the adjustment cost parameter which is quite large, reducing the volatility of the return

to capital and dampening its effect on the marginal costs that enter the Phillips curve relationship. α̂ is

estimated to be significantly larger in the bargaining version of the search-based model due to the lower value

of investment-output ratio that results in this model at the more conventional α = 0.28 due to the holdup

problems related to investment. In order to reduce the penalty coming from our target of investment-output

ratio, α needs to be higher.

The implied posterior distribution of the steady states is reported in Table 6. As we explained in

Section 4.3, one of our goals in the estimation of our models was to have them display similar long-run

characteristics, which are in line with the U.S. post-war experience. The first panel of the table reports the

marginal distributions of important steady-state variables for the two models. All of these distributions are

centered very close to our targets and they are fairly tight. This will enable us to make welfare analysis using

these models which will be comparable across models. The second panel of the table reports the distributions

of some other endogenous objects of interest. We see that about a third of economic activity takes place in

the DM and the average markup in the DM for the bargaining version is about 0.27, roughly three times

the estimated markup in the CM.

Finally, we turn to the issue of overall time series fit. As we report in Tables 3, 4 and 5, the marginal

log-likelihood values for our models are -441.1 for the MIU model, -501.3 for the search-based model with

price-taking, and -503.0 for the search-based model with bargaining. Thus, someone placing equal prior

probabilities on the models, would conclude that the log odds of the MIU model versus the search-based

14In AWW, θ was calibrated to be around 0.75. This somewhat lower value, which is needed for a higher markup in the DM

can be attributed to the lower share of the DM in AWW due to using M1 as the measure of money and the competitive pricing

in the CM which puts all the burden of matching the aggregate markup to the DM.
15For example, Christiano, Eichenbaum and Evans (2005) use ζ = 0.6.
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model with bargaining are exp[61.9].16 This result is not surprising in light of Ireland (2004)’s finding

that the data overwhelmingly rejects non-separabilities in the MIU model when money is included as an

observable, as the search-based model is essentially a non-separable model. Our MIU has a block-recursive

structure, which insulates output, inflation, and interest rates from money demand shocks. Thus, as long

as the correlation between real money balances and the remaining variables is fairly weak in the data, the

separable utility function of the MIU model allows the money demand shock to capture the fluctuations

in real money balances without compromising the fit for any other variable. A comparison of in-sample

root-mean-squared-errors suggests that the MIU model is more successful in tracking velocity than the

search-based model. The goodness of the in-sample predictions of the other three series is very similar across

MIU and search-based models.

We will revisit this issue in the next section.

4.5 Dynamics

We now turn to exploring the dynamics of the two models. The unconditional variance decompositions for

output, inflation, Federal Funds Rate and real money balances associated with the two estimated models are

reported in Table 7. Most of the fluctuations of output, inflation, and the Federal Funds Rate are driven by

the highly persistent technology shock. Neither in the MIU model nor in the search-based model, monetary

policy shocks play an important role for the overall variability of output, inflation, and the Federal Funds

Rate. Due to the block-triangular structure of the MIU model, money demand shocks have no effect on

output, inflation, and the interest rate. However, money demand shocks in the MIU model explain almost

80% of the variance of the monetary aggregate. We interpret this as a disconnect between fluctuations in

money and the shocks that drive output and inflation.

The estimated search-based model produces a tighter link between technology shocks and monetary

aggregates: about 70% of the variance of real money balances is due to technology shocks in both versions.

Money demand shocks, modelled as shocks to the taste for goods produced in the decentralized market,

play a much smaller role for the fluctuations of real money balances. They explain only about 23% of the

variation.

Due to the highly persistent technology shock much of the unconditional variance of the endogenous

variables is generated at low frequencies and therefore the technology shock dominates the variance decom-

positions. If we restrict our attention to business-cycle frequencies the technology shock is somewhat less

important. Variance decompositions at business cycle frequencies are reported in Table 8. We again see

16The overall fit of the bargaining and the price taking model is very similar, albeit the log odds favor the price taking model

by a slight margin.
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that the money demand shock explains over 70% of the fluctuations in real money balances while for the

search-based model this number is about 50% and the technology shock still plays a more significant role in

the latter. It is also noteworthy that even in the business-cycle frequencies, the money demand shock plays

a somewhat important role (over 10%) in capturing fluctuations in output and inflation.

Revisiting the issue of fit from the previous section, it is clear from these two tables that the money

demand shock has no impact on any variable other than real money balances where it explains about 75%

of the fluctuations. Thus we conclude that its block-triangular structure allows the MIU model to capture

the fluctuations in real money balances with the money demand shock at not cost in terms of loss of fit in

the three other variables. This is not the case for the search-based model where the money demand shock

effects all other variables and apparently fluctuations in the money demand shock which would enable the

search-based model match the fluctuations in real money balances comes at a cost of reduced fit in other

variables.

To emphasize the link between the money demand and technology shocks and some of the key variables

in our model, we compute the impulse-response dynamics for the two models, which are depicted in Figure 2.

Focusing first on an impulse to the technology shock, for both models we see an initial jump and sustained

increase in real GDP resulting from increased investment in capital (now shown). Some of the increase

in the search-based model is a result of increased DM production. An increase in the technology shock

reduced current and future marginal costs, and since inflation can be represented as the expected sum of

discounted future marginal costs, this in turn lowers inflation. The increase in output above steady state and

reduction in inflation below the target inflation rate reduces the Fed Funds rate through the interest-rate

feedback rule where apparently the effect of the latter dominates the effect of the former. As a result of these

easing of monetary policy, real money demand increases, counteracting the effect of lower inflation. So far,

qualitatively both models yield similar responses but because the technology shock effects the desirability

of the DM good (by making it cheaper to produce) its demand increases and this gives an additional boost

to real money demand since households use money to purchase the DM good. This explains the extra

0.4% increase in real money balances and the increased importance of the technology shock for explaining

fluctuations in real money balances in the search-based model.

Turning to the money demand shock, in the MIU model clearly it has no effect on any of the variables

except for real money balances. In the search-based model, on the other hand, a shock to money demand

increase real GDP through increased consumption in the DM which also reduces inflation. The net effect

of these changes on the Fed Funds rate is a decrease and this increases money demand. Money demand

is almost twice as responsive on impact in the search-based model compared to the MIU model. Thus, we

see that capturing fluctuations in real money through the money demand shock comes at a cost of creating

fluctuations in other variables in the search-based model.
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4.6 Money Demand

We now turn to investigating various aspects of money demand across the two models as it is the key

difference between them. We begin by simulating the models conditional on the posterior mean parameter

estimates and creating scatter plots of log inverse velocity and nominal interest rates, depicted in Figure 3.

Lucas (2000) argues that such plots trace out money demand functions under the assumption that the

income elasticity of money demand is equal to one. The slope of a hypothetical regression line fitted to

the observations would correspond to the semi-elasticity of money balances to interest rates. In the context

of our models there are two major caveats to such an interpretation: the money demand functions have a

more complicated formand the interest rate feedback rule makes money supply endogenous. Nonetheless,

one can ask the question whether velocity and interest rate data generated by the estimated model have

similar features as the actual data.

In the two panels of Figure 3 we overlay actual data (red circles) and 500 model generated observations

(green dots). For the search-based model (bargaining) the artificial observations inherit the negative cor-

relation between inverse velocity and interest rates that is apparent in the U.S. data. The estimated MIU

model, on the other hand, generates a slight positive correlation, which is at odds with the actual data.

The variation in the model generated data is due to four structural shocks: technology, government

spending, money demand, and monetary policy. We proceed by simulating the DSGE models using one

shock at a time. The resulting velocity-interest rate pairs are plotted in Figures 4 and 5. The lower-right

panels of the two figures make clear that according to our estimates most of the variability in the interest

rate is generated by the endogenous response to technology shocks. This is consistent with the variance

decompositions reported in Table 7. The impulse responses in depicted Figure 2 show that in the search-

based models real money balances increase by more than real GDP in response to a technology shock, while

interest rates fall. This creates the negative correlation between inverse velocity and interest rates apparent

from the scatter plot in Figure 4. To the contrary, in the MIU model real money balances increase by less

than real output in response to a technology shock, which creates a positive correlation between inverse

velocity and interest rate, as can be seen in Figure 5. The other three shocks create negative correlations of

different degrees in both the search-based and the MIU model. Due to the block-triangular structure of the

MIU model, the money demand shock has no effect on nominal interest rates.

So far, we have only explored contemporaneous correlations between inverse velocity and interest rates.

In Figure 6 we consider correlations at different leads and lags. Moreover, we are taking uncertainty about

the DSGE model parameters into account. Formally, the bands in the figure correspond to pointwise 90%

intervals of the posterior predictive distribution. Draws from this distribution are obtained by repeatedly

sampling DSGE model parameters from their posterior distribution, simulating sample paths conditional on
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these parameter draws, and computing the correlations of interest. The solid line in the figure represents

correlations calculated from post 1983 U.S. data. Actual sample correlations that fall into the far tails of

the posterior predictive distribution can be interpreted as evidence of model misspecification. The left-hand-

side panels of Figure 6 are computed based on raw data, whereas the right-hand-side panels are based on

HP-filtered observations that isolate variation at business-cycle frequencies.

As was apparent from Figure 3, the contemporaneous correlation between inverse velocity and interest

rates is slightly negative in our sample, about -0.2. This negative correlation is reproduced by the search-

based models but not by the MIU model. In fact, the observed correlations fall onto the boundary of the

posterior predictive interval associated with the MIU model and in the center of the predictive interval

associated with the search model. If we isolate the business-cycle frequency variation the bands of the

predictive distributions become narrower. Again the search model does a better job in capturing the negative

contemporaneous correlation of inverse velocity and interest rates. All models have unfortunately difficulties

reproducing the negative correlations at leads and lags. Figure 7 depicts posterior predictive intervals for

the correlation of inverse-velocity and output. The contemporaneous correlation in the data is near zero.

The search-based models tend to predict a positive correlation, whereas the MIU model predicts a negative

correlation. If we remove the low frequency variation from the data, the contemporaneous correlation between

inverse velocity and output becomes negative, about 0.5. Overall, the estimated MIU model does a slightly

better job in reproducing the observed money-output correlations at business cycle frequencies.

We now proceed by considering predictive distributions for coefficient estimates in money demand re-

gressions. We consider one of the specifications used by Stock and Watson (1993) and Ball (2001). Using

our notation and timing convention, the regression is of the form

ln(Mt+1/Pt) = β0 + β1 lnYt + β2R̃t + β3∆ lnYt−1 + β3∆ ln R̃t−1 + ut. (86)

For consistency with the DSGE model estimation, lnYt corresponds to linearly detrended real GDP (scaled

by 100), R̃t is the net interest rate measured in annualized percentages, and ln(Mt+1/Pt) is constructed as

the sum of log inverse velocity and detrended log real output (both scaled by 100). Thus, we are essentially

removing a common deterministic trend component from both output and real money balances prior to the

estimation of the money demand function. The coefficient β1 is the income elasticity and β2 is the semi-

elasticity of money demand with respect to interest rates. Results of the predictive check are summarized

in Table 9. Based on quarterly U.S. data from 1984 to 2005 the estimated income elasticity is 0.6 and

the interest rate semi-elasticity is about -0.3. The model-implied posterior predictive distributions for the

coefficient estimates are quite diffuse because the persistence of the technology shock makes it difficult to

estimate the money demand function coefficients precisely. Strictly speaking, the estimates obtained from

actual U.S. data are outside of the 90% bands of the predictive distribution generated by the search-based
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model and inside the bands of the predictive distribution associated with the MIU model. If we take the

probability limit (plim) of the model implied money demand estimates conditional on the posterior mean

parameter estimates we obtain plim β̂1 = 0.3 and plim β̂2 = −1.3 for the search-based model. The estimated

MIU model, on the other hand, implies a negative income elasticity of -0.1 and a smaller interest rate

semi-elasticity of -0.6.

Finally, we consider the steady state relationship between inverse velocity and the nominal interest rate

as a function of the target inflation rate. Lucas (2000) argues that there is empirical evidence that the

income elasticity of money demand is unity. To the extent that the variation in U.S. interest rates is due

to exogenous shifts in monetary policy, the correlation between inverse velocity and interest rates provides

a measure of the interest elasticity of money demand. In turn, the area under the money demand function

measures the welfare costs of inflation.

Our analysis differs from Lucas’ in the following dimensions. We agree with the observation that velocity

has been fairly stable over time, while real output has been growing. We attribute output growth to a

deterministic trend in total factor productivity that we remove prior to estimation. Both the specification

of the search-based models and the MIU model are such that along the growth path velocity exhibits no

trend. We restricted our estimation to a fairly short sample in which the target inflation rate has been quite

low and monetary policy has been fairly stable. Monetary policy is largely endogenous in our analysis as

it reacts to the state of the economy through an interest rate feedback rule. Based on our model estimates

we concluded that most of the post 1984 variation in the nominal interest rate is due to technology shocks

which shift both money demand as well as money supply.

The only exogenous variation in money supply is generated by the monetary policy shock. Arguably,

an approximation of the money demand relationship embodied in the DSGE models that is relevant for the

subsequent welfare analysis could be obtained simulating data in which the only source of variation is the

monetary policy shock. If we estimate (86) based on large samples of such model generated data, we obtain

estimates of -0.05 and -2.0 for β1 and β2 under the search-based model, and estimates of -0.2 and -0.94 for

the MIU model.

In the subsequent welfare analysis we will use the DSGE model estimates and evaluate the effects of

changes in the target inflation rate using the steady state relationships. Figure 8 traces out steady state

velocity as a function of the nominal interest rate – and hence target inflation – for the search-based models

and the MIU model. We overlay the actual observations. The circles correspond to velocity-interest rate

pairs that have been used in the estimation, whereas the crosses correspond to observations prior to 1984.

For the estimation we fixed the steady state interest rate at 5.34%. Differences in velocity given the historical

steady state interest rate are due to the slightly different estimates of ln(M∗/Y∗) across model specifications.

For interest rates between 2 and 6% the velocity predictions of the three DSGE models are quite similar.
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Below 2% and above 6% the predictions of the MIU model start to diverge from the predictions of the

search-based model. In particular the MIU model implies for interest rates greater than 8% that velocity

is increasing, whereas the search-based models predict a decrease in velocity. Which of these predictions

is more reasonable? If one is willing to interpret the 1970s as a period in which the target inflation rate

was substantially higher than post 1983, then Figure 8 can be interpreted as a pseudo-out-of-sample check.

The search-based models correctly predict the observed drop in inverse velocity, whereas the MIU model

incorrectly predicts a strong increase of inverse velocity. This is an difference between the search-based

models and the MIU model which casts some doubt on the results of the welfare experiments using the MIU

model in the next section, especially those that involve large values of inflation.

5 Welfare Experiments

In this section, we consider experiments where we change the inflation target of the central bank, π∗, which is

the inflation rate that prevails at the steady state. For the calculations in this section, we fix the parameter

values at the posterior mean estimates reported in Section 4 (see Tables 1, 3, 4 and 5).

There are five sources of changes in welfare in these experiments that are present in the search-based

model, three of which are also shared by the MIU model. First, inflation is a tax on money holdings in both

models and as inflation rises (and the nominal interest rate increases) welfare will be reduced. This logic

underlies Friedman’s prescription of a zero percent net nominal interest rate to eliminate the opportunity

cost of holding money which has come to be known as the Friedman rule. We will label this channel of

welfare loss the Friedman channel. This channel will reveal itself as a reduction in real money balances

and hence lower utility from the MIU part in the MIU model while we will see a lower q in the search-

based model, which will lower utility in the DM. Second, both models display some level of price rigidity

given by positive ζ and the fact that some firms cannot optimally change their prices create a relative price

distortion.17 This distortion is captured by the deviation of Dt in (64) from unity which would move the

economy inside the production possibilities frontier by effectively destroying some of the outputs of the

intermediate good firms. The distortion becomes more severe as the steady state inflation rate is away from

0% (in both directions), reducing welfare. We will label this channel the relative-price distortion channel.

Third, the monopolistic competition among intermediate good producers create an additional distortion in

both models. This distortion is captured by a positive markup, given by λ and by moving the real wage rate

away from the marginal product of labor, it can be thought of creating a wedge similar to a labor income tax.

We will label this channel the markup channel and will refer to the this and the previous channel collectively

17See Wolman (2001) for a more in-depth discussion of this and the next channel.
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as the New-Keynesian channel. The three channels discussed so far will be the only channels in the MIU

model and the price-taking version of the search-based model.

There are two more distortions in the bargaining version of the search-based model which are explained

in detail in AWW. To summarize, the bilateral nature of trade and the fact that the surplus in a meeting

is split by the two parties in the DM create two holdup problems: the buyers do not bring in the optimal

amount of money (a money demand holdup problem) and the sellers do not bring in the optimal amount

of capital (an investment holdup problem). These holdup problems are aggravated as inflation increases as

this further reduces the payoffs in the DM by reducing q. We will collectively refer to these two sources

of welfare loss as the holdup problem channel. An important reason for including the price-taking version

of the search-based model is to investigate the importance of the holdup problem channels and as we show

below, the qualitative results are unchanged in their absence.

Putting the holdup problem channel aside, the Friedman channel and the New-Keynesian channel has

different implications for welfare. The welfare loss of inflation from the Friedman channel is minimized (in

fact eliminated) at the Friedman rule of zero percent net nominal interest rate (or an inflation target for

the central bank equal to the minus the rate of time preference). On the other hand, the loss due to the

New-Keynesian channel is minimized around zero percent inflation target.18 When both of these channels

are present, the inflation rate that minimizes the overall distortions may be at either of the two extremes

or somewhere in between.19 There are three key considerations that determine which of the two channels

dominate: the level of price stickiness given by ζ, the markup for the intermediate good producer given by

λ and the importance of the opportunity cost of holding money. Our estimates of ζ across the two models

are fairly similar while estimated of λ vary depending on the availability of some other source of markup: in

the bargaining version we only need about 9% markup in the CM while in the price-taking version we need

about 24%. A traditional way to think about the opportunity cost of holding money is the welfare triangle

(the area under the money demand curve), which has first been discussed by Bailey (1956) and subsequently

by Lucas (2000). It can be shown that in the absence of any other distortion, the welfare cost of inflation can

be very well approximated by (in fact for some models exactly equal to) the area under the money demand

curve between the two rates being compared.20 As such, the shape of the steady state relationship between

inverse velocity and interest rate depicted in Figure 8 is key for determining the strength of the Friedman

channel.

18As Wolman (2001) notes the relative-price distortion is minimized at exactly zero percent inflation but the markup distortion

may be minimized at a slightly positive inflation rate.
19As Schmitt-Grohe and Uribe (2007) note, in a medium-scale New Keynesian model with some money-demand motive, the

welfare-maximizing inflation target may be about -2% or close to 0% depending on the parameterization.
20Craig and Rocheteau (2008) show that in the basic Lagos-Wright model, in the absence of any holdup problems, the area

under the demand curve very closely approximate the consumption-equivalent welfare measure we will also use.
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Before we turn to the results, a brief discussion about how we compute the welfare loss is in order. In

the MIU model, the steady state welfare up to a constant is given by

W (π∗) = U(x∗)−Ah∗ +
χ∗

1− νm

(
AM∗

π∗Z
1/1−α
∗

)1−νm

(87)

and we solve for the percentage change required in x∗ to make the households indifferent between two

economies with different steady state inflation rates. In the search-based model, the reduced-form steady

state welfare up to a constant is given by

V (π∗) = σ [u(q∗)− c(q∗, k∗, Z∗)] + U(x∗)−Ah∗ (88)

and we solve for the percentage change required in x∗ and consumption in the DM (the q∗ in u(q∗)) to make

the households indifferent between two economies with different steady state inflation rates.21 Finally, as a

technical point, we replace
(

1− 1
g∗

)
Y∗ with simply a constant G∗ obtained from the estimations to prevent

any welfare effects coming through this term.

We focus on two questions related to welfare. First, we want to find the inflation target that minimizes the

distortions and maximizes welfare. This requires us to study the behavior of welfare between the Friedman

rule and zero percent inflation. Second, we want to investigate the welfare loss of moderate inflation, around

10% per year, similar to the rates that have been observed in the late 1970s. Figure 9 depicts the answers to

both of these questions where we plot the welfare loss of deviating from 0% annual inflation. First focusing

on the left side of this graph, it is clear that for both versions of the search-based model, the optimal inflation

rate is the Friedman rule, as evidenced by the monotonically increasing curves. In contrast, for the MIU

model the optimal inflation is around 0%.22 Evidently, the Friedman channel dominates the New-Keynesian

channel in the search-based model while the reverse is true in the MIU model. Turning to the second question,

a 10% annual inflation costs about 8% of consumption according to both versions of the search-based model

while the MIU model indicates a loss of more than twice this number. This shows that the New Keynesian

channel becomes increasingly costly in the MIU model, relative to the search-based model. In the rest of

this section, we dissect these results to understand them better.

Holding household-related parameters constant, as they are related to the Friedman channel, the relative

importance of the two channels are determined by the degree of price stickiness, ζ, and the degree of dynamic

indexation, ι. Intuitively, the former will be important in determining the optimal inflation target and the

21Note that we will not change the q∗ term inside the cost function as it is a part of production.
22As a side remark, note that welfare at the Friedman rule is not defined for the MIU model as unless we put an artificial

bound on money holdings, there is no solution to the household’s problem. Money is costless to hold and utility is increasing in

money balances so the households would like to hold arbitrarily large amounts. This is not the case in the search-based model

as households would never want to hold more money than what they need to purchase q∗, the first-best quantity. As a result

welfare is well-defined at the Friedman rule. For the figures, we omit the Friedman rule for the MIU model.
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latter will be affect the welfare loss of moderate inflation rates since the more firms who cannot optimally

choose their price can dynamically index their price, the lower the effect of price stickiness on welfare will be.

To establish this point, and also to investigate the robustness of our results, in Figure 10 and Figure 11 we

vary ζ and ι. Zooming in on inflation rates between the Friedman rule and 1% annual inflation, Figure 10

shows the tension between the Friedman channel and the New-Keynesian channel. In the search-based

model, with the estimated degree of price stickiness, ζ = 0.70 and ζ = 0.80, respectively, as we argued above

the Friedman channel is dominant. However, with an increase in the degree of price stickiness, to ζ = 0.90 in

the bargaining version and ζ = 0.85 in the price-taking version, the relative-price distortion becomes more

sever and the optimal policy is no longer the Friedman rule as evidenced from the U-shaped welfare loss

curve. Similarly, the MIU model, when we lower the degree of price stickiness to ζ = 0.5, the New-Keynesian

channels loses its dominance and the Friedman rule becomes optimal. In short, in the empirically plausible

range of the price-stickiness parameter, both models have a robust prediction about the optimal inflation

target. Turning to Figure 11, if we reduce the dynamic indexation parameter in the bargaining version of

the search-based model to the estimated value in the MIU model, ι = 0.05, the welfare cost of 10% annual

inflation increases to 16% of consumption and similarly in the MIU model, increasing the level of dynamic

indexation to the level in the bargaining version of the search-based model reduces the welfare cost to just

above 6% of consumption. This finding shows that most of the differences in welfare for moderate levels of

inflation can be related to dynamic indexation, or lack thereof. In the price-taking version of the search-based

model, which has an intermediate level of dynamic indexation at ι = 0.12, moving ι has the same qualitative

effect, albeit smaller quantitatively.

Finally, in order to see the effect of the different channels on welfare, Figure 12 shows the welfare loss of

deviating from 0% inflation for different version of each model. In the search-based model, if we shut down the

DM, which would amount to setting χ∗ = 0, we see the U-shaped welfare loss, reflecting the New-Keynesian

channel. As soon as we turn on money demand, going to the curve labelled benchmark, the Friedman channel

dominates. Approaching the benchmark from the other direction, the curve labelled perfect competition,

shuts down the New-Keynesian channel completely and adding them makes the Friedman rule slightly less

desirable but it remains optimal. It is also useful to note that if we shut down the holdup problems by

considering price-taking (at the estimated parameters of the bargaining version) despite some quantitative

changes, Friedman rule remains optimal. Turning to the MIU model, shutting down the New-Keynesian

channel, we get a mild welfare gain – about an order of magnitude smaller compared to the search-based

model – of going to the Friedman rule, which shows that the Friedman channel is not very strong in the MIU

model. Similarly, moving from the cashless version where money demand is not modelled to the benchmark

version there is only a slight move away from 0% inflation.
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6 Conclusion

As an alternative to the commonly used MIU model, we have developed an estimable DSGE model in which

the presence of a decentralized market creates an incentive for households to hold money, because money is

needed as a medium of exchange. The model specification is closely tied to the theoretical literature that is

developing microfounded models of monetary exchange. In particular, we base our model on recent work by

Lagos and Wright (2005), and Aruoba, Waller, and Wright (2007).

Using post-1983 U.S. on output, inflation, interest rates, and real money balances, we estimate two

versions of our search-based DSGE model along with a standard New Keynesian model in which real money

balances enter the utility function. We obtain parameter estimates for the taste and technology parameters

that determine the exchange in the decentralized market of the search-based models. These parameter

estimates are potentially useful for the theoretically-oriented literature on microfounded monetary models.

We compare the dynamics of the estimated search-based model and the MIU model. While the decen-

tralized market mechanism of the search-based models creates a stronger linkage between technology shocks

and fluctuations in the stock of money, this linkage comes at a cost in terms of overall time series fit – at

least for post 1983 data. On the other hand, if one uses the steady state relationships of the estimated DSGE

models to predict velocity in periods of high target inflation rates as observed in the 1970s the search-based

models deliver much more realistic predictions than the MIU model.

Finally, we explore the steady state welfare implications of the two models. The estimated MIU model

behaves very much like a New Keynesian DSGE model and a near-zero inflation rate is optimal. According

to the search-based model, which also has embodied some New Keynesian feature, the Friedman motive

for keeping the nominal interest rate near zero dominates and negative inflation rates are optimal. This

paper is part of a research agenda that tries to link the literatures on microfounded monetary models and

estimable New Keynesian DSGE models that are popular at central banks. Many interesting questions are

left unanswered and will hopefully be addressed in future research.
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Table 1: Parameters Fixed During Estimation

Name MIU Model Search-Based Model

Depreciation Rate δ 0.014 0.014

Persistence of TFP ρz 0.980 0.980

Fixed Costs F 0.000 0.000

Indexation π∗∗ 1.000 1.000

Steady State GDP Y∗ 1.000 1.000

Steady State ln(H∗/Y∗) -3.50 -3.50

Preference Parameter χ∗ 1.000 1.000

Preference Parameter κ N/A .0001

Steady State Real Rate rA 2.840 2.840

Steady State Inflation Rate πA 2.500 2.500

Policy Rule ψ1 1.820 1.820

Policy Rule ψ2 0.180 0.180

Policy Rule ρR 0.780 0.780

Share of Government Spending g∗ 1.200 1.200

Notes: We use the following transformations: β = 1/(1 + rA/400), π∗ = 1 + πA/400.
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Table 2: Prior Distributions

SBM - Bargaining SBM - Price-Taking MIU Model

Name Domain Density Para (1) Para (2) Para (1) Para (2) Para (1) Para (2)

Household

ln(M∗/Y∗) IR Normal 0.75 0.50 0.75 0.50 0.75 0.50

νm IR+ Gamma - - - - 20.00 5.00

θ [0, 1) Uniform 0.00 1.00 - - - -

σ̃ [0, 1) Beta 0.20 0.10 0.20 0.10 - -

Firms

α [0, 1) Beta 0.30 0.03 0.30 0.03 0.30 0.03

λ IR+ Gamma 0.15 0.05 0.15 0.05 - -

λ [0, 1] Uniform - - - - 0.00 1.00

ζ [0, 1) Beta 0.60 0.15 0.60 0.15 0.60 0.15

ι [0, 1) Beta 0.50 0.25 0.50 0.25 0.50 0.25

S′′ IR+ Gamma 5.00 2.50 5.00 2.50 5.00 2.50

Shocks

ρg [0, 1) Beta 0.80 0.10 0.80 0.10 0.80 0.10

ρχ [0, 1) Beta 0.80 0.10 0.80 0.10 0.80 0.10

σg IR+ InvGamma 1.00 4.00 1.00 4.00 1.00 4.00

σχ IR+ InvGamma 1.00 4.00 1.00 4.00 1.00 4.00

σR IR+ InvGamma 0.50 4.00 0.50 4.00 0.50 4.00

σZ IR+ InvGamma 1.00 4.00 1.00 4.00 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal

distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. For the SBM, we multiply the product of the

marginal densities reported in the table with the function f(·) = −0.5(I∗/Y∗ − 0.16)2/0.0052 − 0.5(mu −

0.15)2/0.012 where mu is the economy-wide markup and for the MIU model with f(·) = −0.5(I∗/Y∗ −

0.16)2/0.0052 − 0.5(λ − 0.15)2/0.012 and truncate the effective prior at the boundary of the determinacy

region.
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Table 3: Prior and Posterior Moments for SBM - Bargaining

Name Prior Posterior

Mean 90% Intv Mean 90% Intv

ln(M∗/Y∗) 0.427 [-0.524, 1.157] 0.768 [0.742, 0.793]

θ 0.938 [0.897, 0.998] 0.939 [0.931, 0.948]

σ̃ 0.141 [0.019, 0.284] 0.305 [0.271, 0.339]

Firms

α 0.305 [0.275, 0.334] 0.372 [0.352, 0.390]

λ 0.136 [0.086, 0.189] 0.094 [0.049, 0.127]

ζ 0.629 [0.448, 0.810] 0.695 [0.643, 0.753]

ι 0.703 [0.426, 0.995] 0.268 [0.123, 0.426]

S′′ 4.447 [1.209, 6.849] 11.921 [9.231, 15.24]

Shocks

ρg 0.808 [0.677, 0.962] 0.859 [0.827, 0.896]

ρχ 0.829 [0.692, 0.956] 0.933 [0.914, 0.953]

σg 1.344 [0.657, 2.008] 0.936 [0.816, 1.048]

σχ 1.168 [0.572, 1.787] 1.619 [1.400, 1.815]

σR 1.027 [0.287, 1.890] 0.246 [0.215, 0.278]

σZ 1.162 [0.551, 1.880] 0.393 [0.327, 0.455]

Notes: The log marginal likelihood for this specification is −503.0.
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Table 4: Prior and Posterior Moments for SBM - Price-Taking

Name Prior Posterior

Mean 90% Intv Mean 90% Intv

ln(M∗/Y∗) 0.524 [-0.085, 1.143] 0.769 [0.748, 0.790]

σ̃ 0.162 [0.035, 0.277] 0.358 [0.310, 0.404]

Firms

α 0.278 [0.265, 0.293] 0.277 [0.264, 0.291]

λ 0.175 [0.145, 0.204] 0.238 [0.205, 0.268]

ζ 0.589 [0.360, 0.821] 0.801 [0.764, 0.840]

ι 0.515 [0.117, 0.916] 0.117 [0.003, 0.231]

S′′ 5.046 [1.281, 8.640] 14.246 [8.782, 19.513]

Shocks

ρg 0.799 [0.647, 0.957] 0.858 [0.823, 0.895]

ρχ 0.803 [0.659, 0.963] 0.928 [0.909, 0.947]

σg 1.247 [0.533, 1.992] 0.914 [0.791, 1.030]

σχ 1.229 [0.551, 1.957] 1.540 [1.338, 1.735]

σR 0.623 [0.265, 0.997] 0.280 [0.239, 0.320]

σZ 1.366 [0.503, 2.222] 0.390 [0.326, 0.448]

Notes: The log marginal likelihood for this specification is −501.3.
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Table 5: Prior and Posterior Moments for MIU Model

Name Prior Posterior

Mean 90% Intv Mean 90% Intv

Household

ln(M∗/Y∗) 0.743 [-0.098, 1.547] 0.779 [0.729, 0.827]

νm 19.900 [12.018, 28.046] 25.943 [19.581, 31.647]

Firms

α 0.280 [0.266, 0.294] 0.282 [0.269, 0.296]

λ 0.151 [0.134, 0.167] 0.150 [0.133, 0.166]

ζ 0.595 [0.362, 0.833] 0.759 [0.709, 0.809]

ι 0.509 [0.094, 0.897] 0.050 [0.000, 0.101]

S′′ 5.060 [1.084, 8.726] 11.079 [6.299, 15.683]

Shocks

ρg 0.799 [0.646, 0.953] 0.886 [0.850, 0.920]

ρχ 0.800 [0.652, 0.960] 0.974 [0.958, 0.992]

σg 1.267 [0.521, 2.065] 1.227 [1.062, 1.388]

σχ 1.202 [0.546, 1.871] 0.865 [0.757, 0.972]

σR 0.583 [0.273, 0.897] 0.199 [0.175, 0.223]

σZ 1.194 [0.555, 1.874] 0.557 [0.471, 0.639]

Notes: The log marginal likelihood for this specification is −441.1.
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Table 6: Posterior Steady States

Shock Data SBM - Bargaining SBM - Price-Taking MIU Model

Mean 90% Intv Mean 90% Intv Mean 90% Intv

Y∗ - 1.000 1.000 1.000

I∗/Y∗ 0.16 0.154 [0.147, 0.161] 0.162 [0.155,0.170] 0.163 [0.155, 0.171]

K∗/Y∗ 11.43 10.99 [10.47, 11.48] 11.60 [11.05,12.14] 11.64 [11.09, 12.19]

M∗/Y∗ 2.12 2.155 [2.099, 2.207] 2.157 [2.111,2.202] 2.179 [2.072, 2.289]

H∗/Y∗ 0.03 0.030 0.030 0.030

W∗H∗/Y∗ 0.70 0.576 [0.546, 0.604] 0.584 [0.565,0.605] 0.625 [0.608, 0.642]

Overall Markup 0.15 0.149 [0.134, 0.167] 0.146 [0.130,0.162] 0.150 [0.133, 0.166]

DM Share - 0.326 [0.289, 0.359] 0.384 [0.335,0.435] N/A N/A

DM Markup - 0.267 [0.172, 0.356] 0 N/A N/A

A - 5.129 [4.707, 5.544] 8.396 [8.066,8.716] 7.065 [6.334, 7.822]

B - 0.095 [0.085, 0.105] 0.125 [0.103,0.146] 0.229 [0.206, 0.252]

Z∗ - 3.209 [2.837, 3.648] 5.572 [5.002,6.140] 6.189 [5.579, 6.761]

Notes: The data column, where available, refer to the relevant number in our larger sample.
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Table 7: Posterior Variance Decomposition (Unconditional)

Shock SBM - Bargaining SBM - Price-Taking MIU Model

Mean 90% Intv Mean 90% Intv Mean 90% Intv

Output

Gov Spending 0.046 [0.032, 0.063] 0.050 [0.032, 0.068] 0.099 [0.065, 0.136]

Money Demand 0.025 [0.013, 0.037] 0.052 [0.023, 0.079]

Monetary Policy 0.008 [0.005, 0.011] 0.014 [0.006, 0.022] 0.012 [0.007, 0.017]

Technology 0.921 [0.899, 0.945] 0.883 [0.843, 0.926] 0.889 [0.850, 0.923]

Inflation

Gov Spending 0.003 [0.002, 0.005] 0.004 [0.001, 0.006] 0.020 [0.007, 0.034]

Money Demand 0.017 [0.007, 0.026] 0.032 [0.011, 0.054]

Monetary Policy 0.021 [0.011, 0.030] 0.011 [0.005, 0.017] 0.009 [0.003, 0.016]

Technology 0.959 [0.944, 0.977] 0.952 [0.929, 0.977] 0.971 [0.956, 0.988]

Federal Funds Rate

Gov Spending 0.003 [0.002, 0.005] 0.002 [0.001, 0.003] 0.001 [0.000, 0.003]

Money Demand 0.004 [0.002, 0.007] 0.013 [0.002, 0.024]

Monetary Policy 0.022 [0.013, 0.030] 0.032 [0.015, 0.047] 0.040 [0.022, 0.055]

Technology 0.970 [0.961, 0.981] 0.954 [0.932, 0.976] 0.959 [0.943, 0.977]

Real Money Balances

Gov Spending 0.023 [0.015, 0.034] 0.019 [0.007, 0.030] 0.002 [0.001, 0.004]

Money Demand 0.223 [0.142, 0.297] 0.244 [0.149, 0.346] 0.767 [0.595, 0.923]

Monetary Policy 0.030 [0.019, 0.040] 0.054 [0.023, 0.083] 0.021 [0.008, 0.036]

Technology 0.724 [0.654, 0.818] 0.683 [0.569, 0.808] 0.209 [0.052, 0.358]

Notes: Real money balances are measured in terms of the CM Good.
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Table 8: Posterior Variance Decomposition (Business Cycle Freq)

Shock SBM - Bargaining SBM - Price-Taking MIU Model

Mean 90% Intv Mean 90% Intv Mean 90% Intv

Output

Gov Spending 0.502 [0.421, 0.586] 0.432 [0.360, 0.512] 0.620 [0.539, 0.704]

Money Demand 0.105 [0.070, 0.139] 0.153 [0.098, 0.195]

Monetary Policy 0.079 [0.049, 0.107] 0.105 [0.055, 0.143] 0.101 [0.065, 0.138]

Technology 0.314 [0.233, 0.382] 0.309 [0.233, 0.379] 0.280 [0.214, 0.357]

Inflation

Gov Spending 0.021 [0.012, 0.029] 0.023 [0.011, 0.037] 0.118 [0.062, 0.175]

Money Demand 0.103 [0.058, 0.140] 0.122 [0.062, 0.173]

Monetary Policy 0.190 [0.126, 0.251] 0.096 [0.055, 0.143] 0.076 [0.025, 0.128]

Technology 0.686 [0.606, 0.774] 0.758 [0.678, 0.834] 0.806 [0.719, 0.887]

Federal Funds Rate

Gov Spending 0.013 [0.006, 0.021] 0.013 [0.005, 0.020] 0.004 [0.000, 0.009]

Money Demand 0.008 [0.002, 0.015] 0.028 [0.006, 0.050]

Monetary Policy 0.213 [0.153, 0.285] 0.263 [0.167, 0.346] 0.333 [0.254, 0.425]

Technology 0.766 [0.701, 0.839] 0.696 [0.607, 0.788] 0.664 [0.580, 0.751]

Real Money Balances

Gov Spending 0.083 [0.056, 0.114] 0.051 [0.031, 0.069] 0.008 [0.002, 0.012]

Money Demand 0.522 [0.447, 0.592] 0.470 [0.379, 0.545] 0.725 [0.614, 0.836]

Monetary Policy 0.177 [0.114, 0.225] 0.266 [0.171, 0.357] 0.144 [0.086, 0.197]

Technology 0.217 [0.155, 0.287] 0.213 [0.136, 0.285] 0.124 [0.059, 0.193]

Notes:Real money balances are measured in terms of the CM good.
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Table 9: Posterior Predictive Check: Money Demand Coefficients

Regressor Data Search Model MIU Model

Mean 90% Intv Mean 90% Intv

Intcpt 78.483 84.186 [78.766, 88.300] 81.083 [74.521, 87.749]

lnYt 0.596 0.067 [-0.544, 0.579] -0.152 [-0.684, 0.650]

Rt -0.337 -1.324 [-2.006, -0.564] -0.678 [-1.605, 0.038]

∆ lnYt−1 -1.661 0.022 [-0.345, 0.320] 0.032 [-0.423, 0.485]

∆Rt−1 -1.330 0.035 [-0.315, 0.315] 0.075 [-0.347, 0.468]

Notes: The column “Data” contains least squares estimates of the regression

ln(Mt+1/Pt) = β0 + β1 lnYt + β2R̃t + β3∆ lnYt−1 + β3∆R̃t−1 + ut.

The remaining columns summarize the posterior predictive distribution for these least squares estimates

based on the Search and MIU models. Draws from the posterior predictive distributions are obtained by

simulating sample paths from the DSGE model conditional on the posterior parameter draws and estimating

the money demand equation from the simulated sample paths.
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Figure 1: M1 and M2 Log Inverse Velocity
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Figure 2: Impulse Responses to Money Demand and Technology Shocks
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Notes: Figure depicts pointwise posterior mean of impulse response functions for the MIU model (red), search-based

model with bargaining (blue) and with price-taking (green) to the money demand and technology shocks. Responses

of inflation and Fed Funds rate are measured in percentage points and responses of real GDP and real money are

measured in percentage deviations from the steady state.
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Figure 3: Log Inverse Velocity vs. Nominal Interest Rate

Notes: Conditional on the posterior mean estimates we depict log inverse velocity and interest rates for a

simulated sample of 500 observations (green dots) as well as actual U.S. data (red circles)
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Figure 4: Log Inverse Velocity vs. Nominal Interest Rate - SBM (Bargaining)

Notes: Conditional on the posterior mean estimates we depict log inverse velocity and interest rates for a

simulated sample of 500 observations (green dots) as well as actual U.S. data (red circles) Each panel shows

the results when only the respective shock is active.
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Figure 5: Log Inverse Velocity vs. Nominal Interest Rate - MIU Model

Notes: See Figure 4.
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Figure 6: Correlations of Log Inverse Velocity at t+ h with Nominal Interest Rate at t
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Notes: The lines labelled “Data” contain sample correlations. For model-based bands, draws from the

posterior predictive distributions are obtained by simulating sample paths from the DSGE model conditional

on posterior parameter draws and calculating moments from the simulated sample paths. The panels on the

left show the results with raw data and the panels on the right show results with HP-filtered data.
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Figure 7: Correlations of Log Inverse Velocity at t+ h with Real GDP at t
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Figure 8: Steady State Relationship Between Log Inverse Velocity and Nominal Interest

Rate
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Figure 9: Welfare Loss of Deviating from 0% Inflation
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Figure 10: Welfare Loss of Deviating from 0% Inflation - Sensitivity to Price Stickiness
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Figure 11: Welfare Loss of Deviating from 0% Inflation - Sensitivity to Dynamic Indexation
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Figure 12: Channels of Welfare Loss
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A The Search-Based Model

We use a slightly more general specification of the utility and production functions in the subsequent expo-

sition:

U(x) = B
x1−γ

1− γ
, u(q) =

(q + κ)1−η − κ1−η

1− η
.

Moreover, we let f(e, k) = eΦk1−Φ.

A.1 Further Details: Intermediate Good Producers

The first-order condition for a intermediate good producing firm is:

IEt

{ ∞∑
s=0

ζsβsΞpt+s|t
1

P ot (i)

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s

[
P ot (i)πadjt+s|t − (1 + λ)Pt+sMCt+s

]}
= 0. (89)

Define and rewrite

F (1)
t = IEt

[ ∞∑
s=0

ζsβsΞpt+s|t

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+sπ
adj
t+s|t

]
(90)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβIEt

[ ∞∑
s=0

ζsβsΞpt+1+s|t

(
P ot (i)πadjt+1+s|t

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

×IEt
[(

P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|t

∞∑
s=0

ζsβsΞpt+1+s|t+1

(
P ot+1(i)π

adj
t+1+s|t+1

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t+1

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
.

Similarly,

F (2)
t = IEt

[ ∞∑
s=0

ζsβsΞt+s

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s
Pt+sMCt+s

P ot (i)

]
(91)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt
PtMCt
P ot (i)

+ ζβ
(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
.

and the first-order condition becomes

F (1)
t = (1 + λ)F (2)

t . (92)
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A.2 Further Details: Price Dispersion

To capture the evolution of the price distribution we introduced a new variable Dt. Its law of motion can

be derived as follows:

Dt = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

= (1− ζ)
[
P ot
Pt

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι) P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−2

πt

)ι(
π2
∗∗

πtπt−1

)(1−ι)
P ot−2

Pt−2

]− 1+λ
λ

. . . .

Lagging Dt by one period yields

Dt−1 = (1− ζ)
[
P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−2

πt−1

)ι(
π∗∗
πt−1

)(1−ι) P ot−2

Pt−2

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−3

πt−1

)ι(
π2
∗∗

πt−1πt−2

)(1−ι)
P ot−3

Pt−3

]− 1+λ
λ

. . . .

Therefore, we obtain the following law of motion for the price dispersion:

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (93)

A.3 Equilibrium Conditions

We now summarize the equilibrium conditions for the search-based model. The timing is such that all t shocks

are realized at the beginning of t and S̄t = (Zt, gt, χt) and Rt are observed. S̄t summarizes the exogenous

state variables. We define St =
(
S̄t, Rt

)
which will be the aggregate state variables of the household’s

problem. In the following definitions, we do not track ht (individual labor supply) and Bt (the bond supply

of the government). We also do not track nominal money balances but instead track Mt = Mt/Pt−1. Recall

that Mt is determined based on t − 1 information and so is Mt. Finally, we use πt ≡ Pt/Pt−1 and do not

track the level of prices.

Given exogenous states
{
S̄t
}∞
t=0

, a monetary equilibrium is defined as allocations

{qt, Xt,Ht,Kt, It, µt, Yt,Mt,Yt}∞t=0 , policy {Rt}∞t=0 and prices
{
Wt, R

k
t , p

0
t , πt, Dt

}∞
t=0

such that :
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Household’s Problem: Given exogenous states, policy and prices,
{
qt, Xt,Ht,Kt, It, µt,Mt,Ξ

p
t+1|t

}∞
t=0

satisfy

Wt =
A

U ′(Xt)
(94)

1 = βEt

[
U ′(Xt+1)
U ′(Xt)

Rt
πt+1

]
(95)

1 = µt

[
1− S

(
It
It−1

)
+

It
It−1

S′
(

It
It−1

)]
+ βEt

{
µt+1

U ′(Xt+1)
U ′(Xt)

(
It+1

It

)2

S′
(
It+1

It

)}
(96)

Kt+1 = (1− δ)Kt +
[
1− S

(
It
It−1

)]
It (97)

µt = βEt

{
U ′(Xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(Xt)
γ(qt+1,Kt+1, χt+1, Zt+1)

}
(98)

Mt =
g (qt,Kt, χt, Zt)Wtπt

A
(99)

U ′(Xt) = βEt

{
U ′(Xt+1)
πt+1

[
σχt+1u

′(qt+1)
gq(qt+1,Kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(100)

Ξpt+1|t =
U ′(Xt+1)
U ′(Xt)πt+1

(101)

In the price-taking version we replace (98), (99) and (100) with

µt = βEt

{
U ′(Xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(Xt)
ck(qt+1,Kt+1, Zt+1)

}
(102)

Mt =
qtcq (qt,Kt, Zt)Wtπt

A
(103)

U ′(Xt) = βEt

{
U ′(Xt+1)
πt+1

[
σχt+1u

′(qt+1)
cq(qt+1,Kt+1, Zt+1)

+ (1− σ)
]}

(104)

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α

Wt

Rkt
Ht. (105)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t (106)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(107)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(108)

F (1)
t = (1 + λ)F (2)

t (109)
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Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(110)

Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate
Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πGDPt

π∗

)ψ1 (Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) (111)

Aggregate Resource Constraint for CM is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (112)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (113)

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (114)

GDP and GDP Deflator: Prices and inflation in the DM are given by

PDMt =
σMtPt−1

qt
, πDMt =

PDMt

PDMt−1

=
Mtqt−1

Mt−1qt
πt−1. (115)

According to our (approximate) Fisher index the GDP deflator evolves according to

πGDPt = (πt)(1−s∗)(πDMt )s∗ . (116)

Real output in terms of the CM good and GDP are

Yt = Yt +
σMt

πt
, YGDPt = YtPt/PGDPt . (117)

Finally, measured real money balances and (inverse) velocity in the data are given by

Mt+1

PGDPt

= Mt+1
Pt

PGDPt

,
Mt+1

PGDPt Y GDPt

=
Mt+1

(PGDPt /Pt)YGDPt

=
Mt+1

Yt
. (118)
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A.4 Steady States

For estimation purposes it is useful to parameterize the model in terms of Y∗, H∗, and M∗ and solve the

steady state conditions for A, B, and Z∗. Suppose q∗ and K∗ are given then we can solve for the following

steady states recursively:

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Y∗ = Y∗ − σM∗/π∗

Ȳ∗ = Y∗D∗

Z∗ = (Ȳ∗ + F)/(Kα
∗H

1−α
∗ )

Rk∗ =
αZ∗p

o
∗

1 + λ

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ


−1(

H∗

K∗

)1−α

W∗ =
1− α

α

K∗

H∗
Rk∗

I∗ = δK∗

X∗ = Y∗ − I∗ − (1− 1/g∗)Y∗

A =
g(q∗,K∗, χ∗, Z∗)W∗π∗

M∗

U ′
∗ = A/W∗ (119)

B = U ′
∗X

γ
∗

πDM∗ = πGDP∗ = π∗

To determine q∗ and K∗ we solve the following equations jointly:

R∗ = 1 + σ

[
χ∗u

′(q∗)
gq(q∗,K∗, χ∗, Z∗)

− 1
]

(120)

1 = β(1 +Rk∗ − δ)− σβ
γ(q∗,K∗, χ∗, Z∗)

U ′
∗

(121)

In the price-taking version, we replace (119), (120) and (121) with

A =
q∗cq(q∗,K∗, χ∗, Z∗)W∗π∗

M∗

R∗ = 1 + σ

[
χ∗u

′(q∗)
cq(q∗,K∗, Z∗)

− 1
]

1 = β(1 +Rk∗ − δ)− σβ
ck(q∗,K∗, Z∗)

U ′
∗
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Note that from the firm’s problem we have

F (1)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)/λ
)−1

(po∗)
− 1+λ

λ Y∗

F (2)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ
)−1

(po∗)
− 1+λ

λ −1Y∗MC∗

F (1)
∗ = (1 + λ)F (2)

∗

MC∗ = α−α(1− α)−(1−α)W 1−α
∗ (Rk∗)

αZ−1
∗

π∗ =
[
(1− ζ) (π∗po∗)

− 1
λ + ζ

(
πι∗π

1−ι
∗∗
)− 1

λ

]−λ
which lead to the conditions for po∗ above. The term D∗ measures the steady state price dispersion. The

larger π∗/π∗∗, that is, the faster the price of the non-adjusters is eroding in real terms, the bigger D∗. Finally,

in steady state the DM share of nominal output and the DM markup are given by

s∗ =
σM∗

σM∗ + Y∗π∗

markup(dm) =
g(q∗,K∗, χ∗, Z∗)
q∗cq(q∗,K∗, Z∗)

− 1.

A.5 Log-Linearizations

In the subsequent presentation of the log-linearized equations we adopt the convention that we abbreviate

time t expectations of a t+ 1 variable simply by a time t+ 1 subscript, omitting the expectation operator.

Firms’s Problem: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t.. (122)

Conditional on capital and factor prices, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t. (123)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written

as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(124)

+A
[
− ι

λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)/λ
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and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(125)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (126)

A =
(po∗)

1/λ

1− ζ

Equations (124) to (126) determine π̃t, F̃t, and π̃ot .

Household’s Problem: The optimality conditions for the household can be expressed as

W̃t = γX̃t (127)

X̃t = X̃t+1 −
1
γ

(R̃t − π̃t+1) (128)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (129)

k̃t+1 = (1− δ)k̃t + δĩt (130)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γβ(1− δ +Rk∗)X̃t+1 + βRk∗R̃
k
t+1 (131)

+(1− β(1− δ +Rk∗))Γ̃t+1

M̃t = g̃t + W̃t + π̃t (132)

R̃t =
R∗ − 1 + σ

R∗
[χ̃t+1 − g̃q,t+1 − η

q∗
(q∗ + κ)

q̃t+1] (133)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t (134)

Equations (127) to (134) determine wages, CM consumption, investment, capital, the shadow price of in-

stalled capital, the rental rate of capital, real money balances, the stochastic discount factor used in the

firms’ problem, and DM consumption.

For the price-taking version, we replace (131), (132) and (133) with

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γβ(1− δ +Rk∗)X̃t+1 + βRk∗R̃
k
t+1 (135)

+(1− β(1− δ +Rk∗))c̃k,t+1

M̃t = q̃t + c̃q,t + W̃t + π̃t (136)

R̃t =
R∗ − 1 + σ

R∗
[χ̃t+1 − c̃q,t+1 − η

q∗
(q∗ + κ)

q̃t+1] (137)
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Decentralized Market: We now determine the law of motion for g̃q,t, Γ̃t, and g̃t. In addition, we are

introducing some auxiliary variables. We begin with (omitting t subscripts),

u =
(q + κ)1−η − κ1−η

1− η

u′ = (q + κ)−η

u′′ = −η(q + κ)−η−1

c = exp{−Z̃}qψk1−ψ

cq = ψ exp{−Z̃}qψ−1k1−ψ

ck = (1− ψ) exp{−Z̃}qψk−ψ

cqq = ψ(ψ − 1) exp{−Z̃}qψ−2k1−ψ

ckk = ψ(ψ − 1) exp{−Z̃}qψk−ψ−1

cqk = ψ(1− ψ) exp{−Z̃}qψ−1k−ψ

which can be log-linearized as follows

ũu∗ =
q∗

(q∗ + κ)η
q̃

ũ′ = −η q∗
q∗ + κ

q̃

ũ′′ = −(η + 1)
q∗

q∗ + κ
q̃

c̃ = −ψZ̃ + ψq̃ + (1− ψ)k̃

c̃q = −ψZ̃ + (ψ − 1)q̃ + (1− ψ)k̃

c̃k = −ψZ̃ + ψq̃ − ψk̃

c̃qq = −ψZ̃ + (ψ − 2)q̃ + (1− ψ)k̃

c̃kk = −ψZ̃ + ψq̃ − (1 + ψ)k̃

c̃qk = −ψZ̃ + (ψ − 1)q̃ +−ψk̃

Recall that

Γt =
ck,tgq,t − cq,tgk,t

gq,t

which implies that Γ̃t evolves according to

g̃q,t + Γ̃t =
ck∗gq∗

ck∗gq∗ − cq∗gk∗
[c̃k,t + g̃q,t]−

cq∗gk∗
ck∗gq∗ − cq∗gk∗

[c̃q,t + g̃k,t]. (138)

Now consider the equation

gt(θχu′t + (1− θ)cq,t) = θχctu
′
t + (1− θ)χcq,tut,
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which can be written in log-linear form as

[θχ∗u′∗ + (1− θ) cq∗] g∗g̃t

= θχ∗u
′
∗ (c∗ − g∗) ũ′t + (1− θ)χ∗cq∗u∗ũt + (1− θ) cq∗ (χ∗u∗ − g∗) c̃q,t (139)

+θχ∗c∗u′∗c̃+ [−θχ∗g∗u′∗ + θχ∗c∗u
′
∗ + (1− θ)χ∗cq∗u∗] χ̃t (140)

and determines g̃t.

Now consider

gq =
χu′cq[θχu′ + (1− θ)cq] + θ(1− θ)(χu− c) (χu′cqq − cqχu

′′)
[θχu′ + (1− θ)cq]2

In log-linear form, the equation can be rewritten as

gq∗ [θχ∗u′∗ + (1− θ) cq∗]
2
g̃q,t

= −ηgq∗ [θχ∗u′∗ + (1− θ) cq∗] [θχ∗u′∗ (ũt + χ̃t) + (1− θ) cq∗c̃q,t] (141)

+χ∗u′∗cq∗ [θχu′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃q,t)

+θ (χ∗u′∗)
2
cq∗ (ũ′t + χ̃t) + χ∗ (1− θ)u′∗c

2
q∗c̃q,t

+θ (1− θ)χ∗ (u′∗cqq∗ − cq∗u
′′
∗)
[
χ∗u∗ (ũt + χ̃t)− c∗ ˜c, t

]
+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqq∗ (ũ′t + χ̃t + c̃qq,tt)

−θ (1− θ)χ∗ (χ∗u∗ − c∗)u′′∗cq∗ (ũ′′t + χ̃t + c̃q,t) .

Moreover,

gk =
θχu′ck [θχu′ + (1− θ)cq] + θ(1− θ)(χu− c)χu′cqk

[θχu′ + (1− θ)cq]
2 ,

which leads to an equation for g̃k,t:

gk∗[θχu′∗ + (1− θ)cq∗]2g̃k,t

= −2gk∗[θχ∗u′∗ + (1− θ)cq∗]
(
θχ∗u

′
∗(ũtχ̃t) + (1− θ)cq∗c̃q,t

)
(142)

+θχ∗u′∗ck∗ [θχ∗u′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃k,t)

+ (θχ∗u′∗)
2
ck∗ (ũ′t + χ̃t) + χ∗θ (1− θ)u′∗ck∗cq∗c̃q,t

+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqk∗ (ũ′t + χ̃t + c̃qk,t)

+θ (1− θ)χ∗u′∗cqk∗ [χ∗u∗ (ũt + χ̃t)− c∗c̃t] .

To summarize, Equations (138) to (142) determine Γ̃t, g̃t, g̃q,t, and g̃k,t. The first three variables appear in

the characterization of the households’ problem above.

Resource Constraint, Market Clearing Conditions in the CM: Aggregate output across evolves

according to
˜̇Yt = Ỹt + D̃t = (1 + F/Ẏ∗)[Z̃t + αK̃t + (1− α)H̃t]. (143)
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and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (144)

The goods market clearing condition is of the form

Ỹt =
X∗

Y∗
X̃t +

I∗
Y∗
Ĩt +

(
1− 1

g∗

)
Y∗
Y∗
Yt +

Y∗
Y∗g∗

g̃t (145)

and determines investment.

Aggregate Output and Prices, Measured Real Money Balances

In log-linear terms, inflation in the DM evolves according to

π̃DMt = M̃t − M̃t−1 − (q̃t − q̃t−1) + π̃t−1. (146)

Since all inflation rates share the same steady state, changes in the GDP deflator are given by

π̃GDPt = (1− s∗)π̃t + s∗π̃
DM
t . (147)

Real output in terms of the CM final good evolves according to

Ỹt = (1− s∗)Ỹt + s∗(M̃t − π̃t). (148)

As we showed in the main text, real GDP can be expressed as

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + s∗(M̃0 − π̃0 − q̃0). (149)

Finally, inverse velocity evolves according to

M̃t+1/Yt = M̃t+1 − Ỹt. (150)

Government Policies: The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1π̃
GDP
t + ψ2Ỹt] + εR,t. (151)
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B The MIU Model

The subsequent exposition is based on a slightly more general utility function:

U(x) = B
x1−γ

1− γ
.

B.1 Equilibrium Conditions

Household’s Problem: Given exogenous states, policy and prices,

U ′(xt) =
A

Wt
(152)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(153)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
µt+1

U ′(xt+1)
U ′(xt)

(
it+1

it

)2

S′
(
it+1

it

)}
(154)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
(155)

µt = βEt

{
U ′(xt+1

U ′(xt)
[
Rkt+1 + (1− δ)µt+1

]}
(156)

U ′(xt)
Pt

= βEt

[
U ′(xt+1)
Pt+1

+
χt+1

Pt+1

(
A

Z
1/1−α
∗

)1−νm
(
mt+1

Pt+1

)−νm
]

(157)

Ξpt+1|t =
U ′(xt+1)
U ′(xt)πt+1

(158)

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α

Wt

Rkt
Ht. (159)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )

αZ−1
t (160)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(161)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(162)

F (1)
t = (1 + λ)F (2)

t (163)
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Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(164)

Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate
Rt
R∗

=
(
Rt−1

R∗

)ρR
[(

πt
π∗

)ψ1
(
Yt
Y∗

)ψ2
]1−ρR

exp (σrεrt ) (165)

Aggregate Resource Constraint: is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (166)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (167)

The gross domestic product of this economy is given by

Yt = Yt (168)

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (169)
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B.2 Steady States

For estimation purposes it is useful to parameterize the model in terms of Y∗ = Y∗, H∗, and M∗ and solve

the steady state conditions for A, B, and Z∗.

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ
Rk∗ =

1
β

+ δ − 1

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Ȳ∗ = Y∗D∗

Z∗ = (Ȳ∗ + F)/(Kα
∗H

1−α
∗ )

K∗ =
α(Ȳ∗ + F)po∗
(1 + λ)Rk∗

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ


−1

W∗ =
1− α

α

K∗

H∗
Rk∗

I∗ = δK∗

X∗ = Y∗ − I∗ − (1− 1/g∗)Y∗

A =
1
M∗

[
χ∗π

νm
∗ W∗

(R∗ − 1)Z(1−νm)/(1−α)
∗

]1/νm

U ′
∗ = A/W∗

B = U ′
∗X

γ
∗

B.3 Log-Linearizations

We will frequently use equation-specific constants, such as A and B. Variables dated t + 1 refer to time t

conditional expectations.

Firms’s Problem: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t. (170)

Conditional on capital, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t (171)
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Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written

as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(172)

+A
[
− ι

λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A1 = ζβ

(
π∗∗
π∗

)−(1−ι)/λ

and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(173)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A2 = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (174)

Ap =
(po∗)

1/λ

1− ζ

Equations (172) to (174) determine π̃t, F̃t, and p̃ot .

Household’s Problem The optimality conditions for the household can be expressed as

W̃t =
1
γ
X̃t (175)

−γX̃t = −γX̃t+1 + (R̃t − π̃t+1) (176)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (177)

k̃t+1 = (1− δ)k̃t + δĩt (178)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γX̃t+1 + βRk∗R̃
k
t+1 (179)

νmM̃t+1 = γX̃t + νmχ̃t+1 − (1− νm)π̃t+1 −
1

R∗ − 1
R̃t (180)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t. (181)

Equations (175) to (181) determine wages, consumption, investment, capital, the shadow value of installed

capital, the rental rate of capital, real money balances, and the stochastic discount factor.

Resource Constraint, Market Clearing Conditions Aggregate output across evolves according to

˜̄Yt = Ỹt + D̃t = (1 + F/Ȳ∗)[Z̃t + αK̃t + (1− α)H̃t]. (182)



This Version: June 19, 2008 71

and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (183)

The goods market clearing condition is of the form

Ỹt =
X∗

X∗ + I∗
X̃t +

I∗
X∗ + I∗

Ĩt + g̃t. (184)

Government Policies The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1π̃t + ψ2Ỹt] + εR,t. (185)




