Imbs' and Méjean's

"Elasticity Optimism"

Eaton Comments

IFM Meetings

Summer Institute

July 7, 2008

• The price elasticity of demand for imports

• A venerable topic

- papers from my youth:
 - Orcutt (1950)
 - Kemp (1962)
 - Houthakker and Magee (1969)
 - Khan (1975)
 - Stone (1979)
 - Goldstein and Khan (1985)
 - Marquez (1990)

- Good thing: place the elasticity in the context of a well-defined demand system with different varieties distinguished by source
- Relate demand elasticities to parameters of the demand system (elasticities of substitution)
- Estimate demand elasticities using Feenstra (1994) Broda and Weinstein (2006) machinery

- Preferences
 - upper tier:

$$C = \left[\sum_{k \in K} \alpha_k C_k^{(\gamma - 1)/\gamma}\right]^{\gamma/(\gamma - 1)}$$

lower tier

$$C_k = \left[\sum_{i \in I} (\beta_{ki} c_{ki})^{(\sigma_k - 1)/\sigma_k} + (\beta_{kd} c_{kd})^{(\sigma_k - 1)/\sigma_k}\right]^{\sigma_k/(\sigma_k - 1)}$$

• Object of interest:

$$\eta = \frac{\partial \sum_{k \in K} \sum_{i \in I} p_{ki} c_{ki}}{\partial E} \frac{E}{\sum_{k \in K} \sum_{i \in I} p_{ki} c_{ki}}$$
$$= 1 - \sum_{k \in K} n_k \left[\sigma_k (w_k^M - 1) + \gamma w_k^M (w_k - 1) \right]$$

where

- n_k : share of good k in total **import** expenditure
- \boldsymbol{w}_k^M : share total spending on good k going to imports
- w_k : share of k in **total** spending
- ullet Objective here: learn about σ_k to identify $\eta.$

• The methodology: (double difference: time t and reference country c $\Delta^{t,c}$):

$$\Delta^{t,c} \ln s_{kit} = -(\sigma_k - 1) \Delta^{t,c} \ln p_{kit} + \varepsilon_{kit}^c \qquad (D)$$

$$\Delta^{t,c} \ln p_{kit} = \frac{\omega_k}{1 + \omega_k} \Delta^{t,c} \ln s_{kit} + \delta_{kit}^c \qquad (S)$$

 ε, δ independent.

• Rewrite as:

$$\Delta^{t,c} \ln s_{kit} + (\sigma_k - 1) \Delta^{t,c} \ln p_{kit} = \varepsilon_{kit}^c \qquad (D)$$

$$\Delta^{t,c} \ln p_{kit} - \frac{\omega_k}{1 + \omega_k} \Delta^{t,c} \ln s_{kit} = \delta_{kit}^c \qquad (S)$$

Multiply the two together and solve to get:

$$\left(\Delta^{t,c} \ln p_{kit}\right)^2 = \theta_1 \left(\Delta^{t,c} \ln s_{kit}\right)^2 + \theta_2 \left(\Delta^{t,c} \ln p_{kit} \Delta^{t,c} \ln s_{kit}\right) + u_{kit}$$

- ullet Estimate, assuming that for each good k different varieties have different ratios of variances of demand and supply shocks.
- Parameters of interest σ_k and ω_k can be recovered from θ_1 and θ_2 , but a problem emerges is the solution is imaginary.
- Result here: allowing σ_k to vary across goods yields a much higher calculation of η (as foreseen by Orcutt).

• Good thing: bring microevidence and estimation techniques to answer a fundamental macroeconomic question

- But why are we focusing on only the demand side?
- What are we assuming about technology and factor prices?
- Is η a structural parameter across exogenous changes?
 - Text talks of a "change in the exchange rate due to a monetary shock"
 - where are the nominal rigidities?
 - Other shocks: technology, transfer (demand)

•	Presumed	policy	question:	how	much	of a	change	in	relative	interna	ational
	prices is n	eeded i	in respons	e to a	a macr	oeco	nomic s	sho	ck?		

- Answer depends on:
 - the shock
 - the extent of internal resource mobility (traded vs. nontraded)
 - the role of the extensive and intensive margins (Ruhl)
- We need a general equilibrium formulation

Dekle, Eaton, and Kortum, IMF Staff Papers, forthcoming.

• Ricardian model (but could be MC ,etc.) with country i having efficiency $z_i(j)$ making good j, so that

$$p_{ni}(j) = \frac{c_i d_{ni}}{z_i(j)}.$$

where $p_{ni}(j)$ is the cost of good j in n if purchased from i.

Distribution of efficiencies:

$$F_i(z) = \Pr[Z \le z] = e^{-T_i z^{-\theta}}$$

Price

$$p_n(j) = \min_i \left\{ p_{ni}(j) \right\}.$$

• Continuum [0, 1] of goods

• Fraction n buys from i:

$$\overline{\pi}_{ni} = \frac{T_i \left(c_i d_{ni} \right)^{-\theta}}{\Phi_n}.$$

where:

$$\Phi_n = \sum_{i=1}^N T_i \left(c_i d_{ni} \right)^{-\theta}.$$

Demand:

$$X_n^M(j) = \left\lceil \frac{p_n(j)}{p_n} \right\rceil^{-(\sigma-1)} X_n^M,$$

where:

$$p_n = \left[\int_0^\infty p^{-(\sigma-1)} dG_n(p) \right]^{-1/(\sigma-1)} = \varphi \Phi_n^{-1/\theta}$$

and φ is a parameter involving θ and σ requiring $\theta > \sigma - 1$.

• Bilateral trade shares:

$$\pi_{ni} = \frac{X_{ni}^{M}}{X_{n}^{M}} = \frac{\overline{\pi}_{ni} \overline{X}_{ni}^{M}}{\sum_{k=1}^{N} \overline{\pi}_{nk} \overline{X}_{nk}^{M}},$$

where \overline{X}_{ni}^{M} is average spending per good in country n on goods purchased from i.

• Consider a change in c_i to c_i' , with $\widehat{c}_i = c_i'/c_i$ caused by a realignment of deficits from D_n to D_n'

• Goods market clearing condition:

$$\widehat{w}_i Y_i = \sum_{n=1}^N \pi'_{ni} \left(\widehat{w}_n Y_n + D'_n \right)$$

(ignoring nontradables and intermediates)

Extensive Margin Inoperative

• Change in import shares:

$$\left(\pi_{ni}^{SR}\right)' = \frac{\overline{\pi}_{ni}\widehat{c}_i^{-(\sigma-1)}}{\sum_{k=1}^N \overline{\pi}_{nk}\widehat{c}_k^{-(\sigma-1)}}.$$

• Change in prices indices:

$$\left(p_n^{SR}\right)' = p_n \left[\sum_{i=1}^N \overline{\pi}_{ni} \widehat{c}_i^{-(\sigma-1)}\right]^{-1/(\sigma-1)}.$$

ullet Elasticity of substitution in consumption $\sigma-1$ matters.

Extension Margin Operative

Change in import shares:

$$\pi'_{ni} = \frac{\overline{\pi}_{ni}\widehat{c}_i^{-\theta}}{\sum_{k=1}^N \overline{\pi}_{nk}\widehat{c}_k^{-\theta}}.$$

• Change in price indices:

$$p'_{n} = \varphi \left[\sum_{i=1}^{N} T_{i} \left(c'_{i} d_{ni} \right)^{-\theta} \right]^{-1/\theta} = p_{n} \left[\sum_{i=1}^{N} \overline{\pi}_{ni} \widehat{c}_{i}^{-\theta} \right]^{-1/\theta}.$$

- ullet The technology parameter heta rather than $\sigma-1$ matters.
- Remember that we need $\theta > \sigma 1$.

Effect of deficit elimination on Relative GDP's

$$\theta = 8.28$$

$$\sigma = 2$$

- Labor mobility and immobility between traded and nontraded sectors.
- How much of a change in relative GDP's is needed?

TABLE I: GDP AND DEFICIT MEASURES, 2004

		GDP		Deficits	
country	code	GDP_	CA	Trade	Manuf.
country ALGERIA		85	-11.2	-7.2	11.8
ARGENTINA	alg	153	-11.2	-7.2 -11.0	9.5
AUSTRALIA	arg aul	659	39.2	21.8	57.5
AUSTRIALIA	aut	293	-1.2	-4.4	7.3
BELGIUM/LUXEM	bex	392	-16.6	-4.4 -20.5	52.6
BRAZIL	bex	604	-10.6	-20.5 -26.1	-8.8
CANADA	can	992	-12.5	-35.7	22.5
CHILE	can	992	-22.5 -1.7	-35. <i>1</i> -8.1	-2.4
CHINA/HK	chk	2106	-1.7 -87.2	-6.1 -54.0	-2.4 -119.4
COLOMBIA		2106 98	-07.2		8.2
DENMARK	col	96 245	-6.3	0.8 -11.3	9.3
	den	245 82			
EGYPT	egy		-4.0	0.8	1.1
FINLAND	fin	189	-9.9	-9.6	-17.1
FRANCE	fra	2060	4.1	7.4	-3.3
GERMANY	ger	2740	-105.4	-122.9	-278.3
GREECE	gre	264	13.1	13.9	29.2
INDIA	ind	689	-7.8	14.5	-11.9
INDONESIA	ino	254	-1.9	-10.1	-25.1
IRELAND	ire	183	0.8	-25.5	-68.8
ISRAEL	isr	122	-3.3	0.1	-2.2
ITALY	ita	1720	13.4	-4.0 7 0.4	-46.6
JAPAN	jap	4580	-178.1	-72.4	-385.1
KOREA	kor	680	-29.1	-26.3	-146.4
MA/PHI/SING	mps	312	-43.2	-45.9	-58.3
MEXICO	mex	683	5.8	17.8	20.2
NETHERLANDS	net	608	-55.2	-44.4	8.9
NEW ZEALAND	nze	98	6.3	1.1	10.0
NORWAY	nor	255	-35.1	-34.9	16.0
PAKISTAN	pak	113	0.7	6.5	-0.9
PERU	per	70	-0.1	-1.6	2.5
PORTUGAL	por	178	12.7	14.3	9.8
RUSSIA	rus	592	-59.4	-69.6	-11.7
SOUTH AFRICA	saf	216	7.2	2.6	1.0
SPAIN	spa	1040	53.5	44.8	61.7
SWEDEN	swe	349	-27.9	-27.4	-26.2
SWITZERLAND	swi	360	-57.1	-32.8	-13.4
THAILAND	tha	161	-7.1	-6.0	-21.1
TURKEY	tur	302	15.2	12.5	18.0
UNITED KINGDOM	unk	2150	32.3	74.2	103.5
UNITED STATES	usa	11700	649.7	667.0	438.4
VENEZUELA	ven	112	-14.0	-17.3	6.0
REST OF WORLD	row	3025	-53.4	-171.3	341.9

All data are in US\$ billions. Negative numbers indicate surplus. MA/PHI/SING is a combination of Malaysia, the Philippines, and Singapore.

Conclusion

- Disaggregation of the demand side is good.
- ullet But what η is depends on context. It is not a structural parameter.
- We need to model the production side too.
- A challenge for future research: reconciling short and long runs.